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We give a very general sufficient condition for a one-parameter family of curves not to have n

members with ‘too many’ (i.e., a near-quadratic number of) triple points of intersections. As a
special case, a combinatorial distinction between straight lines and unit circles will be shown.
(Actually, this is more than just a simple application; originally this motivated our results.)

1. Introduction

1.1. The (very) general problem

Let Γ be a family of continuous curves in R
d. We pick a set of n curves G = {γ1, . . . , γn} ⊂ Γ and

a set of m points P = {P1, . . . , Pm} ⊂ R
d and define a graph on G ∪ P by connecting γi to Pj if

γi passes through Pj . We shall call this (bipartite) graph the incidence graph of G and P .
Certain properties of such graphs, especially the maximum-possible number of edges as a

function of n and m (i.e.bounds on the number of incidences) play central role in computational
geometry as well as in discrete or combinatorial geometry.

In this paper we study a ‘reverse’ question:

If we know only the incidence graph (or some of its properties), can we infer something about the properties
of the family Γ?

Apart from trivial observations like ‘if two curves share two common points then Γ cannot be
the family of straight lines’, very little is known. (Actually, [5] contains a result that points in this
direction: see Theorem 2.1 below.)
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1.2. Many triple points

In terms of incidence graphs, a point Pj is a triple point if it is connected to at least three of the
n curves in G. Since three general curves do not pass through a common point, triple points can
be considered as interesting coincidences.

Given a family Γ and a positive integer n ∈ N
+, we select n curves γ1, . . . , γn ∈ Γ so that the

number of triple points is maximized, and denote this maximum by TΓ(n). More generally, for
three (not necessarily distinct) families Γ1,Γ2,Γ3, we select n curves from each Γi (i = 1, 2, 3)
and call a point P a triple point if, for i = 1, 2, 3, there exist distinct γi ∈ Γi that pass through P .
(Usual bipartite graphs cannot represent such structures; certain ‘four-partite’ graphs can, but we
do not need them.) We denote the maximum number of such triple points by TΓ1 ,Γ2 ,Γ3

(n), taken
over all possible selections of the n + n + n curves. We must emphasize that, even in this general
case, we require that a triple point be the intersection of three distinct curves.

If any two curves intersect in at most B points (where B is a constant while n is large) then the
maxima defined above really exist; in particular,

TΓ(n) � B

(
n

2

)
and TΓ1 ,Γ2 ,Γ3

(n) � Bn2,

since the number of pairwise intersections in Γ (or between, say, Γ1 and Γ2) cannot exceed the
claimed bound.

If no such B exists then no bound can be found for the T (e.g., if, for i = 1, 2, 3, Γi consists of
the graphs of y = i · sin x + t, for t ∈ R).1 That is why, in what follows, we shall always assume
the existence of such a B, i.e., that:

No two curves intersect in more than B points. (1.1)

On the other hand, the number of ‘double’ points can really attain this quadratic order of mag-
nitude if the curves we select are in ‘sufficiently general position’, e.g., if any two share a com-
mon point and these points are all distinct. This observation indicates that the ‘magic multiplicity’
3 is the smallest interesting value. In some cases even the number of triple points can be of order
cn2, e.g., for straight lines like those in Figure 4(c). However, as we shall see, in many cases the
number of triple points is only O(n2−η) for some constant η ∈ (0, 1).

Problem 1.1. Characterize those families Γ, or triples of families Γ1,Γ2,Γ3, for which TΓ(n)

or TΓ1 ,Γ2 ,Γ3
(n), respectively, attains a quadratic order of magnitude (i.e., at least cn2, for a fixed

c > 0 and infinitely many n).

If the function TΓ1 ,Γ2 ,Γ3
(n) for certain families Γ1,Γ2,Γ3 attains a quadratic order of magnitude,

a simple way to prove this is to exhibit n (or n + n + n) curves, for all n ∈ N, that have this many
triple points.

The converse is harder: If a quadratic order of magnitude is impossible, how do we demon-
strate this? That is why our main result, Theorem 4.1, concerns a sufficient condition for not
having many triple points.

1It is perhaps unfortunate, but we use the word ‘graph’ in two completely different ways: until this point it was used to
represent/emphasize the incidences of geometric curves. From now on graph theory is forgotten and the graph means
the graph of a function.
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1.3. The main result at a ‘philosophical’ level

Roughly speaking, we show the following (all notions will be defined rigorously, including
‘envelopes’).

Using suitable (slightly different from usual) definitions of ‘parametrized families’ and ‘envelopes’, if one
of three algebraically parametrized families has an envelope which is not an envelope for any of the other
two families, then

TΓ1 ,Γ2 ,Γ3
(n) = O

(
n2−η

)
,

for a positive η > 0 that depends only on the degree of the families.

Since we do not want to spoil the Introduction with a lot of technical details, we must, for the
time being, postpone the exact formulation of our main result; see Theorem 4.1 for a precise
statement.

1.4. On our results and proof methods

While writing this paper, the authors had to make two important decisions.
On the one hand, we had to choose between an analytic and an algebraic (or, rather, an algebro-

geometric) approach. To make our results accessible for a wider audience, we chose the analytic
point of view.

On the other hand, we decided to present a slightly restricted result (i.e., one with slightly more
technical assumptions than necessary). This allows for a not-too-long proof but, at the same time,
it is still sufficiently general for applications to other problems of combinatorial geometry. We
are planning to publish another paper in which we state our Main Theorem, Theorem 4.1, in a
more general form – with a more involved proof, of course.

1.5. Earlier results for straight lines

Studying the incidence structures of points and straight lines (more generally, of points and
certain curves) has been one of the fundamental tasks of combinatorial geometry for a long
time.

About 140 years ago Sylvester [12] posed his famous ‘Orchard Problem’ which, in an equi-
valent (dual) form, asks for an arrangement of n straight lines in the Euclidean plane so that the
number of triple points is maximized. Sylvester showed that if L denotes the family of all straight
lines, then TL(n) = n2/6 + O(n) (cf. [7]).

The study of general ‘k-orchards’ for k � 4 was initiated by Erdős.2

One of his conjectures resulted in a beautiful and widely applicable upper bound proved by
Szemerédi and Trotter [14]. The most interesting special case of this bound asserts that:

The number of incidences between n points and n straight lines in the Euclidean plane is at most Cn4/3, for
some absolute constant C.

Since then, various proof techniques have been found, some of them even extending the
Szemerédi–Trotter bound to ‘pseudo-lines’ (i.e., curves with the property that any two intersect
in at most one point) and ‘families with two degrees of freedom’ (i.e., through any two given

2The ‘k-orchard’ problem asks: Given n points in the plane, how many straight lines can contain k of the points if no
r of them are on a straight line (r > k)? See [1, p. 315].
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points there pass at most a bounded number of curves); see [11], [10], [13], and also the excellent
monographs [8] and [9].

1.6. Earlier results on unit circles

Another ‘orchard-like’ problem was posed by Erdős in [6]. Arrange n unit circles in the Euclidean
plane so that the number of triple points is maximized. Denoting the family of all unit circles by
U , an upper bound of TU (n) � n(n − 1) is obvious (since, as before, the number of pairwise
intersections obeys this bound). A lower bound of TU (n) � cn3/2 was proved in [2]. The gap
between these two estimates is still wide open.

Also from another point of view, unit circles play a special role in combinatorial geometry.
One of the most challenging unproved conjectures of Erdős concerns the maximum-possible
number of unit distances between n points in R

2, and this can be bounded from above by half the
number of incidences between the n points and n unit circles around them.

Since such circles obviously form a family with two degrees of freedom, they obey the afore-
mentioned Szemerédi–Trotter bound – and this readily implies the best currently known upper
bound on the number of unit distances [11].

The Szemerédi–Trotter bound is known to give the best order of magnitude for point-and-
straight-line configurations, which is not the case for points and unit circles (let alone more
general families with two degrees of freedom). Actually, it is widely believed that for unit circles
and points much better upper bounds hold on the number of incidences. Thus, according to the
famous Erdős conjecture on unit distances, n points and n unit circles cannot have more than n1+ε

incidences, for any ε > 0 and n > n0(ε).
However, to the best of our knowledge, no such bound has been found so far, since all existing

methods consider the set of unit circles just as a family with two degrees of freedom. That is
why the known tools cannot distinguish them from straight lines, for which the bound cannot be
improved.

As an application of our Main Theorem, Theorem 4.1, we show a combinatorial distinction
between families of straight lines and families of unit circles in Section 5.

1.7. An outline of what is coming

Assume we have an algebraically parametrized family Γ = {γ(t) : t ∈ T } of curves, i.e., there
is a polynomial p ∈ R[x, y, t] or p ∈ C[x, y, t] such that γ(t) = {(x, y) : p(x, y, t) = 0}, for all t
in the parameter domain T . Here we do not care whether the points of the individual curves are
parametrized somehow; rather, curves are assigned to each parameter t ∈ T .

If three such curves, say γ(t1), γ(t2), γ(t3) pass through a common point (x, y), then three equa-
tions p(x, y, ti) = 0 are satisfied. Eliminating x and y, we get another polynomial equation:

F(t1, t2, t3) = 0. (1.2)

It was shown in [5] that, if some n elements of Γ determine > cn2 triple points, then the surface
SF := {F = 0} must be very special: There exist three independent univariate coordinate trans-
forms on the three axes which, together, transform SF into a plane – unless SF is a cylinder. The
details are given below in Theorem 2.1.

Unfortunately, that theorem does not provide a ‘good characterization’ in the sense that it only
states the equivalence of existence assumptions. (A ‘really good’ and efficient tool would be one
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that says: ‘structure A exists if and only if structure B does not’; this would allow for an easy
proof of ‘A does not exist’ by simply exhibiting a B.)

Fortunately, a good characterization was also found in [5]: if we express, say, parameter t3
from equation (1.2) then the implicit function t3(t1, t2) must satisfy a partial differential equation
of order three. Theoretically this allows for proving subquadratic upper bounds on TΓ1 ,Γ2 ,Γ3

(n)

via elementary calculations, by showing that the differential equation is not satisfied.
In practice, however, even in simple, natural cases, these calculations may be impossible to

carry out, even for powerful computers (see Section 5). Our Main Theorem becomes useful under
such circumstances: it allows for similar bounds, based upon simple geometric considerations.

In Section 2 we present one of the most important tools for the proof of our Main Theorem:
Theorem 2.1, also called the Surface Theorem, proved in [5]. In order to prepare for the proof of
our main result, we define partial envelopes and present some of their properties in Section 3.2.
The main proof itself comes in Section 4. In Sections 5–6 we state and prove our motivating
Theorem 5.1: a combinatorial distinction between unit circles and straight lines. Finally, we
make some concluding remarks and formulate some conjectures.

2. Special surfaces

The first main ingredient of our proof is Theorem 2.1 below, proved in [5].
Assume we consider a plane αx + βy + γz = δ, intersecting the cube [0, n]3. If the coefficients

α, β, γ, δ are rationals with small numerators and denominators then this plane will contain ∼ n2

lattice points. If we apply independent univariate transformations in the three coordinates, x, y, z,
then we can easily produce 2-dimensional surfaces, described by some equation f(x) + g(y) +

h(z) = δ, containing a quadratic number of points from a product set X × Y × Z , where |X| =

|Y | = |Z | = n. The main result of [5] asserts that if some appropriate algebraicity conditions
hold, then (apart from being a cylinder) this is the only way for a surface F(x, y, z) = 0 to contain
a near-quadratic number of points from such a product set X × Y × Z .

As usual, we call a (real or complex) function in one or two variable(s) analytic at a point if
it can be expressed as a convergent power series in a neighbourhood. Also, it is analytic on an
open set if it is analytic at each point of the open set.

A cylinder over a curve f(x, y) = 0 is the surface

S := {(x, y, z) ∈ C
3 : f(x, y) = 0, z ∈ C}.

The definitions of cylinders over g(x, z) = 0 or h(y, z) = 0 are similar. It is worth noting that
such cylinders always contain n2 points of suitable (� n) × (� n) × (� n) Cartesian products.
To see this, just pick n arbitrary points on the curve f(x, y) = 0 and n arbitrary values z1,
z2, . . . , zn ∈ C. Denote the x and y coordinates of the points by X and Y , respectively, and let
Z := {z1, z2, . . . , zn}. Then |X|, |Y | � |Z | = n and X × Y × Z contains at least n2 points of S .

Theorem 2.1 (Surface Theorem ([5], Theorem 3)). For any positive integer d there exist
positive constants η = η(d) ∈ (0, 1) and n0 = n0(d) with the following property. If V ⊂ C

3 is
an algebraic surface (i.e., each component is two-dimensional) of degree � d, then the following
are equivalent.
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(a) For at least one n > n0(d), there exist X,Y , Z ⊂ C such that |X| = |Y | = |Z | = n and

|V ∩ (X × Y × Z)| � n2−η.

(b) Let D ⊂ C denote the open unit disc. Then either V contains a cylinder over a curve
F(x, y) = 0 or F(x, z) = 0 or F(y, z) = 0 or, otherwise, there are one-to-one analytic func-
tions g1, g2, g3 : D → C with analytic inverses such that V contains the (g1 × g2 × g3)-image
of a part of the plane x + y + z = 0 near the origin:

V ⊇ {
(
g1(x), g2(y), g3(z)

)
∈ C

3 : x, y, z ∈ D, x + y + z = 0}.

(c) For all positive integers n there exist X,Y , Z ⊂ C such that |X| = |Y | = |Z | = n and |V ∩
(X × Y × Z)| � (n − 2)2/8.

(d) Both (b) and (c) can be localized in the following sense. There is a finite subset H ⊂ C

and an irreducible component V0 ⊆ V such that, whenever P ∈ V0 is a point whose co-
ordinates are not in H and U ⊆ C

3 is any neighbourhood of P , then one may require that(
g1(0), g2(0), g3(0)

)
= P in (b), and the Cartesian product X × Y × Z in (c) lies entirely

inside U. Furthermore, P has a neighbourhood U ′ such that each irreducible component W
of the analytic set V0 ∩ U ′, with appropriate g1, g2 and g3, can be written in the form

W = {
(
g1(x), g2(y), g3(z)

)
∈ C

3 : x, y, z ∈ D, x + y + z = 0}.

If V ⊂ R
3 then the equivalence of (a), (b), (c) and (d) still holds true with real analytic functions

g1, g2, g3 defined on the interval (−1, 1).

Remark. This version of (d) is in fact stronger than the original one in [5], but the proof given
there applies without change to the stronger statement.

This result indicates a significant ‘jump’: either V has the special form described in (b), in
which case a quadratic order of magnitude is possible, by (b)⇒(c); or else we cannot even exceed
n2−η , by (a)⇒(b).

3. Implicitly vs explicitly parametrized families and their envelopes

Definition 1. Let G be an open domain in R
2 or C

2. A curve in the closure cl(G) is a level set
of a continuous function cl(G) → C which is analytic inside G.

Remark. We note that these kinds of curves are not necessarily connected, and they may have
isolated points. However, this will not cause any trouble.

We consider families Γ of curves in R
2 or C

2, parametrized by the elements of a ‘parameter
space’ T ⊂ R or T ⊂ C, such as

Γ = {γ(t) : t ∈ T }. (3.1)

The parametrization is an ‘implicit analytic parametrization’ if there exists a trivariate function
f, analytic on an open domain G ⊂ R

3 or G ⊂ C
3 and continuous on its closure cl(G), such that

γ(t) = {(u, v) : f(u, v, t) = 0}, for all t ∈ T .

Here we prefer explicit parametrizations, as opposed to implicit ones.
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(a) (b)

Figure 1. Implicitly analytically parametrized families: (a) y − (x − t)2 = 0, (b) y − (x − t)3 = 0.

Definition 2. Γ in (3.1) is ‘explicitly analytically parametrized’ if there exists a bivariate func-
tion f, analytic on an open domain G ⊂ R

2 or G ⊂ C
2 and continuous on the closure cl(G), such

that

γ(t) = {(u, v) ∈ cl(G) : f(u, v) = t} for all t ∈ T .

Remark. Curves of an implicitly analytically parametrized family can usually be cut into sub-
arcs that can be parametrized explicitly, though we do not need this fact.

The parabolas in Figure 1(a) cannot be parametrized explicitly since more than one curve
passes through any point above the x-axis. As for the cubics in Figure 1(b), t = x − 3

√
y is a

continuous parametrization but it is not differentiable at any point of the x-axis (and so not
analytic either). However, it is an explicit analytic parametrization for suitable closed sub-arcs,
say those in Figure 2(b).

3.1. Envelopes of explicitly parametrized families

Usually in differential geometry an envelope of a family Γ of curves is a smooth curve that is
tangent to each γ ∈ Γ. For explicitly parametrized families the situation is not that simple. For
example, in Figure 2(a),(b), the x-axis is not a proper tangent line of the curves; rather, it is only
a ‘half-tangent’. Since this is typical in the case of sub-arcs of explicitly parametrized families,
we shall use this general definition.

Definition 3. Let G be an open domain in the real or complex plane and let γ ⊂ cl(G) be a
curve. A line L is the half-tangent of γ at a point P of the boundary bd(G) if P ∈ γ ∩ L, P is not
an isolated point of γ, and the following estimate holds:

dist(Q,L) = o
(
dist(Q, P )

)
for Q ∈ γ.
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(a) (b)

Figure 2. Explicitly analytically parametrized families: (a) t = x − √
y, (b) t = x − 3

√
y.

Definition 4. Two plane curves touch each other at a point P if there exists a straight line
through P that is a tangent or half-tangent of both of the curves at P .

Definition 5. A smooth (open or closed) curve E is a partial envelope for an explicitly analyt-
ically parametrized family Γ, if:

(i) E is the graph of an analytic real or complex function, say y = h(x) or x = h(y), defined
on an open or closed interval or disk, respectively (i.e., E = {(x, y) : y = h(x)} or E =

{(x, y) : x = h(y)});
(ii) no (non-empty open) sub-arc of E is contained in any γ(t) ∈ Γ;

(iii) for each point P ∈ E , there exists a t for which the curve γ(t) ∈ Γ touches E at P .

The adjective ‘partial’ refers to the fact that we do not require each γ(t) ∈ Γ to touch E .

Remarks. (a) As we shall see in Lemma 3.1(ii), for explicitly analytically parametrized famil-
ies, E must be a subset of bd(G). (Here E ⊂ cl(G) is obvious since γ(t) ⊂ cl(G) for all γ(t) ∈ Γ.)

(b) Any non-trivial sub-arc of a partial envelope is a partial envelope.

(c) It is also worth noting that if a real E is a partial envelope for a family of analytically
parametrized real curves, then h can be extended to a complex analytic function whose graph
defines a partial envelope for the family of the naturally extended, analytically parametrized
complex curves.

The technical problems caused by explicit parametrization may be tedious but, in general, they
are not too difficult to manage.

Example 1. The unit circles through a given point, say the origin, form a family of implicitly
analytically parametrized curves. Indeed, if (t, u) is the centre of such a circle, then we can
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eliminate, say, u from the equations

(x − t)2 + (y − u)2 = 1 = t2 + u2, (3.2)

and get a polynomial equation,

4(x2 + y2)t2 − 4x(x2 + y2)t + (x2 + y2)2 − 4y2 = 0.

Moreover, the circle x2 + y2 = 4 is obviously an envelope for them, in the usual differential-
geometric sense.

In order to get explicitly parametrized families, we express, say,

t =
x

2
± y

2

√
4 − x2 − y2

x2 + y2
. (3.3)

(Equivalently, we could express u in a symmetric manner.) Since the right-hand side of (3.3)
has no limit at the origin, we exclude a neighbourhood of zero, of small radius δ, and consider
the open set given by x2 + y2 < 4, x2 + y2 > δ2, y <

√
1 − (x − 1)2 and x >

√
1 − (y + 1)2

as G (see the left-hand side of Figure 5, where this domain is labelled as G1
i , and the excluded

neighbourhood is labelled as Bδ(ai, bi)). Then the appropriate arcs of the unit circles are explicitly
analytically parametrized on G by (3.3) with + on the right-hand side. We need four rotated
copies of the domain G (labelled G1

i , . . . , G
4
i in Figure 5) to cover all ‘right-bending’ semi-circles,

and we need four more mirrored and rotated copies (labelled G5
i , . . . , G

8
i in Figure 5) to cover the

‘right-bending’ semi-circles. Thus the whole family can be decomposed into eight explicitly
parametrized (sub)families in this way, four of them parametrized by t and four by u.

Moreover, each family has a quarter of the large circle as a partial envelope. (No portion of the
small ‘inner circle’ is an envelope since the unit circles do not touch it.)

3.2. A lemma on envelopes

In the proof of the Main Theorem, the following statement will play an important role.

Lemma 3.1. Let Γ be a family of curves, explicitly analytically parametrized by f : cl(G) → C

or → R, as in Definition 2, and let E be a partial envelope. Then the following hold.

(i) There are no points of E to which f can be extended analytically.
(ii) Consequently, we have E ⊂ bd(G).

Proof. To prove (i), we assume that f can be extended analytically to an open set G̃ which
contains G and intersects E . This means that there is an analytic function f̃ : G̃ → C which
agrees with f on G. We replace E with G̃ ∩ E , so from now on f̃ is defined and analytic at each
point of E . Also, let us define the extended curves γ̃(t) = {(u, v) : t = f̃(u, v)} for all t.

The function f(x, y), if restricted to E , gives, by definition, the parameter t of the curve γ(t) ∈ Γ

that touches E at (x, y). Also by definition, E is the graph of an analytic function, say y = h(x),
on an interval or disk I (the case of x = h(y) is similar). We consider the composition

g(x) := f(x, h(x)) : I → C.
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Figure 3. An envelope E (dashed) and its ‘lifting’ by g on the cylinder over E .

This g is clearly continuous on I; moreover, since we assumed that f can be extended analytically
to every (x, h(x)) ∈ E , it is also differentiable, as an univariate function, in the interior int(I), by
the Chain Rule for the derivative of compositions of type R → R

2 → R or C → C
2 → C.

Also, g cannot be a constant on E since E is not a subset of any γ ∈ Γ; thus there must
exist a point P0(x0, h(x0)) ∈ int(E) where g′(x0) �= 0. We are going to get the required con-
tradiction by showing that the tangent plane of the graph of f̃ above P0, i.e., at point P+

0 :=(
x0, h(x0), f(x0, h(x0))

)
, is vertical – which is impossible.

To this end, we define two spatial curves on the graph of f̃ that pass through P+
0 such that, at

that point, the tangent lines of the two curves will both exist but will not coincide; hence they
must span the tangent plane in question. Specifically, we consider the curves

{
(
x, h(x), g(x)

)
: x ∈ I}, and

{
(
x, y, g(x0)

)
: (x, y) ∈ G̃, f̃(x, y) = g(x0)};

the former is the ‘lifting of E by function g’, while the latter is the lifting of the γ̃t that touches
E at P0 (i.e., it is γ̃g(x0)) to the fixed height g(x0). (See Figure 3.) By assumption, there is a line
L which is tangent to E and half-tangent to γt at P0, and hence must be tangent to the extended
curve γ̃t at P0. Hence, both lifted curves indeed have tangent lines at P+

0 ; that of the latter curve
is obviously horizontal while that of the former one is not, by g′(x0) �= 0. Since both lines project
to L in the base plane, we conclude that the tangent plane at P+

0 must be vertical – the required
contradiction to the assumption that f can be extended analytically to G̃.

Now (ii) follows from (i) since it implies that E can contain no (interior) point of the open
set G. This completes the proof of Lemma 3.1.

4. The Main Theorem

The following is our main result. Though it concerns families of analytically parametrized curves,
we need the technical assumption that there is an algebraic, i.e., polynomial relation between the
families (the reason being that the Surface Theorem (Theorem 2.1) works only for this case).
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Theorem 4.1 (Main Theorem). Let Γ1,Γ2,Γ3 be families explicitly parametrized by the func-
tions f1, f2, f3, analytic on open domains G1, G2, G3 and continuous on cl(G1), cl(G2), cl(G3),
respectively, and with the property that G = G1 ∩ G2 ∩ G3 is connected. Assume that any two
curves intersect in at most B points, and the concurrency of three curves γ(ti) ∈ Γi (i = 1, 2, 3) is
described by a polynomial relation in the sense that, denoting a triple point where they intersect
by (u, v), the three parameters ti = fi(u, v) satisfy a polynomial relation F(t1, t2, t3) = 0, or, more
explicitly,

F
(
f1(u, v), f2(u, v), f3(u, v)

)
= 0 (4.1)

identically on cl(G), for a polynomial F ∈ C[t1, t2, t3]. Assume, moreover, that

(i) Γ3 has a partial envelope E ,
(ii) E ⊆ G1 ∩ G2,

(iii) no fi (i = 1, 2, 3) is a constant on any non-empty open sub-arc of E (intuitively, no non-empty
open sub-arc of E is contained in any γ ∈ Γ1 ∪ Γ2 ∪ Γ3).

Then

TΓ1 ,Γ2 ,Γ3
(n) < B · n2−η,

for a suitable η = η(deg(F)), provided that n > n0 = n0(deg(F)).

Remarks. (a) The existence of an envelope E is sufficient but not necessary to ensure that
TΓ1 ,Γ2 ,Γ3

(n) is subquadratic. Actually, if no such envelope exists, then anything can happen. To
see this, consider the three families of concentric circles about three points P1, P2, P3 ∈ R

2,
respectively. (Obviously, none of these families possesses an envelope.) On the one hand, the
method shown in [3] gives that, if the Pi are collinear, then TΓ1 ,Γ2 ,Γ3

(n) � cn2. On the other hand,
if they are non-collinear, then TΓ1 ,Γ2 ,Γ3

(n) is subquadratic (see [5, Theorem 33]).

(b) The applicability of Main Theorem is limited to one-parameter families Γi.

(c) It is worth noting that requirement (iii) in the Main Theorem is not just a technical assumption.
For example, the n + n straight lines and n parabolas,

Γ1 := {y = t21 : t1 = 0, 1, . . . , n − 1},
Γ2 := {x = t2 : t2 = 0, 1, . . . , n − 1},
Γ3 := {y = (x − t3)

2 : t3 = 0, 1, . . . , n − 1},

have n2 triple points: three curves with parameters t1, t2, t3, respectively, pass through a common
point if and only if t1 = |t2 − t3|, while the x-axis as E and the polynomial F(t1, t2, t3) := t21 −
(t2 − t3)

2 satisfy all requirements but (iii).

Proof of the Main Theorem. I Without loss of generality we may assume that both the
polynomial F and the surface SF = {F = 0} are irreducible. Indeed, the open domain G is
connected, hence irreducible (as an analytic set). Therefore its image under the mapping

f = f1 × f2 × f3 : cl(G) → SF ⊂ R
3,
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defined by

(u, v) �→
(
f1(u, v), f2(u, v), f3(u, v)

)
,

is, again, irreducible. Then f (G) must be contained in a single irreducible component of the sur-
face SF , and one can simply throw away all other components. Moreover, the analytic functions
fi are non-constant, hence the polynomial F must depend on all three variables, and the surface
SF does not contain a cylinder over a curve (see Theorem 2.1(b)). Let η = η(deg(F)) ∈ (0, 1) and
n0 = n0(deg(F)) be the constants, the existence of which is stated in Theorem 2.1. We want to
show that TΓ1 ,Γ2 ,Γ3

(n) < B · n2−η , for n > n0.

II Assume for a contradiction that n + n + n curves with parameter sets T1, T2, T3, respectively,
determine � B · n2−η triple points for an n > n0. Any three curves, say of parameter t1, t2, t3,
respectively, share at most B common points. Therefore, the surface SF passes through � n2−η

points of the n × n × n Cartesian product T1 × T2 × T3. In other words, V = SF and the Ti as
X, Y , Z satisfy Theorem 2.1(a).

III Consequently, we can use Theorem 2.1(d) i.e. the localized version of Theorem 2.1(b). This
gives us a finite subset H ⊂ R of ‘exceptional’ or ‘forbidden’ values, and after picking a point P
and a surface W in (IV) below, we shall also obtain three analytic functions g1, g2, g3 : D → C.
Without loss of generality, we may assume that the partial envelope E of Γ3 whose existence we
assumed in the Main Theorem, has the property that

∀P ∈ E and i = 1, 2, 3, fi(P ) /∈ H. (4.2)

Indeed, this only excludes finitely many points from any closed sub-arc of E , since the gi are
nowhere constant by assumption (iii); thus, if necessary, E can be restricted to a suitable open
sub-arc.

IV Now we pick an arbitrary point Q ∈ E . Clearly, f (Q) ∈ SF , since E ⊂ cl(G) by assump-
tion (ii) and SF is closed. Recall that V0 = V = SF , by the irreducibility assumption in (I),
and fi(Q) /∈ H for i = 1, 2, 3, by the assumption we made in equation (4.2), so we can apply
Theorem 2.1(d) and (b) to the point P = f (Q). Then we get a neighbourhood U ′ of f (Q), and
the promised one-to-one analytic functions (with analytic inverses), g1, g2, g3 : (−1, 1) → R or
D → C with the following property. The function g = g1 × g2 × g3 maps the origin (0, 0, 0) to
f (Q), and maps an open subset of the plane x + y + z = 0 onto the irreducible component of
W ⊂ SF ∩ U ′ containing f (G) ∩ U ′. This latter set is non-empty, since P lies inside U ′ and in
the closure of f (G).

V Denote the inverses of the gi by ϕ1, ϕ2, ϕ3, respectively. Then the ‘coordinate-wise inverse’
g−1 = ϕ1 × ϕ2 × ϕ3 maps W into the plane x + y + z = 0. In other words, for (t1, t2, t3) ∈ W

we have

ϕ1(t1) + ϕ2(t2) + ϕ3(t3) = 0,

since the three quantities on the left-hand side are coordinates of a point in the plane x + y + z =

0. But f (G) ∩ U ′ ⊆ W , hence

ϕ1

(
f1(u, v)

)
+ ϕ2

(
f2(u, v)

)
+ ϕ3

(
f3(u, v)

)
= 0 (4.3)
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(a) (b) (c)

Figure 4. (a), (b) unit circles, (c) straight lines?

identically, in a neighbourhood U ⊂ cl(G) of Q. (This U is open inside cl(G) but not open in the
plane, as Q is a boundary point.)

VI According to Lemma 3.1(i), f3 cannot be extended analytically to any neighbourhood of Q.
On the other hand, re-writing (4.3) as

ϕ3

(
f3(x, y)

)
= −ϕ1

(
f1(x, y)

)
− ϕ2

(
f2(x, y)

)
,

we get an explicit formula for f3 in U :

f3(x, y) = g3

(
−ϕ1

(
f1(x, y)

)
− ϕ2

(
f2(x, y)

))
.

By assumption (ii) the right-hand side is defined beyond Q, hence provides an analytic extension
of f3. This is the required contradiction.

5. A combinatorial distinction between unit circles and straight lines

In this section we restrict our attention to the real plane R
2. Recognizing unit circles (and,

especially, distinguishing them from straight lines) does not seem to be difficult. For example,
anyone can tell that in Figure 4(a),(b) there can only be found circles and no straight lines.
Similarly, few people would doubt that there is no unit circle in Figure 4(c), just straight lines.
However, one should be more careful. How do we know that the lines are really straight? Perhaps
they may be (arcs of) unit circles, provided that our ‘unit’ is very large – so huge that their
tiny little arcs do not even seem to be ‘bent’. This is the moment when the points of the 5 × 5

lattice become important: Is it possible that 25 points and 15 unit circles are incident upon each
other just as in Figure 4(c)? Unfortunately, we do not know the answer to this simple question.
However, we are going to show that, for any n > n0, the n2 points of an n × n lattice and 3n lines
in a similar grid-like configuration (n horizontal, n vertical and n ‘diagonal’ ones) can only have
this prescribed incidence pattern if the lines are really straight, and not if they are (arcs of) unit
circles – and this holds even if we only require a near-quadratic number of incidences.

Theorem 5.1. There exist an absolute constant η ∈ (0, 1) and a threshold n0 with the following
property.

Let (a1, b1), (a2, b2), (a3, b3) be three distinct points in the Euclidean plane and let Γ1, Γ2,
Γ3 be three families of unit circles, such that, for each i � 3, all circles of Γi pass through the
common point (ai, bi). Then

TΓ1 ,Γ2 ,Γ3
(n) � 210 · n2−η + 3, (5.1)

provided that n > n0.
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Figure 5. Subdivision of the family Γi into eight subfamilies: (a) one of the subfamilies, G1
i (dotted arcs),

(b) all eight subfamilies.

Remarks. (1) The conjecture that, in this case, TΓ1 ,Γ2 ,Γ3
(n) = o

(
n2

)
, originates from Székely

(see [4, Conjecture 3.41]).

(2) For straight lines the situation is quite different from that described in Theorem 5.1. A
configuration like that in Figure 4(c) gives ≈ 3n2/4 triple points – where the three points (a1, b1),
(a2, b2), and (a3, b3), which are common to the corresponding families of curves, can be con-
sidered as points on the line at infinity.

Similarly, if we allow arbitrary (i.e., not just unit) circles then they can produce any incidence
pattern that straight lines can: just apply a suitable inversion to any configuration of points
and straight lines. Even certain other conic sections have this property, e.g., shifted copies y =

x2 + ax + b of the parabola y = x2: just apply the diffeomorphism (x, y) �→ (x, x2 + y) to any
configuration of points and straight lines.

6. Proof of Theorem 5.1

Assume we are given three families Γ1, Γ2, Γ3 of unit circles and three distinct points (a1, b1),
(a2, b2), (a3, b3) ∈ R

2, with the property that all curves in Γi pass through (ai, bi), for i � 3.

(1) During the proof we do not consider the three points (ai, bi) as triple points (though they
might be). This will only add a ‘+3’ at the end.

(2) Pick a sufficiently small positive δ so that the δ-neighbourhoods Bδ(ai, bi) do not contain any
triple point.

(3) We subdivide each Γi in the way described in Example 1, this subdivision is pictured in
Figure 5. Thus we get three times eight subfamilies denoted by Gk

i with i = 1, 2, 3 and k =

1, 2, . . . , 8. This subdivision will affect the bound on TΓ1 ,Γ2 ,Γ3
(n) only by a factor of 83.

(4) Each such Γ(k)
i covers Gk

i only once. Thus, as in Example 1, the family can be explicitly
analytically parametrized.

(5) It is not difficult to find a trivariate polynomial equation F(t1, t2, t3) = 0 that is satisfied by
the parameters corresponding to any triple point. This is a rather straightforward calculation,
included in an earlier version of this paper. However, wishing to emphasize that we do not care
about its actual form, we have omitted it. (Actually, such polynomials can always be found for
three algebraically parametrized families.)
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(6) Each Γ(k)
i (i � 3, k � 8) possesses an envelope (a quarter-circle of radius 2) that is not an

envelope for any of the Γ(l)
j for j �= i. Therefore each triple 〈Γ(k)

1 ,Γ(l)
2 ,Γ(m)

3 〉, for k, l, m � 8,
satisfies the assumptions of the Main Theorem. Thus they cannot have more than 2n2−η triple
points for n > n0, where η = η(deg(F)) and n0 = n0(deg(F)) are as in the Main Theorem.

(7) We conclude that, indeed, TΓ1 ,Γ2 ,Γ3
(n) � 210n2−η + 3.

6.1. Concluding remarks

We have given a sufficient condition for three one-parameter families of curves (or for three
copies of a single family) to have ‘few’, more specifically at most n2−η , triple intersections.

How far below quadratic should it be? Since we have no reasonable estimate for η > 0, nothing
is known about the exact order of magnitude. It may well be that the number of triple points is at
most n1+ε, for any ε > 0. We do not even know any families that satisfy the assumptions of the
Main Theorem and can produce a super-linear number of triple points, say n log n.

Which more-than-one-parameter families of curves can determine a quadratic number of triple
points? Our methods do not work in this generality, since Theorem 2.1 applies only to one-
parameter families.

We cannot help mentioning a related, beautiful, unsolved problem of Erdős. Assume that, in
the projective plane, n straight lines define at least cn2 quadruple points, i.e., points where at least
four lines meet. Is it true that, for sufficiently large n > n0(c), there must exist a point where at
least five of them intersect?
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Paul Erdős and his Mathematics II, Vol. 11 of Bolyai Mathematical Society Studies, pp. 241–290.
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[13] Székely, L. A. (1997) Crossing numbers and hard Erdős problems in discrete geometry. Combin.
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