
Canad. Math. Bull. Vol. 64 (2), 2021, pp. 429–441
http://dx.doi.org/10.4153/S0008439520000545
© Canadian Mathematical Society 2020

On cohesive almost zero-dimensional
spaces

Jan J. Dijkstra and David S. Lipham

Abstract. We investigate C-sets in almost zero-dimensional spaces, showing that closed σC-sets are

C-sets. As corollaries, we prove that every rim-σ-compact almost zero-dimensional space is zero-

dimensional and that each cohesive almost zero-dimensional space is nowhere rational. To show that

these results are sharp, we construct a rim-discrete connected set with an explosion point. We also

show that every cohesive almost zero-dimensional subspace of (Cantor set)×R is nowhere dense.

1 Introduction

All spaces under consideration are separable and metrizable.
A subset A of a topological space X is called a C-set in X if A can be written as an

intersection of clopen subsets of X. A σC-set is a countable union of C-sets. A space X
is said to be almost zero-dimensional provided every point x ∈ X has a neighborhood
basis consisting of C-sets in X.

A spaceX is cohesive if every point x ∈ X has a neighborhood that contains no non-
empty clopen subset of X. Clearly, every cohesive space is nowhere zero-dimensional.
�e converse is false, even for almost zero-dimensional spaces [10]. Spaces that are
both almost zero-dimensional and cohesive include:

Erdős space E = {x ∈ ℓ2 ∶ x i ∈ Q for each i < ω} and

complete Erdős space Ec = {x ∈ ℓ2 ∶ x i ∈ {0} ∪ {1/n ∶ n = 1, 2, 3, . . .}

for each i < ω},

where ℓ2 stands for the Hilbert space of square summable sequences of real numbers.
Other examples include the homeomorphism groups of the Sierpiński carpet and
Menger universal curve [8, 33], and various endpoint sets in complex dynamics [2, 31].

Almost zero-dimensionality of E and Ec follows from the fact that each closed
ε-ball in either space is closed in the zero-dimensional topology inherited from Qω ,
which is weaker than the ℓ

2-norm topology. �e spaces are cohesive, because all
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430 J. J. Dijkstra and D. S. Lipham

non-empty clopen subsets of E and Ec are unbounded in the ℓ2-norm as proved by
Erdős [18].�us, if we add a point∞ to ℓ2 whose neighborhoods are the complements
of bounded sets, then we have that E ∪ {∞} and Ec ∪ {∞} are connected. �e
following result is Proposition 5.4 in Dijkstra and van Mill [12].

Proposition 1.1 Every almost zero-dimensional cohesive space has a one-point con-
nectification. If a space has a one-point connectification, then it is cohesive.

Actually, open subsets of non-singleton connected spaces are cohesive, because
cohesion is open hereditary [12, Remark 5.2].More information on cohesion and one-
point connectifications can be found in [1].

In Section 3, we will show that every cohesive almost zero-dimensional space E is
homeomorphic to a dense subset E′ ⊂ Ec such that E

′ ∪ {∞} is connected.�e result
is largely a consequence of earlier work by Dijkstra and van Mill [12, Chapters 4 and
5]. We apply the embedding to show that every cohesive almost zero-dimensional
subspace of (Cantor set)×R is nowhere dense, and there is a continuous one-to-
one image of complete Erdős space that is totally disconnected but not almost zero-
dimensional.

In Section 4, we examine C-sets and the rim-type of almost zero-dimensional
spaces. We say that X is rational at x ∈ X if x has a neighborhood basis of open sets
with countable boundaries. In [32, §6, Example, p. 596], Nishiura and Tymchatyn
implicitly proved that De, the set of endpoints of Lelek’s fan [27, §9], is not rational at
any of its points. Results in [5, 6, 23] later established that De ≃ Ec, so Ec is nowhere
rational. Working in ℓ

2, Banakh [3] recently demonstrated that each bounded open
subset of E has an uncountable boundary. We generalize these results by proving that
each cohesive almost zero-dimensional space is nowhere rational. Moreover, every
rim-σ-compact almost zero-dimensional space is zero-dimensional.We also find that
in almost zero-dimensional spaces cohesion is preserved if we delete σ-compacta.
�ese results follow from �eorem 4.4, which states that closed σC-sets in almost
zero-dimensional spaces are C-sets.

In Section 5, we will construct a rim-discrete connected space τ with an explosion
point. �e example is partially based on [30, Example 1], which was constructed
by the second author to answer a question from the Houston Problem Book [7].
�e pulverized complement of the explosion point will be a rim-discrete totally
disconnected set that is not zero-dimensional, in contrast with Section 4 results.
Additionally, the rim-discrete property guarantees the entire connected set has a
rational compactification [19, 20, 35].We therefore solve [7, Problem79] in the context
of explosion point spaces. Results from Section 4 indicate that this new solution is
optimal.

In general, ZDÔ⇒ AZDÔ⇒ TDÔ⇒ HD, where we used abbreviations for
zero-dimensional, almost zero-dimensional, totally disconnected, and hereditar-
ily disconnected. In certain contexts, these implications can be reversed. For
example,

HD
(1)Ô⇒ TD

(2)Ô⇒ AZD
(3)Ô⇒ ZD
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On cohesive almost zero-dimensional spaces 431

for subsets of hereditarily locally connected continua [24, §50 IV �eorem 9]. As
mentioned above, the implication (3) is valid in the larger class of subsets of rational
continua. But [30, Example 1] and the example τ in Section 5 show that (1) and (2) are
generally false in that context.

2 Preliminaries

A space X is hereditarily disconnected if every connected subset of X contains at most
one point. A space X is totally disconnected if every singleton in X is a C-set. A point
x in a connected space X is:

• a dispersion point if X/{x} is hereditarily disconnected;
• an explosion point if X/{x} is totally disconnected.

If P is a topological property, then a space X is rim-P provided X has a basis of
open sets whose boundaries have the property P: Rational ≡ rim-countable. Zero-
dimensional ≡ rim-empty.

For A a subset of a space X , we let Ao, A, and ∂A denote the interior, the closure,
and the boundary of A in X, respectively.

�roughout the paper, C will denote the middle-third Cantor set in [0, 1]. �e
coordinate projections in R2 are denoted π0 and π1; π0(⟨x , y⟩) = x and π1(⟨x , y⟩) =
y. We define ∇ ∶ [0, 1]2 → [0, 1]2 by ⟨x , y⟩↦ ⟨xy + 1

2
(1 − y), y⟩. �e image of ∇ is

the region enclosed by the triangle with vertices ⟨0, 1⟩, ⟨ 1
2
, 0⟩, and ⟨1, 1⟩. Note that

∇ ↾ [0, 1] × (0, 1] is a homeomorphism and ∇−1(⟨ 1
2
, 0⟩) = [0, 1] × {0}. For each X ⊂

C × (0, 1] we put
∇. X = ∇(X) ∪ {⟨ 12 , 0⟩}.

�e Cantor fan is the set ∇(C × [0, 1]) = ∇. (C × (0, 1]), see Figure 1.
Given X ⊂ C, a function φ ∶ X → [0, 1] is upper semi-continuous (abbreviatedUSC)

if φ−1[0, t) is open in X for every t ∈ [0, 1]. Define
G

φ
0 = {⟨x , φ(x)⟩ ∶ φ(x) > 0},

L
φ
0 = {⟨x , t⟩ ∶ 0 ≤ t ≤ φ(x)}.

We say φ is a Lelek function if φ is USC and G
φ
0 is dense in L

φ
0 . Lelek functions with

domain C exist, and if φ is a Lelek function with domain C, then ∇Lφ
0 is a Lelek fan;

see Figure 2. For example, let ∥ ∥ be the ℓ2-norm and identify C with the Cantor set({0} ∪ {1/n ∶ n = 1, 2, 3, . . .})ω . Define η(x) = 1/(1 + ∥x∥), where 1/∞ = 0. �en Ec

is homeomorphic to G
η
0 , η ∶ C→ [0, 1] is a Lelek function, and∇Lη

0 is a Lelek fan; see
[34] and the proof of [9, �eorem 3].

3 Embedding into Fans and Complete Erdős Space

Let E be any non-empty cohesive almost zero-dimensional space. Dijkstra and van
Mill proved the following: �ere is a Lelek function χ ∶ X → [0, 1) such that E is
homeomorphic to G

χ
0 , and hence E admits a dense embedding in Ec [12, Proposition

5.10]. We observe the following theorem.
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432 J. J. Dijkstra and D. S. Lipham

Figure 1: Cantor fan Figure 2: Lelek fan

�eorem 3.1 For the Lelek function χ constructed in [12], ∇. G
χ
0 is connected. �us,

there is a dense homeomorphic embedding α ∶ E ↪ Ec such that α(E) ∪ {∞} is con-
nected.

Proof In [12], χ is constructed via two USC functions, φ and ψ, which have the
same zero-dimensional domain X. First, φ is given by [12, Lemma 4.11] such that E
is homeomorphic to G

φ
0 . And then, in the proof of [12, Lemma 5.8], ψ is defined by

ψ(x) = limε→0+ inf Jε(x), where
Uε(x) = {y ∈ X ∶ d(x , y) < ε),
Jε(x) = {t ∈ [0, 1) ∶ Uε(x) × (t, 1) ∩Gφ

0

contains no non-empty clopen subset of G
φ
0 }.

Notice that Jε(x) becomes larger as ε decreases, so its infimum decreases.�us, ψ(x)
is well defined. Finally, χ is defined so that ⟨x , φ(x)⟩↦ ⟨x , χ(x)⟩ is a homeomor-
phism and χ ≤ φ − ψ [12, Lemma 4.9].

To prove that ∇. G
χ
0 is connected, we let A be any non-empty clopen subset of G

χ
0

and show that 0 ∈ π1(A). Define y = inf{φ(x) ∶ x ∈ π0(A)} and let ε > 0. Pick an x ∈
π0(A) with φ(x) < y + ε. Since {⟨x , φ(x)⟩ ∶ x ∈ π0(A)} is a clopen subset of G

φ
0 and

X is zero-dimensional, ψ(x) ≥ y. We have ⟨x , χ(x)⟩ ∈ A and

π1(⟨x , χ(x)⟩) = χ(x) ≤ φ(x) − ψ(x) < (y + ε) − y = ε.
Since ε was an arbitrary positive number, this shows that 0 ∈ π1(A).

We will now construct α. Since χ is Lelek, X is perfect, so we can assume X is
dense in C. Now χ extends to a Lelek function χ ∶ C→ [0, 1] such that G

χ
0 is dense

in G
χ
0 [12, Lemma 4.8]. In particular, ∇Lχ

0 is a Lelek fan. By [5, 6], the Lelek fan is

unique, so there is a homeomorphism Ξ ∶ ∇Lχ
0 → ∇L

η
0 (recall η from Section 2). We

observe that Ξ(∇. G χ
0) = ∇. Gη

0 ≃ Ec ∪ {∞}. So there is a homeomorphism γ ∶ ∇. G
χ
0 →

Ec ∪ {∞}. We know there is also a homeomorphism β ∶ E → ∇G χ
0 . Let α = γ ○ β, and

notice that α(E) ∪ {∞} = γ(∇. G χ
0) is connected. ∎
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Corollary 3.2 If Y is a complete space containing E, then there is a complete cohesive
almost zero-dimensional space E′ such that E ⊂ E′ ⊂ Y.

Proof Let α ∶ E ↪ Ec be given by �eorem 3.1. Since Y and Ec are both complete,
Lavrentiev’s �eorem [17, �eorem 4.3.21] says α extends to a homeomorphism
between Gδ-sets E′ and A such that E ⊂ E′ ⊂ Y and α(E) ⊂ A ⊂ Ec. Since α(E)
is dense in Ec and α(E) ∪ {∞} is connected, A∪ {∞} is connected. So E′ is
cohesive. ∎

�eorem 3.3 Every cohesive almost zero-dimensional subset of C ×R is nowhere
dense.

Proof Cohesion is open-hereditary [12, Remark 5.2]. By self-similarity of C ×R,
it therefore suffices to show there is no dense cohesive almost zero-dimensional
subspace of C ×R. Suppose on the contrary that E is such a space. By Corollary 3.2,
there is a complete cohesive almost zero-dimensional X ⊂ C ×R such that E ⊂ X.
�en X is a dense Gδ-subset of C ×R, so by [4, 25], there exists c ∈ C such that

X ∩ ({c} ×R) = {c} ×R. Let x = ⟨c, r⟩ ∈ X. We obtain a contradiction by showing
that X is zero-dimensional at x. Let V × (a, b) be any regular open subset of C ×R
that contains x. �ere exist an r1 ∈ (a, r) and an r2 ∈ (r, b) such that x1 = ⟨c, r1⟩ and
x2 = ⟨c, r2⟩ are in X. Since X is totally disconnected, there are X-clopen sets W1 and
W2 such that x1 ∈W1, x2 ∈W2, and x ∉W1 ∪W2. LetU1 ,U2 ⊂ V beC-clopen sets such
that x i ∈ (U i × {r i}) ∩ X ⊂Wi for each i ∈ {1, 2}. �en [(U1 ∩U2) × [r1 , r2]/(W1 ∪
W2)] ∩ X is an X-clopen subset of V × (a, b), which contains x. �is shows that X is
zero-dimensional at x. ∎

�eorem 3.3 shows that a certain continuous one-to-one image of Ec is totally
disconnected but not almost zero-dimensional. Define

f ∶ Ec Ð→ ({0} ∪ {1/n ∶ n = 1, 2, 3, . . .})ω × [0, 1]
by f (x) = ⟨x , 1+sin ∥x∥

2
⟩. LetY = f (Ec). Clearly, f is one-to-one and continuous, andY

is totally disconnected.�e exampleY is essentially the same as [29, Example X2], and
therefore, by [29, Propositions 3 and 5], Y is dense in C × [0, 1] and∇Y is connected.
�us, Y is cohesive. By �eorem 3.3, Y is not almost zero-dimensional. Both this
example and the space τ constructed in Section 5 show that �eorem 3.3 does not
extend to totally disconnected spaces.

4 σC-sets and Rim-type

Remark 4.1 If x ∈ Ao ⊂ X with ∂A a C-set in X , then there is a clopen set C with
x ∈ C and C ∩ ∂A = ∅, and hence C ∩ Ao = C ∩ A is also clopen. Consequently, rim-
C is equivalent to zero-dimensional.

Lemma 4.2 For every two disjoint C-sets in a space, there is a clopen set containing
one and missing the other.
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Proof �is is identical to the proof of [16, Lemma 1.2.6]. ∎

�eorem 4.3 Let A be a subset of an almost zero-dimensional space X. If there is a
σC-set B with ∂A ⊂ B ⊂ A, then A is a C-set.

Proof Suppose B = ⋃{B i ∶ i < ω} where each B i is a C-set, and ∂A ⊂ B ⊂ A. To
prove A is a C-set, it suffices to show that for every x ∈ X/A, there is an X-clopen
set C such that x ∈ C ⊂ X/A.

Let x ∈ X/A. By the Lindelöf property and almost zero-dimensionality, it is pos-
sible to write the open set X/A as the union of countably many C-sets in X whose
interiors cover X/A. �e property of being a C-set is closed under finite unions, so
there is an increasing sequence of C-sets D0 ⊂ D1 ⊂ . . . with x ∈ D0 and

⋃{D i ∶ i < ω} = ⋃{Do
i ∶ i < ω} = X/A.

By Lemma 4.2, for each i < ω there is an X-clopen set C i such that D i ⊂ C i ⊂ X/B i .
Let C = ⋂{C i ∶ i < ω}/Ao. Clearly, C is closed, x ∈ C, and

C ⊂ X/(Ao ∪ B) = X/A.
Further, if y ∈ C , then there exists j < ω such that y ∈ Do

j . �e open set Do
j ∩⋂{C i ∶

i < j} witnesses that y ∈ Co.�is shows C is open and thus clopen. ∎

�eorem 4.4 In an almost zero-dimensional space, every closed σC-set is a C-set.

Proof Given a closed σC-set A, apply�eorem 4.3 with B = A. ∎

With Remark 4.1 we get the following corollary.

Corollary 4.5 Every rim-σC almost zero-dimensional space is zero-dimensional.

Since compacta are C-sets in totally disconnected spaces, we also have the
following corollary.

Corollary 4.6 Every almost zero-dimensional space that is rim-σ-compact or rational
is zero-dimensional.

A space is called nowhere rim-σC (nowhere rim-σ-compact, resp., nowhere ratio-
nal) if no point has a neighborhood basis consisting of sets that have boundaries that
are σC-sets (σ-compact, resp., countable).With�eorem 4.4 and Remark 4.1, we also
find the following corollary.

Corollary 4.7 Cohesive almost zero-dimensional spaces are nowhere rim-σC and
hence nowhere rim-σ-compact and nowhere rational.

�us, there are no rim-σ-compact or rational connected spaces Y with a point p
such that Y/{p} is almost zero-dimensional, using Proposition 1.1.
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�eorem 4.8 If X almost zero-dimensional, Y = X ∪ {p} is connected, and K ⊂ X is
σ-compact, then Y/K is connected.

Proof Suppose X is almost zero-dimensional, Y is connected, and K ⊂ X is σ-
compact. Striving for a contradiction, suppose Y/K is not connected. �en Y/K is
the union of two non-empty relatively closed subsets A and B such that A∩ B = ∅.
We can assume that p ∈ B. �e closures of A and B in the open set Y/(A∩ B) are
disjoint, so they are contained in disjoint Y-open sets U and V. Note that ∂U in
Y is contained in K and is, therefore, σ-compact and hence a σC-set in the totally
disconnected space X. By �eorem 4.4, ∂A is a C-set in X. So by Remark 4.1, U
contains a nonempty clopen subsetC ofX. Note thatX is open inY andU is contained
in theY-closed set Y/B, soC is also clopen inY.�is violates the assumption thatY is
connected. ∎

Since E ∪ {∞} and Ec ∪ {∞} are connected we have the following corollary.

Corollary 4.9 Bounded neighborhoods in E and Ec do not have σ-compact bound-
aries.

Combining�eorem 4.8 with Proposition 1.1 we find the following theorem.

�eorem 4.10 If X is cohesive and almost zero-dimensional and K ⊂ X is σ-compact,
then X/K is cohesive.

For the spaces E, Ec, and E
ω
c there is a stronger result: in these spaces σ-compacta

are negligible; see [11, 13, 23].
A connected space X is σ-connected if X cannot be written as the union of ω-many

pairwise disjoint non-empty closed subsets. Note that the Sierpiński �eorem [17,
�eorem 6.1.27] states that every continuum is σ-connected. Lelek [26, P4] asked
whether every connected space with a dispersion point is σ-connected. Duda [15,
Example 5] answered this question in the negative.

�eorem 4.11 If a space X contains an open almost zero-dimensional subspace O with
O /= ∅ and X/O /= ∅, then X is not σ-connected.

Proof We can assume thatX is connected. SinceO is almost zero-dimensional and
open, we can find for every x ∈ O , a C-set Ax inO that is closed in X and with x ∈ Ao

x .
Select a countable subcovering {B i ∶ i < ω} of {Ax ∶ x ∈ O}. Since the union of two
C-sets is a C-set, we can arrange that B i ⊂ B i+1 for each i < ω. Also, we can assume
that B0 = ∅. Since B i is a C-set in O , we can find an O-clopen covering Ci of O/B i .
We can assume that Ci = {C i j ∶ j < ω} is countable. Moreover, by clopenness we can
arrange thatCi is a disjoint collection. Consider the countable closed disjoint covering

F = ({X/O} ∪ {C i j ∩ B i+1 ∶ i , j < ω})/{∅}
of X. If F is finite, then O is closed and hence clopen, violating the connectedness of
X.�us, X is not σ-connected. ∎
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Since every cohesive almost zero-dimensional space has a one-point connecti-
fication by Proposition 1.1 it produces an example in answer to Lelek’s question.
�ese examples are explosion point spaces rather than just dispersion point spaces.
In particular, we have that E ∪ {∞} and Ec ∪ {∞} are counterexamples. Note that
Ec ∪ {∞} is complete, which is optimal, because σ-compact dispersion point spaces
cannot exist.

5 A Rim-discrete Space with an Explosion Point

Let C,∇ and∇. be as defined in Section 2. We will construct a function τ ∶ P → (0, 1)
with domain P ⊂ C such that:

(1) τ is a dense subset of C × (0, 1);
(2) ∇. τ is connected;
(3) ∇. τ is rim-discrete.

Here, we identify a function like τ with its graph in the product topology. Clearly,
τ will be totally disconnected. Note that τ cannot be almost zero-dimensional by (2),
(3), and Corollary 4.6 or (1), (2), and�eorem 3.3.

5.1 Construction of Z

Webegin by constructing a rim-discrete connectible set Z ⊂ C ×R similar toY in [30,
Example 1].

Let E be the set of endpoints of connected components of R/C. For each σ ∈ 2<ω ,
let n = dom(σ) and define

B(σ) = [ n−1∑
k=0

2σ(k)
3k+1

,
n−1

∑
k=0

2σ(k)
3k+1

+
1

3n
] ∩ C.

Here, B(∅) = [0, 1] ∩ C = C.�e set of all B(σ)’s is the canonical clopen basis for C.
Suppose σ ∈ 2<ω , Q is a countable dense subset of B(σ)/E, and a and b are real

numbers with a < b. Fix an enumeration {qm ∶ m < ω} for Q, and define a function

f = f⟨Q ,σ ,a ,b⟩ ∶ B(σ)Ð→ [a, b]
by the formula

f (c) = a + (b − a) ⋅∑{2−m−1 ∶ m < ω and qm < c}.
Note that:

∎ f is well defined and non-decreasing;
∎ f ↾ B(σ)/E is one-to-one;
∎ f has the same value at consecutive elements of E;
∎ Q is the set of discontinuities of f ; and
∎ the discontinuity at qm is caused by a jump of height (b − a) ⋅ 2−m−1.
Let

D = D⟨Q ,σ ,a ,b⟩ = f ∪⋃{{qm} × [ f (qm), f (qm) + (b − a) ⋅ 2−m−1] ∶ m < ω}.

https://doi.org/10.4153/S0008439520000545 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000545


On cohesive almost zero-dimensional spaces 437

�us, D is equal to (the graph of) f together with vertical arcs corresponding to the
jumps in f. Note that π1(D) = [a, b] and D is compact.

Let {Qn
i ∶ n, i < ω} be a collection of pairwise disjoint countable dense subsets of

C/E. As in [30, Example 1], it is possible to recursively define a sequence R0 ,R1 , . . .
of finite partial tilings of C ×R so that for each n < ω:
(i) Rn consists of rectangles Rn

i = B(σ n
i ) × [ani , bni ], where i < ∣Rn ∣ < ω, σ n

i ∈ 2
n ,

and 0 < bni − a
n
i ≤

1
n+1

for all i < ∣Rn ∣;
(ii) the sets

Dn
i = D⟨Qn

i
∩B(σ n

i
),σ n

i
,an

i
,bn

i
⟩

are such that Dn
i ∩ D

k
j = ∅ whenever k < n or i ≠ j;

(iii) for every arc I ⊂ C × [−n, n + 1]/⋃{Dk
i ∶ k ≤ n and i < ∣Rk ∣}, there are integers

i < ∣Rn ∣, k ≤ n, and j < ∣Rk ∣ such that I ⊂ Rn
i ∪ R

k
j and d(I,Dk

j ) ≤ 1
3n
, where d

is the standard metric on R2.

LetMn
i be the (discrete) set of midpoints of the vertical arcs in Dn

i .�e key difference
between the sets Mn

i and the Tn
i (M) defined in [30, Example 1] is that here we have

guaranteed π0(Mn
i ) ∩ π0(Mk

j ) ⊂ Qn
i ∩ Q

k
j = ∅ whenever n ≠ k or i ≠ j, whereas a

vertical line could intersect multiple Tn
i (M)’s.

Let {Dn ∶ n < ω} and {Mn ∶ n < ω} be the sets of all Dn
i ’s and Mn

i ’s, respectively.
Properties (i) through (iii) guarantee the set Z = C ×R/⋃{Dn/Mn ∶ n < ω} is rim-
discrete; see [30, Claims 1 and 3]. Essentially, τ will be a subset of Z containing all
Mn ’s, but will be vertically compressed from C ×R into C × (0, 1).

5.2 Construction of g

We now construct a connected function g (i.e., a function with a connected graph)
on which τ will be based.

Let ξ ∶ R→ (0, 1) be a homeomorphism, e.g. ξ = 1
2
+ 1

π
arctan. Let ϕ ∶ [0, 1]→[0, 1] be theCantor function [14], and putΦ = ϕ × ξ.�en eachΦ(Dn) is an arcwhich

resembles the graph of ϕ reflected across the diagonal x = y. See Figure 3.
Note that ϕ(E) is the set of dyadic rationals in [0, 1]. Let

g = (ϕ(E) × {0}) ∪⋃{Φ(Mn) ∶ n < ω}.
Since π0 ↾ Mn is one-to-one and the π0(Mn)’s are pairwise disjoint, g is a function.
Also,

dom(g) = ϕ(E) ∪⋃{π0(Φ(Mn)) ∶ n < ω}
is countable and ran(g) ⊂ [0, 1). Our goal is to extend g to a connected function g ∶[0, 1]→ (−1, 1).�is will be accomplishedwith the help of two claims. By a continuum,
we shall mean a compact connected metrizable space with more than one point.

Claim 5.1 Fix n < ω and put D = Dn and M = Mn . Let A ⊂ [0, 1] have a dense
complement and let K ⊂ Φ(D) ∪ (A× (−1, 1)) be a continuum. If ∣π0(K)∣ > 1, then
K ∩Φ(M) ≠ ∅.
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Figure 3: Graph of ϕ (blue) and its “inverse” (red).

Proof Let a and b be two points in K such that π0(a) < π0(b). Since π0(K) is an
interval contained in the union of the zero-dimensional setA and the interval π0(D),
we have π0(K) ⊂ π0(D). Noting that π0(M) is dense in π0(D), we find a p ∈ Φ(M)
such that π0(p) ∈ (π0(a), π0(b)). If p ∉ K, then we can find c, d ∈ [0, 1]/A such that
U = [c, d] × {π1(p)} is disjoint from K and π0(a) < c < π0(p) < d < π0(b). �en
U ∪ ({c} × (π1(p), 1)) ∪ ({d} × (−1, π1(p)) separates K with a and b on opposite
sides.�is contradicts our assumption that K is connected.�erefore, p ∈ K. ∎

Claim 5.2 Let A ⊂ [0, 1] be any countable set, and let K ⊂ ⋃{Φ(Dn) ∶ n < ω} ∪ (A×(−1, 1)) be a continuum. If ∣π0(K)∣ > 1, then K ∩Φ(Mn) ≠ ∅ for some n < ω.

Proof For each x ∈ [0, 1], letKx = K ∩ ({x} × (−1, 1)). LetK be the decomposition
of K consisting of every connected component of every non-empty Kx . Applying [17,
Lemma 6.2.21] to the perfect map π0 ↾ K, we see thatK is upper semi-continuous. If
q ∶ K → K′ is the associated (closed) quotient mapping, then K′ is also a continuum.
Consider the countable covering V of K′ consisting of the compacta q(Kx) for x ∈ A
and q(Φ(Dn) ∩ K) for all n < ω. By the Baire Category�eorem, there is an element
of V that has nonempty interior in K′ and hence contains a (non-degenerate) con-
tinuum C′ by [17,�eorem 6.1.25]. Each q(Kx) is zero-dimensional by [17,�eorem
6.2.24], so C′ ⊂ q(Φ(Dn) ∩ K) for some n < ω. Since q is a closedmonotonemap, the
pre-image C = q−1(C′) is a continuum by [17,�eorem 6.1.29]. Note that ∣π0(C)∣ > 1,
because otherwise C′ would be a subset of some zero-dimensional q(Kx). If x ∉ A,
then each connected component ofKx is contained in a singleΦ(D i) by the Sierpiński
�eorem [17, �eorem 6.1.27], because the Φ(D i)’s are disjoint. �us, q(Φ(Dn) ∩
Kx) is disjoint from q(Φ(D i) ∩ Kx) for each i /= n. So C ⊂ (A× (−1, 1)) ∪Φ(Dn).
By Claim 5.1, we have that C ∩Φ(Mn) ≠ ∅. ∎
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Now let {xα ∶ α < c} enumerate the set [0, 1]/dom(g). Let {Kγ ∶ γ < c} be the set
of continua in [0, 1] × (−1, 1) such that:

∎ Kγ is not contained in any vertical line;
∎ Kγ ∩Φ(Mn) = ∅ for all n < ω.
For each α < c, let lα = ({xα} × (−1, 1))/⋃{Φ(Dn) ∶ n < ω}. By transfinite induction,
we define for each α < c an ordinal

γ(α) =min{γ < c ∶ lα ∩ Kγ ≠ ∅ and γ ≠ γ(β) for any β < α}.
We verify that the one-to one function γ ∶ c→ c is well defined. Let α < c, so xα ∉
dom(g) and xα ∉ π0(Φ(Mn)) for each n. Since Mn contains the midpoints of all
vertical intervals in Dn , we have that {xα} × (−1, 1) contains at most one point of
Φ(Dn). Let A be the countable set

⋃
n<ω

π1({xα} × (−1, 1)) ∩Φ(Dn)) ∪Φ(Mn)).
If a ∈ (−1, 1)/A, thenK = [0, 1] × {a}misses every Φ(Mn), soK = Kβ for some β < c.
Also, we have lα ∩ Kβ /= ∅. Since ∣(−1, 1)/A∣ = c, we have that γ is well defined.

For every α < c, choose a yα ∈ π1(lα ∩ Kγ(α)). Define
g = g ∪ {⟨xα , yα⟩ ∶ α < c}

and note that g ∶ [0, 1]→ (−1, 1) is a function. To prove that the graph of g is
connected, let K be a continuum in [0, 1] × (−1, 1) such that ∣π0(K)∣ > 1. We show
thatK ∩ g /= ∅.�e setK intersects someΦ(Mn), which is a subset of g, orK = Kα for
some α < c. By the contraposition ofClaim 5.2, the projectionA = π0(Kα/⋃{Φ(Dn) ∶
n < ω}) is uncountable. A is a continuous image of a Polish space, so, in fact, it has
cardinality c by [21, Corollary 11.20]. Since [0, 1]/{xβ ∶ β < c} = dom(g) is countable,
this means B = {β < c ∶ lβ ∩ Kα ≠ ∅} has cardinality c. Assuming that Kα ∩ g = ∅ we
find that α cannot be in the range of g. If β ∈ B, then lβ ∩ Kα /= ∅, so by the definition
of γ, we have γ(β) < α.�us, γ ↾ B is a one-to-one function from B into {δ ∶ δ < α},
and we have the desired contradiction. So (the graph of) g intersects each continuum
in [0, 1] × (−1, 1) not lyingwholly in a vertical line. By [22,�eorem 2], g is connected.

5.3 Definition and Properties of τ

Observe that g ○ ϕ ⊂ (C × (−1, 1)) ∪ ([0, 1] × {0}). Let
τ = (g ○ ϕ) ∩ (0, 1)2 .

�e domain of τ is the set P = π0(τ) ⊂ C.
Let X = ∇(g ∩ ((0, 1) × [0, 1))). If A is any clopen subset of X with ⟨ 1

2
, 0⟩ ∈ A,

then A = X. Otherwise, ∇−1(X/A) would be a non-empty proper clopen subset of
g, contrary to the fact that g is connected. �erefore, X is connected. Note that
∇. τ ≃ X, so ∇. τ is also connected. Finally, let Ξ = idC ×ξ. By [30, Claims 3 and 4]
and the construction of Z, ∇. Ξ(Z) is rim-discrete. We have ∇. τ ⊂ ∇. Ξ(Z), so ∇. τ is
rim-discrete.
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5.4 Two Questions

A continuum is Suslinian if it contains no uncountable collection of pairwise disjoint
(non-degenerate) subcontinua [28]. �e class of Suslinian continua is slightly larger
than the class of rational continua.

Question 5.3 Can Ec be embedded into a Suslinian continuum?

Question 5.4 Can Ec be densely embedded into the plane R2?

Added July 2020

E. D. Tymchatyn informed the authors that Question 5.3 has a positive answer.�ere
is, in fact, a Suslinian dendroid that homeomorphically contains the set of endpoints
of the Lelek fan.�e example is due to Tymchatyn and P. Minc.
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https://doi.org/10.1016/j.topol.2012.05.006

[14] O. Dovgoshey, O. Martio, V. Ryazanov, and M. Vuorinen,�e cantor function. Exp. Math.
24(2006), 1–37. https://doi.org/10.1016/j.exmath.2005.05.002

[15] R. Duda, On biconnected sets with dispersion points. Rozprawy Mat. 37(1964), 1–59.
[16] R. Engelking, Dimension theory. In: North-Holland mathematical library, Vol. 19, North-Holland,

Amsterdam, Netherlands, 1978.
[17] R. Engelking, General topology. In: Sigma series in pure mathematics, Vol. 6, 2nd ed., Heldermann,

Berlin, Germany, 1989.
[18] P. Erdős,�e dimension of the rational points in Hilbert space. Ann. Math. 41(1940), 734–736.

https://doi.org/10.2307/1968851

https://doi.org/10.4153/S0008439520000545 Published online by Cambridge University Press

https://doi.org/10.1016/j.topol.2006.09.004
https://doi.org/10.1007/s40315-016-0169-8
https://mathoverflow.net/questions/324121
https://doi.org/10.1007/BF01458204
https://doi.org/10.2307/2048305
https://doi.org/10.1090/S0002-9947-05-03863-8
https://doi.org/10.1017/S0013091504000823
https://doi.org/10.1007/s11856-011-0149-7
https://doi.org/10.1090/S0065-9266-10-00579-X
https://doi.org/10.1016/j.topol.2012.05.006
https://doi.org/10.1016/j.exmath.2005.05.002
https://doi.org/10.2307/1968851
https://doi.org/10.4153/S0008439520000545


On cohesive almost zero-dimensional spaces 441

[19] S. D. Iliadis, A note on compactifications of rim-scattered spaces. Topol. Proc. 5th Int. Meet.,
Lecce/Italy 1990, Suppl. Rend. Circ. Mat. Palermo, II. Ser. 29(1992) 425–433.

[20] S. D. Iliadis and E. D. Tymchatyn, Compactifications with minimum rim-types of rational spaces.
Houston J. Math. 17(1991) 311–323.

[21] T. Jech, Set theory. �e 3rd millennium ed., revised and expanded, Springer Monographs in
Mathematics, Springer-Verlag, Berlin, Germany, 2003.

[22] F. B. Jones, Connected and disconnected plane sets and the functional equation f (x) + f (y) =
f (x + y). Bull. Am. Math. Soc. 48(1942), 115–120.
https://doi.org/10.1090/S0002-9904-1942-07615-4

[23] K. Kawamura, L. G. Oversteegen, and E. D. Tymchatyn, On homogeneous totally disconnected
1-dimensional spaces. Fund. Math. 150(1996), 97–112.

[24] K. Kuratowski, Topology. Vol. II, Academic Press, New York, NY, 1968.
[25] K. Kuratowski and S. Ulam, Quelques propriétés topologiques du produit combinatiore. Fund. Math.

19(1932), 247–251.
[26] A. Lelek, Ensemblesσ-connexes et le théorème de Gehman. Fund. Math. 47(1959), 265–276.

https://doi.org/10.4064/fm-47-3-265-276

[27] A. Lelek, On plane dendroids and their end points in the classical sense. Fund. Math. 49(1960/1961),
301–319. https://doi.org/10.4064/fm-49-3-301-319

[28] A. Lelek, On the topology of curves II. Fund. Math. 70(1971), 131–138.
https://doi.org/10.4064/fm-70-2-131-138

[29] D. S. Lipham,Widely-connected sets in the bucket-handle continuum. Fund. Math. 240(2018),
161–174. https://doi.org/10.4064/fm378-3-2017

[30] D. S. Lipham, Dispersion points and rational curves. Proc. Am. Math. Soc. 148(2020), 2671–2682.
https://doi.org/10.1909/proc/14920

[31] D. S. Lipham, A note on the topology of escaping endpoints. Ergodic �eory Dyn. Syst. (2020), to
appear.

[32] T. Nishiura and E. D. Tymchatyn,Hereditarily locally connected spaces.Houston J. Math. 2(1976),
581–599.

[33] L. G. Oversteegen and E. D. Tymchatyn, On the dimension of certain totally disconnected spaces.
Proc. Am. Math. Soc. 122(1994), 885–891. https://doi.org/10.2307/2160768

[34] J. H. Roberts,�e rational points in Hilbert space. Duke Math. J. 23(1956), 488–491.
[35] E. D. Tymchatyn, Compactifications of rational spaces.Houston J. Math. 3(1977), 131–139.

PO Box 1180, Crested Butte, CO 81224, USA

e-mail: jan.dijkstra1@gmail.com

Department of Mathematics, Auburn University at Montgomery, Montgomery, AL 36117,

USA

e-mail: dsl0003@auburn.edu dlipham@aum.edu

https://doi.org/10.4153/S0008439520000545 Published online by Cambridge University Press

https://doi.org/10.1090/S0002-9904-1942-07615-4
https://doi.org/10.4064/fm-47-3-265-276
https://doi.org/10.4064/fm-49-3-301-319
https://doi.org/10.4064/fm-70-2-131-138
https://doi.org/10.4064/fm378-3-2017
https://doi.org/10.1909/proc/14920
https://doi.org/10.2307/2160768
mailto:jan.dijkstra1@gmail.com
mailto:dsl0003@auburn.edu
mailto:dlipham@aum.edu
https://doi.org/10.4153/S0008439520000545

	1 Introduction
	2 Preliminaries
	3 Embedding into Fans and Complete Erdős Space
	4 σC-sets and Rim-type
	5 A Rim-discrete Space with an Explosion Point
	5.1 Construction of Z
	5.2 Construction of g
	5.3 Definition and Properties of τ
	5.4 Two Questions
	 Added July 2020


