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On cohesive almost zero-dimensional
spaces

Jan J. Dijkstra and David S. Lipham

Abstract. We investigate C-sets in almost zero-dimensional spaces, showing that closed gC-sets are
C-sets. As corollaries, we prove that every rim-o-compact almost zero-dimensional space is zero-
dimensional and that each cohesive almost zero-dimensional space is nowhere rational. To show that
these results are sharp, we construct a rim-discrete connected set with an explosion point. We also
show that every cohesive almost zero-dimensional subspace of (Cantor set) x R is nowhere dense.

1 Introduction

All spaces under consideration are separable and metrizable.

A subset A of a topological space X is called a C-set in X if A can be written as an
intersection of clopen subsets of X. A 0C-set is a countable union of C-sets. A space X
is said to be almost zero-dimensional provided every point x € X has a neighborhood
basis consisting of C-sets in X.

A space X is cohesive if every point x € X has a neighborhood that contains no non-
empty clopen subset of X. Clearly, every cohesive space is nowhere zero-dimensional.
The converse is false, even for almost zero-dimensional spaces [10]. Spaces that are
both almost zero-dimensional and cohesive include:

Erdés space € = {x €l*:x; eQforeachi< w} and
complete Erdés space €. = {x elPix;e{0yuf{l/n:n=12.3,..}
for each i < w},

where £2 stands for the Hilbert space of square summable sequences of real numbers.
Other examples include the homeomorphism groups of the Sierpinski carpet and
Menger universal curve [8, 33], and various endpoint sets in complex dynamics [2, 31].

Almost zero-dimensionality of € and &, follows from the fact that each closed
e-ball in either space is closed in the zero-dimensional topology inherited from Q“,
which is weaker than the ¢*-norm topology. The spaces are cohesive, because all
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non-empty clopen subsets of € and €& are unbounded in the /*-norm as proved by
Erdds [18]. Thus, if we add a point oo to > whose neighborhoods are the complements
of bounded sets, then we have that €u {oo} and .U {co} are connected. The
following result is Proposition 5.4 in Dijkstra and van Mill [12].

Proposition 1.1  Every almost zero-dimensional cohesive space has a one-point con-
nectification. If a space has a one-point connectification, then it is cohesive.

Actually, open subsets of non-singleton connected spaces are cohesive, because
cohesion is open hereditary [12, Remark 5.2]. More information on cohesion and one-
point connectifications can be found in [1].

In Section 3, we will show that every cohesive almost zero-dimensional space E is
homeomorphic to a dense subset E’ ¢ & such that E’ U {co} is connected. The result
is largely a consequence of earlier work by Dijkstra and van Mill [12, Chapters 4 and
5]. We apply the embedding to show that every cohesive almost zero-dimensional
subspace of (Cantor set) xR is nowhere dense, and there is a continuous one-to-
one image of complete Erdés space that is totally disconnected but not almost zero-
dimensional.

In Section 4, we examine C-sets and the rim-type of almost zero-dimensional
spaces. We say that X is rational at x € X if x has a neighborhood basis of open sets
with countable boundaries. In [32, §6, Example, p. 596], Nishiura and Tymchatyn
implicitly proved that D¢, the set of endpoints of LeleK’s fan [27, §9], is not rational at
any of its points. Results in [5, 6, 23] later established that D¢ ~ €&, so & is nowhere
rational. Working in ¢2, Banakh [3] recently demonstrated that each bounded open
subset of € has an uncountable boundary. We generalize these results by proving that
each cohesive almost zero-dimensional space is nowhere rational. Moreover, every
rim-o-compact almost zero-dimensional space is zero-dimensional. We also find that
in almost zero-dimensional spaces cohesion is preserved if we delete o-compacta.
These results follow from Theorem 4.4, which states that closed oC-sets in almost
zero-dimensional spaces are C-sets.

In Section 5, we will construct a rim-discrete connected space 7 with an explosion
point. The example is partially based on [30, Example 1], which was constructed
by the second author to answer a question from the Houston Problem Book [7].
The pulverized complement of the explosion point will be a rim-discrete totally
disconnected set that is not zero-dimensional, in contrast with Section 4 results.
Additionally, the rim-discrete property guarantees the entire connected set has a
rational compactification [19, 20, 35]. We therefore solve [7, Problem 79] in the context
of explosion point spaces. Results from Section 4 indicate that this new solution is
optimal.

In general, ZD == AZD == TD == HD, where we used abbreviations for
zero-dimensional, almost zero-dimensional, totally disconnected, and hereditar-
ily disconnected. In certain contexts, these implications can be reversed. For
example,

(1) (2) (3)
HD =— TD == AZD — 7D
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for subsets of hereditarily locally connected continua [24, §50 IV Theorem 9]. As
mentioned above, the implication (3) is valid in the larger class of subsets of rational
continua. But [30, Example 1] and the example 7 in Section 5 show that (1) and (2) are
generally false in that context.

2 Preliminaries

A space X is hereditarily disconnected if every connected subset of X contains at most
one point. A space X is totally disconnected if every singleton in X is a C-set. A point
x in a connected space X is:

« adispersion point if X\{x} is hereditarily disconnected;
« an explosion point if X\{x} is totally disconnected.

If P is a topological property, then a space X is rim-P provided X has a basis of
open sets whose boundaries have the property P: Rational = rim-countable. Zero-
dimensional = rim-empty.

For A a subset of a space X, we let A°, A, and dA denote the interior, the closure,
and the boundary of A in X, respectively.

Throughout the paper, € will denote the middle-third Cantor set in [0,1]. The
coordinate projections in R? are denoted 7y and 735 710 ({x, y)) = x and m; ({x, y)) =
y. We define v : [0,1]* - [0,1]* by (x, y) = (xy + 3(1- y), y). The image of V is
the region enclosed by the triangle with vertices (0,1), (3,0), and (1,1). Note that
Vv 1 [0,1] x (0,1] is a homeomorphism and V™'((3,0)) = [0,1] x {0}. For each X ¢

¢ x (0,1] we put
ex-soo[bo]).

The Cantor fan is the set V(€ x [0,1]) = V(& x (0,1]), see Figure 1.
Given X c €, afunction ¢ : X — [0,1] is upper semi-continuous (abbreviated USC)
if 97'[0, t) is open in X for every ¢ € [0,1]. Define

Gy = {{x, 9(x)) : (x) > 0},
LY = {{x,t): 0<t < o(x)}.

We say ¢ is a Lelek function if ¢ is USC and G is dense in L§. Lelek functions with
domain € exist, and if ¢ is a Lelek function with domain &, then VLg is a Lelek fan;
see Figure 2. For example, let | | be the #2-norm and identify ¢ with the Cantor set
({0}u{l/n:n=1,2,3,...})°. Define n(x) =1/(1+ |x|), where 1/oo = 0. Then &
is homeomorphic to G¢, 77 : € — [0,1] is a Lelek function, and VL{! is a Lelek fan; see
[34] and the proof of [9, Theorem 3].

3 Embedding into Fans and Complete Erdds Space

Let E be any non-empty cohesive almost zero-dimensional space. Dijkstra and van
Mill proved the following: There is a Lelek function y: X — [0,1) such that E is
homeomorphic to G{, and hence E admits a dense embedding in & [12, Proposition
5.10]. We observe the following theorem.
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Figure I: Cantor fan Figure 2: Lelek fan

Theorem 3.1  For the Lelek function y constructed in [12], VGé‘ is connected. Thus,
there is a dense homeomorphic embedding o : E — € such that a(E) U {oo} is con-
nected.

Proof In [12], y is constructed via two USC functions, ¢ and y, which have the
same zero-dimensional domain X. First, ¢ is given by [12, Lemma 4.11] such that E
is homeomorphic to GJ. And then, in the proof of [12, Lemma 5.8], y is defined by
w(x) = lim,_ ¢+ inf J.(x), where

Ue(x) = {y e X :d(x,y) <),
Jo(x) = {t €[0,1) : Up(x) x (£:1) N G

contains no non-empty clopen subset of G }

Notice that J.(x) becomes larger as ¢ decreases, so its infimum decreases. Thus, y(x)
is well defined. Finally, y is defined so that (x, ¢(x)) ~ (x, y(x)) is a homeomor-
phism and y < ¢ — y [12, Lemma 4.9].

To prove that VG is connected, we let A be any non-empty clopen subset of G
and show that 0 € 71;(A). Define y = inf{¢(x) : x € my(A)} and let ¢ > 0. Pick an x ¢
mo(A) with ¢(x) < y + &. Since {(x, ¢(x)) : x € 1o (A)} is a clopen subset of G§ and
X is zero-dimensional, y(x) > y. We have (x, y(x)) € A and

m (% x(6)) = x(x) <o(x) —w(x) < (y+e) -y =«

Since & was an arbitrary positive number, this shows that 0 € 7;(A).

We will now construct a. Since y is Lelek, X is perfect, so we can assume X is
dense in ¢. Now y extends to a Lelek function ¥ : € — [0,1] such that G/ is dense
in Gg [12, Lemma 4.8]. In particular, VLf)‘ is a Lelek fan. By [5, 6], the Lelek fan is
unique, so there is a homeomorphism & : VL} — VL[ (recall # from Section 2). We
observe that £(VG}) = VGl = €, U {co}. So there is a homeomorphism y : VGF —
¢, U {oo}. We know there is also a homeomorphism 8 : E - VG}.Leta =y o ,8 and
notice that a(E) U {oo} = y(VG{) is connected. |
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Corollary 3.2 If Y is a complete space containing E, then there is a complete cohesive
almost zero-dimensional space E' such that Ec E' c Y.

Proof Leta:E < & be given by Theorem 3.1. Since Y and &, are both complete,
Lavrentiev’s Theorem [17, Theorem 4.3.21] says a extends to a homeomorphism
between Gs-sets E' and A such that Ec E' c Y and «(E) c A c €. Since a(E)
is dense in €. and «a(E)uU{oo} is connected, Au{oo} is connected. So E’ is
cohesive. |

Theorem 3.3  Every cohesive almost zero-dimensional subset of € x R is nowhere
dense.

Proof  Cohesion is open-hereditary [12, Remark 5.2]. By self-similarity of € x R,
it therefore suffices to show there is no dense cohesive almost zero-dimensional
subspace of € x R. Suppose on the contrary that E is such a space. By Corollary 3.2,
there is a complete cohesive almost zero-dimensional X c € x R such that E c X.
Then X is a dense Gs-subset of € xR, so by [4, 25], there exists ¢ € € such that
Xn({c} xR)={c} xR. Let x = (c,r) € X. We obtain a contradiction by showing
that X is zero-dimensional at x. Let V x (a, b) be any regular open subset of € x R
that contains x. There exist an r; € (a,r) and an r, € (r, b) such that x; = (¢, ;) and
x2 = (¢, 72) are in X. Since X is totally disconnected, there are X-clopen sets W; and
W, such that x; € Wy, x; € Wy, and x ¢ Wy u W, Let Uy, U,  V be €-clopen sets such
that x; € (U; x {r;}) n X c¢ W; for each i € {1,2}. Then [(U; n U,) x [r1, 2 ][\(Wy U
W,)] n X is an X-clopen subset of V x (a, b), which contains x. This shows that X is
zero-dimensional at x. ]

Theorem 3.3 shows that a certain continuous one-to-one image of & is totally
disconnected but not almost zero-dimensional. Define

fre— ({0u{l/n:n=1,23,...})" x[0,1]

by f(x) = (x, HS‘+HX”) Let Y = f(€&,.).Clearly, f is one-to-one and continuous, and Y
is totally disconnected. The example Y is essentially the same as [29, Example X,], and
therefore, by [29, Propositions 3 and 5], Y is dense in € x [0,1] and VY is connected.
Thus, Y is cohesive. By Theorem 3.3, Y is not almost zero-dimensional. Both this
example and the space 7 constructed in Section 5 show that Theorem 3.3 does not
extend to totally disconnected spaces.

4 oC-sets and Rim-type

Remark 4.1 1If x € A° ¢ X with 0A a C-set in )_( , then there is a clopen set C with
x € Cand Cn0dA = &, and hence Cn A° = Cn A is also clopen. Consequently, rim-
C is equivalent to zero-dimensional.

Lemma 4.2  For every two disjoint C-sets in a space, there is a clopen set containing
one and missing the other.
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Proof  This is identical to the proof of [16, Lemma 1.2.6]. [ ]

Theorem 4.3 Let A be a subset of an almost zero-dimensional space X. If there is a
oC-set Bwith 0A c B c A, then A is a C-set.

Proof  Suppose B=U{B;:i< w} where each B; is a C-set, and dAc B c A. To
prove A is a C-set, it suffices to show that for every x € X\A, there is an X-clopen
set C such that x € C c X\A.

Let x € X\A. By the Lindelof property and almost zero-dimensionality, it is pos-
sible to write the open set X\A as the union of countably many C-sets in X whose
interiors cover X\A. The property of being a C-set is closed under finite unions, so
there is an increasing sequence of C-sets Dy ¢ D, c ... with x € Dy and

U{Di:i<w}=U{D?:i<w}=X\A
By Lemma 4.2, for each i < w there is an X-clopen set C; such that D; c C; c X\B;.
Let C = N{C; : i < w}\A°. Clearly, Cis closed, x € C, and
Cc X\(A°uUB) = X\A.

Further, if y € C, then there exists j < w such that y € D?. The open set D} n N{C; :
i < j} witnesses that y € C°. This shows C is open and thus clopen. [ ]

Theorem 4.4  In an almost zero-dimensional space, every closed o C-set is a C-set.

Proof Given a closed 0C-set A, apply Theorem 4.3 with B = A. [ ]
With Remark 4.1 we get the following corollary.

Corollary 4.5  Every rim-oC almost zero-dimensional space is zero-dimensional.

Since compacta are C-sets in totally disconnected spaces, we also have the
following corollary.

Corollary 4.6  Every almost zero-dimensional space that is rim-o-compact or rational
is zero-dimensional.

A space is called nowhere rim-oC (nowhere rim-o-compact, resp., nowhere ratio-
nal) if no point has a neighborhood basis consisting of sets that have boundaries that
are 0C-sets (0-compact, resp., countable). With Theorem 4.4 and Remark 4.1, we also
find the following corollary.

Corollary 4.7  Cohesive almost zero-dimensional spaces are nowhere rim-cC and
hence nowhere rim-o-compact and nowhere rational.

Thus, there are no rim-o-compact or rational connected spaces Y with a point p
such that Y\{p} is almost zero-dimensional, using Proposition 1.1.
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Theorem 4.8  If X almost zero-dimensional, Y = X U {p} is connected, and K c X is
o-compact, then Y\K is connected.

Proof Suppose X is almost zero-dimensional, Y is connected, and K c X is o-
compact. Striving for a contradiction, suppose Y\K is not connected. Then Y\K is
the union of two non-empty relatively closed subsets A and B such that An B = &.
We can assume that p € B. The closures of A and B in the open set Y\(A n B) are
disjoint, so they are contained in disjoint Y-open sets U and V. Note that oU in
Y is contained in K and is, therefore, o-compact and hence a ¢C-set in the totally
disconnected space X. By Theorem 4.4, dA is a C-set in X. So by Remark 4.1, U
contains a nonempty clopen subset C of X. Note that X is open in Y and U is contained
in the Y-closed set Y\B, so Cis also clopen in Y. This violates the assumption that Y is
connected. |

Since €U {00} and €. U {oo} are connected we have the following corollary.

Corollary 4.9  Bounded neighborhoods in € and €. do not have o-compact bound-
aries.

Combining Theorem 4.8 with Proposition 1.1 we find the following theorem.

Theorem 4.10  If X is cohesive and almost zero-dimensional and K c X is o-compact,
then X\K is cohesive.

For the spaces &, €., and E? there is a stronger result: in these spaces o-compacta
are negligible; see [11, 13, 23].

A connected space X is o-connected if X cannot be written as the union of w-many
pairwise disjoint non-empty closed subsets. Note that the Sierpinski Theorem [17,
Theorem 6.1.27] states that every continuum is o-connected. Lelek [26, P4] asked
whether every connected space with a dispersion point is o-connected. Duda [15,
Example 5] answered this question in the negative.

Theorem 4.11  If a space X contains an open almost zero-dimensional subspace O with
O # @ and X\O # @, then X is not o-connected.

Proof = We can assume that X is connected. Since O is almost zero-dimensional and
open, we can find for every x € O, a C-set A, in O that is closed in X and with x € Af.
Select a countable subcovering {B; : i < w} of {A, : x € O}. Since the union of two
C-sets is a C-set, we can arrange that B; c B, for each i < w. Also, we can assume
that By = @. Since B; is a C-set in O, we can find an O-clopen covering C; of O\B,;.
We can assume that C; = {C;; : j < w} is countable. Moreover, by clopenness we can
arrange that C; is a disjoint collection. Consider the countable closed disjoint covering

F=({X\0} U{Ci; N Bis1 : i, j < w})\{2}

of X. If J is finite, then O is closed and hence clopen, violating the connectedness of
X. Thus, X is not o-connected. [}
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Since every cohesive almost zero-dimensional space has a one-point connecti-
fication by Proposition 1.1 it produces an example in answer to Lelek’s question.
These examples are explosion point spaces rather than just dispersion point spaces.
In particular, we have that € U {co} and €. U {0} are counterexamples. Note that
&, U {oo} is complete, which is optimal, because o-compact dispersion point spaces
cannot exist.

5 A Rim-discrete Space with an Explosion Point

Let €, V and V be as defined in Section 2. We will construct a function 7: P - (0, 1)
with domain P c € such that:

(1) tisadense subset of € x (0,1);
(2) Vris connected;
(3) Vrisrim-discrete.

Here, we identify a function like 7 with its graph in the product topology. Clearly,
7 will be totally disconnected. Note that T cannot be almost zero-dimensional by (2),
(3), and Corollary 4.6 or (1), (2), and Theorem 3.3.

5.1 Construction of Z

We begin by constructing a rim-discrete connectible set Z c € x R similar to Y in [30,
Example 1].

Let E be the set of endpoints of connected components of R\€. For each ¢ € 2<¢,
let n = dom(o) and define

“120(k) W20(k) 1
B(O’): Z 3k+1 ’Z 3k+1 +3_n nd.
k=0

Here, B(@) = [0,1] n € = €. The set of all B(¢)’s is the canonical clopen basis for €.
Suppose ¢ € 2<“, Q is a countable dense subset of B(¢)\E, and a and b are real
numbers with a < b. Fix an enumeration {g,, : m < w} for Q, and define a function

f =f(Q,o,a,b) :B(0) — [a,b]
by the formula
f(c)=a+(b-a)- {27 :m<wandq, <c}.

Note that:

m f is well defined and non-decreasing;

m f | B(0)\E is one-to-one;

m [ has the same value at consecutive elements of E;

m Q is the set of discontinuities of f; and

m the discontinuity at q,, is caused by a jump of height (b — a) - 27",

Let

D =D(q,0,a,b) = fuU{{am} x[f(qm), f(qm) + (b-a) '2_m_1] m<w}.
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Thus, D is equal to (the graph of) f together with vertical arcs corresponding to the
jumps in f. Note that 71;(D) = [a, b] and D is compact.

Let {QF : n,i < w} be a collection of pairwise disjoint countable dense subsets of
¢\E. As in [30, Example 1], it is possible to recursively define a sequence Rg, Ry, . ..
of finite partial tilings of € x R so that for each n < w:

(i) R, consists of rectangles R? = B(o]') x [a},b}], where i < |R,| < w, 0] € 2",
and 0 < b — af < - forall i < |R,|;
(ii) the sets

n
Di = D(qrnB(o),0m,am.b")

are such that D} n D;‘ = @ whenever k <nori# j

(iii) foreveryarcIc € x [-n,n+1]\U{D¥ : k < nand i < |Ry|}, there are integers
i <|Ru|, k < n,and j < |Rg| such that I c R¥ U R;‘ and d(I, Dj‘) < ., where d
is the standard metric on R?.

Let M! be the (discrete) set of midpoints of the vertical arcs in DY . The key difference

between the sets M and the T}"(M) defined in [30, Example 1] is that here we have

guaranteed 7o(M!) N ﬂo(M;‘) cQ'n Q;‘ = & whenever n # k or i # j, whereas a

vertical line could intersect multiple T} (M)’s.

Let {D, :n < w} and {M, : n < w} be the sets of all D!’s and M!"’s, respectively.
Properties (i) through (iii) guarantee the set Z = € x R\U{D,\M,, : n < w} is rim-
discrete; see [30, Claims 1 and 3]. Essentially, 7 will be a subset of Z containing all
M,’s, but will be vertically compressed from € x R into € x (0, 1).

5.2 Construction of g

We now construct a connected function g (i.e., a function with a connected graph)
on which 7 will be based.

Let £: R — (0,1) be a homeomorphism, e.g &= 1+ Larctan. Let ¢:[0,1] -
[0,1] be the Cantor function [14], and put @ = ¢ x &. Then each ®(D,,) isan arc which
resembles the graph of ¢ reflected across the diagonal x = y. See Figure 3.

Note that ¢(E) is the set of dyadic rationals in [0,1]. Let
g=(¢(E) x{0}) uU{D(M,) : n < w}.

Since 7y | M, is one-to-one and the mo(M,)’s are pairwise disjoint, g is a function.
Also,

dom(g) = ¢(E) uU{mo(P(My)) : n < w}

is countable and ran(g) c [0,1). Our goal is to extend g to a connected function g :
[0,1] = (~1,1). This will be accomplished with the help of two claims. By a continuum,
we shall mean a compact connected metrizable space with more than one point.

Claim 5.1 Fix n<w and put D=D, and M = M,. Let A c [0,1] have a dense

complement and let K c ®(D) U (A x (=1,1)) be a continuum. If |my(K)| > 1, then
Knd(M) # 2.
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Figure 3: Graph of ¢ (blue) and its “inverse” (red).

Proof Letaand b be two points in K such that 7my(a) < 7o (). Since 7o (K) is an
interval contained in the union of the zero-dimensional set A and the interval 77y(D),
we have 7y (K) c 7y(D). Noting that 779 (M) is dense in 779(D), we find a p € ®(M)
such that 79 (p) € (mo(a), mo(b)). If p ¢ K, then we can find ¢, d € [0,1]\A such that
U =[c,d] x{m(p)} is disjoint from K and my(a) < c < my(p) < d < mo(b). Then
Uu({c} x (m(p).1))u({d} x (-1, m(p)) separates K with a and b on opposite
sides. This contradicts our assumption that K is connected. Therefore, p € K. [ ]

Claim5.2  Let A c [0,1] be any countable set, and let K c U{®(D,) : n < w} U (A x
(-1,1)) be a continuum. If |y (K)| > 1, then K n ®(M,,) # & for some n < w.

Proof Foreachx €[0,1],1etK, = Kn ({x} x (-1,1)). Let X be the decomposition
of K consisting of every connected component of every non-empty K. Applying [17,
Lemma 6.2.21] to the perfect map 7y | K, we see that X is upper semi-continuous. If
q: K — K is the associated (closed) quotient mapping, then K’ is also a continuum.
Consider the countable covering V of K’ consisting of the compacta g(K, ) for x € A
and q(®(D,,) N K) for all n < w. By the Baire Category Theorem, there is an element
of V that has nonempty interior in K’ and hence contains a (non-degenerate) con-
tinuum C’ by [17, Theorem 6.1.25]. Each gq(K}) is zero-dimensional by [17, Theorem
6.2.24],s0 C' c q(®(D,) n K) for some n < w. Since g is a closed monotone map, the
pre-image C = qg'(C’) is a continuum by [17, Theorem 6.1.29]. Note that |77y (C)| > 1,
because otherwise C’ would be a subset of some zero-dimensional q(K, ). If x ¢ A,
then each connected component of K, is contained in a single @ (D; ) by the Sierpiniski
Theorem [17, Theorem 6.1.27], because the ®(D;)’s are disjoint. Thus, g(®(D,) N
K,) is disjoint from q(®(D;) n K, ) for each i # n. So Cc (Ax (-1,1)) u ®(D,,).
By Claim 5.1, we have that Cn ®(M,,) # &@. ]
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Now let {x, : « < ¢} enumerate the set [0,1]\ dom(g). Let {K, : y < c} be the set
of continua in [0,1] x (-1,1) such that:

m K, is not contained in any vertical line;
mK,n®d(M,)=gforalln<w.

Foreacha < ¢, letl, = ({x,} x (-1,1))\U{®(D,) : n < w}. By transfinite induction,
we define for each « < ¢ an ordinal

y(a) =min{y <c: 1, nK, #@and y # y(p) for any f < a}.

We verify that the one-to one function y : ¢ — ¢ is well defined. Let a < ¢, so x, ¢
dom(g) and x, ¢ mo(®(M,)) for each n. Since M,, contains the midpoints of all
vertical intervals in D,,, we have that {x,} x (-1,1) contains at most one point of
®(D,,). Let A be the countable set

U ﬂl({xa} X (_1’1)) n q)(Dn)) J CD(Mn))'
n<w
Ifa e (-1,1)\A, then K = [0,1] x {a} misses every ®(M, ), so K = Kg for some f3 < c.
Also, we have I, N K3 # @. Since |(~1,1)\A| = ¢, we have that y is well defined.
For every a < ¢, choose a y, € m (I, N Ky(u)). Define

=8 {{xa, ya) s <c}

and note that g:[0,1] - (-1,1) is a function. To prove that the graph of g is
connected, let K be a continuum in [0,1] x (=1,1) such that | (K)| > 1. We show
that K n g # @. The set K intersects some ® (M, ), whichisa subsetof g, or K = K, for
some « < c¢. By the contraposition of Claim 5.2, the projection A = 7o (K, \ U{®(D5,) :
n < w}) is uncountable. A is a continuous image of a Polish space, so, in fact, it has
cardinality ¢ by [21, Corollary 11.20]. Since [0, 1]\{xp : 8 < ¢} = dom(g) is countable,
this means B = {8 < ¢: Iz N K, # @} has cardinality c. Assuming that K, N g = & we
find that & cannot be in the range of g. If B € B, then Iz N K, # &, so by the definition
of y, we have y(f) < a. Thus, y | B is a one-to-one function from Binto {8 : § < a},
and we have the desired contradiction. So (the graph of) g intersects each continuum
in[0,1] x (=1,1) not lying wholly in a vertical line. By [22, Theorem 2], g is connected.

5.3 Definition and Properties of 7
Observe that go ¢ c (€ x (-1,1)) U ([0,1] x {0}). Let

r=(go¢)n (0,12

The domain of 7 is the set P = 74 (7) c €.

Let X = V(gn ((0,1) x [0,1))). If A is any clopen subset of X with (3,0) € 4,
then A = X. Otherwise, V™' (X\A) would be a non-empty proper clopen subset of
g, contrary to the fact that g is connected. Therefore, X is connected. Note that
V7= X, so V7 is also connected. Finally, let & = ide x¢&. By [30, Claims 3 and 4]
and the construction of Z, VE(Z) is rim-discrete. We have V7 c VE(Z), so V7 is
rim-discrete.
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5.4 Two Questions

A continuum is Suslinian if it contains no uncountable collection of pairwise disjoint
(non-degenerate) subcontinua [28]. The class of Suslinian continua is slightly larger
than the class of rational continua.

Question 5.3 Can ¢ be embedded into a Suslinian continuum?

Question 5.4  Can €, be densely embedded into the plane R*?

Added July 2020

E. D. Tymchatyn informed the authors that Question 5.3 has a positive answer. There
is, in fact, a Suslinian dendroid that homeomorphically contains the set of endpoints
of the Lelek fan. The example is due to Tymchatyn and P. Minc.
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