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WADGE HIERARCHY OF DIFFERENCES OF CO-ANALYTIC SETS

KEVIN FOURNIER

Abstract. We begin the fine analysis of nonBorel pointclasses. Working in ZFC + DET(Π˜ 11), we
describe the Wadge hierarchy of the class of increasing differences of co-analytic subsets of the Baire space
by extending results obtained by Louveau ([5]) for the Borel sets.

§1. Introduction. Collections of subsets of the Baire space, the “logician’s reals”,
that are closed under continuous preimages, have always been ubiquitous in descrip-
tive set theory. It is thus quite remarkable to realize that the concept of pointclass has
not been singled out and studied for itself before the 1960’s and the work of Wadge.
In his PhDThesis ([10]), he was the first to study systematically the concept, via the
notion of continuous reducibility. Given two subsets A and B of the Baire space,
A is said to be reducible toB, and we writeA ≤W B, if and only ifA is the preimage
of B for some continuous function f from the Baire space to itself. The relation
≤W is merely by definition a preorder, and its initial segments are exactly the point-
classes of the Baire space.When restricted to a class with suitable closure properties,
the preorder induced by≤W on its equivalence classes, theWadge degrees, is in fact
a well-quasi-ordering. The study of this well-quasi-ordering, the Wadge hierarchy,
and of the Wadge degrees gives thus the finest analysis of the pointclasses of the
Baire space.
The Wadge hierarchy of the Borel subsets of the Baire space has been thoroughly
studied by Louveau in [5] and Duparc in [3] and [2], in two different manners that
were both initiated by Wadge. The former relies on a Theorem proved by Wadge
stating that all the nonself-dual Borel pointclasses can be obtained by �-ary Borel
boolean operations on open sets—a result later generalized to all nonself-dual
pointclasses of the Baire space by Van Wesep in [8] under AD, using of course
arbitrary �-ary boolean operations. Louveau’s work provides a description of all
the Borel pointclasses, and thus of the whole Wadge hierarchy on the Borel sets, by
means of boolean operations. The latter approach, followed by Duparc and that we
do not pursue here, aims to define and use specific operations on sets in order to
give for each Wadge class of Borel subsets a canonical complete set.
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Working in ZFC + DET(Π˜ 11), we show how to extend the constructions ofLouveau on the Borel sets to Diff(Π˜ 11), the class of increasing differences of co-analytic subsets. This extension provides a complete description of the pointclasses
included in Diff(Π˜ 11). Surprisingly enough, the set of operations used in the Borelcase is sufficient for this task, we so to speak only add the possibility for them to
act onΠ˜ 11 sets. The second part of this article is devoted to the discrepancy betweenthe pointclasses of differences using increasing sequences ofΠ˜ 11 sets, and differencesusing decreasing sequences ofΠ˜ 11 sets.We prove, combining our analysis with resultsfromMartin ([6]) andHarrington ([4]), that our determinacy hypothesis is optimal.
As for prerequisites, the reader is expected to be familiar with the basic notions
and results of Wadge theory, as exposed for example, in [9]. For his convenience, we
repeat the relevant material from [5] when we need it, thus keeping our exposition
as self-contained as possible, even if we do not recall a big part of the proof of
Theorem 1.9 in [5].

§2. The Difference Hierarchy of Co-Analytic Sets.
2.1. Wadge framework and notation.

“The Wadge Hierarchy is the ultimate analysis of P(��) in terms of topological
complexity [...]”

Alessandro Andretta, Alain Louveau, [1].

The Wadge theory is in essence the theory of pointclasses. Let X be a topological
space. A pointclass is a collection of subsets of X that is closed under continuous
preimages. For Γ a pointclass, we denote by Γ̌ its dual class containing all the subsets
ofX whose complements are in Γ, and by Δ(Γ) the ambiguous class Γ∩Γ̌. If Γ = Γ̌,
we say that Γ is self-dual.
We only consider the Baire space �� in this paper, with the usual topology. The
Wadge preorder ≤W on P(��) is defined as follows: for A,B ⊆ �� , A ≤W B if
and only if there exists f : �� −→ �� continuous such that f−1(B) = A. For
A,B ⊆ �� , we write A <W B if and only if A ≤W B but B �W A. The Wadge
preorder induces an equivalence relation ≡W whose equivalence classes are called
theWadge degrees, and denoted by [A]W . We say that the set A ⊆ �� is self-dual if
it is Wadge equivalent to its complement, that is if A ≡W A�, and non-self-dual if it
is not. We use the same terminology for the Wadge degrees.
A useful game characterization is provided by the Wadge game, a two players
infinite game. Let A,B ⊆ �� , in the Wadge game W (A,B) player I plays first
an integer x0, II answers with an integer y0, and so on and so forth. II has the
possibility to skip, even � times, provided she also plays infinitely often. At the end
of the game, each player has constructed an infinite sequence, x for I and y for II.
II wins the game if and only if (x ∈ A↔ y ∈ B). Noticing that strategies for II can
be viewed as continuous functions, we have:

II has a winning strategy inW (A,B) ←→ A ≤W B.
Given a pointclass Γ with suitable closure properties, the assumption of the deter-
minacy of Γ is sufficient to prove that Γ is semi-linearly ordered by ≤W , denoted
SLO(Γ), i.e., that for all A,B ∈ Γ,

A ≤W B or B ≤W A�.
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and that ≤W is well-founded when restricted to sets in Γ. Under these conditions,
the Wadge degrees of sets in Γ with the induced order is thus a hierarchy called the
Wadge hierarchy. There is a strong connection between pointclasses included in Γ
and Wadge degrees of sets in Γ since all non-self-dual pointclasses are of the form

{B ⊆ �� | B ≤W A}
for some non-self-dual set A, while self-dual pointclasses are all of the form

{B ⊆ �� | B <W A} .
We have thus a direct correspondence between (P(��),≤W ) restricted to Γ and the
pointclasses included in Γ with the inclusion: the pointclasses are exactly the initial
segments of the Wadge hierarchy. The semi-linear ordering property becomes then:
for any pointclasses Γ′ and Γ′′ included in Γ,

Γ′ ⊆ Γ′′ or Γ̌′′ ⊆ Γ′.
In this paper, following Louveau’s framework, we describe the pointclasses. From
the works of Martin and Harrington (see [6] and [4]), we know that the class
D∗
�2 (Π˜ 11) of all decreasing �2 differences of co-analytic sets is determined underDET(Π˜ 11). Since Diff(Π˜ 11) ⊆ D∗

�(Π˜ 11)—see Proposition 4.4, it is sufficient here toassume this determinacy hypothesis.

2.2. General Observations. Notice that every ordinal � can be written as � =
�+ n, where � is limit and n < �. We call � even if n is even, and odd if n is odd.

Definition 2.1. Let (A�)�<� be an increasing sequence of subsets of the Baire
space, with � < �1. Define the set D�((A�)�<�) by:

D�((A�)�<� ) =
{
x ∈

⋃
�<�

A� : the least � < � with x ∈ A�

has parity opposite to that of �
}
.

For � < �1, and Γ a pointclass, let

D�(Γ) =
{
D�((A�)�<�)|A� ∈ Γ, � < �

}
.

It is also a pointclass.

We denote the class of all countable differences of co-analytic sets by Diff(Π˜ 11) =⋃
α<�1

Dα(Π˜ 11). Merely by definition, we have Dα(Π˜ 11) ⊆ D�(Π˜ 11) and Dα(Π˜ 11) ⊆
Ď�(Π˜ 11) for all α < � . Moreover, since there exists a ��-universal set for Π˜ 11, the
hierarchy does not collapse, i.e., for all α < �1,Dα(Π˜ 11)\Ďα(Π˜ 11) 
= ∅. We have thusthe following classical diamond-shape diagram:

Π˜ 11 D2(Π˜ 11) D3(Π˜ 11)
Δ(D2(Π˜ 11)) Δ(D3(Π˜ 11)) · · ·

Σ˜ 11 Ď2(Π˜ 11) Ď3(Π˜ 11)
where the pointclasses are strictly included in each other from the left to the right.
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2.3. The ambiguous classes. To describe the pointclasses included in Δ(Dα(Π˜ 11)),we need a characterization of the Dα(Π˜ 11) classes.
2.3.1. The successor case.

Proposition 2.2. For every countable ordinal α, we have:

(a) Dα+1(Π˜ 11) = Ďα(Π˜ 11) ∩Π˜ 11 =
{
D ∩ C | D ∈ Ďα(Π˜ 11) and C ∈ Π˜ 11

}
;

(b) Ďα+1(Π˜ 11) = Dα(Π˜ 11) ∪ Σ˜ 11 =
{
D ∪C | D ∈ Dα(Π˜ 11) and C ∈ Σ˜ 11

}
.

Proof. We only prove the first assertion for the finite differences, the other fol-
lows by considering the complements, and the generalization to the transfinite is
straightforward. Let n = 2k for k ≥ 1. Observe that for any increasing family
(Ai )i<n of co-analytic subsets of the Baire space, we have:

Dn((Ai )i<n) = An−1\Dn−1((Ai )i<n−1);
and thereforeDn(Π˜ 11) ⊆ Ďn−1(Π˜ 11)∩Π˜ 11. For the other inclusion, letD ∈ Ďn−1(Π˜ 11)and B ∈ Π˜ 11. Then there exists an increasing family of co-analytic sets (Ai )i<n−1such that:

D = Dn−1((Ai)i<n−1)�.

We obtain:

D ∩ B =
k−1⋂
i=1

(A�
2i ∪ A2i−1) ∩ A�

0 ∩ B

= (B ∩ A�
2k−2) ∪

k−2⋃
i=0

(B ∩ A�
2i ∩A2i+1)

= Dn((A0 ∩ B,A1 ∩ B, . . . , An−2 ∩ B,B)),
where the second equality relies on the fact that the family (Ai)i<n−1 is increasing.
Thus D ∩ B ∈ Dn(Π˜ 11) and Dn(Π˜ 11) = Ďn−1(Π˜ 11) ∩Π˜ 11. The odd case is similar. �
This result can be illustrated by the following diagram.

Σ˜ 11
∩Π˜ 11
����

���
�

�

⊆ Ď2(Π˜ 11) ⊆ Ď3(Π˜ 11) ⊆ · · ·

Π˜ 11 ⊆ D2(Π˜ 11)
∪Σ˜ 11�

�
�

������

⊆ D3(Π˜ 11) ⊆ · · ·

This inductive definition for the successor classes Dα(Π˜ 11) and Ďα(Π˜ 11) allows us toadapt a result from Louveau, stated in [5].

Proposition 2.3 (Louveau’s trick I). Let α < �1, and D ∈ Δ(Dα+1(Π˜ 11)). Thenthere exists B ∈ Δ˜ 11, X ∈ Ďα(Π˜ 11), and Y ∈ Dα(Π˜ 11) such that
D = (X ∩ B) ∪ (Y\B).

Proof. The set D is both in Dα+1(Π˜ 11) and in Ďα+1(Π˜ 11). Proposition 2.2 gives
X ′ ∈ Π˜ 11, X ∈ Ďα(Π˜ 11), Y ′ ∈ Σ˜ 11 and Y ∈ Dα(Π˜ 11) such that

D = X ′ ∩X and D = Y ′ ∪ Y.
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In particular, we have that Y ′ ∩ X ′� = ∅. By the separation property for the
analytic sets, there exists a Borel subset B such that

Y ′ ⊆ B and B ∩X ′� = ∅.

Hence,

D = (X ∩ B) ∪ (Y\B). �
2.3.2. The limit case. A similar description of the ambiguous classes can be
provided for the limit case, using a countable Borel partition instead of just one
Borel set and its complement.

Proposition 2.4 (Louveau’s trick II). Let D ⊆ �� be in the Δ(D�(Π˜ 11)) classwith � < �1 limit. Then there exists a countable Borel partition (Ci)i∈� of the Baire
space such that, for all j < �,

D ∩ Cj ∈ Dαj (Π˜ 11),
with αj < �.

Proof. We only prove it for � = �. Let D ⊆ �� be in the Δ(D�(Π˜ 11)) class. Bydefinition there exists two increasing families (Bi)i∈� and (B ′
i )i∈� of co-analytic

subsets of the Baire space such that

D =
⋃
i∈�
(B2i+1\B2i) and D� =

⋃
i∈�
(B ′
2i+1\B ′

2i).

By the generalized reduction property of the class of co-analytic sets, there exists a
disjoint co-analytic family (Ci)i∈� such that

– for all i < �, C2i ⊆ Bi and C2i+1 ⊆ B ′
i , and

–
⋃
i∈� Ci =

⋃
i∈� Bi ∪

⋃
i∈� B

′
i .

Since
⋃
i∈� Bi ∪

⋃
i∈� B

′
i = D ∪D� = �� , the family (Ci)i∈� is in fact an analytic,

thus Borel, partition of the Baire space. In addition, the fact that C2i ⊆ Bi and
C2i+1 ⊆ B ′

i hold for all i ∈ � implies that D ∩ C2i and D� ∩ C2i+1 are in the class
Di+1(Π˜ 11). To prove that our partition is indeed as required, it only remains to show
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that for all i ∈ �, D ∩ C2i+1 and D� ∩ C2i are finite differences of co-analytic sets.
Fix i ∈ �, we have

D ∩ C2i+1 = C2i+1 ∩
(
D� ∩ C2i+1

)�
.

ButD� ∩C2i+1 is a finite difference of analytic sets, so thatD ∩C2i+1 is also a finite
difference of co-analytic sets. The same argument works forD� ∩ C2i . �
Louveau’s tricks I and II provide a bottom up description of the ambiguous
classes, and from them we can now derive the complete description à la Louveau of
the Wadge hierarchy of the class Diff(Π˜ 11).
§3. The Wadge Hierarchy of theDiff(Π˜ 11) sets.
3.1. Boolean operations and descriptions. We recall the definitions of the opera-
tions used byLouveau in [5]. Besides the differences that we have already introduced,
four more operations are needed.

(a) Separated Unions. Let Γ and Γ′ be two pointclasses. The setA is in SU(Γ,Γ′)
if and only if there exists a disjoint family (Cn)n∈� of sets in Γ, and a family
(An)n∈� of sets in Γ′ such that

A = SU((Cn)n∈�, (An)n∈�) =
⋃
n∈�
An ∩ sCn.

(b) One-sided Separated Unions. Let Γ and Γ′ be two pointclasses. The set A is
in Sep(Γ,Γ′) if there exists C ∈ Γ, B1 ∈ Γ̌′, and B2 ∈ Γ′ such that

A = Sep(C,B1, B2) = (C ∩ B1) ∪ (B2\C ).
(c) Two-sided Separated Unions. Let Γ, Γ′, and Γ′′ be three pointclasses. The set
A is in Bisep(Γ,Γ′,Γ′′) if there exists C1, C2 in Γ disjoint, A1 ∈ Γ̌′, A2 ∈ Γ′,
and B ∈ Γ′′ such that
A = Bisep(C1, C2, A1, A2, B) = (C1 ∩A1) ∪ (C2 ∩ A2) ∪ (B\(C1 ∪ C2)).
If Γ′′ = {∅}, we just write Bisep(Γ,Γ′).

(d) Separated Differences. Let Γ, Γ′, and Γ′′ be three pointclasses, and 	 ≥ 2 be
countable. The set A is in SD	((Γ,Γ′),Γ′′) if there is an increasing family
(C�)�<	 in Γ, an increasing family (A�)�<	 in Γ′ and B ∈ Γ′′ such that, for
all � < 	, A� ⊆ C� ⊆ A�+1 and

A = SD	((C�)�<	, (A�)�<	, B) =
⋃
�<	

(A�\
⋃
�′<�

C�′) ∪ (B\
⋃
�<	

C�).

These operations, combined and applied in certain ways to certain classes give
us all the nonself-dual pointclasses included in Diff(Π˜ 11). But first we need tointroduce some notation. Let u0, u1 ∈ (�1 +1)�, we denote by 〈u0, u1〉 the sequence
u ∈ (�1 + 1)� such that, for all n ∈ �, u(2n) = u0(n), and u(2n + 1) = u1(n).
Similarly, if (ui)i∈� ⊆

(
(�1 + 1)�

)�
, we denote by 〈(ui)i∈�〉 the sequence u ∈

(�1 + 1)� such that for all n,m ∈ �, u(〈n,m〉) = un(m), where (n,m) �→ 〈n,m〉 is
a bijection between � × � and �. We now define inductively the set of descriptions
D ⊆ (�1 + 1)� , and for each u ∈ D, the class Γu it describes.
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Definition 3.1. The set of descriptions D ⊆ (�1 + 1)� is the least satisfying the
following conditions:

(a) If u(0) = 0, then u ∈ D and Γu = {∅}.
(b) If u(0) = 	 < �1 with 	 
= 0, u(1) = 1 and u(2) = � < �1, then u ∈ D and
Γu = D�(Σ˜ 0	).

(c) If u(0) = �1, u(1) = 1 and u(2) = � < �1, then u ∈ D and Γu = D�(Π˜ 11).(d) If u = 	ˆ2ˆ�ˆu∗, where 1 ≤ 	 < �1, 1 ≤ � ≤ �1, u∗ ∈ D and u∗(0) > 	, then
u ∈ D and Γu = Sep(D�(Σ˜ 0	),Γu∗).

(e) If u = 	ˆ3ˆ�ˆ〈u0, u1〉, where 1 ≤ 	 < �1, 1 ≤ � ≤ �1, u0, u1 ∈ D,
u0(0) > 	, u1(0) ≥ 	 or u1(0) = 0, and Γu1 ⊂ Γu0 , then u ∈ D and
Γu = Bisep(D�(Σ˜ 0	),Γu0 ,Γu1 ).

(f) If u = 	ˆ4ˆ〈(un)n∈�〉, where 1 ≤ 	 < �1, each un ∈ D, and either un(0) =
	1 > 	 for all n ∈ �, and the Γun are strictly increasing, or un(0) = 	n
and the 	n are strictly increasing with 	 < supn∈� 	n, then u ∈ D and
Γu = SU(Σ˜ 0	,

⋃
n∈� Γun ).

(g) If u = 	ˆ5ˆ�ˆ〈u0, u1〉, where 1 ≤ 	 < �1, 2 ≤ � ≤ �1, u0, u1 ∈ D, u0(0) = 	,
u0(1) = 4, u1(0) ≥ 	 or u1(0) = 0, and Γu1 ⊂ Γu0 , then u ∈ D and
Γu = SD�((Σ˜ 0	,Γu0 ),Γu1 ).

Notice that compared to the Borel case, we only add the classes D�(Π˜ 11), whichare given the level �1.

Proposition 3.2. Let u ∈ D with u(0) = 	 
= 0.
(a) If 	 < �1, then

– Γu is closed under union with a Δ˜ 0	 set.
– SU(Σ˜ 0	,Γu) = Γu , and we say that Γu is closed under Σ˜ 0	 − SU.

(b) If 	 = �1, then
– Γu is closed under union with a Δ˜ 11 set.– SU(Π˜ 11,Γu) = Γu , and we say that Γu is closed underΠ˜ 11 − SU.

Proof. The only thing left to verify is the case where Γu = D�(Π˜ 11), the rest is bythe same induction as in [5]. Let 0 < � < �1, we have to prove that the classD�(Π˜ 11)is closed under union with a Borel set, and under Π˜ 11 − SU. The first comes fromthe fact that the classΠ˜ 11 is closed under union with a Borel set. For the second, let(Cn)n∈� be a disjoint family of Π˜ 11 sets, and (An)n∈� a family of D�(Π˜ 11) sets. Forall integer n, there exists a family (Aαn )α<� such that An = D�((A
α
n )α<�). Thus:

SU((Cn)n∈�, (An)n∈�) =
⋃
n∈�
An ∩Cn

=
⋃
n∈�
D�((Aαn )α<�) ∩ Cn

=
⋃
n∈�
D�((Aαn ∩ Cn)α<�)

= D�((
⋃
n∈�
(Aαn ∩Cn))α<�).
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Notice that the last equality holds because for all α < � and all integers n andm, if
n 
= m then (Aαn ∩ Cn) ∩ (Aαm ∩ Cm) = ∅. Hence SU((Cn)n∈�, (An)n∈�) ∈ D�(Π˜ 11)and the class D�(Π˜ 11) is closed under Π˜ 11 − SU. �
Proposition 3.3. Let u ∈ D. Then Γu is a non-self-dual pointclass included in
Diff(Π˜ 11).
Proof. The classes Γu are pointclasses merely by definition, as results of Boolean
operations on pointclasses. The fact that they are all in Diff(Π˜ 11) is a consequenceof the closure properties proved in Proposition 3.2. The existence of universals for
the classes Γu provides the non-self-dualness. �
We now give to each description u a type. These types reveal information on the
structural properties of the class described. For example the descriptions of type 1
share the property that the classes they describe can be written as Bisep(Σ˜ 0	,Γu′ ) or
Bisep(Π˜ 11,Γu′ ) for some 	 and some description u′; the descriptions of type 2 sharethe property that the classes they describe can be written as SU(Σ˜ 0	 ,

⋃
n∈� Γun ) or

SU(Π˜ 11,
⋃
n∈� Γun ) for some 	 and some family of descriptions (un)n∈� , etc.

Definition 3.4. Let u ∈ D. The type t(u) of u is 0 if u(0) = 0. If u(0) ≥ 1 then
the type t(u) of u is
(a) 1 if:

– u(1) = 1 and u(2) is successor;
– u(1) = 3, t(u1) = 0 and u(2) is successor;
– u(1) = 3, t(u1) = 1 and u1(0) = u(0);
– u(1) = 5, t(u1) = 1 and u1(0) = u(0).

(b) 2 if:
– u(1) = 1 and u(2) is limit;
– u(1) = 3, t(u1) = 0 and u(2) is limit;
– u(1) = 3, t(u1) = 2 and u1(0) = u(0);
– u(1) = 4;
– u(1) = 5 and t(u1) = 0;
– u(1) = 5, t(u1) = 2 and u1(0) = u(0).

(c) 3 if:
– u(1) = 2;
– u(1) = 3 and u1(0) > u(0);
– u(1) = 3, t(u1) = 3 and u1(0) = u(0);
– u(1) = 5 and u1(0) > u(0);
– u(1) = 5, t(u1) = 3 and u1(0) = u(0).

Thanks to these types, we can now sort the descriptions in four groups, depending
on the position in which their associated class lies in the Wadge hierarchy. D0 =
{u ∈ D : t(u) = 0} is the set of descriptions that code the class {∅}, which is at
the bottom of the hierarchy. D+ = {u ∈ D : u(0) = 1 and t(u) = 1} is the set
of descriptions that code classes which are at a successor position in the Wadge
hierarchy. D� = {u ∈ D : u(0) = 1 and t(u) = 2} is the set of descriptions that
code classes which are at a limit of cofinality � position in the Wadge hierarchy.
D�1 = D\(D0∪D+∪D�) = {u ∈ D : u(0) = 1 and t(u) = 3}∪{u ∈ D : u(0) > 1}
is the set of descriptions that code classes which are at a limit of cofinality�1 position
in the Wadge hierarchy.
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Theorem 3.5. Let W = {Γu : u ∈ D} ∪ {Γ̌u : u ∈ D} ∪ {Δ(Γu) : u ∈ D}.
ThenW is exactly the set of all pointclasses included in Diff(Π˜ 11).
The strategy for the proof is the same as in [5], and relies on the determinacy
of the class Diff(Π˜ 11). For each description u that is not in D0, we find a codethat describes the immediate predecessor of Γu if it is at a successor position, or a
sequence of codes that describe a sequence of classes that is cofinal under Γu if it is
at a limit position. Formally we have the following.

Lemma 3.6. Let u be a description.

(a) If u ∈ D+, there exists ū ∈ D such that, for any class Γ, Γū � Γ � Γu implies
that Γ = Δ(Γu).

(b) If u ∈ D� , there exists a sequence of descriptions (ūn)n∈� such that, for any
class Γ, if for all integer n Γūn ⊂ Γ ⊂ Γu , then Γ = Δ(Γu).

(c) If u ∈ D�1 , there exists a set of descriptions Qu of cardinality �1 such that
Δ(Γu) =

⋃{Γū : ū ∈ Qu}.
The proof of Theorem 3.5 now goes as follows. Suppose, towards a contradiction,
that the collection W̃ of pointclasses included in Diff(Π˜ 11) that are not inW is notempty. Using our determinacy hypothesis, the SLO property holds for Diff(Π˜ 11),and the pointclasses included in Diff(Π˜ 11) are well-founded for the inclusion. By thedefinition ofW , there is thus either a self-dual class Γ that is the⊂-least class in W̃ ,
or a couple of non-self-dual classes Γ and Γ̌ such that for all Γ′ ∈ W̃ , Γ ⊆ Γ′, or
Γ̌ ⊆ Γ′ holds. Both situations lead to the same argument: since the classes D�(Π˜ 11)are in W and cofinal in Diff(Π˜ 11), there exists a description u such that Γu is theleast class described above Γ, and we have three cases:

– u ∈ D+, and then Γ = Δ(Γu) or Γ = Γ̌ū ;
– u ∈ D� , and then Γ = Δ(Γu);
– u ∈ D�1 , and then Γ = Δ(Γu).
Thus Γ ∈ W in each case, and we reach a contradiction.
So the only thing left to prove here is Lemma 3.6. But most cases are already
covered by the proofs in [5], or straightforward extension of those using Proposition
3.2. In this article, we do not go through themagain and only take care of theD�(Π˜ 11)classes.

3.2. The successor case. In this section we look at the classes D�+1(Π˜ 11), with
� < �1. These classes are described by descriptions u such that u(0) = �1, u(1) = 1,
and u(2) = � + 1, and are of type 1.

Lemma 3.7. Let � < �1 and u be a description of the class D�+1(Π˜ 11). Then:
(a) Γu = Bisep(Π˜ 11, D�(Π˜ 11));(b) Δ(Γu) = Bisep(Δ˜ 11, D�(Π˜ 11)).
Proof.

(a) By Proposition 2.2, we know that D�+1(Π˜ 11) = Ď�(Π˜ 11) ∩ Π˜ 11 so that D�+1(Π˜ 11) ⊆ Bisep(Π˜ 11, D�(Π˜ 11)). For the other inclusion, we use Proposition 3.2.(b) By Proposition 2.3, we know that if D ∈ Δ(D�+1(Π˜ 11)), then there exists
B ∈ Δ˜ 11, X ∈ Ď�(Π11) and Y ∈ D�(Π11) such that

D = (X ∩ B) ∪ (Y\B).
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ThusD = Bisep(B,B�, X,Y, ∅), so that the inclusion from left to right holds.
Since D�+1(Π˜ 11) is closed under Π˜ 11 − SU, Bisep(Δ˜ 11, D�(Π˜ 11)) ⊆ D�+1(Π˜ 11).What remains to prove is that the dual class of Bisep(Δ˜ 11, D�(Π˜ 11)) is also
included in D�+1(Π˜ 11). Let A be such that A� ∈ Bisep(Δ˜ 11, D�(Π˜ 11)). There
exists thus A1 ∈ Ď�(Π˜ 11), A2 ∈ D�(Π˜ 11), and B1, B2 two disjoint Borel setssuch that:

A� = (A1 ∩ B1) ∪ (A2 ∩ B2).
Therefore A = (B1 ∩A�

1 ) ∪ (B2 ∩A�
2) ∪ (B1 ∪ B2)� is in D�+1(Π˜ 11) since thisclass is closed underΠ˜ 11 − SU, and Bisep(Δ˜ 11, D�(Π˜ 11)) ⊆ Δ(D�+1(Π˜ 11)). �

This allows us to define the set Qu for a description u of the class D�+1(Π˜ 11):
Qu = {	ˆ3ˆ1ˆ〈�1ˆ1ˆ�ˆ0�, 0�〉 : 	 < �1}.

We prove now that the family of classes described by Qu is cofinal below Γu .

Proposition 3.8. Let � < �1, and u be a description for the classD�+1(Π˜ 11). Then:
Δ(D�+1(Π˜ 11)) =

⋃
u′∈Qu

Γu′ .

Proof. Using Lemma 3.7, we have to prove:

Bisep(Δ˜ 11, D�(Π˜ 11)) =
⋃
	<�1

Bisep(Σ˜ 0	,D�(Π˜ 11)).
The inclusion from right to left is immediate since each Bisep(Σ˜ 0	,D�(Π˜ 11)) is
included in Bisep(Δ˜ 11, D�(Π˜ 11)). For the other inclusion, we just have to come backto the definition of the operation Bisep. Let A ∈ Bisep(Δ˜ 11, D�(Π˜ 11)), then thereexists C1, C2 two disjoint Borel sets such that:

A = (A ∩C1) ∪ (A ∩C2),
with A ∩ C1 ∈ Ď�(Π˜ 11) and A ∩ C2 ∈ D�(Π˜ 11). But if C1 and C2 are Borel, thereexists 	 < �1 such that C1 and C2 are in Σ˜ 0	 ! Thus A ∈ Bisep(Σ˜ 0	,D�(Π˜ 11)), and theother inclusion holds. �
This finishes the successor case.

3.3. The limit case. In this section we look at the classes D
(Π˜ 11), with 
 < �1limit. These classes are described by descriptions u such that u(0) = �1, u(1) = 1,
and u(2) = 
, and are of type 2. First we define a new operation and give a
reformulation of Louveau’s Trick II.

Definition 3.9. Let Γ and Γ′ be two pointclasses. The set A is in PU(Γ,Γ′) if
and only if there exists a partition (Cn)n∈� of sets in Γ, and a family (An)n∈� of sets
in Γ′ such that

A = PU((Cn)n∈�, (An)n∈�) =
⋃
n∈�
An ∩Cn.

This operation is called the Partitioned Union. It is of course a special case of SU.

Lemma 3.10. Let 
 < �1 be a limit ordinal, and u be a description of the class
D
(Π˜ 11). Then:
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(a) Γu = SU(Π˜ 11,Γ);(b) Δ(Γu) = PU(Π˜ 11,Γ).
where Γ =

⋃
�<
 D�(Π˜ 11).

Proof.

(a) Since D
(Π˜ 11) is closed under Π˜ 11 − SU, the inclusion from right to left isimmediate. For the other one, let (Aα)α<
 be an increasing family ofΠ˜ 11 sets,andD = D
((Aα)α<
). By the generalized reduction property of the class of
co-analytic sets, there exists a disjoint co-analytic family (Cα)α<
 such that
– for all α < 
, Cα ⊆ Aα ;
–
⋃
α<
 Cα =

⋃
α<
 Aα .

Now we haveD ∩ Cα ⊆ Aα for all α < 
, and thus D ∩ Cα ∈ Γ ∩Π˜ 11. Since
D =

⋃
α<


D ∩ Cα,

D ∈ SU(Π˜ 11,Γ) and the second inclusion is proven.(b) By Louveau’s Trick II, we know that if D ∈ Δ(D
(Π˜ 11)), there exists acountable Borel partition (Ci)i∈� of the Baire space such that, for all j < �,

D ∩Cj ∈ D�j (Π˜ 11),
with �j < 
. Thus D ∈ PU(Π˜ 11,Γ), so that Δ(D
(Π˜ 11)) ⊆ PU(Π˜ 11,Γ).SinceD
(Π˜ 11) is closed underΠ˜ 11−SU, PU(Π˜ 11,Γ) ⊆ D
(Π˜ 11). What remainsto prove is that the dual class of PU(Π˜ 11,Γ) is also included in D
(Π˜ 11).
Let A be such that A� ∈ PU(Π˜ 11,Γ). There exists a partition in co-analyticsets (Ci)i∈� such that

A� =
⋃
i∈�
A� ∩Ci ,

with A� ∩ Ci ∈ Dαi (Π˜ 11) and αi < 
. Notice that, for all integer i ,
A ∩ Ci = (A� ∩ Ci)� ∩ Ci.

By Proposition 2.2, (A� ∩ Ci)� ∩ Ci ∈ Dαi+1(Π˜ 11) which is still included in
D
(Π˜ 11)! The set A is therefore in D
(Π˜ 11), and PU(Π˜ 11,Γ) ⊆ Δ(D
(Π˜ 11)). �

This allows us to define the set Qu for a description u of the class D
(Π˜ 11), it isthe set of descriptions
	ˆ4ˆ〈(u′n)n∈�〉

for 	 < �1, where u′n = �1ˆ1ˆ
nˆ0� , and (
n)n∈� is cofinal in 
. We prove now that
the family of classes described by Qu is cofinal under Γu .

Proposition 3.11. Let 
 < �1 be limit, and u be a description for the classD
(Π˜ 11).Then
Δ(D
(Π˜ 11)) =

⋃
u′∈Qu

Γu′ .

Proof. Using Lemma 3.10, we have to prove:

PU(Π˜ 11,Γ) =
⋃
	<�1

SU(Σ˜ 0	,Γ′),
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where Γ =
⋃
�<
 D�(Π˜ 11) and Γ′ =

⋃
n∈� D
n (Π˜ 11). First notice that Γ = Γ′, so thatwe actually only have to prove:

PU(Π˜ 11,Γ) =
⋃
	<�1

SU(Σ˜ 0	,Γ).

For the first inclusion, from left to right, notice that any co-analytic countable
partition is in fact a Borel and hence a Σ˜ 0	 partition for a certain 	 < �1. For the
other inclusion, let 	 < �1 andD ∈ SU(Σ˜ 0	,Γ). By definition there exists a disjoint
family (Cn)n∈� of Σ˜ 0	 sets and a family (An)n∈� in Γ such that

D = SU((Cn)n∈�, (An)n∈�).

But then we have

D =
⋃
n∈�
Cn ∩ An

=

(
(
⋃
n∈�
Cn)� ∩ ∅

)
∪
⋃
n∈�
Cn ∩ An

= PU((C ′
n)n∈�, (A

′
n)n∈�);

where C ′
0 = (

⋃
n∈� Cn)

�, C ′
n+1 = Cn, A

′
0 = ∅ and A′

n+1 = An. Since ∅ ∈ Γ and
C ′
0 ∈ Π˜ 0	 , D ∈ PU(Π˜ 11,Γ) and the other inclusion follows. �
This finishes the limit case, and the proof of Lemma 3.6.

§4. Above Diff(Π˜ 11). There is another standard way to introduce differences,namely by considering decreasing sequence of sets. If (B�)�<� is a decreasing
sequence of subsets of the Baire space, with 1 ≤ �, we define the setD∗

� ((B�)�<�) by

D∗
� ((B�)�<�) =

⋃
�<�
� even

(B�\B�+1) ,

where if � is odd, we let B� = ∅ by convention.1 These two definitions coincide up
to a certain point.

Facts 4.1. Let Γ be a pointclass.

(a) For every positive integer n, Dn(Γ) = D∗
n (Γ).

(b) For every positive integer n, D2n(Γ) = D2n(Γ̌), andD2n+1(Γ) = Ď2n+1(Γ̌).
(c) For every ordinal 0 < �,

D∗
� (Γ̌) =

{
D�(Γ), if � is even;
Ď�(Γ), if � is odd.

1The notation � − Π˜ 11 can also be found in the literature for the class of � decreasing differences ofco-analytic sets.
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In this section, we discuss the discrepancy between the pointclasses of differ-
ences using increasing sequences of co-analytic sets, and differences using decreasing
sequences of co-analytic sets. We prove that the situation is the following:⋃

n∈� Dn(Π˜ 11)
‖ ⊂ D�(Π˜ 11) ⊂ · · · ⊂ Diff(Π˜ 11) ⊂ Δ(D∗

�(Π˜ 11))⋃
n∈� D

∗
n (Π˜ 11)

This at first sight quite intriguing situation can be explained by a fundamental
dissymmetry between the two classes of analytic and co-analytic sets. The latter
enjoys indeed the generalized reduction property, whereas the former does not.

Lemma 4.2. Let (Di)i∈� be a family of subsets of the Baire space and (αi )i∈� ⊆ �1
such that:

– for all i ∈ �, Di = D∗
αi ((A

i
� )�<αi ) ∈ D∗

αi (Π˜ 11);
– if i 
= j, then Ai0 ∩ Aj0 = ∅.
Then ⋃

i∈�
Di ∈ D∗

α(Π˜ 11),
where α = supi∈� αi .

Proof. It is sufficient to notice that⋃
i∈�
Di =

⋃
�<α
� even

((⋃
i∈�
Ai�

)
\
(⋃
i∈�
Ai�+1

))
. �

In fact the classes D∗
α(Π˜ 11) are closed underΠ˜ 11 − SU.

Lemma 4.3. For all α < �1, the class D∗
α(Π˜ 11) is closed underΠ˜ 11 − SU.

Proof. Let (Di)i∈� be a family of D∗
α(Π˜ 11) sets. By definition, there exists foreach integer i a decreasing family of Π˜ 11 sets (Ai	)	<α such thatDi = D∗

α((A
i
	)	<α).

Let now (Ci)i∈� be a disjoint family ofΠ˜ 11 sets.
SU((Ci)i∈�, (Di)i∈�) =

⋃
i∈�
(Ci ∩Di)

=
⋃
i∈�
(D∗
α((Ci ∩ Ai	)	<α),

And we conclude by Lemma 4.2. �
We now give the proof of the inclusion of the classesDα(Π˜ 11) in the classD∗

�(Π˜ 11).
Proposition 4.4. For every α < �1, Dα(Π˜ 11) ⊆ D∗

�(Π˜ 11).
Proof. We proceed by induction on α < �1. If α is finite, we conclude by
Facts 4.1.
For �, let (Ai)i∈� be an increasing sequence of co-analytic sets, and consider
D�((Ai )i∈�). Using the generalized reduction property on the family (A2i+1)i∈� ,
we get a new sequence of disjoint co-analytic sets (Bi)i∈� such that
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– for all i ∈ �, Bi ⊆ A2i+1;
–
⋃
i∈� Bi =

⋃
i∈� A2i+1.

Thus

D�((Ai )i∈�) =
⋃
i∈�

⎛⎝Bi ∩
⎛⎝⋃
j∈�
A2j+1\A2j

⎞⎠⎞⎠
=
⋃
i∈�

(
Bi ∩

( ⋃
j≤i
A2j+1\A2j︸ ︷︷ ︸

∈D2i+2⊆D∗
2i+3

))
.

Since the family (Bi )i∈� is disjoint, we conclude by Lemma 4.3. The general proof
for 
 < �1 limit is mutatis mutandis the same.
Suppose now that there exists � < �1 such that Dα(Π˜ 11) ⊆ D∗

�(Π˜ 11) for all
α < �+1. Since the odd case is similar, we assume that �+1 is even. Let (Aα)α∈�+1
be an increasing sequence of co-analytic sets, and considerD�+1((Aα)α<�+1). By our
induction hypothesis, there exists a decreasing sequence of co-analytic sets (Bi )i∈�
such that:

D�−1((Aα)α<�−1) = D∗
�((Bi )i∈�).

In particular since the family (Aα)α∈�+1 is increasing, D�−1((Aα)α<�−1), and thus
D∗
�((Bi )i∈�) are included in A�−1. Hence:

D�+1((Aα)α<�+1) = D∗
�((Bi )i∈�) ∪ A�\A�−1

= D∗
�((Bi ∩ A�−1)i∈�) ∪ A�\A�−1

= D∗
�((A�,A�−1, B0 ∩ A�−1, B1 ∩ A�−1, . . .)),

which completes the proof. �
Our determinacy hypothesis is therefore sufficient. Moreover, it follows from
the composition of works by Harrington and Martin that the determinacy of the
Wadge games of co-analytic sets is equivalent to DET(Π˜ 11), so that DET(Π˜ 11) is infact optimal for our work.
The gap between Diff(Π˜ 11) and Δ(D∗

�(Π˜ 11)) has, to our knowledge, not beeninvestigated yet. The only piece of information on that matter is given by a result
from Kechris and Martin mentioned by Steel in [7].

Theorem 4.5 (Kechris–Martin). Under (AD), the order type of the Wadge
hierarchy on Δ(D∗

�(Π˜ 11)) subsets of the Baire space is �2.
Combinedwith our results, it appears thus that under (AD) the inclusion between
Diff(Π˜ 11) and Δ(D∗

�(Π˜ 11)) is strict.
Question 4.6. Is the equality Diff(Π˜ 11) = Δ(D∗

�(Π˜ 11)) consistent under weakerdeterminacy hypothesis?
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