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The serpin superfamily encompasses hundreds of proteins, spread across all
kingdoms of life, linked by a common tertiary fold. This review focuses on five
diseases caused by serpin dysfunction: variants of antithrombin III lose their
ability to interact with heparin; the a1-antitrypsin Pittsburgh mutation causes
a change in target proteinase; the a1-antitrypsin Z mutation and neuroserpin,
polymerisation of which lead to cellular cytotoxicity; and a loss of maspin
expression resulting in cancer.

The serpins (whose name derives from ‘serine
protease inhibitor’) comprise a superfamily of
proteins that share a conserved tertiary
structure and have evolved primarily to
control the activity of serine and papain-like
cysteine proteinases. To date, over 800 serpin
sequences have been identified in the genomes
of species from almost all phyla including
viruses, bacteria, metazoans and plants
(Refs 1, 2). Phylogenetic analyses have divided
eukaryotic serpins into 16 clades, together
with several orphan sequences (Ref. 2).
Serpins function as proteinase inhibitors in a
wide range of physiological processes such as
complement activation, blood coagulation and
apoptosis (Refs 3, 4, 5). However, an
increasing number of serpins have been
identified that have evolved roles outside of
proteinase inhibition in blood pressure
regulation, chromatin condensation, tumour
progression, protein folding and hormone
transport (Refs 6, 7, 8, 9, 10, 11). Here, we
summarise characteristics of the serpin
superfamily before focusing on five specific
serpin diseases: loss of cofactor binding,

altered serpin specificity, polymerisation and
loss of function in cancer.

The serpin superfamily
Serpin clades
The increasing number of serpin sequences
deposited in databases has necessitated the
construction of a systematic method of
classification. Irving and colleagues put forward
a system dividing the serpins into 16 clades
based on phylogenetic analysis (Ref. 2). Plant and
insect serpins occupy a single clade each, with
viral serpins split into two clades. Animal serpins
form the 12 remaining clades, with a single clade
for nematodes, blood fluke and horseshoe crab. A
phylogeny of the nine serpin clades present in
higher animals shows that they cluster on the
basis of function rather than species.

Serpin structure
Several serpin crystallographic structures
(reviewed in Ref. 12) have shown that all
serpins, both inhibitory and non-inhibitory,
contain the same tertiary fold of eight or nine
a-helices (designated A–I) and three b-sheets
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(termed A–C) (Fig. 1a). Whereas the B and C
b-sheets are antiparallel, the five-stranded A
sheet is a mixture of parallel and antiparallel
strands. Extending from the top of the molecule
between the A and C b-sheets lies an exposed
loop termed the reactive centre loop (RCL).

The first serpin structure to be solved was that
of a1-antitrypsin (A1AT) cleaved within the RCL.
Surprisingly, it was found that the cleaved
residues were separated by 67Å, with the
N-terminal portion of the RCL inserted between
the strands of the A b-sheet to create a six-
stranded antiparallel sheet (Ref. 13). Later
analyses of crystals of uncleaved serpins have
shown that the native state of the RCL is the
exposed conformation (Fig. 1a), and that its
insertion into the A sheet is part of the inhibitory
mechanism (Refs 14, 15, 16). The necessary
flexibility of the RCL is mediated by two highly
conserved motifs (the proximal and distal hinges),
whereas insertion into the A b-sheet is facilitated
by the breach and shutter regions that assist in the

opening of the A b-sheet and movement of the F
helix, both of which are necessary for RCL
insertion (Ref. 17).

The RCL is the most variable sequence
between serpins, defining their inhibitory
specificity and biological functions by acting as a
pseudo-substrate for the cognate proteinases.
The nomenclature of Schechter and Berger
designates those residues N-terminal to a
proteinase cleavage site as P residues (P17–P1),
and those C-terminal as P0 residues (P10 –P100)
(Ref. 18). Cleavage of the RCL occurs at the
P1–P10 peptide bond and the P1 residue is
the major determinant of serpin specificity. Some
serpins have been shown to inhibit multiple
proteinases through the use of alternative P1
residues within the RCL. For instance,
proteinase inhibitor 8 (PI8) is capable of
inhibiting trypsin-like proteinases by utilising
Arg339 (the predicted P1), or chymotrypsin-like
proteinases by utilising Ser341 (the predicted
P20 residue) (Ref. 19). Likewise, proteinase

Structure of native α1-antitrypsin (A1AT)
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Figure 1. Structure of native a1-antitrypsin (A1AT). (a) Secondary structural elements and functional
motifs of native A1AT [Research Collaboratory for Structural Bioinformatics Protein Databank (http://www.
rcsb.org/pdb/) identifier 1ATU]. Helices are red, loops are green, b-sheet A is yellow, b-sheet B is blue,
b-sheet C is cyan and the reactive centre loop is magenta. (b) The Z mutant of A1AT involves mutation of
glutamic acid (Glu)342 to lysine, disrupting a salt bridge formed naturally with Lys290. Side chains of Glu342
and Lys290 are shown in orange. (c) The four residues mutated in a novel form of inherited encephalopathy
known as FENIB (familial encephalopathy with neuroserpin inclusion bodies) cause polymerisation of
neuroserpin and are indicated in orange on the A1AT structure. Gly392 is circled as the side chain cannot be
visualised.
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inhibitor 6 (PI6) inhibits trypsin through Arg341
and chymotrypsin through Met340, which are
the predicted P1 and P2 residues, respectively
(Refs 20, 21).

Serpin inhibitory mechanism
The native, active serpin fold is metastable,
placing the molecule under considerable strain.
During inhibition of a target proteinase,
conformational change within the serpin releases
the strain, a process termed the ‘stressed-to-
relaxed’ transition. Initial interactions between
the serpin RCL and proteinase active site result in
the formation of a reversible Michaelis–Menten

complex (Fig. 2) that is rapidly converted to a
covalently attached serpin–proteinase complex.
During this process, the serpin RCL is cleaved at
the P1 position, releasing the P10 residue, and
an ester bond is formed between the proteinase
catalytic serine and serpin P1 residues. At
this point, the RCL inserts into the A sheet,
dragging the proteinase to the opposite pole of
the serpin, and the serpin–proteinase complex
remains trapped as an acyl–enzyme
intermediate (Refs 22, 23, 24). The recent
solution of the structure of a serpin–proteinase
complex provided an explanation for the
interruption of the cleavage event at this point.

The serpin inhibitory mechanism
Expert Reviews in Molecular Medicine C 2006 Cambridge University Press

Inhibitor

Substrate

Michaelis
complex

Serpin

Proteinase

Inactive serpin

Proteinase

Figure 2. The serpin inhibitory mechanism. The exposed serpin reactive centre loop (RCL) acts as a
pseudo-substrate for the target proteinase and initial interactions result in the formation of a reversible, non-
covalent Michaelis complex. The RCL is then cleaved at the P1 position and inserts into the A b-sheet.
During an inhibitory interaction, the serpin conformational change traps the proteinase in a covalent
inhibitory complex in which both molecules are inactivated, although over time this complex can decay to
release the active proteinase and the cleaved, inactivated serpin. Alternatively, the serpin may act as a
classical proteinase substrate. In this instance, no covalent complex is formed and the serpin is cleaved and
inactivated while the proteinase remains unaffected. Research Collaboratory for Structural Bioinformatics
Protein Databank (http://www.rcsb.org/pdb/) identifiers: 1ATU (native a1-antitrypsin); 1DP0 (native trypsin);
1OPH (Michaelis complex between a1-antitrypsin Pittsburgh and trypsin S195A); 2ACH (cleaved
a1-antitrypsin); 1EZX (inhibitory complex between a1-antitrypsin and trypsin).
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Loss in secondary structure and a dramatic
rearrangement of the proteinase active site is
observed. Distortion around the proteinase
active site moves the loop containing the
catalytic serine 6Å away from the catalytic
histidine residue and disrupts the oxyanion hole
(Ref. 25). These effects both contribute to the
inhibition of deacylation. However, active
proteinase may be released from this inhibitory
complex as a result of complex breakdown over
very long periods of time (Ref. 26).

If the serpin interacts with a non-target
enzyme, its RCL is cleaved and released by the
proteinase before translocation can occur. This
‘substrate pathway’ results in the inactivation of
the serpin and release of active proteinase.
Whether or not a serpin is likely to be a
physiological inhibitor of a given proteinase is
dependent on the association constant (Kass) and
the stoichiometry of inhibition (SI) of the
interaction. These kinetic parameters measure
the rate at which inhibition occurs and the
number of serpin molecules required to inhibit a
single proteinase molecule, respectively. A
physiological interaction will have a Kass of 105

to 107 M21s21 and SI approaching 1 (Ref. 27).

Non-functional serpin states
The metastable nature of the serpin fold is
necessary to store the energy required for RCL
translocation and deformation of the proteinase
in the final inhibitory complex. However, this
flexibility also allows the serpin to adopt
structural conformations that, although more
energetically favourable, are not able to perform
the primary inhibitory role. These non-
functional serpin states include the latent, delta
and polymerised forms (Fig. 3) (Refs 28, 29, 30).
Latency occurs as a result of RCL insertion into
the A b-sheet, without its cleavage by a
proteinase. As such, the RCL becomes
inaccessible to proteinases and the serpin is
inactivated. The delta conformation has been
observed in mutant a1-antichymotrypsin and is
similar to the latent conformation except that the
RCL is only partially inserted into the b-sheet.
The remainder of strand 4A is formed by the
residues of a loop between the F helix and
strand 3A.

Serpin polymers are formed by the RCL of
one molecule interacting with the A b-sheet of a
second, thus forming a continuous chain of
inactivated molecules. Under certain conditions,

some serpins can also polymerise through RCL
interactions with the C b-sheet (Refs 31, 32, 33).
The polymer conformation of several serpins has
been associated with many diseases resulting
from a lack of serpin function or the
accumulation of misfolded protein.

Serpin diseases
Serpin diseases arise as a result of mutations
affecting the inhibitory mechanism and/or
protein stability (Table 1). Here, we focus on five
specific serpin diseases: loss of cofactor binding
[the interaction between antithrombin III (ATIII)
and heparin], altered serpin specificity (the
A1AT Pittsburgh mutation), polymerisation (the
A1AT Z mutant and neuroserpin pathology) and
loss of function in cancer (maspin).

Mutations of the ATIII heparin-binding
domain
The blood coagulation pathway involves
ordered activation of a serine proteinase cascade
from inactive zymogen precursors, leading to
the activation of thrombin and clot formation.
ATIII has been shown to inhibit many of these
proteinases including activated factors IX, X, XI,
XII and thrombin, although its in vivo role is
probably limited to inhibition of thrombin and
activated factor Xa (reviewed by Ref. 34).
However, the structure of native ATIII shows
that two N-terminal residues of the RCL are
partially inserted into the A b-sheet (Refs 15,
35, 36). Furthermore, the P1 residue forms
interactions with the body of the serpin, making
it relatively unavailable to interact with target
proteinases. This results in relatively poor
interaction kinetics with its target proteinases.
At the site of vessel injury, ATIII binds to
glycosaminoglycans, such as heparin, initiating
a conformational change that expels the RCL
(Fig. 4) and increases the rate of ATIII–
proteinase interactions by several orders of
magnitude (Refs 37, 38). For example, heparin
raises the Kass for the ATIII–factor Xa interaction
over 1000 times from 1.9 � 105 M21s21 to
2.4 � 108 M21s21 (Ref. 39).

The ATIII heparin-binding domain consists of a
patch of positive amino acids (Lys11, Arg13,
Arg24, Arg46, Arg47, Lys114, Lys125, Arg129)
clustered around the A helix, D helix and the
N-terminus of ATIII (Refs 40, 41, 42, 43, 44, 45, 46,
47, 48). Mutation of many of these residues has
been identified in heterozygote individuals as
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causing an increased risk of venous thromboses;
however, a more severe defect is observed in
homozygous individuals. For example, several
case studies have shown that homozygous
mutation of Arg47 to Cys leads to a loss of
heparin binding. This results in recurrent venous
and arterial thromboses due to uncontrolled

activation of the coagulation cascade (Refs 41, 49,
50, 51, 52, 53, 54). Pathogenic ATIII mutations
have been identified in residues Pro41, Leu99,
Ser116 and Gln118, which do not contact the
heparin molecule but are associated with the
tight packing of side chains within the binding
domain (Refs 55, 56, 57, 58).

Structure of inactive serpin states
Expert Reviews in Molecular Medicine C 2006 Cambridge University Press
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Figure 3. Structure of inactive serpin states. (a) Latent plasminogen activator inhibitor 1. The reactive
centre loop (RCL, magenta) is fully inserted into the body of the molecule and is therefore inaccessible to
proteinases. Thus, the inhibitory activity of the serpin is lost. Helices are red, loops are green, b-sheet A is
yellow, b-sheet B is blue, b-sheet C is cyan and the RCL is magenta. (b) a1-Antichymotrypsin in the delta
conformation. The RCL is only partially inserted, whereas the rest of strand 4A is formed by a loop (orange)
between the F helix and strand 3A. Colours are as for part a. (c) Model of two subunits in a serpin polymer
based on the structure of a cleaved a1-antitrypsin polymer. The monomers are coloured green and cyan,
with both A b-sheets in yellow and both RCLs in magenta. Research Collaboratory for Structural
Bioinformatics Protein Databank (http://www.rcsb.org/pdb/) identifiers: 1C5G (latent plasminogen activator
inhibitor 1), 1QMN (delta a1-antichymotrypsin), 1D5S (cleaved a1-antitrypsin polymer).
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Table 1. Correlation between serpin mutations and human disease

Cladistic
namea

Other
name

Function Correlation(s)
with diseaseb

Gain/loss-of-
function
mutation and
molecular
basis of
diseasec

A1 a1-Antitrypsin Extracellular inhibition
of elastase

Thrombosis GOF Pittsburgh
mutation
(M358R):
inhibition of
thrombin due to
altered P1
(Ref. 61)

Emphysema LOF Z mutation
(E342K):
polymerisation
and retention
in hepatocytes
due to hinge
mutation
(Ref. 66)

A2 a1-Antitrypsin-like Unknown ND

A3 a1-Antichymotrypsin Extracellular inhibition
of cathepsin G and
chymase

Vascular disease Isehara 1
(M389V):
unknown
mechanism
(Ref. 130)

A4 Kallistatin Extracellular inhibition
of tissue kallikrein

Pancreatitis LOF (Ref. 131)

A5 Protein C inhibitor Extracellular inhibition
of anticoagulant
enzymes

ND

A6 Corticosteroid-binding
globulin

Non-inhibitory: hormone
transport

Low serum
cortisol

LOF Leuven
mutation (L93H):
enhanced
substrate
dissociation rate
(Ref. 132)

A7 Thyroxine-binding
globulin

Non-inhibitory: hormone
transport

Low serum
thyroxine

LOF TBG-A
(A191T):
decreased
affinity for
thyroxine
(Ref. 133)

(continued on next page)

expert reviews
http://www.expertreviews.org/ in molecular medicine

6
Accession information: DOI: 10.1017/S1462399406000184; Vol. 8; Issue 31; December 2006

&2006 Cambridge University Press

M
ec

ha
ni
sm

s
o
f
se

rp
in

d
ys

fu
nc

ti
o
n
in

d
is
ea

se

https://doi.org/10.1017/S1462399406000184 Published online by Cambridge University Press

https://doi.org/10.1017/S1462399406000184


Table 1. Correlation between serpin mutations and human disease (continued)

Cladistic
namea

Other
name

Function Correlation(s)
with diseaseb

Gain/loss-of-
function
mutation and
molecular
basis of
diseasec

A8 Angiotensinogen Blood pressure
regulation

Hypertension GOF L10F:
increased
cleavage by ACE
(Ref. 134)

Hypotension LOF Y248C:
decreased
secretion due to
abnormal
glycosylation
(Ref. 135)

A9 Centerin Unknown ND

A10 Protein Z-dependent
Protease inhibitor

Extracellular inhibition
of factor IXa, Xa, XIa

Venous
thrombosis

LOF (Ref. 136)

A11 – Unknown ND

A12 Vaspin Unknown Diabetes and
obesity

(Ref. 137)

B1 Monocyte/neutrophil
elastase inhibitor

Intracellular inhibition
of elastase

ND

B2 Plasminogen activator
inhibitor 2

Intracellular inhibition of
unknown proteinase(s);
extracellular inhibition of
uPA, tPA

Cancer marker

B3 Squamous cell
carcinoma antigen 1

Intracellular inhibition of
unknown cysteine
proteinase(s)

Cancer marker

B4 Squamous cell
carcinoma antigen 2

Intracellular inhibition
of unknown serine
proteinase(s)

Cancer marker

B5 Maspin Non-inhibitory: tumour
suppressor

Cancer
progression

LOF (Ref. 9)

B6 Proteinase inhibitor 6 Intracellular inhibition
of cathepsin G

ND

B7 Megsin Intracellular inhibition of
unknown proteinase(s)

IgA nephropathy GOF (Ref. 138)

(continued on next page)
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Table 1. Correlation between serpin mutations and human disease (continued)

Cladistic
namea

Other
name

Function Correlation(s)
with diseaseb

Gain/loss-of-
function
mutation and
molecular
basis of
diseasec

B8 Proteinase inhibitor 8 Intracellular inhibitor ND

B9 Proteinase inhibitor 9 Intracellular inhibition of
granzyme B

ND

B10 Bomapin Intracellular inhibition of
unknown proteinase(s)

ND

B11 Epipin Intracellular inhibition of
unknown proteinase(s)

ND

B12 Yukopin Intracellular inhibition of
unknown proteinase(s)

ND

B13 Hurpin Intracellular inhibition of
cathepsin L

ND

C1 Antithrombin III Extracellular inhibitor of
activated clotting factors

Venous
thrombosis

LOF: decreased
affinity for
heparin
(Ref. 139)

D1 Heparin cofactor II Extracellular inhibition of
thrombin

Venous
thrombosis

LOF Oslo
mutation
(R189H):
decreased
affinity for
dermatan
sulphate
(Ref. 140)

E1 Plasminogen activator
inhibitor 1

Extracellular inhibitor of
uPA and tPA

Bleeding
disorders

LOF (Ref. 141)

Myocardial
infarction

GOF (Ref. 142)

E2 Glial-derived nexin Extracellular inhibition of
plasmin, uPA, tPA,
thrombin

ND

F1 Pigment epithelium-
derived factor

Non-inhibitory: anti-
angiogenic factor

Age-related
macular disease

LOF (Ref. 143)

(continued on next page)
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A1AT Met358Arg (Pittsburgh mutation)
The importance of the P1 residue in determining
the inhibitory spectrum of a serpin is best
illustrated by the lethal A1AT Pittsburgh
mutation. Wild-type A1AT is the major
extracellular inhibitor of neutrophil elastase

(Ref. 59), and the Pittsburgh mutation was first
identified in 1978 in a boy with episodic
uncontrolled bleeding (Ref. 60). The symptoms
were initially thought to be caused by a variant
of ATIII, which bears significant structural and
biochemical homology to A1AT (Ref. 60).

Table 1. Correlation between serpin mutations and human disease (continued)

Cladistic
namea

Other
name

Function Correlation(s)
with diseaseb

Gain/loss-of-
function
mutation and
molecular
basis of
diseasec

F2 a2-Antiplasmin Extracellular inhibition of
plasmin

Bleeding
disorders

LOF Enschede
mutation [Ala
insertion in
proximal hinge
(P8-P12)]:
converts serpin
to a substrate,
rather than
inhibitor
(Ref. 144)

G1 C1 inhibitor Extracellular inhibition of
complement proteinases

Hereditary
angioedema

LOF A436T:
proteinase will
no longer
interact with the
serpin (Ref. 145)

Systemic lupus
erythematosus

GOF A443V:
inhibition of
trypsin due to
P2 mutation
(Ref. 146)

H1 Heat shock protein-47 Non-inhibitory: collagen
chaperone

Fibrosis (Ref. 147)

I1 Neuroserpin Extracellular inhibition of
tPA.

FENIB Polymerisation
due to
perturbation of
the shutter
(Ref. 109)

Abbreviations: ACE, angiotensin-converting enzyme; FENIB, familial encephalopathy with neuroserpin
inclusion bodies; GOF, gain-of-function; LOF, loss-of-function; TBG, thyroxine-binding globulin; tPA,
tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator.

aCladistic nomenclature for serpins includes a SERPIN prefix (e.g. SERPINA1) that has been removed here.
bND: no disease or disease correlation has been described.
cThis is not a comprehensive list of serpin mutations in disease, but rather a brief description of some
mutants for which molecular mechanisms have been defined.
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However, further investigation indicated a
mutation in the gene encoding A1AT resulting in
a single amino acid substitution of the P1
residue (Met358) to arginine (Ref. 61). This
resulted in a new inhibitory specificity for A1AT,
creating a potent inhibitor of the arginine-
specific pro-coagulation enzymes thrombin,
kallikrein, factor XIa and factor XIIf (Refs 62, 63),
thus leading to haemorrhagic disease.

In contrast to ATIII, A1AT Pittsburgh does not
interact with heparin and therefore effectively
inhibits these enzymes in its absence (Ref. 61),
acting as an uncontrolled anticoagulant.
Compounding this, the concentration of A1AT is
much higher than ATIII (Refs 61, 64), so that the
basal thrombin inhibitory activity in the blood of
the patient was higher than that achieved by fully
heparinised ATIII in normal plasma (Ref. 61). In
this manner, the single P1 residue mutation
resulted in the patient’s death by changing serpin
inhibitory specificity and thereby bypassing the
normal homeostatic controls.

A1AT Glu342Lys (Z mutation)
Wild-type A1AT is synthesised and secreted by
the liver and is important in controlling
extracellular elastase, thereby maintaining the
integrity of many tissues, particularly the lungs.
The most common cause of A1AT deficiency is
the Z mutation, resulting in the mutant protein
being retarded within the endoplasmic
reticulum (ER) of hepatocytes (Refs 65, 66). The
Z allele encodes a glutamic acid to lysine
substitution at position 342, at the top of the A
b-sheet (Fig. 1b). Although this results in the
loss of a salt bridge formed with Lys290
(Ref. 13), this interaction alone is unlikely to be
important in the folding or secretion of A1AT, as
the reverse mutation (Lys290Glu) has little or no
effect (Refs 67, 68, 69). It is likely that the loss of
other interactions involving Glu342 results in a
structural instability leading to a propensity to
form polymers (Ref. 68).

A1AT Z polymerises through a ‘loop–sheet’
mechanism, whereby the RCL of one molecule

Activation of antithrombin III (ATIII) by heparin
Expert Reviews in Molecular Medicine C 2006 Cambridge University Press

a b

Figure 4. Activation of antithrombin III (ATIII) by heparin. (a) In the native state of ATIII, the reactive centre
loop (RCL, magenta) is partially inserted into the A b-sheet (blue). (b) Binding of heparin (grey spheres)
induces a conformational change that expels the RCL, thereby enhancing the rate of interaction between
ATIII and its target proteinases. Helices are red, loops are green, b-sheet A is yellow, b-sheet B is blue,
b-sheet C is cyan and the RCL is magenta. Research Collaboratory for Structural Bioinformatics protein
databank (http://www.rcsb.org/pdb/) identifiers: 1T1F (native ATIII), 1NQ9 (ATIII bound to heparin
pentasaccharide).
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inserts into the A b-sheet of a second, creating a
continuous chain of inactivated molecules
(Refs 70, 71). The accumulation of polymers
within the secretory pathway leads to
hepatocyte death and, ultimately, to liver
cirrhosis. At the same time, the loss of
circulating A1AT leads to uncontrolled elastase
activity and hence excessive tissue destruction
in the lungs, resulting in emphysema. This
severe phenotype raises the question of why the
Z allele remains relatively common in North
European populations (Ref. 72). The observation
that A1AT polymers are observed in the lungs
(Ref. 73), as well as the liver, and act as pro-
inflammatory chemoattractants (Refs 74, 75, 76)
has lead to the theory that they might provide
some protection from respiratory infection
(Ref. 77).

Treatment for A1AT Z
Although several treatments for A1AT Z exist
for either emphysema or liver cirrhosis, the only
effective therapy targeting both pathologies is
liver transplantation. Following transplantation,
the cirrhotic tissue is removed and the hepatic
phenotype of the donor leads to a normalisation
of serum A1AT without the danger of disease
recurrence in either the lungs or liver (Refs 78,
79, 80, 81). However, a lack of transplantable
organs has necessitated the development of
other therapies.

Augmentation therapy by intravenous
infusion of A1AT purified from the pooled
blood of healthy donors has been used to treat
A1AT deficiency for approximately 20 years.
This treatment has been shown to be effective at
restoring functional A1AT to the circulation
(Refs 82, 83, 84), with low risk to the patient
(Refs 85, 86). However, the levels of A1AT are
not stable over long periods of time (Ref. 87),
and so constant treatment is required, leading to
high cost.

Gene therapy has been investigated as a
mechanism to induce long-term secretion of
A1AT and thus alleviate tissue destruction of the
lungs. Several promising animal studies have
indicated that the approach can yield circulating
levels of A1AT high enough to protect the lungs
using various delivery techniques and targeting
different tissues as the site of novel protein
production (Refs 88, 89, 90, 91). Recently, a
clinical trial has begun to assess the efficacy of
gene therapy in humans to correct the serum

concentration of A1AT in individuals carrying
the Z mutation (Ref. 92).

Whereas augmentation and gene therapies
target the effect of decreased serum A1AT in
the lungs, RCL peptides have been assessed as a
mechanism for inhibiting the polymerisation
defect affecting the liver. The use of peptides
mimicking the RCL has been shown to prevent
the polymerisation of serpins by binding to the
A b-sheet and thereby inhibiting access of a
second RCL (Refs 93, 94, 95, 96). However, the
side-effect of this binding is that the RCL cannot
insert into the sheet during inhibition and
therefore the serpin becomes a substrate rather
than an inhibitor (Ref. 93). Recently, a variant
of the A1AT RCL peptide has been produced
that binds preferentially to the Z mutant
(Ref. 97). Importantly, this peptide can dissociate
from the serpin to release an active proteinase
inhibitor (Ref. 98). However, the use of peptides
as therapies remains problematic, primarily as
the peptide must be delivered into the ER of
hepatocytes to be effective.

Neuroserpin
Neuroserpin is another example of a serpin in
which polymerisation of a mutant form leads
to disease. First identified in 1989 (Ref. 99),
neuroserpin exhibits a tissue distribution that is
restricted mainly to the brain, although it has
also been detected in the pancreas, heart, kidney
and testis (Ref. 100). Neuroserpin is a functional
proteinase inhibitor, with inhibitory complexes
observed with tissue-type plasminogen activator
(tPA), urokinase-type plasminogen activator
(uPA) and plasmin (Ref. 101), although its in
vivo function is believed to centre on inhibition
of tPA. The balance between neuroserpin and
tPA has been shown to be important in several
neuronal events such as synaptic plasticity
(Refs 102, 103), behaviour (Ref. 104) and the
control of ischaemia following stroke (Refs 105,
106).

Four separate pathological mutations (Fig. 1c)
have been identified in neuroserpin that can
lead to its polymerisation: Ser49Pro, Ser52Arg,
His338Arg and Gly392Glu (Refs 107, 108, 109).
Although these mutations are widely
distributed in the primary sequence, they all
map to the shutter region, which is involved in
regulating the opening and closing of the A
b-sheet (Ref. 110). Polymerisation of neuroserpin
has been shown to result in a novel form of
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inherited encephalopathy known as FENIB
(familial encephalopathy with neuroserpin
inclusion bodies), which presents as a
progressive neurological degeneration including
myoclonic seizures and dementia (Ref. 107).
Post-mortem analysis of brain tissues indicates
the presence of Collins bodies (intracellular
aggregates of neuroserpin polymers) within the
neurons. Interestingly, the severity of symptoms
and early disease onset correlate strongly with
predictions of increasingly severe perturbation
of the shutter region by the various point
mutations (Ref. 109).

Mutant neuroserpin is an inefficient
proteinase inhibitor (Ref. 31) and readily
polymerises in the ER both in vitro (Refs 31, 111)
and in vivo (Ref. 112). However, it is difficult
to ascertain whether FENIB is caused by lack
of extracellular neuroserpin and uncontrolled
proteolysis (as in A1AT Z emphysema), or by
death as a result of ER stress (as in A1AT liver
cirrhosis).

Maspin
The disease states described above are the result
of mutations in proteins for which the normal
homeostatic roles have been defined. These
mutations result either in loss of specificity
or in predictable destabilisation of the highly
conserved and flexible tertiary structure leading
to loss of function. By contrast, equivalent
mutations have yet to be described for any of the
13 human clade B serpins. Nevertheless, several
clade B serpins are strongly associated with
disease. For example, maspin is a clade B serpin
first identified in 1994 among transcripts
downregulated in breast cancer tumourigenesis
(Ref. 9). Since then, maspin has been shown to
be downregulated or lost in a variety of cancers,
suggesting it is a tumour suppressor. Loss of
maspin expression is most often a result of
abnormal methylation of its promoter, rather
than a result of mutation or chromosomal
rearrangement (Refs 113, 114, 115, 116).

Expression of maspin in transgenic animal
models of breast cancer has been shown to
inhibit the metastatic potential, but not the
incidence, of cancers (Ref. 117). This appears to
be a result of extracellular effects that decrease
the motility of cancer cells as well as their ability
to invade through the extracellular matrix
(Ref. 118). In addition to this, maspin is an
inhibitor of angiogenesis, and can inhibit growth

of the primary tumour mass (Ref. 119). Maspin
can also act intracellularly to increase the
susceptibility of cells to apoptosis, through a
poorly described mechanism that is possibly
dependent on members of the Bcl-2 family
(Refs 120, 121, 122). As well as decreasing
invasive potential and increasing susceptibility
to apoptosis, transfection with maspin results in
large-scale changes in the proteome. However,
any mechanism by which maspin might mediate
transcriptional effects remains unexplored
(Ref. 123).

The maspin RCL is crucial for its various
biological effects (Refs 124, 125, 126). However,
understanding the underlying mechanism is
complicated by the fact that maspin does not
appear to be an inhibitory-type serpin. Analysis
of the primary sequence shows that maspin does
not have an inhibitory proximal hinge motif,
and maspin fails to undergo the stressed-to-
relaxed conformational change that characterises
serpin–proteinase interactions (Refs 127, 128).
Furthermore, although several extracellular
functions have been described, maspin is a
member of the clade B serpins that, by definition,
lack classical secretory signals (Ref. 129), and no
mechanism for maspin secretion has yet been
proposed. Future studies of the dysregulation of
maspin in cancer might shed light on these
problems and yield some insight into its normal
role in homeostasis.

Conclusions
The presence of serpins in organisms from
every kingdom of life underscores their
importance to the well being of the host. In
humans, serpins play crucial roles in the
maintenance of homeostasis, controlling such
processes as blood clotting and cellular survival.
As such, loss of serpin function often leads to
disease and death. The unique inhibitory
mechanism utilised by serpins is based on a
metastable fold and specific recognition of
the cognate proteinase by the RCL. This means
that they are prone to mutations leading to
loss of cofactor control (ATIII mutants in the
heparin-binding domain), gain of function
(A1AT Pittsburgh mutant), loss of function
(emphysema caused by the A1AT Z mutant or
cancer resulting from loss of maspin), and toxic
polymerisation (A1AT Z liver cirrhosis or
FENIB). By increasing our understanding of the
molecular mechanisms underpinning serpin
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function in homeostasis, we might in the future
be able to devise novel therapeutics to treat their
altered functions in disease.
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Further reading, resources and contacts

Support for patients with a1-antitrypsin deficiency, including the latest news on research and treatment,
can be found at:

http://www.alpha1.org

Movies showing serpin structural rearrangements upon proteinase cleavage or heparin binding can be
found on a website set up by Dr J.A. Huntington’s laboratory (Thrombosis Research Unit, University of
Cambridge, Cambridge Institute for Medical Research, Cambridge, UK):

http://huntingtonlab.cimr.cam.ac.uk/movies.html
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Features associated with this article

Figures
Figure 1. Structure of native a1-antitrypsin (A1AT).
Figure 2. The serpin inhibitory mechanism.
Figure 3. Structure of inactive serpin states.
Figure 4. Activation of antithrombin III (ATIII) by heparin.

Table
Table 1. Correlation between serpin mutations and human disease.
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