
TLP 13 (2): 227–252, 2013. C© Cambridge University Press 2012

doi:10.1017/S1471068411000640 First published online 25 January 2012

227

Consistent query answering via ASP
from different perspectives:

Theory and practice

MARCO MANNA, FRANCESCO RICCA and GIORGIO TERRACINA

Department of Mathematics, University of Calabria, Cosenza, Italy

(e-mail: {manna,ricca,terracina}@mat.unical.it)

submitted 23 November 2010; revised 15 December 2010; accepted 24 January 2011

Abstract

A data integration system provides transparent access to different data sources by suitably

combining their data, and providing the user with a unified view of them, called global

schema. However, source data are generally not under the control of the data integration

process; thus, integrated data may violate global integrity constraints even in the presence

of locally consistent data sources. In this scenario, it may be anyway interesting to retrieve

as much consistent information as possible. The process of answering user queries under

global constraint violations is called consistent query answering (CQA). Several notions of

CQA have been proposed, e.g., depending on whether integrated information is assumed to

be sound, complete, exact, or a variant of them. This paper provides a contribution in this

setting: it uniforms solutions coming from different perspectives under a common Answer-

Set Programming (ASP)-based core, and provides query-driven optimizations designed for

isolating and eliminating inefficiencies of the general approach for computing consistent

answers. Moreover, the paper introduces some new theoretical results enriching existing

knowledge on the decidability and complexity of the considered problems. The effectiveness

of the approach is evidenced by experimental results.

KEYWORDS: Answer-Set Programming, data integration, consistent query answering

1 Introduction

The enormous amount of information dispersed over many data sources, often

stored in different heterogeneous databases, has recently boosted the interest for

data integration systems (Lenzerini 2002). Roughly speaking, a data integration

system provides transparent access to different data sources by suitably combining

their data, and providing the user with a unified view of them, called global schema.

In many cases, the application domain imposes some consistency requirements on

integrated data. For instance, it may be at least desirable to impose some integrity

constraints (ICs), such as primary/foreign keys, on the global relations. It may be

the case that data stored at the sources may violate global ICs when integrated, since

in general data sources are not under the control of the data integration process.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

228 M. Manna et al.

The standard approach to this problem basically consists of explicitly modifying the

data in order to eliminate IC violations (data cleaning). However, the explicit repair

of data is not always convenient or possible. Therefore, when answering a user

query, the system should be able to “virtually repair” relevant data (in the line of

Arenas et al. 2003; Bertossi et al. 2005; Chomicki and Marcinkowski 2005), in order

to provide consistent answers; this task is also called consistent query answering

(CQA).

The database community has spent considerable efforts in this area; relevant

research results have been obtained to clarify semantics, decidability, and complexity

of data integration under constraints and, specifically, for CQA. In particular, several

notions of CQA have been proposed (see Bertossi et al. 2005 for a survey), e.g.,

depending on whether the information in the database is assumed to be sound,

complete, or exact. However, while efficient systems are already available for simple

data integration scenarios, solutions being both scalable and comprehensive have not

been implemented yet for CQA, mainly due to the fact that handling inconsistencies

arising from constraints violation is inherently hard. Moreover, mixing different

kinds of constraints (e.g., denial constraints and inclusion dependencies) on the same

global database makes, often, the query answering process undecidable (Abiteboul

et al. 1995; Calı̀ et al. 2003a).

This paper provides some contributions in this setting. Specifically, it first starts

from different state-of-the-art semantic perspectives (Arenas et al. 2003; Calı̀ et al.

2003a; Chomicki and Marcinkowski 2005) and revisits them in order to provide

a uniform, common core based on Answer-Set Programming (ASP) (Gelfond and

Lifschitz 1988, 1991). Thus, it provides query-driven optimizations, in the light of

the experience we gained in the INFOMIX (Leone et al. 2005) project in order to

overcome the limitations observed in real-world scenarios. The main contributions

of this paper can be summarized as follows:

• A theoretical analysis of considered semantics which extends previous results.

• The definition of a unified framework for CQA based on a purely declarative,

logic-based approach which supports the most relevant semantics assumptions

on source data. Specifically, the problem of CQA is reduced to cautious

reasoning on (disjunctive) ASP programs with aggregates (Faber et al. 2010)

automatically built from both the query and involved constraints.

• The definition of an optimization approach designed to (1) “localize” and

limit the inefficient part of the computation of consistent answers to small

fragments of the input, and (2) cast down the computational complexity of

the repair process if possible.

• The implementation of the entire framework in a full-fledged prototype system.

• The capability of handling large amounts of data, typical of real-world data

integration scenarios, using as internal query evaluator the DLVDB (Terracina,

Leone, et al. 2008) system; indeed, DLVDB allows for mass-memory database

evaluations and distributed data management features.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 229

In order to assess the effectiveness of the proposed approach, we carried out ex-

perimental activities both on a real-world scenario and on synthetic data, comparing

its behavior on different semantics and constraints.

The plan of the paper is as follows. Section 2 formally introduces the notion of

CQA under different semantics and some new theoretical results on decidability

and complexity for this problem. Section 3 first introduces a unified (general)

solution to handle CQA via ASP, and then presents some optimizations. Section

4 describes the benchmark framework that we adopted in the tests and discusses

on the obtained results. Finally, Section 5 compares related work and draws some

conclusive considerations.

2 Data integration framework

In this paper, we exploit the data integration setting to point out motivations

and challenges underlying CQA. However, as it will be clarified in the following,

techniques and results provided in the paper hold also for a single database setting.

We next formally describe the adopted data integration framework.

The following notation will be used throughout the paper. We always denote

by Γ a countably infinite domain of totally ordered values; by t a tuple of values

from Γ; by X a variable; by x̄ a sequence X1, . . . , Xn of (not necessarily distinct)

variables; and by |x̄| = n its length. Let x̄, x̄′ be two sequences of variables, then we

denote by x̄ − x̄′ the sequence obtained from x̄ by discarding a variable if it appears

in x̄′. Whenever all the variables of sequence x̄ appear in another sequence x̄′, we

simply write x̄ � x̄′. Given a sequence x̄ and a set π ⊆ {1, . . . , |x̄|}, we denote by

x̄π the sequence obtained from x̄ by discarding a variable if its position is not in

π. (Similarly, given a tuple t and a set π ⊆ {1, . . . , |t|}, we denote by tπ the tuple

obtained from t by discarding a value if its position is not in π.) Moreover, we

denote by σ(x̄) a conjunction of comparison atoms of the form X � X ′, where

� ∈ {�,�, <,>, �=}, and by � the symmetric difference operator between two sets.

A relational database schema is a pair R = 〈names(R), constr(R)〉, where names(R)

and constr(R) are the relation names and the ICs of R, respectively. The arity of a

given relation r ∈ names(R) is denoted by arity(r). A database (instance) for R is

any set of facts (Abiteboul et al. 1995) of the form:

F = {r(t) : r ∈ names(R) ∧ t is a tuple from Γ ∧ |t| = arity(r)}

In the following, we adopt the unique name assumption, and dom(F) denotes the

subset of Γ containing all the values appearing in the facts of F .

Let r1, . . . , rm ∈ names(R), the set constr(R) contains ICs of the form:

(1) ∀x̄1, . . . , x̄m ¬[r1(x̄1) ∧ . . . ∧ rm(x̄m) ∧ σ(x̄1, . . . , x̄m)] (denial constraints – DCs)

(2) ∀x̄∀ [r1(x̄1) → ∃x̄2∃ r2(x̄2)] (inclusion dependencies – INDs);

where arity(ri) = |x̄i|, for each i in [1, ..., m]. In particular, for INDs, we require

that all the variables within an x̄i (1 � i � 2) are distinct, x̄∀ � x̄1, x̄∀ � x̄2, and

x̄2∃ = x̄2 − x̄∀. Note that if |x̄2∃| = 0, then x̄∀ = x̄2 � x̄1. In the case, we are only

interested in emphasizing the relation names involved in an IND, we simply write

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

230 M. Manna et al.

r1(x̄1) → r2(x̄2) or r1 → r2. A database F is said to be consistent w.r.t. R if all ICs

are satisfied. A conjunctive query cq(x̄) over R is a formula of the form:

∃x̄1∃, . . . , x̄m∃ r1(x̄1) ∧ . . . ∧ rm(x̄m) ∧ σ(x̄1 . . . , x̄m)

where x̄i∃ � x̄i for each i in [1, ...,m], w̄ = x̄1 − x̄1∃, . . . , x̄m − x̄m∃ are the free variables

of q, and x̄ contains only and all the variables of w̄ (with no duplicates, and possibly

in a different order). A union of conjunctive queries q(x̄) is a formula of the form

cq1(x̄) ∨ . . .∨ cqn(x̄). In the following, for simplicity, the term query refers to a union

of conjunctive queries, if not differently specified. Given a database F for R, and a

query q(x̄), the answer to q is the set of n-tuples of values ans(q,F) = {t : F |= q(t)}.

2.1 Data integration model

A data integration system is formalized (Lenzerini 2002) as a triple I = 〈G,S ,M〉
where

� G is the global schema. A global database for I is any database for G;

� S is the source schema. A source database for I is any database consistent w.r.t.

S;

� M is the global-as-view (GAV) mapping that associates each element g in

names(G) with a union of conjunctive queries over S .

Let F be a source database for I . The retrieved global database is

ret(I ,F) = {g(t) : g ∈ names(G) ∧ t ∈ ans(q,F) ∧ q ∈ M(g)}

for G satisfying the mapping. Note that when source data are combined in a unified

schema with its own ICs, the retrieved global database might be inconsistent.

In the following, when it is clear from the context, we use simply the symbol

D to denote the retrieved global database ret(I ,F). In fact, all results provided in

the paper hold for any database D complying with some schema G but possibly

inconsistent w.r.t. the constraints of G.

Example 1

Consider a bank association that desires to unify the databases of two branches. The

first (source) database models managers by using a relation man(code, name) and

employees by a relation emp(code, name), where code is a primary key for both tables.

The second database stores the same data in a relation employee(code, name, role).

Suppose that the data have to be integrated under a global schema with two relations

m(code) and e(code, name), where the global ICs are:

• ∀X1, X2, X3 ¬[e(X1, X2) ∧ e(X1, X3) ∧ X2 �= X3], namely, code is the key of e;

• ∀X1[m(X1) → ∃X2 e(X1, X2)], i.e., an IND imposing that each manager code

must be an employee code as well.

The mapping is defined by the following Datalog rules (as usual, see Abiteboul et al.

1995):

e(Xc,Xn) :− emp(Xc,Xn). m(Xc) :− man(Xc,).

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 231

e(Xc,Xn) :− employee (Xc,Xn,). m(Xc) :− employee (Xc, , ‘manager’).

Assume that emp stores tuples (‘e1’,‘john’), (‘e2’,‘mary’), (‘e3’,‘willy’), man stores

(‘e1’,‘john’), and employee stores (‘e1’,‘ann’,‘manager’), (‘e2’,‘mary’,‘manager’), (‘e3’,

‘rose’,‘emp’). It is easy to verify that although the source databases are consistent

w.r.t. local constraints, the global database, obtained by evaluating the mapping,

violates the key constraint on e as both john and ann have the same code e1, and

both willy and rose have the same code e3 in table e.

2.2 CQA under different semantics

In case a database D violates ICs, one can still be interested in querying the

“consistent” information originating from F . One possibility is to “repair” D (by

inserting or deleting tuples) in such a way that all the ICs are satisfied. But there

are several ways to “repair” D. As an example, in order to satisfy an IND of

the form r1 → r2 one might either remove violating tuples from r1 or insert new

tuples in r2. Moreover, the repairing strategy depends on the particular semantic

assumption made on the data integration system. Semantic assumptions may range

from (strict) soundness to (strict) completeness. Roughly speaking, completeness

complies with the closed world assumption where missing facts are assumed to be

false; on the contrary, soundness complies with the open world assumption where D
may be incomplete. We next define CQA under some relevant semantics, namely,

loosely-exact, loosely-sound, and CM-complete (Arenas et al. 2003; Calı̀ et al. 2003a;

Chomicki and Marcinkowski 2005). More formally, let Σ denote a semantics, and D
a possibly inconsistent database for G, a database B is said to be a Σ-repair for D
if it is consistent w.r.t. G and one of the following conditions holds:

(1) Σ = CM-complete, B ⊆ D, and � B′ ⊆ D such that B′ is consistent and B′ ⊃ B;

(2) Σ = loosely-sound, and � B′ such that B′ is consistent and B′ ∩ D ⊃ B ∩ D;

(3) Σ = loosely-exact, and � B′ such that B′ is consistent and B′ � D ⊂ B � D.

The CM-complete semantics allows a minimal number of deletions in each repair

to avoid empty repairs, if possible, but does not allow insertions. The loosely-

sound semantics allows insertions and a minimal amount of deletions. Finally, the

loosely-exact semantics allows both insertions and deletions by minimization of the

symmetric difference between D and the repairs.

Definition 1

Let D be a database for a schema G, and Σ be a semantics. The consistent answer to a

query q w.r.t. D is the set ansΣ(q,G,D) = {t : t ∈ ans(q,B) for each Σ-repair B for D}
CQA is the problem of computing ansΣ(q,G,D).

Observe that other semantics have been considered in the literature, such as sound,

complete, exact, loosely-complete, etc. (Calı̀ et al. 2003a); however, some of them are

trivial for CQA. As an example, in the exact semantics, CQA makes sense only if

the retrieved database is already consistent with the global constraints, whereas in

the complete and loosely-complete semantics, CQA will always return a void answer.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

232 M. Manna et al.

Note that the semantics considered in this paper address a wide significant range of

ways to repair the retrieved database which are also relevant for CQA.

Example 2

By following Example 1, the retrieved global database admits exactly the follow-

ing repairs under the CM-complete semantics: B1 = {e(‘e2’,‘mary’), e(‘e1’,‘john’),

e(‘e3’,‘willy’), m(‘e1’), m(‘e2’)}; B2 = {e(‘e2’,‘mary’), e(‘e1’,‘john’), e(‘e3’,‘rose’),

m(‘e1’), m(‘e2’)}; B3 = {e(‘e2’,‘mary’), e(‘e1’,‘ann’), e(‘e3’,‘willy’), m(‘e1’), m(‘e2’)};
B4 = {e(‘e2’,‘mary’), e(‘e1’,‘ann’), e(‘e3’,‘rose’), m(‘e1’), m(‘e2’)}. The query m(X),

asking for the list of manager codes, has then both e1 and e2 as consistent answers,

whereas the query e(X,Y), asking for the list of employees, has only e(‘e2’,‘mary’)

as a consistent answer (e is the only tuple in each CM-complete repair).

2.3 Restricted classes of ICs

The problem of computing CQA, under general combinations of ICs, is undecidable

(Abiteboul et al. 1995). However, restrictions on ICs to retain decidability and

identify tractable cases can be imposed.

Definition 2

Let r be a relation name of arity n, and π be a set of m � n indices from I = {1, . . . , n}.
A key dependency (KD) for r consists of a set of n − m DCs, exactly one for each

index i ∈ I − π, of the form ∀x̄1, x̄2 ¬(r(x̄1) ∧ r(x̄2) ∧ x̄i
1 �= x̄i

2), where no variable

occurs twice in each x̄i (1 � i � 2), |x̄1| = |x̄2| = n, the sequence x̄π
1 exactly coincides

with x̄π
2 , and x̄j

1 is distinct from x̄j
2 for each j ∈ I − π. The set π is called the

primary key of r and is denoted by key(r). We assume that at most one KD is

specified for each relation (Calı̀ et al. 2003a). Finally, for each relation name r′

such that no DC is explicitly specified for, we say, without loss of generality, that

key(r′) = {1, . . . , arity(r′)}.

Definition 3

Given an IND d of the form ∀x̄∀ [r1(x̄1) → ∃x̄2∃ r2(x̄2)], we denote by πd
L ⊆

{1, . . . , arity(r1)} and πd
R ⊆ {1, . . . , arity(r2)} the two sets of indices induced by the

positions of the variables x̄∀ in x̄1 and x̄2, respectively. More formally, πd
L = {i : x̄i

1

is universally quantified in d} and πd
R = {i : x̄i

2 is universally quantified in d}.

For example, let d denote the IND ∀X1, X2 [r1(X1, X3, X2) → ∃X4 r2(X4, X2, X1)].

We have that πd
L = {1, 3} and πd

R = {2, 3}.

Definition 4

An IND d is said to be (i) a foreign key (FK) if πd
R = key(r2) (Abiteboul et al. 1995);

(ii) a foreign superkey (FSK) if πd
R ⊇ key(r2) (Levene and Vincent 2000); and (iii)

non-key-conflicting (NKC) if πd
R �⊃ key(r2) (Calı̀ et al. 2003a). (Note that each FK is

an FSK.)

Definition 5

An FSK d of the form r1 → r2 is said to be safe (SFSK) if πd
L ⊆ key(r1). In particular,

if d is a safe FK we call it an SFK.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 233

Table 1. Data complexity of CQA (distinguishing between cyclic and acyclic INDs)

DCs INDs Loosely-sound Loosely-exact CM-complete

No Any In PTIME ∗ In PTIME ∗ In PTIME †

KD No coNP-c ∗ coNP-c ∗ coNP-c †

KD NKC coNP-c ∗ Π
p
2-c

∗ in Π
p
2

† / in coNP †

KD SFSK In Π
p
2

‡ In Π
p
2

‡ In Π
p
2

† / in coNP †

KD Any Undecidable ∗ Undecidable ∗ In Π
p
2

† / In coNP †

Any Any Undecidable ‖ Undecidable ‖ Π
p
2-c

† / coNP-c †

∗ Cali et al. (2003a); † Chomicki and Marcinkowski (2005); ‡Section 2.4; ‖ Abiteboul et al. (1995).

For example, let d denote the FSK ∀X1, X2 [r1(X1, X3, X2) → ∃X4 r2(X4, X2, X1)]

where key(r2) = {3}. Thus, if key(r1) = {1, 3}, d is SFSK, whereas if key(r1) = {1, 2},
d is not SFSK.

Table 1 summarizes known and new results about the computability and com-

plexity of CQA under relevant classes of ICs and the three semantic assumptions

considered in this paper. In particular, given a query q (without comparison atoms if

Σ ∈ {loosely-sound, loosely-exact}), we refer to the decision problem of establishing

whether a tuple from dom(D) belongs to ansΣ(q,G,D) or not. Note that Chomicki

and Marcinkowski (2005) have proved the computability and complexity of CQA

for the CM-complete semantics in the case of conjunctive queries with comparison

predicates. However, since in such a setting, there is a finite number of repairs each

of finite size, then their results straightforwardly hold for a union of conjunctive

queries as well. New decidability and complexity results for CQA under KDs and

SFSKs only, with Σ ∈ {loosely-sound, loosely-exact}, are proved in Section 2.4.

2.4 Loosely-exact and loosely-sound semantics under KD and SFSK

In this section, we provide new decidability and complexity results for CQA under

both the loosely-exact and the loosely-sound semantics with KDs and SFSKs. In

the rest of the section, we always denote by G a schema containing KDs and SFSKs

only; by D a possibly inconsistent database for G; by q a union of conjunctive

queries without comparison atoms; and by Σ ∈ {loosely-exact, loosely-sound}.
In the following, some of the proofs are not included due to space constraints;

they can be found in the extended version of this paper (Manna et al. 2011).

We first show that in the aforementioned hypothesis, the size of each repair is

finite.

Definition 6

Let B be a Σ-repair for D and i � 0 be a natural number. We inductively define

the sets Bi as follows. (1) If i = 0, then B0 = B ∩ D. (2) If i > 0, then Bi ⊆
B − (B0 ∪ . . . ∪ Bi−1) is arbitrarily chosen in such a way that its facts are necessary

and sufficient for satisfying all the INDs in constr(G) that are violated in B0∪. . .∪Bi−1.

Observe that B =
⋃

i�0 Bi and that Bi ∩ Bj = ∅ for each j �= i.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

234 M. Manna et al.

Lemma 1

Let B be a Σ-repair for D, then (1) the key of each fact in B only contains values

from dom(D); and (2) |B| is finite.

Proof

(1) Let i > 0 be a natural number. Let ri(ti) be a fact in Bi such that there is an

index j ∈ key(ri) for which t
j
i �∈ dom(B0). Let ri−1(ti−1) be one of the facts in Bi−1

that forces the presence of ri(ti) in Bi for satisfying some IND, say d. (Note that by

Definition 6, there must be at least one of such a fact because Bi would otherwise

violate condition 2, since ri(ti) would be unnecessary.) Moreover, since d is an SFSK,

then there must exist an index k ∈ key(ri−1) such that t
j
i = tki−1. Thus, ri−1(ti−1)

contains a value being not in dom(B0) inside its key as well as ri(ti). Since i has

been chosen arbitrarily, then value t
j
i has to be part of a fact of B0, which is clearly

a contradiction.

(2) Since the key of each fact in B can only contain values from dom(B0), and

|dom(B0)| � |B0| · α where α = max{arity(g) : g ∈ names(G)}, then |B| � |names(G)| ·
|dom(B0)|α � |names(G)| · (α · |B0|)α � |names(G)| · (α · |D|)α. �

We next characterize representative databases for Σ-repairs.

Definition 7

Let B be a Σ-repair for D. We denote by homo(B) the (possibly infinite) set of

databases defined in such a way that B′ ∈ homo(B) if and only if:

• B′ can be obtained from B by replacing each value (if any) that is not in

dom(D) with a value from Γ − dom(D); and

• none of the values in Γ − dom(D) occurs twice in B′.

Finally, we denote by hB,B′ : dom(B′) → dom(B) the function (homomorphism)

associating values in dom(B′) with values in dom(B), where hB,B′(α) = α, for each

α ∈ dom(D) ∩ dom(B′).

Note that since (by Lemma 1) the key of each fact in B only contains values from

dom(D), then |B′| = |B| holds.

For example, if B = {p(1, ε1, ε2), q(2, ε2, ε1)} with dom(D) = {1, 2} and key(p) =

key(q) = {1}, then all of the following databases are in homo(B): {p(1, ε1, ε3),
q(2, ε2, ε4)}, {p(1, ε4, ε2), q(2, ε3, ε1)}, and {p(1, ε5, ε6), q(2, ε7, ε8)}.

Lemma 2

If B is a Σ-repair for D, then each B′ ∈ homo(B) also is.

We next define the finite database D∗ having among its subsets a number of

Σ-repairs sufficient for solving CQA.

Definition 8

Let c be a value in Γ−dom(D). Consider the largest (possibly inconsistent) database,

say C , constructible on the domain dom(D) ∪ {c} such that f ∈ C iff the value c

does not appear in the key of f. Let N be a fixed set of values arbitrarily chosen

from Γ − dom(D) whose cardinality is equal to the number of occurrences of c in

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 235

C . We denote by D∗ one possible database for G obtained from C by replacing each

occurrence of c with a value from N in such a way that each value in N occurs

exactly once in D∗. (|C| = |D∗|.)

For example, if dom(D) = {1, 2} and G = {p} with arity(p) = 2 and key(p) = {1},
then C = {p(1, 1), p(1, 2), p(1, c), p(2, 1), p(2, 2), p(2, c)}. Let us fix N = {ε1, ε2}. Thus,

D∗ has the following form: {p(1, 1), p(1, 2), p(1, ε1), p(2, 1), p(2, 2), p(2, ε2)}.

Proposition 1

The following hold:

• |N | =
∑

g∈G(arity(g) − |key(g)|) · |dom(D)||key(g)| · (|dom(D)| + 1)arity(g)−|key(g)|−1

• |D∗| �
∑

g∈G(|dom(D)| + 1)arity(g) �
∑

g∈G(arity(g) · |D| + 1)arity(g)

Lemma 3

If B is a Σ-repair for D, then there exists B′ ∈ homo(B) such that B′ ⊆ D∗.

Lemma 4

Let B be a Σ-repair for D, B′ ∈ homo(B), q be a query, and t be a tuple of values

from dom(D). If t ∈ ans(q,B′), then t ∈ ans(q,B).

Proof

Let qi be one of the conjunctions in q, if t ∈ ans(qi,B′), then there is a substitution μ′

from the variables of qi to values in Γ such that B′ |= qi(t). But since, by Definition 7,

each fact in B′ is univocally associated with a unique fact in B by preserving the

values in dom(D), and since all the extra values in B′ are distinct, then there must

also be a substitution μ such that B |= qi(t). In particular, let x be a variable in

qi, then we can define μ in such a way that μ(x) = hB,B′(μ′(x)), where h is the

homomorphism from B′ to B (see Definition 7). Clearly, if t ∈ ans(qi,B′) for at least

one qi in q, then t ∈ ans(q,B′) too and, consequently, t ∈ ans(q,B). �

The next theorem states the decidability of CQA under both the loosely-exact

and the loosely-sound semantics with KDs and SFSKs only.

Theorem 1

Let B be a Σ-repair for D, q a query, and t a tuple from dom(D). Let � ⊆ 2D
∗

denote the set of all Σ-repairs contained in D∗. Then, t ∈ ansΣ(q,G,D) iff t ∈
ans(q,B) ∀B ∈ �.

Proof

(⇒) We have to prove that if t ∈ ansΣ(q,G,D), then t ∈ ans(q,B) for each B ∈ �, or

equivalently, if t �∈ ans(q,B) for some B ∈ �, then t �∈ ansΣ(q,G,D). This follows by

the definition of ansΣ(q,G,D) and from the fact that � only contains Σ-repairs.

(⇐) We have to prove that if t ∈ ans(q,B) for each B ∈ �, then t ∈ ansΣ(q,G,D).

Assume that t ∈ ans(q,B) for each B ∈ � but t �∈ ansΣ(q,G,D). This would entail

that there is a repair B0 such that t �∈ ans(q,B0). But since t �∈ ans(q,B′) for each

B′ ∈ homo(B0) (by Lemma 4), and since � ∩ homo(B0) always contains a repair,

say B′′ (by Lemma 3), then we have a contradiction since t �∈ ans(q,B′′) has to hold

whereas we have assumed that t ∈ ans(q,B) for each B ∈ �. �

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

236 M. Manna et al.

Decidability and complexity results, under KDs and SFSKs only, follow from

Theorem 1.

Corollary 1

Let G be a global schema containing KDs and SFSKs only, D be a possibly

inconsistent database for G, q be a query, Σ ∈ {loosely-exact, loosely-sound}, and t be

a tuple of values from dom(D). The problem of establishing whether t ∈ ansΣ(q,G,D)

is in Πp
2 in data complexity.

Proof

It suffices to prove that the problem of establishing whether t �∈ ansΣ(q,G,D) is

in Σp
2. This can be done by (i) building D∗ and (ii) guessing B ∈ 2D

∗
such that

B is a Σ-repair and t �∈ ans(q,B). Since, by Proposition 1, |D∗| ∈ O(|D|α), where

α = max{arity(g) : g ∈ names(G)}, then Step (i) (enumerate the facts of D∗) can be

done in polynomial time. Since checking that t �∈ ans(q,B) can be done in PTIME. It

remains to show that checking whether B is a Σ-repair can be done in coNP.

[loosely-exact] If Σ = loosely-exact, this task corresponds to checking that there is

no consistent B′ ⊆ D ∪ B such that B′ � D ⊂ B � D, where this last task is doable

in PTIME.

[loosely-sound] If Σ = loosely-sound, this task corresponds to checking that there is

no consistent B′ ⊆ D∗ such that B′ ∩ D ⊃ B ∩ D, where this last task is doable in

PTIME.

Then the thesis follows. �

2.5 Equivalence of CQA under loosely-exact and CM-complete semantics

In this section, we define some relevant cases in which CQA under loosely-exact and

CM-complete semantics coincide.

In the following, some of the proofs are not included due to space constraints;

they can be found in the extended version of this paper (Manna et al. 2011).

Lemma 5

Given a database D for a schema G, if B is a CM-complete repair for D, then it is

a loosely-exact repair for D.

Corollary 2

ansloosely−exact(q,G,D) ⊆ ansCM−complete(q,G,D)

Theorem 2

There are cases where ansloosely-exact(q,G,D) ⊂ ansCM-complete(q,G,D)

Proof

By Chomicki and Marcinkowski (2005), stating that the two semantics are different,

and by Corollary 2. �

Proposition 2

Let B be a database consistent w.r.t. a set of ICs C .

(1) If C are DCs only, then each B′ ⊂ B is consistent w.r.t. C as well.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 237

(2) If C are INDs only, then B∪B′ is consistent w.r.t. C for each B′ consistent w.r.t.

C .

Theorem 3

Given a database D for a schema G, let B be a loosely-exact repair for D, and

B = B ∩ D. There is a CM-complete repair B′ ⊆ B for D if at least one of the

following holds: (1) G contains DCs only (no INDs); (2) G contains INDs only (no

DCs); (3) G contains KDs and FKs only, and D is consistent w.r.t. KDs; and (4) G
contains KDs and SFKs only.

Corollary 3

ansloosely-exact(q,G,D) = ansCM-complete(q,G,D) in the cases where Theorem 3 holds.

Proposition 3

In general, Theorem 3 does not hold in case G contains SFSKs and KDs only.

3 Computation of CQA via ASP

In this section, we show how to exploit ASP (Gelfond and Lifschitz 1988, 1991)

for efficiently computing consistent answers to user queries under different semantic

assumptions. ASP is a powerful logic programming paradigm allowing (in its general

form) for disjunction in rule heads (Minker 1982) and non-monotonic negation in

rule bodies. In the following, we assume that the reader is familiar with ASP with

aggregates, and in particular, we adopt the DLV syntax (Leone et al. 2006; Faber

et al. 2010).

The suitability of ASP for implementing CQA has been already recognized in

the literature (Lenzerini 2002; Arenas et al. 2003; Bertossi et al. 2005; Chomicki

and Marcinkowski 2005). The general approaches are based on the following idea:

produce an ASP program P whose answer sets represent possible repairs, so that

the problem of computing CQA corresponds to cautious reasoning on P . One of

the hardest challenges in this context is the automatic identification of a program P

considering a minimal number of repairs actually relevant to answering user queries.

In order to face these challenges, we first introduce a general encoding that unifies

in a common core the solutions for CQA under the semantics considered in this

paper. Then, based on this unified framework, we define optimization strategies

precisely aiming at reducing the computational cost of CQA. This is done in several

ways: (i) by casting down the original program to complexity-wise easier programs;

(ii) by identifying portions of the database not requiring repairs at all, according

to the query requirements; and (iii) by exploiting equivalence classes between some

semantics in such a way to adopt optimized solutions.

We next present the general encoding first and, then, the optimizations.

3.1 General encoding

The general approach generates a program Πcqa and a new query qcqa obtained by

rewriting both the constraints and the query q in such a way that CQA reduces to

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

238 M. Manna et al.

cautious reasoning on Πcqa and qcqa. Recall that a union of conjunctive queries in

ASP is expressed as a set of rules having the same head predicate with the same

arity.

In what follows, we first present how to generate Πcqa and qcqa and then formally

prove under which hypothesis cautious reasoning on such Πcqa and qcqa corresponds

to CQA.

Given a database D for a schema G and a query q on G, the ASP program Πcqa

is created by rewriting each IC belonging to constr(G) and q as follows:

Denial constraints. Let Σ ∈ {CM-complete, loosely-sound, loosely-exact}. For each

DC of the form ∀x̄1, . . . , x̄m ¬[g1(x̄1)∧ . . .∧gm(x̄m)∧σ(x̄1, . . . , x̄m)] in constr(G), insert

the following rule into Πcqa:

• gc1(x̄1) ∨ · · · ∨ gcm(x̄m) :− g1(x̄1), . . . , gm(x̄m), σ(x̄1, . . . , x̄m).

This rule states that in the presence of a violated DC, it must be guessed the

tuple(s) to be removed in order to repair the database.

Inclusion dependencies. Let Σ = {CM-complete, loosely-exact}. For each IND d in

constr(G) of the form ∀x̄∀ [g1(x̄1) → ∃x̄2∃ g2(x̄2)], add the following rules into Πcqa:

• gc1(x̄1) :− g1(x̄1), #count{x̄2∃ : gc2(x̄2)} = #count{x̄2∃ : g2(x̄2)}. if |x̄2∃| > 0

• gc1(x̄1) :− g1(x̄1), g
c
2(x̄2).

gc1(x̄1) :− g1(x̄1), not g2(x̄2). if |x̄2∃| = 0

The first rule states that a tuple of g1 must be deleted iff either all the tuples in

g2 previously referred to by g1 via d have been deleted due to the repairing process,

or there is no tuple in g2 referred to by g1 via d. (This is done by comparing the

total count of tuples in g2 and gc2.) Observe that if there is a cyclic set of INDs, the

set of rules generated by this rewriting would contain recursive aggregates. Their

semantics is described in Faber et al. (2010). The latter two rules replace the first

one in the special case of |x̄2∃| = 0.

Repaired relations. Let Σ ∈ {CM-complete, loosely-sound, loosely-exact}. For each

relation name g ∈ names(G), insert the following rule into Πcqa:

• gr(x̄) :− g(x̄), not gc(x̄).

Query rewriting. Build qcqa(x̄) from q(x̄) as follows:

(1) If Σ = loosely-sound, then apply onto q the perfect rewriting algorithm that

deals with INDs described in Calı̀ et al. (2003b).1

(2) For each atom g(ȳ) in q, replace g(ȳ) by gr(ȳ).

The perfect rewriting introduced in Calı̀ et al. (2003b) is intuitively described next.

Given a query q(x̄) and a set of INDs, the algorithm iteratively computes a new

query Q as follows. The query Q is first initialized with q; then at each iteration

it carries out the following two steps. (1) For each conjunction cq′ in Q, and for

each pair of atoms g1, g2 in cq′ that unify (i.e., for which there exists a substitution

1 Observe that when Σ = loosely-sound, INDs are not encoded into logic rules.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 239

transforming g1 into g2), g1 and g2 are substituted by one single unifying atom. (2)

For each conjunction cq′ in Q, and for each applicable IND d of the form g1 → g

such that g is in cq′, it adds to Q a new conjunction cq′′ obtained from cq′ by

interpreting d as a rewriting rule on g, applied from right to left. The algorithm

stops when no further modifications are possible on Q with the two steps above.

The following theorems show how and when cautious reasoning on Πcqa and qcqa
correspond to CQA. First, we consider the CM-complete semantics.

In the following, some of the proofs are not included due to space constraints;

they can be found in the extended version of this paper (Manna et al. 2011).

Theorem 4

Let Σ = CM-complete, let D be a database for a schema G with arbitrary DCs

and (possibly cyclic) INDs, and let q be a union of conjunctive queries. Then

t ∈ ansΣ(q,G,D) iff qcqa(t) is a cautious consequence of the ASP program D ∪ Πcqa.

Example 3

Consider again Example 2, the program (and the query built from q(X) :− m(X))

under the CM-complete semantics obtained for it is:

� ec(Xc,Xn) ∨ ec(Xc,X
′
n) :− e(Xc,Xn), e(Xc,X

′
n), Xn �= X ′

n.

� mc(Xc) :− m(Xc), #count{X ′
n : ec(Xc,X

′
n)} = #count{Xn : e(Xc,Xn)}.

� er(Xc,Xn) :− e(Xc,Xn), not ec(Xc,Xn).

� mr(Xc) :− m(Xc), not mc(Xc).

� qcqa(Xc) :− mr(Xc).

When this program is evaluated on the database, we obtain four answer sets. It

can be verified that all the answer sets contain mr(‘e1’) and mr(‘e2’) (i.e., they are

cautious consequences of Πcqa), and thus, ‘e1’ and ‘e2’ are the consistent answers to

the query.

Theorem 5

Let Σ = loosely-sound, let D be a database for a schema G with KDs (and exactly

one key for each relation) and (possibly cyclic) NKC INDs, and let q be a union of

conjunctive queries without comparison atoms.2 Then t ∈ ansΣ(q,G,D) iff qcqa(t) is

a cautious consequence of the ASP program D ∪ Πcqa.

The general encoding for the loosely-exact semantics is inherently more complex

than the ones for loosely-sound and CM-complete, since both tuple deletions and

tuple insertions are subject to minimization. As a consequence, we tackled the

loosely-exact encoding by considering that there are common cases in which CQA

under the loosely-exact semantics and the CM-complete semantics actually coincide

(see Corollary 3). These cases can be easily checked, and thus, it is possible to handle

the loosely-exact semantics with the encoding defined for the CM-complete case.

2 Recall that equalities are expressed in terms of variables having the same name.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

240 M. Manna et al.

Theorem 6

Let Σ = loosely-exact, and D be a database for a schema G such that one of the

following holds: (i) G contains DCs only (no INDs); (ii) G contains INDs only

(no DCs); (iii) G contains KDs and FKs only, and D is consistent w.r.t. KDs; and

(iv) G contains KDs and SFKs only. Given a union of conjunctive queries q, then

t ∈ ansΣ(q,G,D) iff qcqa(t) is a cautious consequence of the ASP program D ∪ Πcqa.

Proof

Follows from Corollary 3 and Theorem 5. �

3.2 Optimized solution

The strategy reported in the previous section is a general solution for solving the

CQA problem but, in several cases, more efficient ASP programs can be produced.

First of all, note that the general algorithm blindly considers all the ICs on the global

schema, including those that have no effect on the specific query. Consequently,

useless logic rules might be produced which may slow down program evaluation.

Then, a very simple optimization may consist of considering relevant ICs only.

However, there are several cases in which the complexity of CQA stays in PTIME,

but disjunctive programs, for which cautious reasoning becomes a hard task (Eiter

et al. 1997), are generated even in the presence of DCs only. This means that

the evaluation of the produced logic programs might be much more expensive

than required in those “easy” cases. In the following, we provide semantic-specific

optimizations aiming to overcome such problems for the settings pointed out in

Theorems 4–6.

Given a query q and an atom g in q, we define the set of relevant indices of g

in q, say relevant(q, g), in such a way that an index i in [1, ..., arity(g)] belongs to

relevant(q, g) if at least one of the following holds for an occurrence g(X1, . . . , Xn)

of g in q:

• Xi is not existentially quantified (it is a free variable, it is an output variable

of q);

• Xi is involved in some comparison atom (even if it is existentially quantified);

• Xi appears more than once in the same conjunction;

• Xi is a constant value;

If g does not appear in q, we say that relevant(q, g) = ∅.

In the following, we denote by π a set of indices. Moreover, given a sequence of

variables x̄ and a set π ⊆ {1, . . . , |x̄|}, we denote by x̄π the sequence obtained from

x̄ by discarding a variable if its position is not in π. Finally, given a relation name

g, a set of indices π, and a label �, we denote by g�-π(x̄π) an auxiliary atom derived

from g, marked by �, and using only variables in x̄π .

Σ = loosely-sound. The objective of this optimization is to single out, for each

relation involved by the query, the set of attributes actually relevant to answer it

and apply the necessary repairs only on them. As we show next, this may allow

both to reduce (even to zero) the number of disjunctive rules needed to repair key

violations and to reduce the cardinality of relations involved in such disjunctions.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 241

Given a schema G and a query q, perform the following steps for building the

program Πcqa and the query Qcqa.

(1) Apply the perfect rewriting algorithm that deals with INDs described in Calı̀

et al. (2003b).

(2) Let Q be the union of conjunctive queries obtained from q after Step 1. For

each g ∈ names(G), build the sets

π
g
R = relevant(Q, g) π

g
S = π

g
R ∪ key(g)

These two sets capture the fact that a key attribute is relevant for the repairing

process, but it may not be strictly relevant for answering the query.

Observe that the perfect rewriting dealing with INDs must be applied before

singling out relevant attributes. In fact, q may also depend, through INDs, on

attributes of relations not explicitly mentioned in it. However, in the last step of this

algorithm, the rewriting of the query is completed by substituting each relation in

the query with its repaired (and possibly reduced) version.

(3) For each g ∈ names(G) such that π
g
R �= ∅ and key(g) � π

g
R , add the following

rules into Πcqa:

• gsr-π
g
S (x̄π

g
S) :− g(x̄).

• gc-π
g
S (x̄

π
g
S

1) ∨ gc-π
g
S (x̄

π
g
S

2) :− gsr-π
g
S (x̄

π
g
S

1), gsr-π
g
S (x̄

π
g
S

2), x̄i
1 �= x̄i

2.

. ∀i ∈ π
g
S − key(g)

• gr-π
g
R (x̄π

g
R) :− gsr-π

g
S (x̄π

g
S), not gc-π

g
S (x̄π

g
S).

Observe that if there exists at least one relevant non-key attribute for g, the repairing

process can not be avoided; however, violations caused by irrelevant attributes only

(i.e., not in π
g
S) can be ignored, since the projection of g on π

g
S is still safe and

sufficient for query answering purposes.

(4) For each g ∈ names(G) such that πg
R �= ∅ and key(g) ⊇ π

g
R , add the following rule

into Πcqa:

• gr-π
g
R (x̄π

g
R) :− g(x̄).

Observe that if the relevant attributes of g are a subset of its key, the repair process of

g for key violations through disjunction can be avoided at all. In fact, the projection

of g on π
g
R is still safe and sufficient for query answering purposes. Moreover, for

the same reason, it is not needed to take all the key of g into account.

(5) For each atom of the form g(x̄) in Q, replace g(x̄) by gr-π
g
R (x̄π

g
R).

Σ = CM-complete. For the optimization of the CM-complete semantics, we exploit

a graph which is used to navigate the query and the database in order to single out

those relations and projections actually relevant for answering the query. Moreover,

it allows to identify possible cycles generated by ICs which must be suitably handled;

in fact, acyclic ICs induce a partial order among them and this information can

be effectively exploited for the optimization. On the contrary, cyclic ICs must be

handled in a more standard way.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

242 M. Manna et al.

Given a schema G and a query q, build the directed labeled graph Gq = 〈N,A〉
as follows: N = {q} ∪ names(G); (g1, g2, c) ∈ A iff c is a DC in constr(G) involving

both g1 and g2; (g1, g2, d) ∈ A iff d is an IND in constr(G) of the form g1 → g2;

and (q, g, ε) ∈ A iff g appears in a conjunction of q. Perform the following steps for

building the program Πcqa:

(1) Visit Gq starting from node q.

(2) Discard unreachable nodes and update the sets N and A.

(3) Partition the set N in (Ncf,Nncf) in such a way that a node n belongs to Ncf if

it is not involved in any cycle (q always belongs to Ncf). Contrariwise, a node n

belongs to Nncf if it is involved in some cycle.

(4) For each node g ∈ N − {q}, compute the sets

π
g
R = (

⋃
(gL,g,d)∈A π

d
R) ∪ relevant(q, g);

π
g
S = π

g
R ∪ key(g), only if g has exactly one primary key as DCs; π

g
S = ∅

otherwise.

Here, πg
R is the set of relevant variable indices of g, and π

g
S adds to π

g
R , the key

of g.

Observe that Steps 1–4 implement a pre-processing phase in which relevant relations

and their relevant indices are singled out, and each relevant relation is classified as

cycle free or non-cycle free.

(5) For each node g ∈ Ncf , if g has only one key as DCs, then add the following

rules into Πcqa:

• gξ-π
g
χ (x̄π

g
χ) :− g(x̄), g

r-π
d1
R

1 (x̄
π
d1
R

1), . . . , g
r-π

dk
R

k (x̄
π
dk
R

k).

• g
r-π

di
R

i (x̄
π
di
R

i) :− g
r-π

gi
R

i (x̄
π
gi
R

i). ∀i ∈ [1, ..., k] s.t. πgi
R ⊃ πdi

R

where:

(i) k � 0 is the number of arcs in Gq , labeled by INDs, and outgoing from g;

(ii) the pair (ξ, χ) is either (r, R) or (sr, S), according to whether key(g) ⊇ π
g
R or

not, respectively. Intuitively, if key(g) ⊇ π
g
R holds, then the repair gr-π

g
R of g

can be directly computed; otherwise, the computation must first go through

a semi-reparation step for computing gsr-π
g
S . Intuitively, this semi-reparation

step collects those tuples that violate no IND of the form g → gi, but that

must be anyway processed in order to fix some key violation (see Steps 6–10).

(iii) atom g
r-π

di
R

i is in the body of the first rule (1 � i � k) only if both (g, gi, di) ∈ A

and di is an IND of the form g(x̄) → gi(x̄i). This atom is just a projection of

g
r-π

gi
R

i (x̄
π
gi
R

i).

(6) For each node g ∈ Ncf , if g has only one primary key as DCs, and key(g) ⊂ π
g
R ,

and g has incoming arcs only from q, and all the relevant variables of g w.r.t. q

are in the head of q, and each occurrence of g in q contains all of its relevant

variables, then add the following rules into Πcqa by considering that the key of

g is defined by rules of the form ∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i
1 �= x̄i

2]:

• gc-π
g
S (x̄

π
g
S

1) :− gsr-π
g
S (x̄

π
g
S

1), gsr-π
g
S (x̄

π
g
S

2), x̄i
1 �= x̄i

2. ∀i ∈ π
g
S − key(g)

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 243

• gr-π
g
R (x̄

π
g
R

1) :− gsr-π
g
S (x̄

π
g
S

1), not gc-π
g
S (x̄

π
g
S

1).

(7) For each node g ∈ Ncf , if g has only one primary key as DCs, and key(g) � π
g
R ,

and Case 6 does not apply, then add the following rules into Πcqa by considering

that the key is defined by rules of the form ∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i
1 �= x̄i

2]:

• gc-π
g
S (x̄

π
g
S

1) ∨ gc-π
g
S (x̄

π
g
S

2) :− gsr-π
g
S (x̄

π
g
S

1), gsr-π
g
S (x̄

π
g
S

2), x̄i
1 �= x̄i

2.

. ∀i ∈ π
g
S − key(g)

• gr-π
g
R (x̄

π
g
R

1) :− gsr-π
g
S (x̄

π
g
S

1), not gc-π
g
S (x̄

π
g
S

1).

Observe that, in this case, disjunctive rules are defined only on the set of relevant

indices that are not in the key and that each gc-π
g
S contains only the projection

of deleted tuples on the set πg
S .

Here, Steps 5–7 handle relations for which a key is defined and are classified as

cycle free. In particular, if key(g) ⊇ π
g
R holds, key reparation can be avoided at all

(and thus disjunctive rules too); otherwise, a semi-reparation step is required, but

Step 6 identifies further cases in which even if key reparation is needed, disjunction

can be still avoided. Finally, Step 7 handles all the other cases. Importantly, through

Steps 5–7, we take into account only the minimal projections of involved relations

in order to reduce as much as possible computational costs (and even disjunctive

rules) not considering irrelevant attributes.

(8) For each node g ∈ Nncf , add the following rules into Πcqa:

• gc(x̄) :− g(x̄), not g
r-πd

R

1 (x̄
πd
R

1).

g
r-πd

R

1 (x̄
πd
R

1) :− g
r-π

g
R

1 (x̄
π
g
R

1).

for each IND d of the form g(x̄) → g1(x̄1) such that there is no cycle in Gq

involving both g1 and g;

• gc(x̄) :− g(x̄), #count{x̄1∃ : gc1(x̄1)} = #count{x̄1∃ : g1(x̄1)}.
for each IND d of the form ∀x̄∀ [g(x̄) → ∃x̄2∃ g1(x̄1)] such that g1 ∈ Nncf;

• gc(x̄1) ∨ gc(x̄2) :− g(x̄1), g(x̄2), x̄i
1 �= x̄i

2. ∀i ∈ π

where π = {1, . . . , arity(g)} − key(g) and the key of g is defined by DCs of

the form ∀x̄1, x̄2 ¬[g(x̄1) ∧ g(x̄2) ∧ x̄i
1 �= x̄i

2];

• gr-π
g
R (x̄π

g
R) :− g(x̄), not gc(x̄).

if there is at least one node in Ncf with an arc to g, or g appears in q;

(9) For each DC of the form ∀x̄1, . . . , x̄m ¬[g1(x̄1) ∧ . . . ∧ gm(x̄m) ∧ σ(x̄1, . . . , x̄m)]

involving at least two different relation names (entailing that each gi ∈ Nncf),

add the following rules into Πcqa:

• gc1(x̄1) ∨ · · · ∨ gcm(x̄m) :− g1(x̄1), . . . , gm(x̄m), σ(x̄1, . . . , x̄m).

Steps 8 and 9 handle non-cycle free relations; the repairing process in this case

mimics the standard rewriting, but projects relations on the relevant attributes

whenever possible.

(10) For each node g ∈ Ncf , if g is involved in DCs that do not form a primary

key, then add the following rules into Πcqa:

• gsr(x̄) :− g(x̄), g
r-π

d1
R

1 (x̄
π
d1
R

1), . . . , g
r-π

dk
R

k (x̄
π
dk
R

k).

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

244 M. Manna et al.

• g
r-π

di
R

i (x̄
π
di
R

i) :− g
r-π

gi
R

i (x̄
π
gi
R

i). ∀i ∈ [1, ..., k] s.t. πgi
R ⊃ πdi

R

• gc(x̄1) ∨ · · · ∨ gc(x̄m) :− gsr(x̄1), . . . , g
sr(x̄m), σd(x̄1, . . . , x̄m). ∀d

• gr-π
g
R (x̄π

g
R) :− gsr(x̄), not gc(x̄).

where:

(i) k � 0 is the number of arcs, labeled by INDs, and outgoing from g;

(ii) atom g
r-π

di
R

i is in the body of the first rule (1 � i � k) iff both (g, gi, di) ∈ A

and di is an IND of the form g(x̄) → gi(x̄i);

(iii) d is a DC of the form ∀x̄1, . . . , x̄m ¬[g(x̄1) ∧ . . . ∧ g(x̄m) ∧ σd(x̄1, . . . , x̄m)].

Step 10 handles the special case in which there is no key for a relation but DCs are

defined (only) on it.

(11) For each atom of the form g(x̄) in q, replace g(x̄) by gr-π
g
R (x̄π

g
R).

Σ = loosely-exact. In Section 3.1, we proved that there are common cases in which

CQA under the loosely-exact semantics and the CM-complete semantics actually

coincide. As a consequence, in these cases, all the optimizations defined for the

CM-complete semantics apply also to the loosely-exact semantics.

4 Experiments

In this section, we present some of the experiments that we carried out to assess the

effectiveness of our approach to CQA.

Testing has been performed by exploiting our complete system for data integration,

which is intended to simplify both the integration system design and the querying

activities by exploiting a user-friendly GUI. Indeed, this system both supports the

user in designing the global schema and the mappings between global relations and

source schemas, and allows to specify user queries over the global schema via a QBE-

like interface. The query evaluation engine adopted for the tests is DLVDB (Terracina,

De Francesco, et al. 2008) coupled, via ODBC, with a PostgreSQL DBMS where

input data were stored. DLVDB is a DLP evaluator born as a database oriented exten-

sion of the well-known DLV system (Leone et al. 2006). It has been recently extended

for dealing with unstratified negation, disjunction, and external function calls.

We first address tests on a real-world scenario and then report on tests for

scalability issues on synthetic data.

4.1 Tests on a real-world scenario

Data set. We have exploited the real-world data integration framework developed in

the INFOMIX project (IST-2001-33570) (Leone et al. 2005), which integrates data

from a real university context. In particular, considered data sources were available

at the University of Rome “La Sapienza”. These comprise information on students,

professors, curricula, and exams in various faculties of the university.

There are about 35 data sources in the application scenario, which are mapped

into 12 global schema relations with 20 GAV mappings and 21 ICs. We call this

data set Infomix in the following. (A detailed description of the Infomix framework

is given in the extended version (Manna et al. 2011) of this paper.)

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 245

Besides the original source database instance (which takes about 16 MB on

DBMS), we obtained bigger instances artificially. Specifically, we generated a number

of copies of the original database; each copy is disjoint from the other ones but

maintains the same data correlations between instances as the original database.

This has been carried out by mapping each original attribute value to a new value

having a copy-specific prefix.

Then, we considered two further data sets, namely, Infomix-x-10 and Infomix-x-

50, storing 10 copies (for a total amount of 160 MB of data) and 50 copies (800

MB) of the original database, respectively. It holds that Infomix ⊂ Infomix-x-10 ⊂
Infomix-x-50.

Compared methods and tested queries. In order to assess the characteristics of the

proposed optimizations, we measured the execution time of different queries with (i)

the standard encoding (identified as STD in the following), (ii) a näıve optimization

obtained by only removing relations not strictly needed for answering the queries

(OPT1 in the following), and (iii) the fully optimized encoding presented in

Section 3 (OPT2 in the following). Each of these cases has been evaluated for

the three semantics considered in this paper. In order to isolate the impact of our

optimizations, we disabled other optimizations (such as magic sets) embedded in the

datalog evaluation engine. Clearly, such optimizations are complementary to our

own and might further improve the overall performances.

We have considered six queries, fully specified in the the extended version (Manna

et al. 2011) of this paper, named Q1,..., Q6. In particular, Q2 involves key constraints

only, while Q1 and Q3 involve both keys and acyclic INDs; specifically, Q3 involves

an SFK while Q1 involves NKC INDs. Finally, Q4, Q5, and Q6 involve keys and

cyclic NKC INDs.

Results and discussion. All tests have been carried out on an Intel Xeon X3430, 2.4

GHz, with 4 GB RAM, running Linux operating system. We set a time limit of

120 minutes after which query execution has been killed. Figures 1 and 2 show the

obtained results for the loosely-sound and the CM-complete semantics. It is worth

recalling that as we pointed out in Section 3.2, optimizations for the loosely-exact

semantics are inherent to the equivalence classes to the CM-complete semantics

discovered in this paper. As a consequence, we tested this semantics only on queries

Q2 and Q3 for which such equivalence holds. Then, since the execution times of the

optimized encoding coincide with the CM-complete graphs for queries Q2 and Q3,

we do not report specific figures for them.

Analyzing the figures, we observe that the proposed optimizations do not introduce

computational overhead and, in most cases, transform practically untractable queries

in tractable ones; in fact, for all the tested queries, the execution time of the standard

rewriting exceeded the time limit. OPT1 helps mostly on the smallest data set; in

fact, for Infomix-x-10 it shows some gain in 33% of cases and only in two cases for

Infomix-x-50.

As for the comparison among the optimized encodings, we can observe that if

INDs are not involved by the query (Q2), the loosely-sound and the CM-complete

optimizations have the same performances; this confirms theoretical expectations.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

246 M. Manna et al.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 1

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 2

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 3

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 4

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 5

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

LS Semantics - Query 6

Timeout (2h)
STD

OPT1
OPT2

Fig. 1. Query evaluation execution times for the loosely-sound semantics.

When acyclic INDs are involved (Q1, Q3), the loosely-sound optimization performs

slightly better because the CM-complete must choose the tuples to be deleted due

to IND violations, whereas the loosely-sound semantics just works on the original

data. Finally, when the involved INDs are cyclic (Q4, Q5, Q6), the performance of

the CM-complete optimization further degrades w.r.t. the loosely-sound one because

recursive aggregates must be exploited to choose deletions, and, thus, increases the

complexity of query evaluation.

4.2 Scalability analysis w.r.t. the number and kind of constraint violations

Since in the real-world scenario it emerged that the CM-complete semantics is more

affected than the loosely sound one from the kind of involved constraints, we carried

out a scalability analysis on this semantics, whose results are reported next.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 247

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 1

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 2

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 3

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 4

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 5

Timeout (2h)
STD

OPT1
OPT2

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

Infomix Infomix_x10 Infomix_x50

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

CM Semantics - Query 6

Timeout (2h)
STD

OPT1
OPT2

Fig. 2. Query evaluation execution times for the CM-complete semantics.

We considered a synthetic data set composed of three relations, named r1, r2, and

r3, over which we imposed different sets of ICs in order to analyze the scalability

of our methods depending on the presence of keys and/or in the presence/absence

of acyclic and cyclic INDs. In particular, we imposed the following key constraints:

key(r2) = {1, 2}, key(r3) = {1}, and we experimented with three different sets

of INDs: NOINCL = ∅, ACY CLIC = {r1(X1, X2, X3, X4) → r2(X2, X5, X3, X6),

r1(X1, X2, X3, X4) → r3(X1, X5, X6, X7)}, and CY CLIC = ACY CLIC∪{r2(X1, X2, X3,

X4) → r1(X5, X6, X7, X2)}. The employed query is: query(X1, X3) :− r1(X1, X2, X3,

X4), r2(X2, X3, X5, X6)? We have randomly generated synthetic databases having a

growing number of key violations on table r2. The generation process progressively

adds key violations to r2 by generating pairs of conflicting tuples; after an instance

of r2 is obtained, tables r1 and r3 are generated by taking values from r2 in such a

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

248 M. Manna et al.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

Number of key constraints violations

Scalability: Impact of global constraints

NOINCL-STD
NOINCL-OPT

ACYCLIC-STD
ACYCLIC-OPT

CYCLIC-STD
CYCLIC-OPT

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

)
-

lo
gs

ca
le

Number of key constraints violations

Scalability: Impact of inclusion constraints

ACYCLIC-10
CYCLIC-10

ACYCLIC
CYCLIC

(a) (b)

Fig. 3. Scalability analysis.

way that INDs are satisfied. In addition, for each tuple of r3, a key-conflicting tuple

is generated. In order to assess the impact of the number of INDs violations, for

each database instance DBx, containing x key violations on table r2, we generated

a DBx-10 instance where the 10% of tuples is (randomly) removed from tables r1
and r3 (causing INDs violations). We have generated six database instances per size

(number of key violations on table r2), and plotted the time (averaged over the

instances of the same size) in Figure 3.

In detail, Figure 3(a) shows the results for incrementally higher KD violations

with no IND violations. Both standard and optimized encodings have been tested.

Figure 3(b) compares the optimized encoding only, when the percentage of IND

violations is 0% or 10%. Observe that, in general, even when there is no initial IND

violation, the KD repairing process may induce some of them.

The analysis of these figures shows that even if cyclic INDs are generally harder,

their scaling is almost the same as the acyclic ones. On the contrary, in the absence

of INDs, the optimization may boost the performances (see the flat line in Fig. 3(a)).

Figure 3(b) points out that when the number of IND violations increases, the

performance may improve. This behavior is justified by the fact that tuple deletions

due to IND repairs may, in their turn, remove KD violations. This reduces the

number of disjunctions to be evaluated.

5 Related work and concluding remarks

From the 1990s – when the founding notions of CQA (Bry 1997), GAV map-

ping (Garcia-Molina et al. 1997; Tomasic et al. 1998; Goh et al. 1999), and database

repair (Arenas et al. 1999) were introduced – data integration (Lenzerini 2002) and

inconsistent databases (Bertossi et al. 2005) have been studied quite in depth.

Detailed characterizations of the main problems arising in a data integration

system have been provided, taking into account different semantics, constraints,

and query types (Arenas et al. 2003; Calı̀ et al. 2003a, 2003b; Chomicki and

Marcinkowski 2005; Grieco et al. 2005; Fuxman and Miller 2007; Eiter et al.

2008).

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 249

This paper provides a contribution in this scenario by extending the decidability

boundaries for the loosely-exact semantics (as called in Calı̀ et al. 2003a but firstly

introduced by Arenas et al. 1999) and the loosely-sound semantics, in the case of

both KDs and SFSK INDs.

A first proposal of an unifying framework for CQA in a data integration setting is

presented in Calı̀ et al. (2005) using first-order logic; it considers different semantics

defined by interpreting the mapping assertions between the global and the local

schemas of the data integration system. A common framework for computing repairs

in a single database setting is proposed in Eiter et al. (2008); it covers a wide range

of semantics relying on the general notion of pre-order for candidate repairs, but

only universally quantified constraints are allowed. Moreover, the authors introduce

an abstract logic programming framework to compute consistent answers. Finally,

the authors propose an optimization strategy called factorization that, as will be

clarified below, is orthogonal to our own.

This paper provides a contribution in this setting since it unifies different semantics,

as in Calı̀ et al. (2005) and Eiter et al. (2008), but also provides an algorithm that,

given a retrieved database, a user query q, and a semantics, automatically composes

an ASP program capable of computing the consistent answers to q. In particular,

our ASP rewriting offers a natural, compact, and direct way for encoding even hard

cases where the CQA problem belongs to the Π
p
2 complexity class.

Theoretical studies gave rise to concrete implementations, most of which were

conceived to operate on some specific semantics and/or constraint types (Arenas

et al. 1999, 2003; Greco and Zumpano 2000; Greco et al. 2001; Calı̀ et al. 2002,

2003b, 2004; Chomicki et al. 2004a, 2004b; Lembo 2004; Fuxman et al. 2005; Grieco

et al. 2005; Leone et al. 2005; Fuxman and Miller 2007). As an example, in Leone

et al. (2005), only the loosely-sound semantics was supported. In this paper, we

provide both a unified framework based on ASP and a complete system supporting

(i) all the three aforementioned significant semantics in the case of conjunctive

queries and the most commonly used database constraints (KDs and INDs), (ii)

specialized optimizations, and (iii) a user-friendly GUI.

Another general contribution of our work comes from a novel optimization

technique that, after analyzing the query and localizing a minimal number of

relevant ICs, tries to “simplify” their structure to reduce the number of database

repairs – as they could be exponentially many (Arenas et al. 2001). Such technique

could be classified as “vertical” due to the fact that it reduces (whenever possible)

the arity of each active relation (with the effect, e.g., of decreasing the number of

key conflicts) without looking at the data. It is orthogonal to other “horizontal”

approaches, such as magic sets (Faber et al. 2007) and factorization (Eiter et al.

2008), which are based on data filtering strategies. In particular, a system exploiting

ASP incorporating magic set techniques for CQA is described in Marileo and

Bertossi (2010). Other approaches complementary to our own are based on first-

order rewritings of the query (Arenas et al. 1999; Chomicki and Marcinkowski 2002;

Calı̀ et al. 2003b; Grieco et al. 2005; Fuxman and Miller 2007).

The combination of our optimizations with such approaches and further exten-

sions of decidability boundaries for CQA are some of our future line of research.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

250 M. Manna et al.

Acknowledgement

This work has been partially supported by the Calabrian Region under PIA

(Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project DLVSYS-

TEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del

06/05/2009.

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases: The Logical Level.

Addison-Wesley Longman Publishing Co., Boston, MA.

Arenas, M., Bertossi, L. and Chomicki, J. 1999. Consistent query answers in inconsistent

databases. In Proceedings of PODS’99. ACM, New York, 68–79.

Arenas, M., Bertossi, L. and Chomicki, J. 2001. Scalar aggregation in FD-inconsistent

databases. In Proceedings of ICDT’01, J. V. den Bussche and V. Vianu, Eds. Lecture Notes

in Computer Science, vol. 1973. Springer, Berlin/ Heidelberg, 39–53.

Arenas, M., Bertossi, L. and Chomicki, J. 2003. Answer sets for consistent query answering

in inconsistent databases. Theory and Practice of Logic Programming 3, 4, 393–424.

Bertossi, L. E., Hunter, A. and Schaub, T., Eds. 2005. Inconsistency Tolerance. Lecture

Notes in Computer Science, vol. 3300. Springer, Berlin/Heidelberg.

Bry, F. 1997. Query answering in information systems with integrity constraints. In Proceedings

of IICIS’97, S. Jajodia, W. List, G. W. McGregor and L. Strous, Eds. Chapman & Hall,

London, 113–130.

Calı̀, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. 2002. On the role of integrity

constraints in data integration. IEEE Data Engineering Bulletin 25, 3, 39–45.

Calı̀, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. 2004. Data integration under

integrity constraints. Information Systems 29, 2, 147–163.

Calı̀, A., Lembo, D. and Rosati, R. 2003a. On the decidability and complexity of query

answering over inconsistent and incomplete databases. In Proceedings of PODS’03. ACM,

New York, 260–271.

Calı̀, A., Lembo, D. and Rosati, R. 2003b. Query rewriting and answering under constraints

in data integration systems. In Proceedings of IJCAI’03, G. Gottlob and T. Walsh, Eds.

Morgan Kaufmann Publishers, San Francisco, CA, 16–21.

Calı̀, A., Lembo, D. and Rosati, R. 2005. A comprehensive semantic framework for data

integration systems. Journal of Algorithms 3, 2, 308–328.

Chomicki, J. and Marcinkowski, J. 2002. On the computational complexity of consistent

query answers. CoRR cs.DB/0204010, 1–9.

Chomicki, J. and Marcinkowski, J. 2005. Minimal-change integrity maintenance using tuple

deletions. Information and Computation 197, 1–2, 90–121.

Chomicki, J., Marcinkowski, J. and Staworko, S. 2004a. Computing consistent query

answers using conflict hypergraphs. In Proceedings of CIKM’04, D. A. Grossman,

L. Gravano, C. X. Zhai, O. Herzog and D. A. Evans, Eds. ACM, New York, 417–426.

Chomicki, J., Marcinkowski, J. and Staworko, S. 2004b. Hippo: A system for computing

consistent answers to a class of SQL queries. In Advances in Database Technology – EDBT

2004, E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis,

K. Böhm and E. Ferrari, Eds. Lecture Notes in Computer Science, vol. 2992. Springer,

Berlin/Heidelberg, 661–662.

Eiter, T., Fink, M., Greco, G. and Lembo, D. 2008. Repair localization for query answering

from inconsistent databases. ACM Transactions on Database Systems 33, 2, 10:1–10:51.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

CQA via ASP from different perspectives 251

Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive datalog. ACM Transactions on

Database Systems 22, 3, 364–418.

Faber, W., Greco, G. and Leone, N. 2007. Magic sets and their application to data

integration. Journal of Computer and System Sciences 73, 4, 584–609.

Faber, W., Pfeifer, G. and Leone, N. 2010. Semantics and complexity of recursive aggregates

in answer set programming. Artificial Intelligence In Press, Corrected Proof, 1–21.

Fuxman, A., Fazli, E. and Miller, R. J. 2005. ConQuer: Efficient management of inconsistent

databases. In Proceedings of SIGMOD’05, F. Özcan, Ed. ACM, New York, 155–166.

Fuxman, A. and Miller, R. J. 2007. First-order query rewriting for inconsistent databases.

Journal of Computer and System Sciences 73, 4, 610–635. Special Issue: Database Theory

2005.

Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,

J., Vassalos, V. and Widom, J. 1997. The TSIMMIS approach to mediation: Data models

and languages. Journal of Intelligent Information Systems 8, 2, 117–132.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.

In Proceedings of ICLP/SLP’88, R. A. Kowalski and K. A. Bowen, Eds. MIT Press,

Cambridge, MA, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive

databases. New Generation Computing 9, 3–4, 365–385.

Goh, C. H., Bressan, S., Madnick, S. and Siegel, M. 1999. Context interchange: New

features and formalisms for the intelligent integration of information. ACM Transactions

on Information Systems 17, 3, 270–293.

Greco, G., Greco, S. and Zumpano, E. 2001. A logic programming approach to the

integration, repairing and querying of inconsistent databases. In Proceedings of ICLP’01,

P. Codognet, Ed. Lecture Notes in Computer Science, vol. 17. Springer, Berlin/Heidelberg,

348–364.

Greco, S. and Zumpano, E. 2000. Querying inconsistent databases. In Proceedings of

LPAR’00, M. Parigot and A. Voronkov, Eds. Springer-Verlag, Berlin/Heidelberg, 308–

325.

Grieco, L., Lembo, D., Rosati, R. and Ruzzi, M. 2005. Consistent query answering under

key and exclusion dependencies: Algorithms and experiments. In Proceedings of CIKM’05,

O. Herzog, H.-J. Schek, N. Fuhr, A. Chowdhury and W. Teiken, Eds. ACM, New York,

792–799.

Lembo, D. 2004. Dealing with Inconsistency and Incompleteness in Data Integration . PhD

Thesis, Dipartimento di Informatica e Sistemistica, Universitaà di Roma “La Sapienza”.

Lenzerini, M. 2002. Data integration: A theoretical perspective. In Proceedings of PODS’02,

L. Popa, Ed. ACM, New York, 233–246.

Leone, N., Greco, G., Ianni, G., Lio, V., Terracina, G., Eiter, T., Faber, W., Fink, M.,

Gottlob, G., Rosati, R., Lembo, D., Lenzerini, M., Ruzzi, M., Kalka, E., Nowicki, B.

and Staniszkis, W. 2005. The INFOMIX system for advanced integration of incomplete

and inconsistent data. In Proceedings of SIGMOD’05, F. Özcan, Ed. ACM, New York,

915–917.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F.

2006. The DLV system for knowledge representation and reasoning. ACM Transactions on

Computational Logic 7, 3, 499–562.

Levene, M. and Vincent, M. W. 2000. Justification for inclusion dependency normal form.

IEEE Transactions on Knowledge and Data Engineering 12, 2, 281–291.

Manna, M., Ricca, F. and Terracina, G. 2011. Consistent query answering via ASP from

different perspectives: Theory and practice. CoRR cs.DB/1107.4570, 1–30.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

252 M. Manna et al.

Marileo, M. C. and Bertossi, L. E. 2010. The consistency extractor system: Answer

set programs for consistent query answering in databases. Data and Knowledge

Engineering 69, 6, 545–572.

Minker, J. 1982. On indefinite data bases and the closed world assumption. In Proceedings

of CADE’82, D. W. Loveland, Ed. Lecture Notes in Computer Science, vol. 138. Springer,

Berlin/Heidelberg, 292–308.

Terracina, G., De Francesco, E., Panetta, C. and Leone, N. 2008. Enhancing a DLP system

for advanced database applications. In Proceedings of RR’08, D. Calvanese and G. Lausen,

Eds. Lecture Notes in Computer Science, vol. 5341. Springer, Berlin/Heidelberg, 119–134.

Terracina, G., Leone, N., Lio, V. and Panetta, C. 2008. Experimenting with recursive queries

in database and logic programming systems. Theory and Practice of Logic Programming 8, 2,

129–165.

Tomasic, A., Raschid, L. and Valduriez, P. 1998. Scaling access to heterogeneous data

sources with DISCO. IEEE Transactions on Knowledge and Data Engineering 10, 5, 808–

823.

https://doi.org/10.1017/S1471068411000640 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068411000640

