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Abstract. It is known that the disconnected Julia set of any polynomial map does not
contain buried Julia components. But such Julia components may arise for rational maps.
The first example is due to Curtis T. McMullen who provided a family of rational maps
for which the Julia sets are Cantor of Jordan curves. However, all known examples of
buried Julia components, up to now, are points or Jordan curves and comes from rational
maps of degree at least five. This paper introduces a family of hyperbolic rational maps
with disconnected Julia set whose exchanging dynamics of postcritically separating Julia
components is encoded by a weighted dynamical tree. Each of these Julia sets presents
buried Julia components of several types: points, Jordan curves, but also Julia components
which are neither points nor Jordan curves. Moreover, this family contains some rational
maps of degree three with explicit formula that answers a question McMullen raised.
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1. Introduction
For any rational map f of degree d > 2 on the Riemann sphere Ĉ, we denote by J ( f ) its
Julia set, namely the closure of the set of repelling periodic points. We recall that J ( f ) is a
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(a) (b) (c)

FIGURE 1. Diagrams showing (a) J (g0,λ) for d∞ = 2, d0 = 3 and λ≈ 10−9, (b) J (g̃−1,λ) for d∞ = 2, d0 = 3
and λ≈ 10−9 and (c) J (gc,λ) for d∞ = d0 = 3, c =−i and λ≈ 10−9.

fully invariant non-empty perfect compact set which either is connected or has uncountably
many connected components (see [Bea91, CG93, Mil06]). This paper focuses on the
disconnected case. Every connected component of J ( f ) is called a Julia component and
every connected component of the Fatou set Ĉ− J ( f ) is called a Fatou domain.

A Julia component is said to be buried if it has no intersection with the boundary of
any Fatou domain. In particular, buried Julia components cannot occur in the polynomial
case (since the Julia set coincides with the boundary of the unbounded Fatou domain). The
same holds if the Julia set is a Cantor set, or more generally if the complementary of every
Julia component is connected (since the Fatou set is then connected). That suggests much
more sophisticated topological structures for Julia sets with some buried Julia components
than those encountered in the polynomial case.

The first example of rational maps with buried Julia components is due to
Curtis T. McMullen. Consider the family of rational maps given by

gc,λ : z 7→ zd∞ + c +
λ

zd0
where d∞, d0 > 1 and c, λ ∈ C.

The special case c = 0 has been studied in [McM88] (see also [DHL08]), where it is
proved that if the following condition is satisfied

1
d∞
+

1
d0
< 1 (H0)

and if |λ|> 0 is small enough, then J (g0,λ) is a Cantor of Jordan curves, namely
homeomorphic to the product of a Cantor set with a Jordan curve (see Figure 1(a)). Recall
that any Cantor set is homeomorphic to the middle third set on a line segment which
contains uncountably many points which are not endpoints of any removing open segment.
Each of these points corresponds to a buried Jordan curve in J (g0,λ).

In [PT00], the authors have provided another example by slightly modifying the map
g−1,λ for d∞ = 2 and d0 = 3 (that satisfies assumption (H0)) in a clever way:

g̃−1,λ : z 7→
1
z
◦ (z2

− 1) ◦
1
z
+
λ

z3 =
z2

1− z2 +
λ

z3 where λ ∈ C.

If |λ|> 0 is small enough, then J (g̃−1,λ) has the same topological structure than J (g0,λ)

except that one fixed Julia component (which contains the boundary of the unbounded
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Fatou domain and, hence, is not buried) is quasiconformally homeomorphic to the Julia set
of z 7→ z2

− 1. The uncountably many Julia components which are not eventually mapped
under iteration onto this fixed Julia component are buried Jordan curves in J (g̃−1,λ) (see
Figure 1(b)).

Examples of buried Jordan components which are not Jordan curves have appeared in
some works. For instance, in [BDGR08] (see also [GMR13]), the authors have studied
the family gc,λ for d∞ = d0 > 3 (that satisfies assumption (H0)) and for a fixed parameter
c chosen so that for the polynomial z 7→ zd∞ + c the critical point zero lies in a cycle
of period at least two. In that case, if |λ|> 0 is small enough, then J (gc,λ) still has
uncountably many Jordan curves as buried Jordan components but also uncountably many
points. The remaining Julia components are eventually mapped under iteration onto a fixed
Julia component (which coincides with the boundary of the unbounded Fatou domain and,
hence, is not buried) quasiconformally homeomorphic to the Julia set of z 7→ zd∞ + c.
Each of these not buried Julia components has infinitely many ‘decorations’ and every
buried point component is accumulated by a nested sequence of such decorations (see
Figure 1(c)).

All of the previous examples are rational maps of degree d∞ + d0 at least five according
to assumption (H0). The existence question of buried Julia components for rational maps
of degree less than five has been raised in [McM88]. In the last decade, a number of
papers have appeared that deal with subfamilies of gc,λ or some slightly perturbations of
it. Some of them present sophisticated Julia sets with buried Julia components, however
the degree of these examples is always at least equal to five. Furthermore, the buried Julia
components of these examples are points or Jordan curves.

The aim of this paper is to answer the question McMullen has raised by providing a
family of rational maps of degree three which does not come from the family gc,λ and
whose Julia set presents buried Julia components of several types: points, Jordan curves
but also Julia components which are neither points nor Jordan curves. One of our main
results here is the following.

THEOREM 1. Consider the family of cubic rational maps given by

fλ : z 7→
(1− λ)[(1− 4λ+ 6λ2

− λ3)z − 2λ3
]

(z − 1)2[(1− λ− λ2)z − 2λ2(1− λ)]
where λ ∈ C.

If |λ|> 0 is small enough, then J ( fλ) contains buried Julia components of several types.
(i) Point type: uncountably many points.
(ii) Circle type: uncountably many Jordan curves.
(iii) Complex type: countably many preimages of a fixed Julia component which is

quasiconformally homeomorphic to the connected Julia set of f0 : z 7→ (1/(z − 1)2).

An example of such a Julia set is depicted in Figure 2. Here J ( fλ) is called a ‘Persian
carpet’ because of similarities with sophistications from carpet-weaving art: the Julia
set of f0 : z 7→ (1/(z − 1)2) appears as a watermark in the central motif of the carpet
whose surface is covered by an elaborate pattern of Cantor of Jordan curves, and there are
some small Julia components everywhere that looks like dust. These small dusts contain
nested sequences of finite coverings of the Persian carpet which accumulate buried point
components.
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(a) (b) (c)

FIGURE 2. (a) A Persian carpet: J ( fλ) for λ≈ 10−3; (b) J ( f0) which appears as a buried Julia component in
J ( fλ); (c) a magnification about a dust of the Persian carpet.

The Persian carpet example is maximal among rational maps with buried Julia
components in the sense that buried Julia components cannot occur for rational maps of
degree less than three. Indeed, by a theorem in [Mil00], the Julia set of any quadratic
rational maps is either connected or a Cantor set.

Furthermore, the Persian carpet example is maximal among geometrically finite rational
maps (namely rational maps such that every critical point in the Julia set is preperiodic,
in our case fλ is hyperbolic, namely it has no critical point in J ( fλ) for |λ|> 0 small
enough) in the sense that every Julia component (not necessarily buried) of such a map is
one of the three types described in Theorem 1. That follows from two results. First, by a
theorem in [McM88], every periodic Julia component of a rational map is either a point
or quasiconformally homeomorphic to the connected Julia set of a rational map. Second,
it has been proved in [PT00] that every Julia component of a geometrically finite rational
map which is not eventually mapped under iteration onto a periodic Julia component is
either a point or a Jordan curve.

The underlying idea in the construction of the Persian carpet example is that the
sophisticated configuration on Ĉ of Julia components which are not points may be encoded
by a tree. Tree structures have appeared in various works on holomorphic dynamics (for
instance, Hubbard trees in [DH84] to classify postcritically finite polynomial maps). The
tree considered here is not embedded in Ĉ. It is seen as an abstract object which is very
similar to, and actually inspired by, the trees introduced by Mitsuhiro Shishikura in [Shi89]
which describe the configurations of Herman rings for rational maps.

However, the purpose of this paper is only to introduce a family of rational maps coming
from a particular tree which answers the question McMullen has raised, but not to discuss
the general existence question of rational maps whose configuration of Julia components
is encoded by any given tree (that will be the purpose of future works) even if a general
construction may be suggested (especially statements and discussions in §2).

1.1. Organization of the paper. Section 2 deals with exchanging dynamics of critically
separating Julia components by weighted dynamical tree.

In §2.1, we specify the idea mentioned above by showing that, under assumption (H0),
the exchanging dynamics of Julia components for the family g0,λ is encoded by a certain
weighted dynamical tree (HQ, w) (see Theorem 2).
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The purpose of §2.2, is then to do the converse: starting from a particular dynamical tree
HP more sophisticated than HQ and a weight function w on its edges, Theorem 3 states
the existence of rational maps with disconnected Julia set whose exchanging dynamics of
postcritically separating Julia components is encoded by (HP , w) if (and, actually, only if)
two conditions (H1) and (H2) hold. Theorem 4 shows that the Julia sets of these rational
maps own buried Julia components of every expected type.

The main part of the proofs of Theorems 3 and 4, that is the construction by
quasiconformal surgery of the required rational maps, is detailed in §3.

In §4, some properties of the rational maps constructed in the previous section are
shown. The properties about exchanging dynamics (§4.1) conclude the proof of Theorem 3
while the properties about topology of some Julia components (§4.2) give the proof of
Theorem 4.

Section 5 deals with a particular choice of the weight function w for which the two
assumptions (H1) and (H2) are satisfied and such that the rational maps in Theorems 3
and 4 have degree three. In this case, an explicit formula is provided that concludes the
proof of Theorem 1.

Finally, some technical results used in the construction of §3 are collected in
Appendix A with references.

2. Encoding by weighted dynamical trees
For any rational map f : Ĉ→ Ĉ, we denote by J ( f ) the set of Julia components and
we recall that f induces a topological dynamical system on J ( f ) endowed with the
usual distance between continua on Ĉ equipped with the spherical metric (note that J ( f )
is closed for this distance, that is not true in general for the Hausdorff distance). This
topological dynamical system is called the exchanging dynamics of Julia components.

We recall that the critical points of f are the points where f is not locally injective,
and the postcritical points of f are the points of the form f n(c) for some n > 1 and for
some critical point c. A Julia component J ∈ J ( f ) is said to be critically separating if
J separates the postcritical set of f , or equivalently if Ĉ− J has at least two connected
components containing at least one postcritical point of f each. We denote by Jcrit( f )
the subset of critically separating Julia components in J ( f ). Note that Jcrit( f ) is forward
invariant, and thus f induces a topological dynamical system on Jcrit( f ).

2.1. McMullen’s example. Consider the cubic polynomial Q : z 7→ 3z2(3/2− z). It
has two simple critical points: 0 which is fixed, and 1 which is mapped on 0 after two
iterations:

02:1 :: 1 2:1 // 3
2

1:1

��

Let HQ be its Hubbard tree, namely the smallest closed connected infinite union of
internal rays which contains the postcritical set {0, 3/2} (see [DH84]). In fact, HQ is the
straight real segment [0, 3/2] or more precisely the union of two edges [0, 1] ∪ [1, 3/2]
while the vertices are 0, 1 and 3/2. Both edges of HQ are homeomorphically mapped by
Q onto the whole tree (see Figure 3(b)).
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(a) (b) (c)
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3
2

Q

0

FIGURE 3. (a) The Julia set of the polynomial Q. (b) The action of Q on the Hubbard tree HQ . (c) The action
of g0,λ on the set of Julia components J (g0,λ).

Denote by J (HQ) the intersection set between the Hubbard tree HQ and the Julia
set J (Q). Note that J (HQ) is disconnected (actually a Cantor set) and Q induced
a dynamical system on it since the Hubbard tree HQ and the Julia set J (Q) are both
invariant.

Finally, let w be a weight function on the set of edges of HQ , say w([0, 1])= d∞ and
w([1, 3/2])= d0 where d∞ and d0 are positive integers.

The result about the family g0,λ discussed in the introduction (see §1) may be
reformulated as follows.

THEOREM 2. If the weighted dynamical tree (HQ, w) satisfies the following condition

1
d∞
+

1
d0
< 1, (H0)

then for every |λ|> 0 small enough, the exchanging dynamics of Julia component of g0,λ

is encoded by (HQ, w) in the following sense:
(i) every critical orbit accumulates the super-attracting fixed point∞;
(ii) there exists a homeomorphism h : J (g0,λ)→ J (HQ) such that the following

diagram commutes

J (g0,λ)
g0,λ //

h
��

J (g0,λ)

h
��

J (HQ) Q
// J (HQ)

(iii) for every Julia component J ∈ J (g0,λ), the restriction map g0,λ|J has degree w(e)
where e is the edge of HQ which contains h(J ).

Note that J (g0,λ)= Jcrit(g0,λ) for |λ|> 0 small enough since every Julia component
is a Jordan curve which separates the fixed critical point∞ from some critical values close
to 0.

Proof. We only sketch the proof since the main part is done in [McM88]. Indeed
it is shown that there exists a large annulus A centered at 0 and containing J (g0,λ)

whose preimage consists of two disjoint annuli A∞, A0 both nested in A and such
that the restriction maps g0,λ|A∞ : A∞→ A and g0,λ|A0 : A0→ A are coverings of
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degree d∞ and d0, respectively. Using combinatorial reasoning from holomorphic
dynamics, it is a classical exercise to prove that the set of connected components of
J (g0,λ)=

⋂
n>0 g−n

0,λ(A) is homeomorphic to the space of all sequences of two digits62 =

{0, 1}N (equipped with the product topology making it a Cantor set) and the exchanging
dynamics is topologically conjugated to a two-to-one shift map σ :62→62 defined by
σ(s0, s1, s2, . . . )= (s1, s2, s3, . . . ). The same holds for the dynamical system induced
by Q on J (HQ) since for ε > 0 small enough the real segment I = [ε, 3/2− ε] contains
J (HQ) and its preimage consists of two disjoint real segment both included in I (one in
each of the two edges of HQ). �

Heuristically speaking, we may topologically think of the Riemann sphere Ĉ as a
smooth neighborhood’s boundary of the tree HQ embedded in the space R3. The two
points on this topological sphere which correspond to ∞ and 0 should be closed to the
corresponding vertices of HQ which are 0 and 3/2, respectively. If the neighborhood
becomes smaller and smaller, every Jordan curve in J (g0,λ) is shrunk to a point in J (HQ)

(see Figure 3(c)).

2.2. Persian carpet example. Consider a quadratic polynomial of the form P : z 7→
z2
+ c where the parameter c ∈ C is chosen in order that the critical point 0 is periodic of

period four. There are exactly six choices of such a parameter. Let us fix c to be that one
with the largest imaginary part, that is c ≈−0.157+ 1.032i . The postcritical points are
denoted by ck = Pk(0) for every k ∈ {0, 1, 2, 3}:

c11:1

��
c2

1:1
//

α 1:1
yy

c0

2:1

XX

c3

1:1
mm

Let HP be the Hubbard tree of P (see Figure 4(b)). As one-dimensional simplicial
complex, HP may be described by a set of five vertices {c0, c1, c2, c3, α} where α is a
fixed point of P and the following four edges:

e0 = [α, c0]HP ; e1 = [α, c1]HP ; e2 = [α, c2]HP ; e3 = [c0, c3]HP .

Here P homeomorphically acts on the edges as follows:
P(e0)= e1,

P(e1)= e2,

P(e2)= e0 ∪ e3,

P(e3)= e0 ∪ e1.

Denote by J (HP ) the intersection set between the Hubbard tree HP and the Julia set
J (P). Note that J (HP ) is disconnected (actually a Cantor set) and P induced a dynamical
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(a) (b) (c)
c1

c1

c2 c2

c0

c0

c3

c3

α

α

P

FIGURE 4. (a) The Julia set of the polynomial P . (b) The Hubbard tree HP . (c) The action of P on a straightened
copy of HP .

system on it. Moreover, the fixed branching point α belongs to J (HP ) but not to the
boundary of any connected component of HP − J (HP ). Finally, let w be a weight
function on the set of edges of HP , say w(ek)= dk where dk is a positive integer for
every k ∈ {0, 1, 2, 3}.

Definition 1. The transition matrix of the weighted dynamical tree (HP , w) is the four-
by-four matrix M = (mi, j )i, j∈{0,1,2,3} whose entries are defined as follows:

for all i, j ∈ {0, 1, 2, 3}, mi, j =


1

w(ei )
if e j ⊂ P(ei ),

0 otherwise.

Since M is a non-negative matrix, it follows from the Perron–Frobenius theorem that the
eigenvalue with the largest modulus is real and non-negative. Let us call λ(HP , w) this
leading eigenvalue. The weighted dynamical tree (HP , w) is said to be unobstructed if
λ(HP , w) < 1.

Let us give some remarks about this definition.
(i) This definition is strongly related to obstructions which occur in Thurston

characterization of postcritically finite rational maps and all of the related theory
(see [DH93]).

(ii) When (HP , w) is unobstructed, the Perron–Frobenius theorem and continuity of the
spectral radius ensure the existence of a vector V ∈ R4 with positive entries such that
MV < V . This remark will be useful later.

(iii) Actually the transition matrix of (HP , w) is given by

M =



0
1
d0

0 0

0 0
1
d1

0

1
d2

0 0
1
d2

1
d3

1
d3

0 0
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and an easy computation shows that λ(HP , w) is the largest root of

X4
−

(
1

d0d1d2
+

1
d1d2d3

)
X −

1
d0d1d2d3

.

Note that if λ(HP , w)> 1, then λ(HP , w)6 1/(d0d1d2)+ 1/(d1d2d3)+

1/(d0d1d2d3), thus (HP , w) is unobstructed as soon as at least three of weights d0,
d1, d2, and d3 are > 2. Conversely, if (HP , w) is unobstructed then one can show
by exhaustion that at least two of weights d0, d1, d2, and d3 are > 2.

(iv) For McMullen’s example, the transition matrix of (HQ, w) may be defined as well
and we get

M =


1

d∞

1
d∞

1
d0

1
d0

 .
An easy computation gives that λ(HQ, w)= 1/d∞ + 1/d0. Consequently the
weighted dynamical tree (HQ, w) is unobstructed if and only if the assumption (H0)
holds.

The following result is analogous to Theorem 2.

THEOREM 3. If the weighted dynamical tree (HP , w) satisfies the following conditions

d̂ = 1
2 (d0 + d1 + d2 − 1) is an integer> 2 and max{d0, d1, d2}6 d̂ (H1)

(HP , w) is unobstructed, (H2)

then there exists a rational map f of degree d̂ + d3 such that the exchanging dynamics of
postcritically separating Julia components of f is encoded by (HP , w) in the following
sense:
(i) every critical orbit accumulates a super-attracting cycle {z0, z1, z2, z3} of period

four;
(ii) there exists a homeomorphism h : Jcrit( f )→ J (HP ) such that the following

diagram commutes

Jcrit( f )
f //

h
��

Jcrit( f )

h
��

J (HP ) P
// J (HP )

(iii) for every Julia component J ∈ Jcrit( f ) such that h(J ) is not eventually mapped
under iteration to the fixed branching point α, the restriction map f |J has degree
w(ek)= dk where ek is the edge of HP which contains h(J ).

The same heuristic as for Theorem 2 still holds: we may topologically think the
Riemann sphere Ĉ as a smooth neighborhood’s boundary of the tree HP embedded in the
space R3. The action of f on this topological sphere follows that of the dynamical tree HP .
The points on this topological sphere which correspond to the points in the super-attracting
periodic cycle {z0, z1, z2, z3} should be close to the corresponding vertices {c0, c1, c2, c3}

of HP , and every Julia component in Jcrit( f ) closely surrounds a corresponding point in
J (HP ).
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THEOREM 4. Under assumptions (H1) and (H2) there exists a rational map f satisfying
Theorem 3 and such that J ( f ) contains buried Julia components of several types.
(i) Point type: uncountably many points.
(ii) Circle type: uncountably many Jordan curves.
(iii) Complex type: countably many preimages of a fixed Julia component lying over

the fixed branching point α, say Jα = h−1(α) ∈ J ( f ), which is quasiconformally
homeomorphic to the connected Julia set of a rational map f̂ .

Moreover, f̂ has degree d̂ and has only one critical orbit which is a super-attracting cycle
{ẑ0, ẑ1, ẑ2} of period three such that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2}.

Let us give some comments about these results.
(i) The rational map f̂ corresponds to the dynamics of f on the fixed Julia component

Jα lying over the fixed branching point α. More precisely, there is a quasiconformal
map ϕ from a neighborhood of J ( f̂ ) onto a neighborhood of Jα such that ϕ ◦ f̂ =
f ◦ ϕ (see the construction of f in §3).

(ii) The rational map f̂ may also be seen as encoded by a weighted dynamical tree.
Consider the quadratic polynomial R : z 7→ z2

+ ĉ where ĉ ∈ C is the parameter with
the largest imaginary part such that the critical point 0 is periodic of period three,
that is ĉ ≈−0.123+ 0.745i (J (R) is known as the Douady’s rabbit). The Hubbard
tree HR of R is described by a set of four vertices {ĉ0, ĉ1, ĉ2, α̂} where ĉk = Rk(0)
and α̂ is a fixed point of R, and three edges of the form êk = [̂α, ĉk]HR for every
k ∈ {0, 1, 2}. Consider the weight function w defined by w(êk)= dk for every k ∈
{0, 1, 2}. Then the weighted dynamical tree (HR, w) encodes the action of f̂ in the
same setting as in Theorems 2 and 3. Note that the intersection set between HR and
J (R) is reduced to J (HR)= {̂α}, that corresponds to the unique Julia component in
J ( f̂ )= Jcrit( f̂ )= {J ( f̂ )}. Finally, note that the weighted dynamical tree (HR, w)

is unobstructed as soon as assumption (H1) holds (actually λ(HR, w)= 1/(d0d1d2)).
(iii) The rational map f̂ is unique up to conjugation by a Möbius map or, equivalently, it is

unique as soon as its critical orbit {ẑ0, ẑ1, ẑ2} is fixed in Ĉ (see Lemma 1). However,
the rational map f is not unique since the critical points which do not belong to the
super-attracting periodic cycle {z0, z1, z2, z3} (but whose orbits accumulate it) may
be perturbed in some neighborhoods without changing the exchanging dynamics and
the topology of Julia components.

(iv) The rational map f is not postcritically finite since J ( f ) is disconnected (but it is
hyperbolic from point (i) in Theorem 3). In particular, Thurston characterization of
postcritically finite rational maps (see [DH93]) cannot be used to prove the existence
of f . However, one could use the works of Tan Lei and Cui Guizhen about sub-
hyperbolic semi-rational maps in [CT11] but this paper presents a more explicit and
more constructive method by quasiconformal surgery (see §3).

(v) The assumption (H1) is necessary. Indeed it is the smallest requirement such that
there exists a topological model for f̂ , that is a branched covering combinatorially
equivalent to f̂ (see Lemma A.1 and the proof of Lemma 1).

(vi) The assumption (H2) is necessary. Otherwise we can find a Thurston obstruction,
that is to say a multicurve 0 whose transition matrix is equal to M with leading
eigenvalue λ(0)= λ(HP , w)> 1. According to a result of McMullen in [McM94]
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it follows that λ(0)= 1 and at least one curve in 0 is contained in an union of
Fatou domains where f is biholomorphically conjugated to a rotation. That is a
contradiction since every critical orbit of f accumulates a super-attracting periodic
cycle.

3. Construction
The aim of this section is to construct by quasiconformal surgery (we refer readers
to [BF13] for a comprehensive treatment on this powerful method) a rational map f which
satisfies Theorems 3 and 4. The strategy is to start from a rational map f̂ whose Julia set
corresponds to the branching point α in HP (see Theorem 4) and then to modify this map
in order to create a folding corresponding to the critical point c0.

3.1. The branching map f̂ . The first step of the construction is to prove the existence
of the rational map f̂ which appears in Theorem 4. This is done by Lemma 1 below.

LEMMA 1. If assumption (H1) holds, then there exists a rational map f̂ : Ĉ→ Ĉ of degree
d̂ such that:
(i) f̂ has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period

three such that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2};
(ii) J ( f̂ ) is connected and the Fatou set Ĉ− J ( f̂ ) has infinitely many connected

components which are simply connected.
Moreover, f̂ is unique up to conjugation by a Möbius map.

There are many ways to prove the existence of f̂ (for instance, by ‘blowing up’ the
edges of some triangle invariant by a Möbius map, see [PT98]). Here we give a simple
proof provided a particular solution of the Hurwitz problem (see Appendix A).

Proof. Up to conjugation by a Möbius map, we may fix three distinct points ẑ0, ẑ1, and
ẑ2 in Ĉ. Note that if at least one of the integers d0, d1, and d2 is equal to one, say d0 = 1,
then assumption (H1) leads to d1 = d2 = d̂ and the rational map f̂ = ϕ ◦ (z 7→ zd̂) ◦ ϕ̃−1

where ϕ and ϕ̃ are two Möbius maps such that

ϕ̃(1)= ẑ0, ϕ̃(0)= ẑ1, ϕ̃(∞)= ẑ2,

and ϕ(1)= ẑ1, ϕ(0)= ẑ2, ϕ(∞)= ẑ2,

satisfies (i). Consequently, we may assume that d0, d1, and d2 are > 2.
If follows that we may apply Lemma A.1 since assumption (H1) easily implies

condition (H1′) for the abstract branch data coming from d = d̂ , and di,1 = di−1 for
every i ∈ {1, 2, 3}. We get a degree d̂ branched covering H : S2

→ S2 and three distinct
points x1,1, x2,1, and x3,1 in S2 such that the local degree of H at xi,1 is di−1 for every
i ∈ {1, 2, 3} and H has no more critical points than x1,1, x2,1, and x3,1. Let ϕ : S2

→ Ĉ be
any homeomorphism such that ϕ(H(xi,1))= ẑi for every i ∈ {1, 2, 3}. Note that the map
ϕ ◦ H : S2

→ Ĉ induces a complex structure on S2. In other words, the uniformization
theorem gives a homeomorphism ϕ̃ : S2

→ Ĉ such that the map f̂ = ϕ ◦ H ◦ ϕ̃−1 is
holomorphic on Ĉ and thus a rational map of degree d̂. Moreover, up to postcomposition
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with a Möbius map, we may assume that ϕ̃(xi,1)= ẑi−1 for every i ∈ {1, 2, 3} so that f̂
satisfies (i).

Now note that for every k ∈ {0, 1, 2}, the connected component containing ẑk of the
super-attracting basin of f̂ is simply connected since it contains at most one critical point.
Moreover, any other Fatou component is eventually mapped by homeomorphisms onto
one of these simply connected components. It follows that f̂ satisfies (ii).

Finally let ĝ be another rational map of degree d̂ which satisfies (i) and (ii) for the same
super-attracting periodic cycle {ẑ0, ẑ1, ẑ2}. Then z 7→ f̂ (z)− ĝ(z) is a rational map of
degree at most 2d̂ for which 0 has at least d0 + d1 + d2 = 2d̂ + 1 preimages counted with
multiplicity (every ẑk is a preimage of 0 with multiplicity dk). Consequently this map is
identically equal to 0, that is f̂ = ĝ. �

Note that the previous proof strongly uses the fact that the postcritical set contains only
three points. Indeed if the postcritical set contains more than three points, there is still
a uniformization map ϕ̃ for S2 equipped with the complex structure coming from ϕ ◦ H ,
but that may not be possible to postcompose ϕ̃ with a Möbius map so that f̂ satisfies
(i). In fact, we would also need to check that the branched covering H has no Thurston
obstructions (see [DH93]).

3.2. Cutting along a system of equipotentials. Starting with the map f̂ coming from
Lemma 1, we need to divide Ĉ into several pieces on which the map f (or more precisely
a quasiregular map F) will be piecewisely defined. This partition comes from a certain
system of equipotentials of f̂ defined in Lemma 2 below.

For every k ∈ {0, 1, 2}, denote by B(ẑk) the connected component containing ẑk of
the super-attracting basin of f̂ . Recall that each B(ẑk) is a marked hyperbolic disk.
More precisely, Böttcher’s theorem provides Riemann mappings φk : D→ B(ẑk) (namely
biholomorphic maps from the open unit disk D onto B(ẑk) such that φk(0)= ẑk and the
following diagram commutes:

B(ẑ0)

f̂
��

D
φ0oo

z 7→ zd0

��
B(ẑ1)

f̂
��

D
φ1oo

z 7→ zd1

��
B(ẑ2)

f̂
��

D
φ2oo

z 7→ zd2

��
B(ẑ0) D

φ0oo

Recall that an equipotential β in any B(ẑk) is the image by φk of an Euclidean circle
in D centered at 0. The radius of this circle is called the level of β and is denoted by
Lk(β) ∈ ]0, 1[, in order that β = {z ∈ B(ẑk) | |φ

−1
k (z)| = Lk(β)}.

Recall that any pair of disjoint continua β, β ′ in Ĉ uniquely defines an open annulus in
Ĉ denoted by A(β, β ′). If β, β ′ contain at least two points each, A(β, β ′) is biholomorphic
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>1 <   mod(A(          ))d3
1Ẑ1

Ẑ2

Ẑ0

Ẑ0

Ẑ1

Ẑ2

ƒ̂

A

FIGURE 5. The pattern of the equipotentials (and their preimages) coming from Lemma 2 displayed on the
Riemann sphere which is topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2)

(compare with Figure 4(c)).

to a round annulus of the form Ar = {z ∈ C | r < |z|< 1} where r ∈ ]0, 1[ only depends
on A(β, β ′). The modulus of A(β, β ′) is defined to be mod(A(β, β ′))= (1/2π) log(1/r).
In particular, if β, β ′ are two equipotentials in the same domain B(ẑk) of levels Lk(β) >

Lk(β
′), then

mod(A(β, β ′))=
1

2π
log
(

Lk(β)

Lk(β ′)

)
.

Finally for every k ∈ {0, 1, 2}, denote by αk the compact connected subset of J ( f̂ )
which corresponds to the boundary of B(ẑk).

LEMMA 2. If assumption (H2) holds, then there exist three equipotentials β0 in B(ẑ0), β1
in B(ẑ1), and β2 in B(ẑ2), together with two equipotentials β+3 and β−3 in B(ẑ0) such that

L0(β0) > L0(β
+

3 ) > L0(β
−

3 )

and the following linear system of inequalities holds:

1
d0

mod(A(α1, β1)) <mod(A(α0, β0)),

1
d1

mod(A(α2, β2)) <mod(A(α1, β1)),

1
d2

mod(A(α0, β0))+
1
d2

mod(A(β+3 , β
−

3 )) <mod(A(α2, β2)),

1
d3

mod(A(β1, β0)) <mod(A(β+3 , β
−

3 )),

and mod(A(β0, β
+

3 )) > 1.

(1)

Recall that the modulus is a conformal invariant, or more precisely if there is a
holomorphic covering of degree d from an open annulus A onto another one A′, then
mod(A)= 1/d mod(A′). Hence, the first three inequalities in linear system (1) implies
that the preimages under f̂ of these equipotentials are arranged as shown in Figure 5.
The fourth inequality will allow us to realize the preimage of the branching point α in
HP (see Lemma 4) while the last inequality ensures sufficient space to realize the folding
corresponding to the critical point c0 (see Lemma 3).

The key point of the proof needs an inverse Grötzch’s inequality due to Cui Guizhen
and Tan Lei (see Appendix A).
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Proof. Let C > 0 be the constant coming from Lemma A.2 for the marked hyperbolic
disks B(ẑ0), B(ẑ1). Thus, for every pair of equipotentials β0 in B(ẑ0) and β1 in B(ẑ1), we
have

1
d3

mod(A(β1, β0))6
1
d3
(mod(A(α0, β0))+mod(A(α1, β1))+ C).

Now consider the following linear system of inequations with real unknowns
x0, x1, x2, x3: 

1
d0

x1 < x0,

1
d1

x2 < x1,

1
d2

x0 +
1
d2

x3 < x2,

1
d3
(x0 + x1 + C) < x3.

(2)

Using the transition matrix M coming from Definition 1, this system is equivalent to

M X +


0
0
0
C
d3

< X where X =


x0

x1

x2

x3

 .
Recall that assumption (H2) states that the leading eigenvalue λ(HP , w) of M is less than
one. The existence of a vector V ∈ R4 with positive entries such that MV < V follows
from the Perron–Frobenius theorem and the continuity of the spectral radius. Now taking
µ > 0 large enough (for instance, µ= ((C/d3)+ 1)(v3 − (1/d3)v0 − (1/d3)v1)

−1), the
vector X = µV with positive entries solves the linear system of inequations (2).

The equipotentials β0, β1, β2 are uniquely defined by

1
2π

log
(

1
Lk(βk)

)
=mod(A(αk, βk))= xk for every k ∈ {0, 1, 2}.

For β+3 , choose an arbitrary equipotential in B(ẑ0) such that

L0(β0) > L0(β
+

3 ) and
1

2π
log
(

L0(β0)

L0(β
+

3 )

)
=mod(A(β0, β

+

3 )) > 1.

Then β−3 is uniquely defined by

L0(β
+

3 ) > L0(β
−

3 ) and
1

2π
log
(

L0(β
+

3 )

L0(β
−

3 )

)
=mod(A(β+3 , β

−

3 ))= x3.

It follows from construction that β0, β1, β2, β+3 , and β−3 satisfy all of the requirements
of Lemma 2, the fourth inequality in linear system (1) coming from the last inequality in
linear system (2) and Lemma A.2. �

It turns out in the proof above that the lower bound of the last inequality in linear
system (1) may be changed for any positive constant (which depends only on the integers
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d0, d1, d2, and d3). As we will see later in Lemma 3, the lower bound 1 ensures
sufficient space to make the surgery in A(β0, β

+

3 ). However, the author guesses that the
last inequality in linear system (1) is not necessary (see the discussion after the proof of
Lemma A.3).

The system of equipotentials coming from Lemma 2 will be used to divide Ĉ into
several pieces on which a quasiregular map F will be piecewisely defined. This map
F should be carefully defined in such a way that its dynamics is encoded by the weighted
dynamical tree (HP , w) (see Theorem 3).

For instance, the first step of the construction which corresponds to the dynamics on
e1 ∪ e2 for HP is the following. Denote by β0,1 the preimage of β1 in B(ẑ0) (see Figure 5).
From the first inequality in linear system (1), β0,1 is an equipotential of level L0(β0,1) >

L0(β0). Denote by D(β0,1) the open disk bounded by β0,1 and containing {ẑ1, ẑ2} (and,
hence, J ( f̂ ) ∪ B(ẑ1) ∪ B(ẑ2) as well). Then F is defined to be the rational map f̂ on
D(β0,1). Note that F |D(β0,1) continuously extends to β0,1 by a degree d0 covering denoted
by F |β0,1 : β0,1→ β1.

3.3. Folding with an annulus-disk surgery. The aim of this part of the construction is to
realize the folding corresponding to the critical point c0 in HP . More precisely F should
holomorphically map a small annulus (corresponding to a neighborhood of c0 in HP ) onto
a disk (corresponding to a neighborhood of c1 in HP ) with respect to the degrees d0, d3.

Let γ1 be an arbitrary equipotential in B(ẑ1) such that L1(γ1) < L1(β1). Denote by
D(γ1) the open disk bounded by γ1 and containing ẑ1. In order to follow more easily the
construction, we will slightly improve the notation. So let γ0,1 be the equipotential β0,
keeping in mind that γ0,1 will be mapped onto γ1 by a degree d0 covering. Note that the
first inequality in linear system (1) of Lemma 2 implies L0(β0,1) > L0(γ0,1). Similarly let
β3,1 be the equipotential β+3 , keeping in mind that β3,1 will be mapped onto β1 by a degree
d3 covering.

LEMMA 3. There exist an equipotential γ3,1 in B(ẑ0) and a holomorphic branched
covering F |A(γ0,1,γ3,1) : A(γ0,1, γ3,1)→ D(γ1) such that:
(i) L0(β0,1) > L0(γ0,1) > L0(γ3,1) > L0(β3,1);
(ii) F |A(γ0,1,γ3,1) has degree d0 + d3 and has d0 + d3 critical points counted with

multiplicity, which one of them, denoted by c, satisfies F |A(γ0,1,γ3,1)(c)= ẑ1;
(iii) F |A(γ0,1,γ3,1) continuously extends to γ0,1 ∪ γ3,1 by a degree d0 covering F |γ0,1 :

γ0,1→ γ1 and a degree d3 covering F |γ3,1 : γ3,1→ γ1.

Proof. Let G : A(γ, γ ′)→ D be a holomorphic branched covering coming from
Lemma A.3 for the integers n = d0 and n′ = d3. Define the equipotential γ3,1 by

L0(γ0,1) > L0(γ3,1) and
1

2π
log
(

L0(γ0,1)

L0(γ3,1)

)
=mod(A(γ0,1, γ3,1))=mod(A(γ, γ ′)).

Since mod(A(γ0,1, β3,1))=mod(A(β0, β
+

3 )) > 1 (from the last inequality in linear
system equation (1) of Lemma 2) and mod(A(γ0,1, γ3,1))=mod(A(γ, γ ′))6 1 (from the
point (iii) in Lemma A.3), it follows that L0(γ3,1) > L0(β3,1) and the point (i) holds.
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Ẑ1
Ẑ1

Ẑ2
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Ẑ0

Ẑ0

(              )F A
|

c

FIGURE 6. The map F |A(γ0,1,γ3,1) coming from Lemma 3 displayed on the Riemann sphere which is
topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2) (compare with Figure 4(c)).

Now let ψ be any biholomorphic map from A(γ0,1, γ3,1) onto A(γ, γ ′). The existence
of such a biholomorphic map is ensured by the fact that these two open annuli have
same modulus. Since A(γ0,1, γ3,1) and A(γ, γ ′) are bounded by quasicircles, ψ may
be continuously extended to γ0,1 ∪ γ3,1 by two homeomorphisms.

Let c be the preimage under ψ of any critical point of G and let φ : D→ D(γ1) be any
Riemann mapping of D(γ1) such that φ(G(ψ(c)))= ẑ1. Since D(γ1) is bounded by an
equipotential, φ may be continuously extended to ∂D by a homeomorphism.

Then F |A(γ0,1,γ3,1) = φ ◦ G ◦ ψ is holomorphic on A(γ0,1, γ3,1) and satisfies (ii), and
(iii) by construction. �

Figure 6 depicts the map F |A(γ0,1,γ3,1) coming from Lemma 3.

3.4. Preimage of the branching part. According to the last two sections, the map F is
defined up to there on the union of the open disk D(β0,1) containing {ẑ1, ẑ2} with the open
annulus A(γ0,1, γ3,1) containing c. Moreover, F maps c to ẑ1, ẑ1 to ẑ2 and ẑ2 to ẑ0. Now
we need to define F near ẑ0 by sending ẑ0 to c in order to realize a cycle of period four as
required in Theorem 3. This should be done carefully so that the quasiconformal surgery
may be concluded.

The first problem is that some preimage of J ( f̂ ) (or more precisely of the open annulus
A(β1, β0) containing J ( f̂ )) must appear in B(ẑ0) (compare with Figure 4(c) where the
edge e3 = [c0, c3]HP contains a preimage of the branching point α). This is done in
Lemma 4 below which essentially uses the fourth inequality in linear system (1) of
Lemma 2.

LEMMA 4. There exist an equipotential β3,0 in B(ẑ0) and a holomorphic covering
F |A(β3,1,β3,0) : A(β3,1, β3,0)→ A(β1, β0) such that:
(i) L0(β3,1) > L0(β3,0) > L0(β

−

3 );
(ii) F |A(β3,1,β3,0) has degree d3 and has no critical point;
(iii) F |A(β3,1,β3,0) continuously extends to β3,1 ∪ β3,0 by two degree d3 coverings F |β3,1 :

β3,1→ β1 and F |β3,0 : β3,0→ β0.

Proof. Define the equipotential β3,0 by

L0(β3,1) > L0(β3,0)
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(               )F A
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Ẑ0

Ẑ0

FIGURE 7. The map F |A(β3,1,β3,0) coming from Lemma 4 displayed on the Riemann sphere which is
topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2) (compare with Figure 4(c)).

and
1

2π
log
(

L0(β3,1)

L0(β3,0)

)
=mod(A(β3,1, β3,0))=

1
d3

mod(A(β1, β0)).

Since we have mod (A(β3,1, β3,0))= (1/d3)mod(A(β1,β0)) <mod(A(β+3 , β
−

3 ))=

mod(A(β3,1, β
−

3 )) (from the fourth inequality in linear system (1) of Lemma 2), it follows
that L0(β3,0) > L0(β

−

3 ) and the point (i) holds.
Now let ψ be any biholomorphic map from A(β3,1, β3,0) onto a round annulus of the

form Ar = {z ∈ C | r < |z|< 1} where r is defined by

1
2π

log
(

1
r

)
=mod(Ar )=mod(A(β3,1, β3,0)).

Since A(β3,1, β3,0) is bounded by equipotentials, ψ may be continuously extended to
β3,1 ∪ β3,0 by two homeomorphisms which send β3,1 onto {z ∈ C | |z| = 1} and β3,0 onto
{z ∈ C | |z| = r}.

Similarly, letΨ be any biholomorphic map from the round annulus Ard3 onto A(β1, β0).
The existence of such a biholomorphic map is ensured by the fact that

mod(Ard3 )=
1

2π
log
(

1
rd3

)
=

d3

2π
log
(

1
r

)
= d3 mod(A(β3,1, β3,0))=mod(A(β1, β0)).

Since A(β1, β0) is bounded by equipotentials, Ψ may be continuously extended to ∂Ard3

by two homeomorphisms which send {z ∈ C | |z| = 1} onto β1 and {z ∈ C | |z| = rd3}

onto β0.
Then F |A(β3,1,β3,0) = Ψ ◦ (z 7→ zd3) ◦ ψ is holomorphic on A(β3,1, β3,0) and satisfies

(ii), and (iii) by construction. �

Figure 7 depicts the map F |A(β3,1,β3,0) coming from Lemma 4.

3.5. Achievement of the super-attracting cycle of period 4. Now we achieve the
definition of F near ẑ0. This is done in two parts. First, Lemma 5 realizes a preimage of a
neighborhood of ẑ0 in B(ẑ0). Then Lemma 6 defines F near ẑ0 by sending a neighborhood
of ẑ0 onto a neighborhood of c (mapping ẑ0 to c).
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Ẑ0

c

c

c

c

c

cA

FIGURE 8. The maps F |A(γ3,0,δ
+

3,c)
and F |D(δ−3,c)

coming from Lemmas 5 and 6 displayed on the Riemann

sphere which is topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2) (compare with
Figure 4(c)).

Let γ0 be an arbitrary equipotential in B(ẑ0) such that L0(β0)= L0(γ0,1) > L0(γ0) >

L0(γ3,1) and A(γ0, γ3,1) contains the critical point c.

LEMMA 5. There exist two equipotentials γ3,0 and δ+3,c in B(ẑ0), a quasicircle δ+c in
A(γ0, γ3,1) which separates c from γ0 ∪ γ3,1, and a holomorphic covering F |A(γ3,0,δ

+

3,c)
:

A(γ3,0, δ
+

3,c)→ A(γ0, δ
+
c ) such that:

(i) L0(β3,0) > L0(γ3,0) > L0(δ
+

3,c) > L0(β
−

3 );
(ii) F |A(γ3,0,δ

+

3,c)
has degree d3 and has no critical point;

(iii) F |A(γ3,0,δ
+

3,c)
continuously extends to γ3,0 ∪ δ

+

3,c by two degree d3 coverings F |γ3,0 :

γ3,0→ γ0 and F |δ+3,c : δ
+

3,c→ δ+c .

Proof. Applying Lemma A.4, we get a quasicircle δ+c in A(γ0, γ3,1) which separates c
from γ0 ∪ γ3,1 and such that

1
d3

mod(A(γ0, δ
+
c )) <mod(A(β3,0, β

−

3 )).

Therefore we can find two equipotentials γ3,0 and δ+3,c in B(ẑ0) so that

L0(β3,0) > L0(γ3,0) > L0(δ
+

3,c) > L0(β
−

3 )

and
1

2π
log
(

L0(γ3,0)

L0(δ
+

3,c)

)
=mod(A(γ3,0, δ

+

3,c))=
1
d3

mod(A(γ0, δ
+
c )).

The point (i) holds by definition. For the two other points, the proof may be achieved in
the same way as the proof of Lemma 4. �

Figure 8 depicts the equipotentials involved in Lemma 5 and the map F |A(γ3,0,δ
+

3,c)
.

It remains to define F near ẑ0. Let δ−c be an arbitrary quasicircle which separates c from
δ+c . We slightly improve the notation by denoting by δ−3,c the equipotential β−3 keeping in
mind that δ−3,c will be mapped onto δ−c by a degree d3 covering. Finally, denote by D(δ−3,c)
the open disk bounded by δ−3,c and containing ẑ0, and by D(δ−c ) the open disk bounded by
δ−c and containing c.
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TABLE 1. A summary of the definition of F before §3.6.

Domains Images
Cont. extensions

on boundaries
Critical points

with multiplicity Critical values

D(β0,1) Ĉ β0,1
d0:1
−−−→ β1

ẑ1 with mult. d1 − 1
ẑ2 with mult. d2 − 1

F(ẑ1)= ẑ2
F(ẑ2)= ẑ0

A(γ0,1, γ3,1) D(γ1)
γ0,1

d0:1
−−−→ γ1

γ3,1
d3:1
−−−→ γ1

c ∈ {d0 + d3 crit. pts
counted with mult.}

F(c)= ẑ1
and others

A(β3,1, β3,0) A(β1, β0)
β3,1

d3:1
−−−→ γ1

β3,0
d3:1
−−−→ β0

∅ ∅

A(γ3,0, δ
+

3,c) A(γ0, δ
+
c )

γ3,0
d3:1
−−−→ γ0

δ+3,c
d3:1
−−−→ δ+c

∅ ∅

D(δ−3,c) D(δ−c ) δ−3,c
d3:1
−−−→ δ−c ẑ0 with mult. d3 − 1 F(ẑ0)= c

LEMMA 6. There exists a holomorphic branched covering F |D(δ−3,c) : D(δ
−

3,c)→ D(δ−c )
such that:
(i) F |D(δ−3,c) has degree d3 and has only one critical point which is ẑ0 with

F |D(δ−3,c)(ẑ0)= c;

(ii) F |D(δ−3,c) continuously extends to δ−3,c by a degree d3 covering F |δ−3,c : δ
−

3,c→ δ−c .

Proof. Let φ : D→ D(δ−3,c) be any Riemann mapping of D(δ−3,c) such that φ(0)= ẑ0, and
let8 : D→ D(δ−c ) be any Riemann mapping of D(δ−c ) such that8(0)= c. Since D(δ−3,c)
and D(δ−c ) are bounded by quasicircles, φ and 8 may be continuously extended to ∂D by
homeomorphisms.

Then F |D(δ−3,c) =8 ◦ (z 7→ zd3) ◦ φ−1 gives the result. �

Figure 8 depicts the map F |D(δ−3,c) coming from Lemma 6.

3.6. Uniformization. At first we sum up in Table 1 the definition of F up to there.
So F is holomorphically defined on H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪

A(γ3,0, δ
+

3,c) ∪ D(δ−3,c) with continuous extension on the boundary. It remains to define
F on the complement Q = Ĉ− H = A(β0,1, γ0,1) ∪ A(γ3,1, β3,1) ∪ A(β3,0, γ3,0) ∪

A(δ+3,c, δ
−

3,c). This is done in the following lemma.

LEMMA 7. The map F |H : H → Ĉ extends to a quasiregular map F : Ĉ→ Ĉ by
quasiconformal coverings defined on each connected component of Q = Ĉ− H.

Moreover, there exists an open subset E ⊂ H such that F(E)⊂ E and F2(Q)⊂ E.
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Ẑ1
Ẑ1

Ẑ2

Ẑ2

Ẑ0
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c

F

c
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c

c

FIGURE 9. The map F coming from Lemma 7. On the left topological sphere, the black area represents Q and
the gray area represents E . On the right topological sphere, the black area represents F(Q) and the gray area

represents F(E).

In particular, note that the quasiregular map F : Ĉ→ Ĉ has no more critical points than
those coming from the holomorphic restriction F |H : H → Ĉ.

Proof. Note that every connected component of Q is an open annulus whose boundary
is the disjoint union of two quasicircles where F realizes two coverings of the same
degree (and same orientation). By interpolation, F may be continuously extended to
each connected component of Q by a covering of degree corresponding to that one on
the boundary. Since all of the connected components of the boundary of Q, together with
their images by F , are quasicircles, each interpolation may be carefully done in such a
way that the resulting map is actually quasiconformal on the Riemann sphere. In short, F
quasiregularly extends to Q by:
(i) a degree d0 quasiconformal covering F |A(β0,1,γ0,1) : A(β0,1, γ0,1)→ A(β1, γ1);
(ii) a degree d3 quasiconformal covering F |A(γ3,1,β3,1) : A(γ3,1, β3,1)→ A(γ1, β1);
(iii) a degree d3 quasiconformal covering F |A(β3,0,γ3,0) : A(β3,0, γ3,0)→ A(β0, γ0);
(iv) a degree d3 quasiconformal covering F |A(δ+3,c,δ

−

3,c)
: A(δ+3,c, δ

−

3,c)→ A(δ+c , δ
−
c ).

In particular, we have F(Q)= A(β1, γ1) ∪ A(β0, γ0) ∪ A(δ+c , δ
−
c ) (see Figure 9 to follow

the continuation of the proof).
Now denote by β1,2 the preimage of β2 in B(ẑ1) under F (thus under f̂ ) and similarly

by β−2,3 the preimage of β−3 in B(ẑ2) (see Figure 5). Moreover, denote by D(β1,2) the open
disk bounded by β1,2 and containing ẑ1, and by D(β−2,3) the open disk bounded by β−2,3 and
containing ẑ2. Finally, let E be the union D(β1,2) ∪ D(β−2,3) ∪ D(δ−3,c) ∪ A(γ0,1, γ3,1).

At first note that E is an open subset of H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪

A(γ3,0, δ
+

3,c) ∪ D(δ−3,c). Indeed we have D(β1,2) ∪ D(β−2,3)⊂ D(β0,1) from the definition
of D(β0,1).

Moreover, it follows from definition of F on H that F(E)= D(β2) ∪ D(β−3 ) ∪
D(δ−c ) ∪ D(γ1) where D(β2) denotes the open disk bounded by β2 and containing ẑ2,
and D(β−3 )= D(δ−3,c) is the open disk bounded by β−3 = δ

−

3,c and containing ẑ0.
Furthermore, according to the whole construction, we have:

(i) from Lemma 2 and the definition of γ1, A(β1, γ1) ∪ D(γ1)⊂ D(β1,2) and D(β2)⊂

D(β−2,3);
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(ii) from the definition of γ0 and recalling β0 = γ0,1, A(β0, γ0)⊂ A(γ0,1, γ3,1);
(iii) from the definitions of δ−c , δ+c and γ0, A(δ+c , δ−c ) ∪ D(δ−c )⊂ A(γ0, γ3,1)⊂

A(γ0,1, γ3,1).

Putting everything together gives the following diagram in which the arrows
F
−→ denote

images under F ,
⊂
−→ denote inclusions,

⊂⊂
−→ denote compact inclusions (namely A

⊂⊂
−→ B

if and only if A ⊂ B) and
=
−→ denote equality:

Q

F

��

= A(β0,1, γ0,1)

F

��

∪ A(γ3,1, β3,1)

F

{{

∪ A(β3,0, γ3,0)

F

{{

∪ A(δ+3,c, δ
−

3,c)

F

{{
F(Q)

⊂

��

= A(β1, γ1)

⊂⊂

��

∪ A(β0, γ0)

⊂

))

∪ A(δ+c , δ
−
c )

⊂⊂

##
E

F

��

= D(β1,2)

F

##

∪ D(β−2,3)
F

##

∪ D(δ−3,c)

F
##

∪ A(γ0,1, γ3,1)

F

��
F(E)

⊂

��

= D(γ1)

⊂⊂

��

∪ D(β2)

⊂⊂

��

∪ D(β−3 )

=

��

∪ D(δ−c )

⊂⊂

��
E

⊂

��

= D(β1,2)

⊂⊂

��

∪ D(β−2,3)

⊂⊂

{{

∪ D(δ−3,c)

=

��

∪ A(γ0,1, γ3,1)

=

��
H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪ A(γ3,0, δ

+

3,c) ∪ D(δ−3,c)

In particular, we deduce that F(Q)⊂ E and F(E)⊂ E ⊂ H . Furthermore, following
compact inclusions, it turns out that F2(Q)⊂ E . �

Now we have a quasiregular map F from the Riemann sphere to itself whose dynamics
follows that one of the weighted dynamical tree (HP , w) (see Figure 4(c)). We need
to find a holomorphic map f conjugated to F so that f follows the same dynamics as
well ( f should satisfy the requirements of Theorems 3 and 4). To do so, we will apply
the Shishikura’s fundamental lemma for quasiconformal surgery (stated for the first time
in [Shi87]) that we recall below.

LEMMA 8. (Shishikura’s fundamental lemma for quasiconformal surgery) Let g : Ĉ→ Ĉ
be a quasiregular map. Assume there are an open set E ⊂ Ĉ and an integer N > 0 which
satisfy the following conditions:
(i) g(E)⊂ E;
(ii) g is holomorphic on E;
(iii) g is holomorphic on an open set containing Ĉ− g−N (E).
Then there exists a quasiconformal map ϕ : Ĉ→ Ĉ such that the map ϕ ◦ g ◦ ϕ−1 is
holomorphic.
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The result stated in [Shi87] is a little more general but it easily implies the more explicit
statement of Lemma 8 (we refer the reader to [Shi87, BF13] for a proof and more details).

Here our map F satisfies the three assumptions (indeed F is holomorphic on H ,
hence on E ⊂ H , and Lemma 7 implies that Ĉ− F−2(E)⊂ Ĉ− Q = H ), so applying
Lemma 8 gives a holomorphic map f : Ĉ→ Ĉ quasiconformally conjugated to F : Ĉ→ Ĉ
as desired.

LEMMA 9. The rational map f : Ĉ→ Ĉ obtained above has degree d̂ + d3 and has a
super-attracting cycle {z0, z1, z2, z3} of period four which is accumulated by every critical
orbit. In particular, f is hyperbolic.

Proof. Since f is quasiconformally conjugated to F , the critical points of f are images
under a quasiconformal map ϕ of the critical points of F with same the multiplicities.
More precisely, the critical points of f are:
(i) z1 = ϕ(ẑ1) ∈ ϕ(D(β1,2))⊂ ϕ(E) with multiplicity d1 − 1;
(ii) z2 = ϕ(ẑ2) ∈ ϕ(D(β−2,3))⊂ ϕ(E) with multiplicity d2 − 1;
(iii) d0 + d3 critical points counted with multiplicity in ϕ(A(γ0,1, γ3,1))⊂ ϕ(E), one of

which is given by z0 = ϕ(c);
(iv) z3 = ϕ(ẑ0) ∈ ϕ(D(δ−3,c))⊂ ϕ(E) with multiplicity d3 − 1.

According to the Riemann–Hurwitz formula, it follows that the number of critical points
counted with multiplicity is given by

2 deg( f )− 2= (d1 − 1)+ (d2 − 1)+ (d0 + d3)+ (d3 − 1)

and, hence,

deg( f )=
1
2
(d0 + d1 + d2 − 1)+ d3 = d̂ + d3.

Note that {z0, z1, z2, z3} forms a super-attracting cycle of period four. Moreover, every
critical point of f lies in the forward invariant open set ϕ(E), namely a disjoint union of
four open subsets of Ĉ each containing one point of {z0, z1, z2, z3}. Consequently, every
critical orbit accumulates this super-attracting cycle. �

4. Properties
The aim of this section is to achieve the proofs of Theorems 3 and 4. More precisely, we
are going to show that the rational map f constructed in the previous section satisfies all of
the requirements of these two theorems. Section 4.1 focuses on the dynamical properties
of f (stated in Theorem 3), and §4.2 deals with the topological properties of the Julia
component of f (stated in Theorem 4).

In order to lighten notation, we forget the quasiconformal map ϕ provided by Lemma 8
to denote the image under ϕ of any set introduced in the previous section (equivalently
speaking, we act as if the quasiregular map F constructed in the previous section is actually
holomorphic).

4.1. Exchanging dynamics. Consider the following pairwise disjoint open annuli (see
Figure 10).

A0 = A(α0, β0), A1 = A(α1, β1), A2 = A(α2, β2), and A3 = A(β+3 , β
−

3 ).
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ƒ

Kα

FIGURE 10. The various annuli considered to encode the exchanging dynamics.

Then, consider the connected components of the preimage under f of A0 ∪ A1 ∪ A2 ∪ A3

which are contained as essential subannuli in one of these open annuli, namely:
(i) A0,1 = A(α0, β0,1);
(ii) A1,2 = A(α1, β1,2);
(iii) A2,0 = A(α2, β2,0) where β2,0 is the preimage of β0 in B(ẑ2) (see Figure 5);
(iv) A2,3 = A(β+2,3, β

−

2,3) where β+2,3 is the preimage of β+3 in B(ẑ2) (see Figure 5);
(v) A3,0 = A(α3,0, β3,0) where α3,0 is the preimage of α0 in A(β3,1, β3,0) (see

Lemma 4);
(vi) A3,1 = A(β3,1, α3,1) where α3,1 is the preimage of α1 in A(β3,1, β3,0) (see

Lemma 4).
Note that the notation is chosen so that each Ai, j is contained as an essential subannulus in
Ai , and f |Ai, j : Ai, j → A j is a degree di covering. Note that some connected components
of f −1(A3) are included in A3 as well (from Lemma 5, see Figure 8), but none of them is
contained in A3 as an essential subannulus.

Denote by A the collection of all connected components of the non-escaping set induced
by f |U :U → A0 ∪ A1 ∪ A2 ∪ A3 on the union of subannuli U = A0,1 ∪ A1,2 ∪ A2,0 ∪

A2,3 ∪ A3,0 ∪ A3,1:

A= {J connected component of {z ∈U | ∀n > 0, f n(z) ∈U }}.

Let Jα be the continuum in Ĉ which corresponds to the Julia set J ( f̂ ) of f̂ (more
precisely, Jα is the image of J ( f̂ ) under the quasiconformal map ϕ provided by Lemma 8).
Note that Jα is fixed under iteration of f and Jα intersects U (along α0 ∪ α1 ∪ α2). Denote
by Aα the collection of all continua which are eventually mapped onto Jα and whose every
iterate intersects U :

Aα =

{
J connected component of

⋃
n>0

f −n(Jα) such that ∀n > 0, f n(J ) ∩U 6= ∅
}
.

Finally, denote by A? the union A ∪Aα . As a collection of pairwise disjoint continua,
A? is endowed with the topology coming from the usual distance between continua on
the Riemann sphere Ĉ (equipped with the spherical metric). It turns out that f induced
a topological dynamical system on A?. This dynamical system may be encoded by the
weighted dynamical tree (HP , w) (see §2.2) as is shown in the following lemma.
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LEMMA 10. There exists a homeomorphism h :A?
→ J (HP ) such that the following

diagram commutes:

A?
f //

h
��

A?

h
��

J (HP ) P
// J (HP )

Moreover, for every J ∈A, the restriction map f |J has degree w(ek)= dk where ek is the
edge of HP which contains h(J ).

Proof. At first, remark there is a subannulus Ai, j for some i, j ∈ {0, 1, 2, 3} if and
only if the (i, j)-entry of the transition matrix M = (mi, j )i, j∈{0,1,2,3} is non-zero (see
Definition 1). Indeed, recall that the transition matrix is

M =



0
1
d0

0 0

0 0
1
d1

0

1
d2

0 0
1
d2

1
d3

1
d3

0 0


.

According to this remark, we introduce the subshift of finite type (6, σ ) associated to the
transition matrix M , namely the restriction of the four-to-one shift map on the subset of
all infinite sequences of digits in {0, 1, 2, 3} such that every adjacent pair of entries lies in
{(0, 1), (1, 2), (2, 0), (2, 3), (3, 0), (3, 1)}:

6 = {s = (s0, s1, s2, . . . ) ∈ {0, 1, 2, 3}N | ∀k > 0, msk ,sk+1 6= 0}

σ :6→6, s = (s0, s1, s2, . . . ) 7→ σ(s)= (s1, s2, s3, . . . ).

Here 6 is endowed with the topology coming from the following distance, making it a
Cantor set:

for all s, s′ ∈6, d(s, s′)=
∑
k>0

|sk − s′k |
4k .

Let Sα be the subset of 6 of three infinite sequences of repeating 0, 1, 2 digits:

Sα = {(0, 1, 2, 0, 1, 2, . . . ), (1, 2, 0, 1, 2, 0, . . . ), (2, 0, 1, 2, 0, 1, . . . )}.

We shall identify these three sequences in 6, and similarly every subset of sequences
which are eventually mapped in Sα after the same itinerary under σ . More precisely, let ∼
be the equivalence relation on 6 defined by

for all s, s′ ∈6, s ∼ s′ ⇐⇒ there exists n > 0
∣∣∣∣ {for all k ∈ {0, 1, . . . , n}, sk = s′k
σ n(s), σ n(s′) ∈ Sα

and let 6? be the topological quotient space 6/∼. Recall that 6? is a Cantor set as
well for the quotient topology induced by ∼. Abusing notation, every equivalence class
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containing only one infinite sequence s ∈6 which is not eventually mapped in Sα is still
denoted by s ∈6?, and the map induced by the shift map on 6? is still denoted by σ .

We are going to show that (A?, f ) is topologically conjugated to (6?, σ ). To do so,
consider the itinerary map h1 :A→6? defined by

for all J ∈A, h1(J )= (s0, s1, s2, . . . ) with f k(J )⊂ Ask for every k > 0.

This map is well defined and injective by the definition of A.
To prove that h1 extends to a homeomorphism from A? to 6?, we first define

by induction for every s = (s0, s1, s2, . . . ) ∈6 an infinite sequence of subannuli
(As0,s1,...,sn )n>0 such that for every n > 0, As0,s1,...,sn is contained in As0 as essential
subannulus, and f |As0,s1,...,sn : As0,s1,...,sn → As1,s2,...,sn is a degree ds0 covering. Denote
by As = As0,s1,s2,... the limit set

⋂
n>0 As0,s1,...,sn which is a continuum.

If s is not eventually mapped in Sα , then As0,s1,...,sn is contained in U = A0,1 ∪

A1,2 ∪ A2,0 ∪ A2,3 ∪ A3,0 ∪ A3,1 for every n > 0 large enough and thus As is a connected
component of the non-escaping set, that is an element of A. Moreover, h1(As)= s holds
from definition of the itinerary map h1.

In contrast, if s is in Sα , then As is either α0, α1, or α2, and in particular As is contained
in Jα . More generally, if s is eventually mapped in Sα , then As is contained in a continuum
J which is eventually mapped onto Jα , that is an element of Aα . Moreover, for every
s′ ∈6 such that s′ ∼ s, As′ is contained in the same continuum J ∈Aα .

Therefore, h1 extends to a bijective map from A? to 6?, by associating to J ∈
Aα the equivalence class h1(J ) ∈6∗ of the itinerary s = (s0, s1, s2, . . . ) ∈6 of any
subcontinuum in J which is eventually mapped into α0 ∪ α1 ∪ α2. Furthermore, this
extension is actually a conjugation between f and σ :

for all J ∈A?, h1( f (J ))= σ(h1(J )).

It remains to prove the continuity. Fix J ∈A? and let s = (s0, s1, s2, . . . ) ∈6 be a
class representative of h1(J ). Let J ′ be another element of A? such that some class
representative s′ = (s′0, s′1, s′2, . . . ) ∈6 of h1(J ′) is arbitrary close to s. That implies
the first n digits of s and s′ coincide for arbitrary large n > 0. In particular, As and As′

are contained in As0,s1,...,sn . Note that f n
|As0,s1,...,sn : As0,s1,...,sn → Asn is a covering of

degree ds0ds1 . . . dsn−1 tending to infinity with n (since assumption (H2) implies that at
least two of weights d0, d1, d2, and d3 are > 2, see Definition 1). Therefore As and As′

are contained in an open annulus of arbitrary small modulus. Then, using extremal length
(see [Ahl73]), it follows that As ⊂ J and As′ ⊂ J ′ are arbitrary close, hence J and J ′ are
arbitrary close in A?. Consequently h−1

1 is continuous. The continuity of h1 follows from
a similar argument.

Similarly, we can show that (J (HP ), P) is topologically conjugated to (6?, σ ) by
a homeomorphism h2 : J (HP )→6?. Indeed recall that the dynamical tree HP is
described by a set of four edges e0, e1, e2, e3 where P acts as follows (see §2.2):

P(e0)= e1,

P(e1)= e2,

P(e2)= e0 ∪ e3,

P(e3)= e0 ∪ e1.
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Thus, we may find four connected open subsets I0, I1, I2, and I3 respectively included in
e0, e1, e2, and e3 together with six connected open subsets I0,1, I1,2, I2,0, I2,3, I3,0, and
I3,1 such that:
(i) each Ii, j is contained in Ii and P|Ii, j : Ii, j → I j is a homeomorphism;
(ii) and J (HP )= {z ∈ V | ∀n > 0, Pn(z) ∈ V } ∪ {z point in

⋃
n>0 P−n(α) ∩ V }

where V = I0,1 ∪ I1,2 ∪ I2,0 ∪ I2,3 ∪ I3,0 ∪ I3,1.
Consequently, we can show as above that the itinerary map h2 : {z ∈ V | ∀n > 0, Pn(z) ∈
V } →6? extends to a homeomorphism from J (HP ) to 6? which conjugates the
dynamics of P and σ .

Finally, taking h = h−1
2 ◦ h1 concludes the proof. �

Note that the proof of Theorem 3 is almost completed. Indeed point (i) comes from
Lemma 9 while points (ii) and (iii) follows from Lemma 10 (since A is, by definition, the
set of continua J in A? such that J is not eventually mapped under iteration to the fixed
continuum Jα or, equivalently, such that h(J ) is not eventually mapped under iteration to
the fixed branching point α). It only remains to prove that A? is actually the set Jcrit( f )
of all critically separating Julia components of f .

LEMMA 11. The following equality of sets holds:

A?
= Jcrit( f ).

Proof. Recall that the postcritical set is contained in the forward invariant set E =
D(β1,2) ∪ D(β−2,3) ∪ D(δ−3,c) ∪ A(γ0,1, γ3,1) (see Lemma 7 and Figure 9) and each point
of the super-attracting cycle {z0, z1, z2, z3} lies in a different connected component of E .
In particular, J ( f ) is the set of all points whose orbit remains in Ĉ− E = A0 ∪ A1 ∪ A2 ∪

A3 ∪ Kα where Kα is the complement in Ĉ of B(ẑ0) ∪ B(ẑ1) ∪ B(ẑ2) (see Figure 10).
It follows that every element J in A is a Julia component. Moreover, J is critically

separating as a limit set of nested essential subannuli which separate each super-attracting
cycle {z0, z1, z2, z3} (see the proof of Lemma 10). Therefore, A⊂ Jcrit( f ).

Similarly, every element J in Aα is a Julia component. Moreover, recall that J intersects
U along a limit set of nested essential subannuli which separate each the super-attracting
cycle {z0, z1, z2, z3} (see proof of Lemma 10). Therefore, Aα ⊂ Jcrit( f ) and A?

=A ∪
Aα ⊂ Jcrit( f ).

Conversely, let J be a critically separating Julia component of f . Note that J is not
contained in Kα − Jα . Indeed, recall that every connected component of Ĉ− Jα is simply
connected (see Lemma 1) and that ∂Kα = α0 ∪ α1 ∪ α2 ⊂ Jα , therefore every connected
compact subset of any connected component of Kα − Jα does not separate the postcritical
points. Consequently either J is Jα ∈Aα ⊂A? or f n(J ) stays in A0 ∪ A1 ∪ A2 ∪ A3 for
every n > 0. Assume that J is not Jα .

Recall that every connected component of the preimage under f of A0 ∪ A1 ∪ A2 ∪ A3,
which is contained in this compact union, is contained either in U or in some connected
components of f −1(A3) included in A3 (from Lemma 5, see Figure 8), say A′3,3. However,
every A′3,3 is not contained in A3 as essential subannulus, and hence does not separate the

postcritical points. In particular, J is not contained in any A′3,3. Furthermore, J cannot

eventually fall in some A′3,3 after some iterations of f , otherwise f n(J ) would not be
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postcritically separating for some n > 0 contradicting the fact that J is critically separating.
It follows that f n(J ) stays in U for every n > 0 and, hence, J ∈A?, which concludes the
proof. �

4.2. Topology of buried Julia components. The existence of each of the three types
of buried Julia components which occurs in J ( f ) is shown in this section, which proves
Theorem 4.

LEMMA 12. (Point type buried Julia components) There exist uncountably many buried
Julia components in J ( f ) which are points.

Proof. Let A′3,3 = A(β+3,3, β
−

3,3) be a connected component of f −1(A3) contained in A3 =

A(β+3 , β
−

3 ) (from Lemma 5, see Figure 8) where β+3,3 and β−3,3 are preimages of β+3 and
β−3 , respectively. Recall that A′3,3 is not contained in A3 as an essential subannulus. In
particular, the connected component of Ĉ− β+3,3 containing A′3,3 is an open disk D(β+3,3)
contained in A3 and such that f |D(β3,3) : D(β

+

3,3)→ D is a homeomorphism where D =
D(β+3 ) is the open disk bounded by β+3 and containing A3.

Using notation coming from the proof of Lemma 10, consider the subannulus A3,0,1,2,3

contained in A3 as essential subannulus and such that f 4
|A3,0,1,2,3 : A3,0,1,2,3→ A3 is a

degree d3d0d1d2 covering. Since assumption (H2) implies that at least two of weights d0,
d1, d2, and d3 are > 2 (see Definition 1), it follows that this degree is > 2 and hence, there
are at least two disjoint preimages under f 4

|A3,0,1,2,3 of D(β+3,3) in A3,0,1,2,3 ⊂ A3 ⊂ D,
say D0 and D1.

Finally we have two disjoint open disks D0 and D1 in D such that f 5
|D0 : D0→ D

and f 5
|D1 : D1→ D are homeomorphisms. It is then a classical exercise to prove that the

non-escaping set

D = {z ∈ D0 ∪ D1 / ∀n > 0, ( f 5)n ∈ D0 ∪ D1}

is a Cantor set homeomorphic to the space of all sequences of two digits 62 = {0, 1}N.
In particular, D contains uncountably many points. Furthermore, every point in D is a
buried point in J ( f ) since A3 ⊂ D contains infinitely many postcritically separating Julia
components. �

LEMMA 13. (Circle-type buried Julia components) There exist uncountably many buried
Julia components in J ( f ) which are wandering Jordan curves.

Proof. This is mostly a consequence of the main result in [PT00] claiming that every
wandering Julia component of a geometrically finite rational map is either a point or a
Jordan curve. Here our map f is hyperbolic (from Lemma 9), therefore every wandering
Julia component in Jcrit( f )must be a Jordan curve (since a point is obviously not critically
separating). Moreover, according to the proof of Lemma 10, the set of wandering Julia
components in Jcrit( f ) exactly corresponds to the set of all of the infinite sequences in
6? which are not eventually periodic. In particular, there are uncountably many such Julia
components. Finally, uncountably many of them must be buried since the Fatou set only
has countably many Fatou domains and each of them only has countably many Jordan
curves as connected components of its boundary. �
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LEMMA 14. (Complex-type buried Julia components) The Julia component Jα and all of
its countably many preimages, are buried Julia components in J ( f ).

Proof. Coming back to the proof of Lemma 10, recall that every infinite sequence in Sα is
not isolated in6. Therefore, αk has no intersection with the boundary of any Fatou domain
contained in B(ẑk) for every k ∈ {0, 1, 2}. It remains to show that Jα has no intersection
with the boundary of any Fatou domain in Kα = Ĉ− (B(ẑ0) ∪ B(ẑ1) ∪ B(ẑ2)). Recall
that every connected component of Kα − Jα , that is a connected component of Ĉ− Jα , is
eventually mapped under iteration onto B(ẑk) for some k ∈ {0, 1, 2} (since f is defined to
be f̂ on Kα ⊂ D(β0,1)). By the continuity of f , it follows that Jα has no intersection with
the boundary of any Fatou domain contained in any connected component of Kα − Jα .
Consequently Jα is buried. The same holds as well for every preimage of Jα by continuity
of f . �

5. Explicit formula in the cubic case
In this section, we prove Theorem 1 stated in the introduction (see §1). First, we show
that a particular choice of the weight function w gives a rational map of degree three (in
Lemma 15). Then we compute an explicit formula for this particular example.

LEMMA 15. The following weight function on the set of edges of HP

(d0, d1, d2, d3)= (1, 2, 2, 1)

satisfies assumptions (H1) and (H2) from Theorems 3 and 4. In particular, there are some
rational maps of degree three whose Julia set contains buried Julia components of several
types:

(i) Point type: uncountably many points.
(ii) Circle type: uncountably many Jordan curves.
(iii) Complex type: countably many preimages of a fixed Julia component which is

quasiconformally homeomorphic to the connected Julia set of f̂ : z 7→ (1/(z − 1)2).

Proof. Assumption (H1) is obviously satisfied, indeed

d̂ = 1
2 (d0 + d1 + d2 − 1)= 1

2 (1+ 2+ 2− 1)= 2=max{d0, d1, d2}.

For assumption (H2), the transition matrix (see Definition 1) for this choice of weight
function is given by

M =


0 1 0 0
0 0 1

2 0
1
2 0 0 1

2
1 1 0 0


and an easy computation shows that λ(HP , w) is the largest root of X4

− 1/2X − 1/4 that
is λ(HP , w)≈ 0.918< 1.

Applying Theorems 3 and 4 gives a rational map of degree d̂ + d3 = 2+ 1= 3.
Furthermore, recall that the rational map f̂ which appears in Theorem 4 has degree d̂ =

2 and has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period three
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such that the local degrees of f̂ at ẑ0, ẑ1 and ẑ2 are d0 = 1, d1 = 2 and d2 = 2, respectively.
Up to conjugation by a Möbius map, we may assume that ẑ0 = 0, ẑ1 = 1, and ẑ2 =∞. It
turns out that there is then only one such quadratic rational map which is f̂ : z 7→ (1/
(z − 1)2):

ẑ0 = 0 1:1 // ẑ1 = 1 2:1 // ẑ2 =∞

2:1

vv
�

Note that this choice of weight function is the only one which gives a degree three and
which satisfies assumptions (H1) and (H2).

The construction by quasiconformal surgery detailed in §3 does not provide an algebraic
formula for the rational map f in Theorems 3 and 4. Furthermore the degree d̂ + d3

of f increases quickly with the weight function w so the algebraic relations behind are
complicated to study. However, the particular rational map of degree three coming from
Lemma 15 is simple enough to allow a computation by hand of an algebraic formula.

Let f be a rational map coming from the construction detailed in §3 for the particular
choice of weight function in Lemma 15. Recall that the local degrees of f at z1, z2,
and z3 are d1 = 2, d2 = 2, and d3 = 1, respectively. In particular, z1 and z2 are simple
critical points. There remain d0 + d3 = 1+ 1= 2 critical points counted with multiplicity
coming from definition of f near z0 (see Lemma 3), namely two simple critical points,
one is z0 by construction and the orbit of the other one accumulates the super-attracting
cycle {z0, z1, z2, z3}.

Up to conjugation by a Möbius map, we assume that z1 = 1, z2 =∞ and z3 = 0. So
1 and ∞ are critical points whereas 0 is a singular point. In order to simplify notation,
denote by λ the critical point z0 (λ will be the parameter of our family) and by λ′ the last
critical point:

z0 = λ
2:1 // z1 = 1 2:1 // z2 =∞

2:1 // z3 = 0

1:1

vv

λ′
2:1 // · · ·

Since f has degree three, it is of the form

f : z 7→
a3z3
+ a2z2

+ a1z + a0

b3z3 + b2z2 + b1z + b0
.

Since z1 = 1 is mapped to z2 =∞ with a local degree two, the denominator may factor as

f : z 7→
a3z3
+ a2z2

+ a1z + a0

(z − 1)2(b′1z + b′0)
.

We do likewise for z2 =∞ which is mapped to z3 = 0 with a local degree two:

f : z 7→
a1z + a0

(z − 1)2(b′1z + b′0)
.

Now use the fact that z3 = 0 is mapped to z0 = λ to get

f : z 7→
a1z + λ

(z − 1)2(b′1z + 1)
. (3)
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There remain two pieces of information coming from the fact that z0 = λ is mapped to
z1 = 1 with a local degree two. Namely f (λ)= 1 and f ′(λ)= 0 which lead to the two
following equations satisfied by a1 and b′1.{

(λ− 1)2(λb′1 + 1)= λ(a1 + 1),

a1(λ− 1)2(λb′1 + 1)= λ(a1 + 1)[(3λ2
− 4λ+ 1)b′1 + 2(λ− 1)].

Note that we may easily simplify the second equation by using the first (luckily){
(λ− 1)2(λb′1 + 1)= λ(a1 + 1),

a1 = (3λ2
− 4λ+ 1)b′1 + 2(λ− 1),

or, equivalently, {
λa1 − λ(1− λ)2b′1 = 1− 3λ+ λ2,

a1 − (1− λ)(1− 3λ)b′1 =−2+ 2λ,

and solving this linear system of two equations gives
a1 =

(1− 3λ)(1− 3λ+ λ2)− λ(1− λ)(−2+ 2λ)
λ(1− 3λ)− λ(1− λ)

=
1− 4λ+ 6λ2

− λ3

−2λ2 ,

b′1 =
(1− 3λ+ λ2)− λ(−2+ 2λ)
−λ(1− λ)2 + λ(1− λ)(1− 3λ)

=
1− λ− λ2

−2λ2(1− λ)
.

Finally, putting these expressions in expression (3) leads to the following formula for f
which depends on the parameter λ:

fλ : z 7→
(1− λ)[(1− 4λ+ 6λ2

− λ3)z − 2λ3
]

(z − 1)2[(1− λ− λ2)z − 2λ2(1− λ)]
.

Note that fλ(z)= (1/(z − 1)2)(1− 4λ+ Oλ→0(λ
2)) for every complex number z, thus

fλ is actually a particular perturbation of f0 = f̂ : z 7→ (1/(z − 1)2).
Some more computations provide an algebraic formula for the critical point λ′, namely

λ′ =−
λ(1− 6λ+ 11λ2

− 10λ3
+ 5λ4)

(1− λ− λ2)(1− 4λ+ 6λ2 − λ3)
=−λ+ O

λ→0
(λ2).

According to the construction detailed in §3, there exist some choices of λ such that fλ
satisfies Theorem 1. Recall that the two critical points z0 = λ and λ′ ∼λ→0 −λ should lie
in B(ẑ0) (see §3), and hence near ẑ0 which corresponds to z3 = 0. Indeed, we can roughly
prove for every |λ|> 0 small enough that:
(i) fλ(λ′) lies in a disk centered at z1 = 1 and of radius of order |λ|;
(ii) the image under fλ of a disk centered at z1 = 1 and of radius of order |λ| is contained

in the complement of a disk centered at 0 (thus containing z2 =∞) and of radius of
order |λ|−2;

(iii) the image under fλ of the complement of a disk centered at 0 (thus containing z2 =

∞) and of radius of order |λ|−2 is contained in a disk centered at z3 = 0 and of radius
of order |λ|4;

(iv) the image under fλ of a disk centered at z3 = 0 and of radius of order |λ|4 is contained
in a disk centered at z0 = λ and of radius of order |λ|2;
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(a) (b)

FIGURE 11. (a) The parameter plane of fλ for |λ|/ 10−2, that includes the bifurcation locus (in black) and
hyperbolic parameters (in white); 0 is at the center of the picture and the big hyperbolic component around
corresponds to the Persian carpets. (b) The dynamical plane for λ≈ 10−3, that includes the Persian carpet J ( fλ)

(in black) and the Fatou set (in white).

(v) the image under fλ of a disk centered at z0 = λ and of radius of order |λ|2 is
contained in a disk centered at z1 = 1 and of radius of order |λ|3.

It turns out that the orbit of the critical point λ′ accumulates the super-attracting
cycle {z0, z1, z2, z3} for every |λ|> 0 small enough. Consequently, we may encode the
exchanging dynamics of Julia components of fλ as it is explained in §4, proving that fλ
satisfies Theorem 1 for every |λ|> 0 small enough.

Numerically, picking any parameter λ in the big hyperbolic component surrounding 0 of
the parameter space of the family fλ (see Figure 11(a)) provides a Persian Carpet example
in the dynamical plane (see Figure 11(b)).
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A. Appendix
In this section, we collect some technical results used in the construction of §3.

A.1. A particular solution of the Hurwitz problem. The first result of this section
deals with the Hurwitz problem on the topological sphere S2. Namely given an abstract
branch data of degree d > 2, that is a table of positive integers D = (di, j )(i, j)∈I where
I = {(i, j) | i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , ki }} for some positive integers n, k1, k2,
. . . , kn and such that for every i ∈ {1, 2, . . . , n}:

di, j > 2 for some j ∈ {1, 2, . . . , ki }, and
ki∑

j=1

di, j = d, (A1)

we consider the question on realizability of this abstract branch data by a branched
covering on S2, that is the existence of a degree d branched covering H : S2

→ S2 and
a finite collection of distinct points X = {xi, j | (i, j) ∈ I} in S2 such that:
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(i) for all (i, j) ∈ I, H(xi, j )= yi for some yi ∈ S2;
(ii) H |S2−X : S2

− X→ S2
− {yi | i ∈ {1, 2, . . . , n}} is a degree d covering;

(iii) for all (i, j) ∈ I, the local degree of H at xi, j is di, j .
Adolf Hurwitz has provided (see [Hur91]) a necessary and sufficient condition in terms

of symmetric group (see also [Bar01] for another approach). In particular, the following
lemma gives the solution in a very specific case involved in Lemma 1.

LEMMA A.1. (Hurwitz solution) Let D be an abstract branch data of degree d > 2 such
that n = 3 and di, j = 1 for every i ∈ {1, 2, 3} and j > 2. Then D is realizable if and only
if the following condition is satisfied:

d = 1
2 (d1,1 + d2,1 + d3,1 − 1). (H1′)

Note that in this special case the abstract branch data D is uniquely determined by a
degree d > 2 together with three positive integers d1,1, d2,1, and d3,1 such that 26 di,1 6 d
for every i ∈ {1, 2, 3}.

A.2. An inverse Grötzsch’s inequality. The following useful result is due to Cui
Guizhen and Tan Lei [CT11]. It is the key ingredient of the proof of Lemma 2.

LEMMA A.2. (Inverse Grötzsch’s inequality) Let D, D′ be two disjoint marked hyperbolic
disks in Ĉ whose boundaries (not necessarily disjoint) are respectively denoted by α, α′.
Then there exists a positive constant C > 0 such that for every pair of equipotentials β in
D and β ′ in D′ the following inequalities hold:

mod(A(α, β))+mod(A(α′, β ′)) 6 mod(A(β, β ′))

6 mod(A(α, β))+mod(A(α′, β ′))+ C.

The left-hand side is the classical Grötzsch’s inequality. The right-hand side is a
consequence of the Koebe 1/4 theorem. We refer the reader to [CT11] for a complete
proof.

A.3. An annulus-disk holomorphic map. The following lemma is a technical ingredient
in the construction of §3 needed to holomorphically map an annulus onto a disk (see
Lemma 3). It is very similar to the key lemma in [PT99] (see also [BF13]) about an
annulus-disk branched covering. However, our annulus-disk map here is required to be
holomorphic (see Lemmas 7 and 8).

LEMMA A.3. (Annulus-disk holomorphic map) Let n, n′ be two positive integers. Then
there exists a holomorphic branched covering G : A(γ, γ ′)→ D from an open annulus in
Ĉ bounded by a pair of disjoint quasicircles γ, γ ′ onto the open unit disk D such that:
(i) G has degree n + n′ and has n + n′ critical points counted with multiplicity;
(ii) G continuously extends to γ ∪ γ ′ by a degree n covering G|γ : γ → ∂D and a degree

n′ covering G|γ ′ : γ ′→ ∂D;
(iii) mod(A(γ, γ ′))6 1.
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There are many ways to prove the existence of such a map. One of the simplest is to
use the properties of McMullen’s family

g0,λ : z 7→ zn
+

λ

zn′

for |λ|> 0 small enough (see [McM88, DHL08] for a complete study of this family).
Recall that g0,λ has degree n + n′, and has n + n′ simple critical points which are mapped
near 0. It is straightforward to prove that the preimage of the open unit disk D, namely
A = g−1

0,λ(D) is an open annulus separating 0 and∞, and that A is contained as an essential
subannulus in a round annulus of modulus 1.

The constant 1 is obviously not the optimal upper bound for mod(A). The author
guesses that this modulus is arbitrarily small when λ is close to 0. But one can prove
that the modulus of the smallest round annulus containing A as an essential subannulus is
bounded by below by a positive constant which does not depend on λ. The same happens
if the open unit disk D is replaced by any Euclidean open disk centered at 0 and containing
the critical values. However, we do not need a sharper estimation than (iii) in this paper
(see Lemma 2 and the proof of Lemma 3).

A.4. A separating quasicircle. The following lemma is used to define the quasicircle
δ+c in the construction of §3 (see the proof of Lemma 5).

LEMMA A.4. (Separating quasicircle) Let A(γ, γ ′) be an open annulus in Ĉ bounded
by a pair of disjoint quasicircles γ, γ ′, and let a be a point in A(γ, γ ′). Then there
exists a quasicircle δ in A(γ, γ ′) which separates a from γ ∪ γ ′ such that mod(A(γ, δ))
is arbitrarily small.

The main idea is merely to define a quasicircle δ close enough to the boundary γ , and
to use the definition of the modulus by extremal length (see [Ahl73]).
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