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The Fokker–Planck transport equation describing the motion of energetic particles
through a plasma is explored analytically. The latter equation provides a pitch-angle
and position-dependent distribution function of the charged particles. In the current
paper the first 14 moments of this equation are computed exactly for an arbitrary
initial pitch angle. Such analytical forms are required in nonlinear treatments of
perpendicular transport and other scenarios in plasma physics and astrophysics.
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1. Introduction
To understand the propagation of energetic particles through a plasma is a very

fundamental problem with a variety of applications in plasma physics, space science
and astrophysics. The motion of such particles is described by transport equations
and their solutions provide a particle distribution function. As explained in detail in
Schlickeiser (2002) there are different levels at which the transport can be described.
The most fundamental description is provided by the relativistic Vlasov equation
from which a pitch-angle-dependent Fokker–Planck equation can be derived. The
latter equation can contain different transport processes ranging from pitch-angle
scattering to perpendicular diffusion, stochastic acceleration and adiabatic focusing.
It is usually assumed that if the aforementioned Fokker–Planck equation is averaged
over all pitch angles, and if a late time limit is considered, one obtains a diffusive
transport equation. Pitch-angle-dependent and averaged cosmic ray transport equations
are solved in order to describe the acceleration of particles at shock waves or their
motion through the solar system, the interstellar medium or the extra galactic space
(see, e.g. Li et al. 2012; Ferrand et al. 2014; Zank 2014; Engelbrecht & Burger 2015;
Miyake, Muraishi & Yanagita 2015; Mulcahy et al. 2016; Porth et al. 2016; Strauss,
Dresing & Engelbrecht 2017).

For some applications one could concentrate on the motion of charged particles
along a mean magnetic field. Usually this type of transport is called parallel diffusion
and it is assumed that parallel transport is the most important process. For example
it controls the life time of cosmic rays in the Milky Way (see, e.g. Swordy et al.
1990; Schlickeiser 2002; Shalchi & Schlickeiser 2005). Therefore, one can focus on
the analytical and numerical study of the two-dimensional Fokker–Planck equation
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which provides the particle distribution as a function of time, parallel position and
pitch angle.1 This type of distribution function also enters nonlinear theories for
perpendicular transport, as shown in Shalchi (2010, 2017).

An exact analytical solution of the Fokker–Planck equation is difficult to find.
Although some progress has been made recently (see Malkov 2017), such solutions
are either based on approximations or involve numerical calculations. For some
applications such as the formulation of nonlinear theories for perpendicular transport,
exact and pure analytical solutions are desired.

It is the purpose of the current paper to derive exact analytical forms of the first
14 moments of the pitch-angle-dependent cosmic ray Fokker–Planck equation for an
arbitrary initial pitch angle. Such explicit formulas for the moments can be important
for different applications as also demonstrated in the present article. In all cases we
recover the formulas derived previously for the initial pitch-angle-averaged case (see,
e.g. Malkov 2017).

The remainder of this paper is organized as follows. After discussing transport
equations and some general properties in § 2, the moments are derived step by step
in § 3. In § 4 we consider the characteristic function in nonlinear diffusion theory as
an example for the applicability of our findings. In § 4 we summarize and conclude.

2. Transport equations
The general Fokker–Planck equation of cosmic ray transport is complicated and

contains several terms such as perpendicular diffusion or stochastic acceleration (see,
e.g. Skilling 1975; Schlickeiser 2002; Zank 2014). For some applications one can
neglect such terms and consider the limit that both the magnetic field and the plasma
flow are weakly non-uniform. In this case one obtains a simpler, two-dimensional
version of the Fokker–Planck equation which is valid in the plasma flow frame (see,
e.g. Schlickeiser 2002, for a detailed derivation and discussion)

∂f
∂t
+ vµ∂f

∂z
= ∂

∂µ

[
Dµµ(µ)

∂f
∂µ

]
, (2.1)

where we have used the pitch-angle Fokker–Planck coefficient Dµµ. The solution of
this equation provides the particle distribution function f = f (µ, z, t) where we have
used time t, the particle position along the mean magnetic field z and the pitch-angle
cosine µ. It has to be emphasized that the parameter Dµµ still depends on the particle
speed or momentum. The latter parameters, however, are just parameters which do not
change the form of the solution f = f (µ, z, t). If the latter function is averaged over all
values of µ, and if a late time limit is considered, one finds a usual diffusion equation
of the form (see, e.g. Schlickeiser 2002; Shalchi 2009; Zank 2014)

∂M
∂t
= κ‖ ∂

2M
∂z2

, (2.2)

where we have used the pitch-angle-averaged distribution function

M(z, t)= 1
2

∫ +1

−1
dµ f (µ, z, t). (2.3)

1In reality the corresponding Fokker–Planck equation provides a solution which depends on the three spatial
coordinates, gyro-phase, pitch angle and particle speed or momentum. For some applications, perpendicular
diffusion, gyro-phase diffusion and momentum diffusion can be neglected because those effects are usually
weaker than pitch-angle scattering. In such cases particle momentum is just a parameter entering the equation
via the pitch-angle Fokker–Planck coefficient.
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Moments of the Fokker–Planck equation 3

Equation (2.2) is also known as the heat transport equation. The parallel spatial
diffusion coefficient κ‖ therein is related to the pitch-angle Fokker–Planck coefficient
Dµµ via the famous relation (see, e.g. Earl (1974) for a systematic derivation)

κ‖ = v
2

8

∫ +1

−1
dµ

(1−µ2)2

Dµµ(µ)
. (2.4)

It has to be emphasized that generalizations can be found in the literature in which
a telegrapher equation has been derived and discussed in the context of cosmic ray
transport (see, e.g. Litvinenko & Schlickeiser 2013; Litvinenko et al. 2015; Tautz &
Lerche 2016; Malkov 2017).

For sharp initial conditions M(z, t= 0)= δ(z), equation (2.2) has a Gaussian solution
of the form

M(z, t)= 1√
4πκ‖t

e−z2/(4κ‖t). (2.5)

The characteristic function of a transport equation is defined via

〈eikz〉 = 1
2

∫ +1

−1
dµ
∫ +∞
−∞

dz eikzf (µ, z, t)≡
∫ +∞
−∞

dz eikzM(z, t) (2.6)

corresponding to the Fourier transform of the distribution function. The characteristic
function of a usual diffusion equation (see (2.2) of the current paper) is given by

〈eikz〉 = e−κ‖k
2t. (2.7)

The latter function can easily be derived by combining (2.5) and (2.6). The
characteristic function will be discussed in more detail in § 4 of this paper.

3. The moments of the Fokker–Planck equation

It is the purpose of the current article to derive analytical forms for the first 14
moments of (2.1). In order to do this we need to specify the scattering parameter
Dµµ. In the following we employ the isotropic model (see, e.g. Shalchi et al. (2009)
for a justification of this form and more details)

Dµµ(µ)=D
(
1−µ2

)
, (3.1)

and the Fokker–Planck equation (2.1) becomes

∂f
∂t
+ vµ∂f

∂z
=D

∂

∂µ

[(
1−µ2

) ∂f
∂µ

]
. (3.2)

The parameter D used here is just a constant in the sense that it does not depend
on µ. However, D can depend on particle properties such as momentum as well as
magnetic field properties.

Some moments of the Fokker–Planck equation have been computed before (see,
e.g. Shalchi 2006). In order to derive a general relation for the moments we follow
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Malkov (2017) and multiply (3.2) by znµm, integrate over all positions and average
over all pitch angles. We find

d
dt
〈znµm〉 = nv〈zn−1µm+1〉 +m(m− 1)D〈znµm−2〉 −m(m+ 1)D〈znµm〉, (3.3)

where we have used

〈znµm〉 = 1
2

∫ +1

−1
dµ
∫ +∞
−∞

dz znµm f (µ, z, t) (3.4)

and f (µ, z = ±∞, t) = 0. If the moments 〈zn−1µm+1〉 and 〈znµm−2〉 are known,
differential equation (3.3) can be solved analytically. In the following paragraphs we
compute the first 14 moments by solving (3.3). Alternatively, the moments could be
derived from equation (8) of Malkov (2017). The latter equation provides an inductive
algorithm to compute moments by integration of exponential and power functions.

3.1. The moment 〈µ〉
For n= 0 and m= 1, equation (3.3) becomes

d
dt
〈µ〉 =−2D〈µ〉. (3.5)

We can easily solve the latter ordinary differential equation. By using the initial pitch-
angle cosine µ0 the solution is

〈µ〉 =µ0 e−2Dt. (3.6)

If we also average over all initial pitch-angle cosine values, this becomes

〈〈µ〉〉 = 0, (3.7)

for all times. Here we have used the notation 〈〈. . .〉〉 which stands for average over µ
and µ0, i.e.

〈〈A〉〉 = 1
2

∫ +1

−1
dµ0〈A〉 = 1

4

∫ +1

−1
dµ0

∫ +1

−1
dµ
∫ +∞
−∞

dz A (µ0, µ, z, t) . (3.8)

However, the correlation between the initial pitch-angle cosine µ0 and µ is given by

〈〈µ0µ〉〉 = 1
2

∫ +1

−1
dµ0 µ

2
0e−2Dt = 1

3
e−2Dt. (3.9)

Therefore, the velocity correlation function is

〈〈vz(t)vz(0)〉〉 = v
2

3
e−vt/λ‖, (3.10)

where we have used the parallel mean free path

λ‖ = v/(2D). (3.11)
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Moments of the Fokker–Planck equation 5

Velocity correlation functions of the form (3.10) are often used in theories for
perpendicular diffusion (see, e.g. Owens 1974; Matthaeus et al. 2003) but this
exponential form is only correct for an isotropic Dµµ (see Shalchi (2011a) for a
detailed discussion of this matter).

The so-called Taylor–Green–Kubo formula (see Taylor 1922; Green 1951; Kubo
1957) allows us to compute a running diffusion coefficient via

d‖(µ0, t) =
∫ t

0
dτ 〈vz(τ )vz(0)〉

= v2
∫ t

0
dτ µ2

0e−2Dτ

= v2µ2
0

2D

(
1− e−2Dt

)
, (3.12)

where we have employed (3.6) again. In the limit t→∞ this becomes

κ‖(µ0)= v
2µ2

0

2D
(3.13)

and if we average over all initial pitch-angle cosine values we obtain

κ‖ = v2

6D
. (3.14)

The latter form can alternatively be obtained by combining the isotropic form (3.1)
with Earl’s relation (2.4). If we average (3.12) directly over µ0, we derive

d‖(t)= κ‖
(
1− e−vt/λ‖

)
. (3.15)

For t→ 0 we can expand the exponential in (3.12) to derive

d‖(µ0, t)→ v2µ2
0t, (3.16)

corresponding to ballistic transport. In figure 1 we visualize (3.15) to show the
turnover from the initial ballistic regime to the normal diffusive regime.

3.2. The moment 〈µ2〉
For n= 0 and m= 2, equation (3.3) becomes

d
dt
〈µ2〉 = 2D

(
1− 3〈µ2〉) . (3.17)

The latter equation has the homogeneous solution

〈µ2〉h =Ce−6Dt, (3.18)

with the constant C which will be determined below. Furthermore, a particular solution
is provided by the constant

〈µ2〉p = 1
3 . (3.19)
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FIGURE 1. The running diffusion coefficient normalized with respect to the late time
diffusion coefficient d‖(t)/κ‖ versus dimensionless time vt/λ‖.

By using again the initial pitch angle µ0, we can write the solution of (3.17) as a
superposition of homogeneous and particular solutions

〈µ2〉 = (µ2
0 − 1

3

)
e−6Dt + 1

3 . (3.20)

For t→∞ we obtain 〈µ2〉→ 1/3 as expected. This asymptotic limit does not depend
on the initial pitch-angle cosine µ0 due to the pitch-angle isotropization process. If
(3.20) is averaged over all µ0 we derive

〈〈µ2〉〉 = 1
3 (3.21)

in agreement with the formula derived in Malkov (2017).

3.3. The moment 〈µ3〉
For n= 0 and m= 3, equation (3.3) becomes

d
dt
〈µ3〉 = 6D〈µ〉 − 12D〈µ3〉, (3.22)

where the moment 〈µ〉 is given by (3.6). The homogeneous solution of (3.22) is

〈µ3〉h =Ce−12Dt. (3.23)

In order to derive the particular solution, we combine (3.6) and (3.22)

d
dt
〈µ3〉 = 6Dµ0e−2Dt − 12D〈µ3〉, (3.24)
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which has the particular solution

〈µ3〉p = Ae−2Dt. (3.25)

If the latter ansatz is combined with (3.22), we derive

A= 3
5µ0 (3.26)

and, thus, the total solution is

〈µ3〉 =Ce−12Dt + 3
5µ0e−2Dt. (3.27)

The remaining parameter C can be replaced by the initial pitch-angle cosine µ0 and
we finally obtain

〈µ3〉 = (µ3
0 − 3

5µ0
)

e−12Dt + 3
5µ0e−2Dt. (3.28)

For t → ∞ we find 〈µ3〉 → 0 due to the pitch-angle isotropization process.
Furthermore, we derive 〈〈µ3〉〉 = 0 as expected due to symmetry.

3.4. The moment 〈µ4〉
For n= 0 and m= 4, equation (3.3) becomes

d
dt
〈µ4〉 = 12D〈µ2〉 − 20D〈µ4〉, (3.29)

where the moment 〈µ2〉 is given by (3.20). The homogeneous solution of (3.29) is

〈µ4〉h =Ce−20Dt. (3.30)

To compute the particular solution, we combine (3.29) and (3.20) to find

d
dt
〈µ4〉 = 12D

[(
µ2

0 −
1
3

)
e−6Dt + 1

3

]
− 20D〈µ4〉. (3.31)

In order to determine the particular solution, we employ the ansatz

〈µ4〉p = A+ Be−6Dt. (3.32)

By using this in (3.31) we find after straightforward algebra

A= 1
5 (3.33)

and

B= 6
7

(
µ2

0 − 1
3

)
. (3.34)

Therefore, the total solution of (3.29) is given by

〈µ4〉 =Ce−20Dt + 1
5 + 6

7

(
µ2

0 − 1
3

)
e−6Dt. (3.35)

The remaining constant C can be replaced by the initial pitch-angle cosine µ0. We
obtain

〈µ4〉 = [µ4
0 − 6

7

(
µ2

0 − 1
3

)− 1
5

]
e−20Dt + 1

5 + 6
7

(
µ2

0 − 1
3

)
e−6Dt. (3.36)

In the late time limit t→∞ we find 〈µ4〉 → 1/5 as expected. Furthermore, we can
average (3.36) over the initial pitch-angle cosine µ0 to deduce

〈〈µ4〉〉 = 1
5 . (3.37)
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3.5. The moment 〈z〉
For n= 1 and m= 0, equation (3.3) becomes

d
dt
〈z〉 = v〈µ〉. (3.38)

The quantity at the right-hand side can be replaced by (3.6) and we find

d
dt
〈z〉 = vµ0e−2Dt. (3.39)

We can easily integrate the latter formula to derive

〈z〉 = vµ0

2D

(
1− e−2Dt

)≡µ0λ‖
(
1− e−vt/λ‖

)
. (3.40)

For t→∞ we find for the penetration depth

〈z〉t→∞ = vµ0

2D
≡µ0λ‖. (3.41)

Therefore, the maximal penetration depth is ±λ‖. If we average (3.40) over all initial
pitch angles we find 〈〈z〉〉 = 0. For t→ 0, on the other hand, we derive from (3.40)

〈z〉→ vµ0t (3.42)

corresponding to the unperturbed motion of the particle.

3.6. The moment 〈zµ〉
For n=m= 1, equation (3.3) becomes

d
dt
〈zµ〉 = v〈µ2〉 − 2D〈zµ〉. (3.43)

The homogeneous solution is provided by

〈zµ〉h =Ce−2Dt. (3.44)

To obtain the particular solution, we first replace 〈µ2〉 at the right-hand side of (3.43)
by (3.20) to write

d
dt
〈zµ〉 + 2D〈zµ〉 = v

(
µ2

0 −
1
3

)
e−6Dt + v

3
. (3.45)

The latter equation has the particular solution

〈zµ〉p = v

4D

(
1
3
−µ2

0

)
e−6Dt + v

6D
. (3.46)

By superposing homogeneous and particular solutions, and by using 〈zµ〉= 0 for t= 0,
we obtain

〈zµ〉 = v

4D

(
µ2

0 − 1
)

e−2Dt + v

4D

(
1
3
−µ2

0

)
e−6Dt + v

6D
. (3.47)
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Again we can consider the limit t→∞ to find

〈vz(t)1z(t)〉 ≡ v〈zµ〉 = v2

6D
= κ‖ (3.48)

corresponding to the parallel diffusion coefficient. Furthermore, we can average (3.47)
also over the initial pitch-angle cosine µ0 to find

v〈〈zµ〉〉 = v2

6D

(
1− e−2Dt

)≡ κ‖ (1− e−vt/λ‖
)

(3.49)

in agreement with (3.15).

3.7. The moment 〈zµ2〉
For n= 1 and m= 2, equation (3.3) becomes

d
dt
〈zµ2〉 = v〈µ3〉 + 2D〈z〉 − 6D〈zµ2〉, (3.50)

where the moments 〈µ3〉 and 〈z〉 are given by (3.28) and (3.40), respectively. The
homogeneous solution of (3.50) is

〈zµ2〉h =Ce−6Dt. (3.51)

In order to compute the particular solution, we combine (3.28) and (3.40) with (3.50)
to find

d
dt
〈zµ2〉 = v

(
µ3

0 −
3
5
µ0

)
e−12Dt − 2

5
vµ0e−2Dt + vµ0 − 6D〈zµ2〉. (3.52)

For the particular solution we can employ the ansatz

〈zµ2〉p = A+ Be−12Dt + Ee−2Dt. (3.53)

By combining the latter form with (3.50), we derive, after straightforward algebra,

A= vµ0

6D
, B=−vµ0

6D

(
µ2

0 −
3
5

)
, (3.54a,b)

and

E=− vµ0

10D
. (3.55)

Therefore, the particular solution is known. In combination with the homogeneous
solution (3.51) we, thus, derive

〈zµ2〉 =Ce−6Dt + vµ0

6D
− vµ0

6D

(
µ2

0 −
3
5

)
e−12Dt − vµ0

10D
e−2Dt. (3.56)

For t = 0 we need to satisfy 〈zµ2〉 = 0. This condition allows us to determine the
remaining constant C. One can show that

C= vµ0

6D

(
µ2

0 − 1
)

(3.57)

and, thus, we obtain for the solution of (3.50)

〈zµ2〉 = vµ0

6D

(
µ2

0 − 1
)

e−6Dt + vµ0

6D
− vµ0

6D

(
µ2

0 −
3
5

)
e−12Dt − vµ0

10D
e−2Dt. (3.58)

One can very easily show that 〈〈zµ2〉〉 = 0.
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3.8. The moment 〈zµ3〉
For n= 1 and m= 3, equation (3.3) becomes

d
dt
〈zµ3〉 = v〈µ4〉 + 6D〈zµ〉 − 12D〈zµ3〉, (3.59)

where the moments 〈µ4〉 and 〈zµ〉 are given by (3.36) and (3.47), respectively. The
homogeneous solution of (3.59) is

〈zµ3〉h =Ce−12Dt. (3.60)

In order to compute the particular solution, we combine (3.36) and (3.47) with (3.59)
to find

d
dt
〈zµ3〉 = v

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
e−20Dt − 9v

14

(
µ2

0 −
1
3

)
e−6Dt

+ 3v
2

(
µ2

0 − 1
)

e−2Dt + 6v
5
− 12D〈zµ3〉. (3.61)

For the particular solution we can employ the ansatz

〈zµ3〉p = A+ Be−20Dt + Ee−6Dt + Fe−2Dt. (3.62)

We find after lengthy straightforward algebra

A= v

10D
,

B=− v

8D

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
,

E= 3v
28D

(
1
3
−µ2

0

)
,


(3.63)

and

F= 3v
20D

(
µ2

0 − 1
)
. (3.64)

The total solution of (3.59) can be obtained by superposing the homogeneous solution
and the particular solution. The remaining constant C in the homogeneous solution
(3.60) can be obtained from the initial condition 〈zµ3〉 = 0 for t= 0. We find

C= v

40D

(
5µ4

0 − 6µ2
0 + 1

)
. (3.65)

Finally we derive

〈zµ3〉 = v

10D
+ 3v

20D

(
µ2

0 − 1
)

e−2Dt + 3v
28D

(
1
3
−µ2

0

)
e−6Dt

+ v

40D

(
5µ4

0 − 6µ2
0 + 1

)
e−12Dt − v

8D

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
e−20Dt. (3.66)

If we average over all µ0, we derive

〈〈zµ3〉〉 = v

10D

(
1− e−2Dt

)
. (3.67)
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3.9. The moment 〈z2〉
For n= 2 and m= 0, equation (3.3) becomes

d
dt
〈z2〉 = 2v〈zµ〉. (3.68)

We can directly see that

1
2

d
dt
〈z2〉 = v〈zµ〉 ≡ 〈vz(t)1z(t)〉. (3.69)

This relation is well known in diffusion theory (see, e.g. Shalchi (2011b) for more
details). In order to replace 〈µz〉 therein, we employ (3.47) to derive

d
dt
〈z2〉 = v2

2D

(
µ2

0 − 1
)

e−2Dt + v2

2D

(
1
3
−µ2

0

)
e−6Dt + v2

3D
. (3.70)

The latter equation can easily be integrated. Together with the initial condition 〈z2〉=0
for t= 0, we find

〈z2〉 = v2

4D2

(
µ2

0 − 1
) (

1− e−2Dt
)+ v2

12D2

(
1
3
−µ2

0

) (
1− e−6Dt

)+ v2t
3D
. (3.71)

For early times this becomes

〈z2〉t→0→ v2µ2
0t2 (3.72)

corresponding to the unperturbed motion. For late times we obtain

〈z2〉t→∞ = v
2t

3D
≡ 2κ‖t, (3.73)

which does not depend on the initial pitch-angle cosine µ0. Equation (3.73)
corresponds to a normal diffusive motion. If we average (3.71) over all initial
pitch angles, we find

〈〈z2〉〉 = v
2t

3D
− v2

6D2

(
1− e−2Dt

)
(3.74)

in agreement with Malkov (2017).

3.10. The moment 〈z2µ〉
For n= 2 and m= 1, equation (3.3) becomes

d
dt
〈z2µ〉 = 2v〈zµ2〉 − 2D〈z2µ〉, (3.75)

where the moment 〈zµ2〉 is given by (3.58). The homogeneous solution of (3.75) is

〈z2µ〉h =Ce−2Dt. (3.76)
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In order to compute the particular solution, we combine (3.58) with (3.75) to find

d
dt
〈z2µ〉 = v2µ0

3D

(
µ2

0 − 1
)

e−6Dt + v
2µ0

3D

− v
2µ0

3D

(
µ2

0 −
3
5

)
e−12Dt − v

2µ0

5D
e−2Dt − 2D〈µz2〉. (3.77)

For the particular solution we can employ the ansatz

〈z2µ〉p = A+ Be−12Dt + Ee−6Dt + F(t)e−2Dt. (3.78)

It has to be pointed out that F(t) needs to be a function of time. A constant coefficient
F would not work in this particular case. By combining the latter form with (3.77),
we find after straightforward algebra

A= v
2µ0

6D2
,

B= v2µ0

30D2

(
µ2

0 −
3
5

)
,

E= v2µ0

12D2

(
1−µ2

0

)
,


(3.79)

and

F(t)=−v
2µ0t
5D

. (3.80)

The total solution is a superposition of homogeneous and particular solutions. The
remaining constant C in (3.76) can be determined from the initial condition 〈z2µ〉= 0
for t= 0. After more lengthy algebra we obtain

C= v2µ0

20D2

(
µ2

0 −
23
5

)
. (3.81)

Therewith the total solution of (3.75) becomes

〈z2µ〉 = v2µ0

20D2

(
µ2

0 −
23
5

)
e−2Dt + v

2µ0

6D2

+ v
2µ0

30D2

(
µ2

0 −
3
5

)
e−12Dt + v2µ0

12D2

(
1−µ2

0

)
e−6Dt − v

2µ0t
5D

e−2Dt. (3.82)

We can very easily show that 〈〈z2µ〉〉 = 0 as expected.

3.11. The moment 〈z2µ2〉
For n= 2 and m= 2, equation (3.3) becomes

d
dt
〈z2µ2〉 = 2v〈zµ3〉 + 2D〈z2〉 − 6D〈z2µ2〉, (3.83)
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where the moments 〈zµ3〉 and 〈z2〉 are given by (3.66) and (3.71), respectively. The
homogeneous solution of (3.83) is

〈z2µ2〉h =Ce−6Dt. (3.84)

In order to determine the particular solution we need to combine (3.83) with (3.66)
and (3.71). We then obtain

d
dt
〈z2µ2〉 = v2

5D
+ 3v2

10D

(
µ2

0 − 1
)

e−2Dt + 3v2

14D

(
1
3
−µ2

0

)
e−6Dt

+ v2

20D

(
5µ4

0 − 6µ2
0 + 1

)
e−12Dt

− v
2

4D

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
e−20Dt

+ v
2

2D

(
µ2

0 − 1
) (

1− e−2Dt
)

+ v
2

6D

(
1
3
−µ2

0

) (
1− e−6Dt

)+ 2v2t
3
− 6D〈z2µ2〉. (3.85)

For the particular solution we can employ the ansatz

〈z2µ2〉p = A(t)+ Be−20Dt + Ee−12Dt + F(t)e−6Dt +Ge−2Dt, (3.86)

where the factors A(t) and F(t) need to be functions of time. After lengthy
straightforward algebra we find for the coefficients and functions therein

A(t)= v
2t

9D
+ v2µ2

0

18D2
− 8v2

135D2
,

B= v2

56D2

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
,

E=− v2

120D2
(5µ4

0 − 6µ2
0 + 1),

F(t)= v2t
21D

(
1
3
−µ2

0

)
,



(3.87)

and

G= v2

20D2

(
1−µ2

0

)
. (3.88)

The total solution is a superposition of homogeneous and particular solutions. The
remaining constant C in (3.84) can be determined from the initial condition 〈z2µ2〉= 0
for t= 0. After lengthy straightforward algebra we obtain

C = 8v2

135D2
− v2µ2

0

18D2
− v2

56D2

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
+ v2

120D2

(
5µ4

0 − 6µ2
0 + 1

)− v2

20D2

(
1−µ2

0

)
. (3.89)
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The solution of (3.83) is, therefore,

〈z2µ2〉 =
{

8v2

135D2
− v2µ2

0

18D2
− v2

56D2

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
+ v2

120D2

(
5µ4

0 − 6µ2
0 + 1

)− v2

20D2

(
1−µ2

0

)}
e−6Dt

+ v
2t

9D
+ v2µ2

0

18D2
− 8v2

135D2
+ v2

56D2

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
e−20Dt

− v2

120D2

(
5µ4

0 − 6µ2
0 + 1

)
e−12Dt + v2t

21D

(
1
3
−µ2

0

)
e−6Dt

+ v2

20D2

(
1−µ2

0

)
e−2Dt. (3.90)

In the late time limit, we can neglect all exponential functions and constants to find

〈z2µ2〉t→∞→ v2t
9D
. (3.91)

If we average (3.90) over the initial pitch-angle cosine µ0, we find

〈〈z2µ2〉〉 = v2

135D2
e−6Dt + v2

30D2
e−2Dt + v

2t
9D
− 11v2

270D2
. (3.92)

3.12. The moment 〈z3〉
For n= 3 and m= 0, equation (3.3) becomes

d
dt
〈z3〉 = 3v〈z2µ〉, (3.93)

where the moment 〈z2µ〉 is given by (3.82). If we integrate (3.93) and by using
〈z3〉 = 0 for t= 0, we derive

〈z3〉 = v3µ0

2D2
t− 3v3µ0

20D3
+ 3v3µ0

40D3

(
µ2

0 −
23
5

) (
1− e−2Dt

)
+ v3µ0

120D3

(
µ2

0 −
3
5

) (
1− e−12Dt

)+ v3µ0

24D3

(
1−µ2

0

) (
1− e−6Dt

)
+ 3v3µ0

20D3
(1+ 2Dt) e−2Dt. (3.94)

We can easily see that if we average (3.94) over the initial pitch-angle cosine µ0, we
find

〈〈z3〉〉 = 0. (3.95)

This result was also obtained by Malkov (2017). Equation (3.94) provides a
generalization of the latter result, because it is valid for an arbitrary initial pitch-angle
cosine µ0.

If we consider the limit t→∞, equation (3.94) becomes

〈z3〉t→∞ = v
3µ0

2D2
t (3.96)

corresponding to a linear increase.
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3.13. The moment 〈z3µ〉
For n= 3 and m= 1, equation (3.3) becomes

d
dt
〈z3µ〉 = 3v〈z2µ2〉 − 2D〈z3µ〉, (3.97)

where the moment 〈z2µ2〉 is given by (3.90). The homogeneous solution of (3.97) is

〈z3µ〉h =Ce−2Dt. (3.98)

In order to compute the particular solution, we combine (3.90) with (3.97) to find

d
dt
〈z3µ〉 = − 3v3

56D2

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

] (
e−6Dt − e−20Dt

)
+ v3

40D2

(
5µ4

0 − 6µ2
0 + 1

) (
e−6Dt − e−12Dt

)
− 3v3

20D2

(
1−µ2

0

) (
e−6Dt − e−2Dt

)
+ v

3t
7D

(
1
3
−µ2

0

)
e−6Dt + 8v3

45D2

(
e−6Dt − 1

)
+ v

3µ2
0

6D2

(
1− e−6Dt

)+ v3t
3D
− 2D〈z3µ〉. (3.99)

For the particular solution we can employ the ansatz

〈z3µ〉p = A(t)+ Be−20Dt + Ee−12Dt + F(t)e−6Dt +G(t)e−2Dt, (3.100)

where A(t), F(t) and G(t) need to be functions of time. If this is used in (3.99) we
find after long algebra

A(t)= v3t
6D2
+ v3

12D3

(
µ2

0 −
31
15

)
B=− v3

336D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
,

E= v3

400D3

(
5µ4

0 − 6µ2
0 + 1

)


(3.101)

as well as

F(t) = − v3

28D3

(
1
4
+Dt

)(
1
3
−µ2

0

)
− 2v3

45D3
+ v

3µ2
0

24D3

+ 3v3

224D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
− v3

160D3

(
5µ4

0 − 6µ2
0 + 1

)+ 3v3

80D3

(
1−µ2

0

)
(3.102)

and

G(t)= 3v3t
20D2

(
1−µ2

0

)
. (3.103)
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The remaining constant C in (3.98) can be determined from the initial condition
〈z3µ〉 = 0 for t= 0. After lengthy straightforward algebra we obtain

C = − v3

12D3

(
µ2

0 −
31
15

)
− v3

96D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
+ 3v3

800D3

(
5µ4

0 − 6µ2
0 + 1

)+ v3

112D3

(
1
3
−µ2

0

)
+ 2v3

45D3
− v3µ2

0

24D3
− 3v3

80D3

(
1−µ2

0

)
. (3.104)

Therefore, we find

〈z3µ〉 = v3t
6D2
+ v3

12D3

(
µ2

0 −
31
15

)
− v3

336D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
e−20Dt

+ v3

400D3

(
5µ4

0 − 6µ2
0 + 1

)
e−12Dt +

{
− v3

28D3

(
1
4
+Dt

)(
1
3
−µ2

0

)
− 2v3

45D3
+ v3µ2

0

24D3
+ 3v3

224D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
− v3

160D3

(
5µ4

0 − 6µ2
0 + 1

)+ 3v3

80D3

(
1−µ2

0

)}
e−6Dt

+ 3v3t
20D2

(
1−µ2

0

)
e−2Dt +

{
− v3

12D3

(
µ2

0 −
31
15

)
− v3

96D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
+ 3v3

800D3

(
5µ4

0 − 6µ2
0 + 1

)
+ v3

112D3

(
1
3
−µ2

0

)
+ 2v3

45D3
− v3µ2

0

24D3
− 3v3

80D3

(
1−µ2

0

)}
e−2Dt. (3.105)

In the limit t→∞, we omit the terms with exponentials as well as the constant terms
and, thus, equation (3.105) becomes

〈z3µ〉→ v3t
6D2

. (3.106)

If we average (3.105) over the initial pitch-angle cosine µ0, we find

〈〈z3µ〉〉 = v3t
6D2
− 13v3

90D3
− v3

180D3
e−6Dt +

(
v3t

10D2
+ 3v3

20D3

)
e−2Dt. (3.107)

3.14. The moment 〈z4〉
For n= 4 and m= 0, equation (3.3) becomes

d
dt
〈z4〉 = 4v〈z3µ〉, (3.108)

where the moment 〈µz3〉 is given by (3.105). By using the parameters and functions
A(t), B, E, F(t), G(t) and C given by (3.101)–(3.104), we can write differential
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equation (3.108) as

d
dt
〈z4〉 = 4vA(t)+ 4vBe−20Dt + 4vEe−12Dt + 4vF(t)e−6Dt + 4vG(t)e−2Dt + 4vCe−2Dt.

(3.109)

With 〈z4〉 = 0 for t= 0, we can integrate the latter equation so that

〈z4〉 = 4v
∫ t

0
dt′ A(t′)+ 4vB

∫ t

0
dt′ e−20Dt′ + 4vE

∫ t

0
dt′ e−12Dt′

+ 4v
∫ t

0
dt′ F(t′)e−6Dt′ + 4v

∫ t

0
dt′G(t′)e−2Dt′ + 4vC

∫ t

0
dt′ e−2Dt′ . (3.110)

The only integral which is not trivial has the form∫ t

0
dx xe−αx = 1

α2

[
1− (1+ αt) e−αt

]
. (3.111)

With this integral we derive

〈z4〉 = v4t2

3D2
+ v4t

3D3

(
µ2

0 −
31
15

)
+ vB

5D

(
1− e−20Dt

)+ vE
3D

(
1− e−12Dt

)
+ 2vF0

3D

(
1− e−6Dt

)+ vF1

9D2

[
1− (1+ 6Dt) e−6Dt

]
+ 3v4

20D4

(
1−µ2

0

) [
1− (1+ 2Dt) e−2Dt

]+ 2vC
D

(
1− e−2Dt

)
, (3.112)

where we have used

F1 =− v3

28D2

(
1
3
−µ2

0

)
(3.113)

and

F0 = − v3

112D3

(
1
3
−µ2

0

)
− 2v3

45D3
+ v3µ2

0

24D3
+ 3v3

224D3

[
µ4

0 −
6
7

(
µ2

0 −
1
3

)
− 1

5

]
− v3

160D3

(
5µ4

0 − 6µ2
0 + 1

)+ 3v3

80D3

(
1−µ2

0

)
. (3.114)

The parameters B, C and E are given by (3.101) and (3.104).
In the limit t→∞, equation (3.112) becomes

〈z4〉→ v4t2

3D2
= 12κ2

‖ t
2. (3.115)

Furthermore, we can average (3.112) over the initial pitch-angle cosine µ0 to deduce

〈〈z4〉〉 = v
4t2

3D2
− 26v4t

45D3
+ 107v4

270D4
+ v4

270D4
e−6Dt −

(
2v4

5D4
+ v4t

5D3

)
e−2Dt. (3.116)

The latter formula agrees perfectly with Malkov (2017). We would like to emphasize
that (3.112) provides a generalization of (3.116) because it is correct for an arbitrary
initial pitch-angle cosine µ0.
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4. The characteristic function
In the previous section we have computed moments of the pitch-angle-dependent

Fokker–Planck equation. Compared to previous work our findings depend on the
initial pitch-angle cosine µ0. In the following we consider an application of such
analytical results by exploring the characteristic function and related quantities. Those
are important for analytical formulations of nonlinear theories describing the motion
of energetic particles across a mean magnetic field.

The characteristic function of a distribution function is defined via (2.6) correspond-
ing to the Fourier transform of that function. After employing a Taylor expansion of
the exponential function we derive

〈
eikz
〉= ∞∑

n=0

1
n!(ik)

n〈zn〉. (4.1)

By only taking into account the first four terms therein, we can approximate〈
eikz
〉≈ 1+ ik〈z〉 − 1

2 k2〈z2〉 − 1
6 ik3〈z3〉 + 1

24 k4〈z4〉. (4.2)

The characteristic function of the diffusion equation is given by (2.7). A Taylor
expansion of the latter function yields

〈eikz〉D =
∞∑

n=0

1
n!
(−κ‖k2t

)n ≈ 1− κ‖k2t+ 1
2
κ2
‖k

4t2 + · · · (4.3)

If we compare (4.2) and (4.3), we find

〈z〉D = 0,

〈z2〉D = 2κ‖t,

〈z3〉D = 0,

 (4.4)

and

〈z4〉D = 12κ2
‖ t

2. (4.5)

In nonlinear theories for perpendicular diffusion, one needs to know correlations of
the form 〈〈µ0µeikz〉〉 (see, e.g. Matthaeus et al. 2003; Shalchi 2010). If we expand again
as above, we find

〈〈µ0µeikz〉〉 ≈ 〈〈µ0µ〉〉 + ik〈〈µ0µz〉〉 − 1
2 k2〈〈µ0µz2〉〉. (4.6)

For the moments we can employ (3.9), (3.47) and (3.82). If we multiply the latter
moments by µ0 and average over all µ0, we find

〈〈µ0µ〉〉 = 1
3 e−vt/λ‖

〈〈µ0µz〉〉 = 0,

}
(4.7)

and

〈〈µ0µz2〉〉 = v2

18D2
+ v2

90D2
e−6Dt − v2

15D2
(1+Dt) e−2Dt. (4.8)
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Therewith, equation (4.6) becomes

〈〈µ0µeikz〉〉 ≈ 1
3

e−vt/λ‖ − 1
2

k2

[
v2

18D2
+ v2

90D2
e−6Dt − v2

15D2
(1+Dt) e−2Dt

]
. (4.9)

The latter formula can be written as

〈vz(t)vz(0)eikz〉 = v
2

3
e−vt/λ‖

[
1+ v2k2

10D2
(1+Dt)

]
− v4k2

36D2
− v4k2

180D2
e−3vt/λ‖ . (4.10)

In the limit t→∞, this becomes

〈vz(t)vz(0)eikz〉t→∞ =− v
4k2

36D2
=−κ2

‖k
2. (4.11)

In Matthaeus et al. (2003) the following model was used

〈vz(t)vz(0)eikz〉M ≈ v2〈µµ0〉〈eikz〉 = v
2

3
e−vt/λ‖e−κ‖k

2t. (4.12)

If we expand up to second order in k, this becomes

〈vz(t)vz(0)eikz〉M ≈ v
2

3
e−vt/λ‖

(
1− κ‖k2t

)
, (4.13)

which disagrees with (4.12). In Shalchi (2017), on the other hand, the following form
was proposed

〈vz(t)vz(0)eikz〉S =−κ2
‖k

2e−κ‖k
2t. (4.14)

In the lowest non-vanishing order in k, this becomes

〈vz(t)vz(0)eikz〉S ≈−κ2
‖k

2. (4.15)

Therefore, we conclude that the Shalchi (2017) model agrees with the exact
calculations presented in the current paper up to second order in k.

As pointed out in Shalchi (2010) one needs to know correlations involving
particle positions and velocities in order to formulate advanced nonlinear theories
for perpendicular diffusion. In the following we consider the time derivative of the
characteristic function

d
dt
〈eikz〉 =

∞∑
n=0

1
n!(ik)

n d
dt
〈zn〉, (4.16)

where we have used again expansion (4.1). For the time derivative of the moment 〈zn〉
we can employ

d
dt
〈zn〉 = nv〈zn−1µ〉 = 〈nzn−1vz〉 =

〈
d
dt

zn

〉
. (4.17)
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The latter formula is derived from (3.3) by setting m = 0 therein. Furthermore, we
have used again vz = vµ. With relation (4.17), equation (4.16) becomes

d
dt
〈eikz〉 =

∞∑
n=0

1
n!(ik)

n〈nzn−1vz〉

= ik
∞∑

n=1

1
(n− 1)!(ik)

n−1〈zn−1vz〉

= ik〈vzeikz〉. (4.18)

This relation was used in Shalchi (2017) in order to derive a time-dependent theory
for perpendicular diffusion. In the current paper we confirmed its validity.

5. Summary and conclusion
To solve the pitch-angle-dependent Fokker–Planck equation of energetic particle

transport is a difficult task. However, for several applications a pitch-angle and
position-dependent particle distribution function is desired. In some cases one is only
interested in the late time limit for which a diffusion approximation can be used (see,
e.g. Schlickeiser 2002; Shalchi 2009; Zank 2014). In other cases, however, one needs
a description of the transport which is valid for early (non-diffusive) times as well.

In the current paper we have derived exact analytical formulas for the first 14
moments of the form 〈znµm〉. The presented results were obtained for an isotropic
pitch-angle scattering coefficient but for an arbitrary initial pitch-angle cosine µ0.
Previous formulas derived for the moments (see, e.g. Shalchi 2006; Malkov 2017)
can be obtained by considering the initial pitch-angle cosine average of the formulas
derived in the present article.

To find moments which depend on the parameter µ0 is important for applications
such as the formulation of nonlinear theories for perpendicular transport (see, e.g.
Shalchi 2010, 2017). In the current paper we, therefore, considered characteristic
functions as an example and have tested different ad hoc assumptions used previously
in nonlinear diffusion theories. Further applications of the moments calculated in the
present article will be considered in the future.
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