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An anisotropic area functional is often used as a model for the free energy of a
crystal surface. For models of faceting, the anisotropy is typically such that the
functional becomes non-convex, and then it may be appropriate to regularize it with
an additional term involving curvature. When the weight of the curvature term tends
to zero, this gives rise to a singular perturbation problem.

The structure of this problem is comparable to the theory of phase transitions
studied first by Modica and Mortola. Their ideas are also useful in this context, but
they have to be combined with adequate geometric tools. In particular, a variant of
the theory of curvature varifolds, introduced by Hutchinson, is used in this paper.
This allows an analysis of the asymptotic behaviour of the energy functionals.

1. Introduction

The shape of crystal surfaces is often studied with variational principles involving
an anisotropic area. For example, consider a crystal surface M ⊂ R

3 with normal
vector ν. Let H2 denote the two-dimensional Hausdorff measure. Then the free
energy of the surface may be modelled by an integral of the form∫

M

Ψ(ν) dH2

for a function Ψ : S2 → [0,∞) depending on the crystal structure of the material
in question. This approach goes back to Wulff [28].

Unless Ψ is constant, such an energy will favour certain directions of the normal
vector. In the extreme case where Ψ has zeros, it may be possible to find polyhedral
surfaces with vanishing energy, and such a property may be used to model faceting.
From the mathematical point of view, the corresponding variational problems are
challenging because of a lack of convexity. For example, finding minimizers of the
energy may be easy if we work in a space containing suitable polyhedra, but other-
wise minimizers may not exist and minimizing sequences may develop microstruc-
tures. If we study a corresponding parabolic equation, then problems are ill-posed
in general. To overcome these problems (or for other reasons), various authors,
beginning with Herring [18], have suggested a modified surface energy involving
the curvature [3, 12, 16, 17, 27]. The model of Gurtin and Jabbour [17] is closest to
the problem studied in this paper.
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Suppose that M is at least C2-regular and let A denote its second fundamental
form. Let ε > 0 and consider the integral∫

M

(ε2|A|2 + Ψ(ν)) dH2.

If this is regarded as a regularization of the previous free energy, then we will
eventually let ε tend to 0. Sometimes the curvature term is also justified as a model
for physical effects that lead to rounded edges, but then it may still be reasonable
to study the limit ε → 0 because ε is small. We are interested in the asymptotic
behaviour of the energy functional (renormalized by the factor 1/ε) for this limit.
Here we have a structure similar to a type of problem studied first by Modica and
Mortola [23] and subsequently by other authors [5,6,15,20,22,25,26], and it is even
more reminiscent of the higher order version considered by Conti et al . [10]. The
question is whether the observations made in these theories carry over to a problem
that requires the control of surfaces rather than functions or maps.

More precisely, suppose that we have a family of surfaces Mε ⊂ R
3 with normal

vectors νε and second fundamental forms Aε, such that

lim sup
ε↘0

∫
Mε

(
ε|Aε|2 +

1
ε
Ψ(νε)

)
dH2 <∞.

Is this enough to obtain compactness in an appropriate space and if so, can we
derive a limiting energy functional?

The corresponding questions for a similar one-dimensional problem have been
answered affirmatively by Braides and Malchiodi [7], and variants of it have been
studied as well [8, 9]. This theory is motivated by variational methods used in
image processing. It is concerned with the boundary curves of domains E ⊂ R

2,
with normal vector ν and curvature κ, and it involves expressions such as∫

∂E

(
εκ2 +

1
ε
ψ(ν)

)
dH1.

Here ψ : S1 → [0,∞) is a function with finitely many zeros. Braides and Malchiodi
derive a Γ -limit result for this type of functional, which can be summarized roughly
as follows. Suppose that Eε ⊂ R

2 have boundary curves with normal vectors νε and
curvature κε. If

lim sup
ε↘0

∫
∂Eε

(
εκ2

ε +
1
ε
ψ(νε)

)
dH1 <∞,

then there exists a sequence εk ↘ 0 such that the corresponding boundaries con-
verge to a polygon. The energy concentrates on the vertices in the limit, and the
limiting energy can be expressed as a sum over all vertices, the contribution from
each vertex depending on the orientations of the adjoining edges. (We ignore the
case of coinciding vertices here for simplicity.) The ideas from the Modica–Mortola
theory are important for the proofs of these results, especially to calculate the
energy contributions of the individual vertices.

The two-dimensional counterparts of polygons are polyhedra. In our situation, if
we have convergence of the surfaces to a polyhedron, then we expect the energy to
concentrate on the edges. The limiting energy may be a weighted sum of the lengths
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of all edges, the weight of each edge depending on the normals of the adjoining faces.
Indeed, we will see that this description is not so far from the truth. But there are a
few differences to the one-dimensional case. First, the set of polyhedra is not closed
under the relevant notion of convergence. Thus, in order to obtain compactness,
we need to enlarge this space. To this end, we use tools from geometric measure
theory. One of the consequences is that the formulation of the results becomes
more involved, and we postpone the exact statements until we have the necessary
tools available. In the introduction, we give only a non-rigorous version of the main
results.

Again we use Modica–Mortola-type arguments to determine the weights of the
edges in the limiting energy. But in this case we obtain only a lower bound, which
will not be optimal in general. This resembles the situation found by Conti et
al . [10], and the reasons are similar as well. Since ν must be the normal vector of
a surface, it cannot be prescribed arbitrarily. These geometric constraints are not
fully accounted for in the theory, and therefore the results sometimes suggest a
‘limiting energy’ that cannot be achieved. In this case, it must be expected that an
optimal approximation of the limiting configuration will develop microstructures
near the edges.

From now on, we regard this as a purely geometric problem. Then there is no
reason to restrict our attention to surfaces in R

3. Let m,n ∈ N with m < n and
suppose that Ω ⊂ R

n is open. We consider an m-dimensional oriented submanifold
M ⊂ Ω without boundary. Let G0 denote the space of all oriented m-dimensional
linear subspaces of R

n. Then we have a continuous map p : M → G0 such that p(x)
corresponds to the tangent space TxM at every point x ∈ M . We now replace Ψ
by the square of a continuous function Φ : G0 → [0,∞). Let A denote the second
fundamental form of M . We consider the functionals

Fε(M) = 1
2

∫
M

(
ε|A|2 +

1
ε
(Φ(p))2

)
dHm

for ε > 0, where Hm is the m-dimensional Hausdorff measure. We assume that the
subset Q = Φ−1({0}) of G0 is finite.

Suppose that we have a family of oriented manifolds Mε ⊂ Ω with ∂Mε ∩Ω = ∅,
such that

lim sup
ε↘0

Fε(Mε) <∞. (1.1)

Furthermore, we assume that either each Mε is compact or

lim sup
ε↘0

Hm(Mε ∩K) <∞

for every compact set K ⊂ Ω. We then prove the existence of a sequence εk ↘ 0
such that Mεk

converges in a suitable sense and we study the limit. Let Ak denote
the second fundamental form of Mεk

and suppose that its orientation is given by
pk : Mεk

→ G0. Then the first observation is that Young’s inequality implies

lim sup
k→∞

∫
Mεk

|Ak|Φ(pk) dHm <∞. (1.2)

This inequality is the basis for the first step in the analysis. We prove that a uniform
bound of the type (1.2), together with a uniform area bound (that can also be
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derived from the assumptions above) is sufficient to obtain compactness in the space
of integral varifolds. (An integral varifold is a generalized submanifold determined
by a countablym-rectifiable subset of Ω and an integer-valued multiplicity function;
a precise definition is given in § 3).

Claim 1.1. Under the above assumptions, there is convergence of a subsequence to
an integral varifold V .

The compactness result that we use here is stated in theorem 7.1, and it is
explained at the beginning of § 8 how it is applied in this context.

We then study the limit V . Clearly, in the light of condition (1.1), we expect
that Φ(p) = 0 almost everywhere in the limit. We have only a finite set Q ⊂ G0

where Φ vanishes, and it turns out that we can decompose V into several parts
corresponding to the points of Q.

Claim 1.2. There exists a decomposition

V =
∑
q∈Q

V q

into pieces V q with a constant orientation q ∈ Q. Furthermore, each V q has a
countably (m− 1)-rectifiable boundary.

The expression ‘boundary’ is to be understood in a measure theoretic sense. The
precise statement is given in theorem 8.1. A varifold with this type of decomposition
can be interpreted as a generalized polyhedron with faces V q, and the boundaries
of V q then correspond to the edges.

We derive further properties of the boundaries of V q in theorem 8.2, but as they
are somewhat technical, we mention at this point only that a countably (m − 1)-
rectifiable set E is introduced (which can be thought of as the totality of all the
edges), together with a collection of multiplicity functions σq, such that E and σq

represent the boundary of V q.
Finally, we study the energy concentrated on E. We show that there exists a

function Θ : E → (0,∞) such that, for all η ∈ C0
0 (Ω),∫

E

ηΘ dHm−1 � 1
2

lim inf
k→∞

∫
Mεk

η

(
εk|Ak|2 +

1
εk

(Φ(pk))2
)

dHm. (1.3)

Moreover, we have an estimate for Θ. At this stage, we describe only the case of
an edge between exactly two faces oriented by q1, q2 ∈ Q with q1 �= q2. Then we
consider the set Γ (q1, q2) comprising all C1-paths γ : [0, 1] → G0 connecting q1
and q2.

Claim 1.3. At Hm−1-almost every point x on E with |σq1(x)| = |σq2(x)| = 1 and
σq(x) = 0 for q ∈ Q \ {q1, q2}, the inequality

Θ(x) � inf
γ∈Γ (q1,q2)

∫ 1

0
Φ(γ(t))|γ̇(t)| dt

holds.
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We formulate a more precise and more complete version of this result in theo-
rem 8.3.

But first, in § 2, we discuss the observations made here for an example with n = 3
and m = 2 and with a cubic potential function Φ. Before we can derive a rigorous
theory, we also need to introduce a few notions from geometric measure theory. This
is done in § 3. Among these are, in particular, the concepts of oriented varifolds and
currents. Furthermore, we recall a few known results about them in § 4.

Both varifolds and currents are generalizations of submanifolds (and polyhedra)
that have good compactness properties. We use them simultaneously because, for
the problem studied here, they complement each other nicely. Varifolds are partic-
ularly suitable for describing the limiting behaviour of the functionals Fε. But, in
order to obtain compactness in the appropriate space of varifolds with the standard
methods, we need some control of the curvature, which Fε does not provide when
p(x) is close to Q (which will mostly be the case). Currents are much easier to
control here. So we use currents near Q and varifolds away from Q. A variant of
the notion of curvature varifolds of Hutchinson [19], together with a localization
argument of Mantegazza [21], will allow a separation of the two parts. These tools
are discussed in §§ 5 and 6, respectively. With this approach, we obtain a compact-
ness result in § 7 that requires control of the curvature only away from Q. Finally,
we have all the tools that we need to analyse the actual problem in § 8.

2. An example

Suppose that n = 3 and m = 2. Then we may replace G0 by the sphere S2 again.
Consider the function

Ψ(ν) = ((ν1)2 + (ν2)2)((ν1)2 + (ν3)2)((ν2)2 + (ν3)2), ν = (ν1, ν2, ν3) ∈ S2,

and Φ =
√
Ψ . The corresponding energy

1
2

∫
M

(
ε|A|2 +

1
ε
Ψ(p)

)
dH2

may be used as a model for crystal surfaces with a cubic structure. In this case, the
set Q consists of the six unit vectors parallel or antiparallel to the coordinate axes.

A cube, or, more generally, a rectangular parallelepiped, is a possible limit of
surfacesMε with uniformly bounded energy. (In this context, ‘cube’ refers to a two-
dimensional object, i.e. the union of the faces of the corresponding solid.) Indeed, a
sequence of smooth surfaces converging to the cube may be constructed by rounding
the edges. This can be done with modifications entirely in an ε-neighbourhood of
the edges, and such that the second fundamental form is bounded by a constant of
order 1/ε. The asymptotic energy as ε↘ 0 is then proportional to the total length
of all edges.

If we have a collection of cubes Ci, for i ∈ N, with side lengths si, such that∑∞
i=1 si <∞, then the union

⋃∞
i=1 Ci is another limit that can be achieved with

finite asymptotic energy. This union may be a rather irregular set (e.g. it may
be dense in Ω), and thus it is clear that we need a suitable notion of generalized
polyhedra.
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Mε

ν3

ν3

ν2
ν2

γ

Figure 1. A transition between ν2 and ν3 and the corresponding path γ in S2.

M

x l

ε

Figure 2. A double layer with an edge that is not a polygon.

Coming back to a single cube, we examine the minimum energy concentrated
on one of its edges, say between the faces with normal vectors ν2 = (0, 1, 0) and
ν3 = (0, 0, 1). Let Γ denote the set of all C1-paths in S2 between ν2 and ν3. Then
the lower bound in claim 1.3 is

inf
γ∈Γ

∫ 1

0
Φ(γ(t))|γ̇(t)| dt. (2.1)

Owing to the symmetry of Φ, it is easy to see that the infimum is achieved at the
curve γ in S2 that describes a quadrant between ν2 and ν3 (see figure 1). We then
calculate Θ(x) � 1

2 on the corresponding edges. Indeed, by symmetry, we obtain
the same estimate on all edges of this type.

In this situation, the optimal transition between ν1 and ν2 is essentially one-
dimensional. Thus, a careful construction of Mε, using the method of Braides and
Malchiodi [7], will yield exactly this energy density on the edges.

On the other hand, the same potential Φ also gives rise to situations that are
considerably more challenging. Consider a transition between faces with normal
vectors ν3 = (0, 0, 1) and −ν3. This can happen along any sufficiently regular curve
c in a plane perpendicular to ν3.

Let x ∈ c and suppose that l is the line through x tangential to c (see figure 2).
Then we expect that the optimal lower bound for the energy density at x will
depend on l. But a formula such as (2.1) gives a number that depends only on the
function Φ and the end points of the curves considered (in this case, ν3 and −ν3).
The theory developed in this paper is therefore insufficient to fully understand this
and similar situations. Note, however, that we obtain a non-trivial lower bound for
the energy even in this case, namely Θ(x) � 1.
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3. Notation and terminology

The purpose of this section is mostly to fix the notation and explain the terminology
that we use. It is not intended to be self-contained. The necessary background
information can be found, for example, in [13,24].

Let j ∈ {0, . . . , n}. Consider the Grassmann manifolds G(n, j), comprising all j-
dimensional linear subspaces of R

n, and G0(n, j), comprising all oriented j-dimen-
sional linear subspaces of R

n. There exists a natural twofold covering

Πj : G0(n, j) → G(n, j).

If p ∈ G0(n, j), then we write −p for the other point in the same fibre of Πj . We can
also identify each element of G0(n, j) with a simple unit j-vector in ΛjR

n. Thus,
we obtain an embedding Ξj : G0(n, j) → ΛjR

n.
We are interested mostly in the case j = m, and therefore we use the abbrevia-

tions G = G(n,m), G0 = G0(n,m), Π = Πm and Ξ = Ξm. As ΛmR
n is naturally

equipped with an inner product, the embedding Ξ induces a Riemannian metric
g on G0. The distance function with respect to this metric is denoted by dist. Let
r > 0 and p ∈ G0. Then B0

r (p) is the open ball in G0 with radius r and centre p.
In contrast, an open ball in R

n with radius r and centre x is denoted by Br(x).
We fix a finite subset Q of G0 and we write G0

Q = G0 \ Q.
When we work with multi-vectors or differential forms, it is convenient to use a

multi-index notation. Let

I(n, j) = {(α1, . . . , αj) ∈ N
j : 1 � α1 < · · · < αj � n}.

For v1, . . . , vn ∈ R
n and α = (α1, . . . , αj) ∈ I(n, j), we use the notation vα =

vα1 ∧ · · · ∧ vαj . We write e1, . . . , en for the standard basis vectors in R
n, so that we

obtain the standard basis (eα)α∈I(n,j) of ΛjR
n. Similarly, we write

dxα = dxα1 ∧ · · · ∧ dxαj

for the standard basis vectors of Λj
R

n. We use the notation 〈·, ·〉 for the pairing of
ΛjR

n and Λj
R

n. In other words, this is the bilinear extension of

〈eα,dxβ〉 =

{
1 if α = β,
0 otherwise.

Now consider an open set Ω ⊂ R
n. We define G0(Ω) = Ω ×G0 and G0

Q(Ω) =
Ω×G0

Q. If we have a map ω ∈ C1(G0(Ω);Λj
R

n), then for any fixed p ∈ G0 we can
interpret ω(·, p) as a differential j-form in Ω. We then define dω(·, p) as the exterior
derivative of this; that is, if

ω =
∑

α∈I(n,j)

ωα dxα,

then

dω =
∑

α∈I(n,j)

n∑
i=1

∂ωα

∂xi
dxi ∧ dxα.
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On the other hand, for a fixed x ∈ Ω, we obtain a differentiable map ω(x, ·) on G0.
We write gradω for its gradient with respect to the Riemannian metric g.

Suppose that X is a smooth manifold and � : Y → X is a vector bundle over X
with bundle metric γ. Then a Radon measure A on X with values in Y is a pair
(µ, F ), where µ is a Radon measure on X and F is a µ-measurable unit section
of Y (in other words, a µ-measurable map F : X → Y with �(F (x)) = x and
γ(F (x), F (x)) = 1 for µ-almost every x ∈ X). For a continuous section ψ of Y with
compact support, we then write∫

X

γ(ψ,dA) =
∫

X

γ(ψ, F ) dµ.

We also use the notation |A| = µ. We will use this concept above all for the vector
bundles Ω×TG0

Q and T ∗Ω×TG0
Q over G0

Q(Ω) (with fibre TpG
0 and T ∗

xΩ × TpG
0,

respectively, at (x, p) ∈ G0
Q(Ω)).

We write Hj for the j-dimensional Hausdorff measure in Ω.
An oriented j-varifold in Ω is a Radon measure on Ω ×G0(n, j); for j = m, recall

that we have the abbreviation G0(Ω) for this manifold. There is a special type of
oriented varifolds, represented by

• a countably j-rectifiable and Hj-measurable set M ⊂ Ω,

• two locally Hj-integrable functions θ+, θ− : M → N0 and

• an Hj-measurable function

p : M → G0(n, j)

such that Πj(p(x)) is the approximate tangent space ofM at Hj-almost every
x ∈M .

The oriented j-varifold V , defined by∫
Ω×G0(n,j)

φdV =
∫

M

(φ(x, p)θ+ + φ(x,−p)θ−) dHj ,

is called an oriented integral j-varifold in Ω. We write V = vf(M, θ+, θ−, p) and
the set consisting of all varifolds of this type is denoted by IV0

j (Ω).
Let Pj : G0(n, j) → R

n×n be the map such that Pj(p) is the matrix describing the
orthogonal projection onto Πj(p) for every p ∈ G0(n, j). Then the first variation of
an oriented j-varifold V in Ω is the linear functional δV on C1

0 (Ω; Rn) given by

δV (ψ) =
∫

Ω×G0(n,j)
tr(Pj∇ψ) dV.

Let πj : Ω × G0(n, j) → Ω be the projection. Then every oriented j-varifold in Ω
induces a Radon measure ‖V ‖ = (πj)#V on Ω. If U ⊂ Ω is open, then we also
define

‖δV ‖(U) = sup
{
δV (ψ) : ψ ∈ C1

0 (U ; Rn) with sup
U

|ψ| � 1
}
.

For every other Borel set B ⊂ Ω,

‖δV ‖(B) = inf{‖δV ‖(U) : U ⊂ Ω is open and B ⊂ U}.
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A j-current in Ω is a continuous linear functional on C∞
0 (Ω;Λj

R
n), the space of

smooth j-forms in Ω with compact support. If we have

• a countably j-rectifiable and Hj-measurable set M ⊂ Ω,

• a locally Hj-integrable function θ : M → N0 and

• an Hj-measurable map ξ : M → ΛjR
n such that ξ(x) is a simple unit j-vector

andΠj(Ξ−1
j (ξ(x))) is the approximate tangent space ofM at Hj-almost every

x ∈M ,

then we obtain a j-current T with

T (ω) =
∫

M

〈ξ, ω〉θ dHj , ω ∈ C∞
0 (Ω;Λj

R
n).

If T can be represented this way, then we call it an integer rectifiable j-current. We
write T = ct(M, θ, ξ), and the set of all integer rectifiable j-currents is denoted by
ICj(Ω).

If T is a j-current and j � 1, then the boundary ∂T of T is the (j − 1)-current
defined by

∂T (ω) = T (dω), ω ∈ C∞
0 (Ω;Λj−1

R
n).

For every open set U ⊂ Ω, we define

‖T‖(U) = sup
{
T (ω) : ω ∈ C∞

0 (U ;Λj
R

n) with sup
U

|ω| � 1
}
.

Furthermore,

‖T‖(B) = inf{‖T‖(U) : U ⊂ Ω is open and B ⊂ U}

for every Borel set B ⊂ Ω. If ‖T‖(K) <∞ for every compact set K ⊂ Ω, then ‖T‖
is a Radon measure on Ω. In this case there exists a locally ‖T‖-integrable map
ξ : Ω → ΛjR

n such that

T (ω) =
∫

Ω

〈ξ, ω〉 d‖T‖ for all ω ∈ C∞
0 (Ω;Λj

R
n).

The expression T (ω) then makes sense for all ω ∈ C0
0 (Ω;Λj

R
n).

Every oriented j-varifold V gives rise to a j-current T = T (V ) with

T (ω) =
∫

Ω×G0(n,j)
〈Ξj , ω〉 dV.

If V ∈ IV0
j (Ω), then T (V ) ∈ ICj(Ω). Conversely, if T = ct(M, θ, ξ) is an integer

rectifiable j-current, then we also have a corresponding oriented integral j-varifold
V = vf(M, θ, 0, Ξ−1

j (ξ)). This is denoted by V = V(T ). We always have T (V(T )) =
T , but the varifold V(T (V )) may differ from V , even if V ∈ IV0

j (Ω).
A j-varifold can be regarded as an element of the dual space of C0

0 (Ω×G0(n, j)).
A j-current is in the dual space of C∞

0 (Ω;Λj
R

n) by definition. When we speak
of convergence of varifolds or currents, then we always mean weak∗ convergence
in these spaces. We use the notation V�

∗
⇀ V or T�

∗
⇀ T for such convergence. A

similar notation is also used for other Radon measures.
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4. Some known results

In this section we state a few well-known results from geometric measure theory
that we use in this paper. The first is a version of a compactness result by Allard [1]
for varifolds, which has been extended to oriented varifolds by Hutchinson [19].

Theorem 4.1 (the Allard–Hutchinson compactness theorem). Suppose that Vk ∈
IV0

m(Ω), k ∈ N, such that, for every compact set K ⊂ Ω,

sup
k∈N

(‖Vk‖(K) + ‖δVk‖(K) + ‖∂T (Vk)‖(K)) <∞.

Then there exist a subsequence k� → ∞ and a varifold V ∈ IV0
m(Ω) such that

Vk�

∗
⇀ V .

The other two results stated in this section concern currents. Both are due to Fed-
erer and Fleming [14], but we use a formulation that is closer to the corresponding
statements in a book by Simon [24].

Theorem 4.2 (the Federer–Fleming compactness theorem). For k ∈ N, let Tk ∈
ICm(Ω) such that, for every compact set K ⊂ Ω,

sup
k∈N

(‖Tk‖(K) + ‖∂Tk‖(K)) <∞.

Then there exist a subsequence k� → ∞ and a current T ∈ ICm(Ω) such that
Tk

∗
⇀ T .

Theorem 4.3 (boundary rectifiability theorem). If the current T ∈ ICm(Ω) satis-
fies ‖T‖(K) + ‖∂T‖(K) <∞ for all compact sets K ⊂ Ω, then ∂T ∈ ICm−1(Ω).

5. Curvature varifolds

One of the main tools in this paper is a variant of the notion of curvature varifolds,
which was introduced by Hutchinson [19]. Mantegazza [21] extended the concept to
include the possibility of a boundary. A refined version for oriented varifolds was
defined by Delladio and Scianna [11]. All of these are based on the generalization
of the same integration-by-parts formula on manifolds. In order to understand the
underlying ideas, it is useful to consider a smooth m-dimensional submanifoldM ⊂
Ω first, possibly with a smooth boundary ∂M . Let H denote its mean curvature
vector and ν the outer normal vector on the boundary. Furthermore, for x ∈ M ,
let P (x) denote the (n×n)-matrix belonging to the orthogonal projection onto the
tangent space TxM . Then, for any η ∈ C1

0 (Ω), we have∫
M

( n∑
j=1

Pij
∂η

∂xj
+ ηHi

)
dHm =

∫
∂M

ηνi dHm−1, i = 1, . . . , n. (5.1)

Let φ ∈ C1
0 (Ω × R

n×n) and apply the formula to η(x) = φ(x, P (x)). This yields∫
M

( n∑
j=1

Pij

(
∂φ

∂xj
+

n∑
k,�=1

∂φ

∂yk�

∂Pk�

∂xj

)
+ φHi

)
dHm =

∫
∂M

φνi dHm−1 (5.2)
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for i = 1, . . . , n. Here the functions Pk� are extended smoothly to Ω so that we can
differentiate them with respect to xj . The quantities

n∑
j=1

Pij
∂Pk�

∂xj

are independent of the extension, and they determine the second fundamental form
of M . Furthermore, (5.2) has a counterpart for varifolds, which can be used to
define a notion of curvature for varifolds.

We modify these ideas in three ways. First, while the curvature is represented by
functions in the aforementioned works, we have to work with a curvature described
by Radon measures. This generalization is similar to the step from Sobolev functions
to functions of bounded variation. Second, we need to restrict everything to G0

Q,
because our variational problem does not control the curvature near Q. Third, we
want to avoid the expression ∫

M

φHi dHm

(or rather, its counterpart for varifolds) in our definition. The mean curvature
corresponds to the first variation of a varifold, and we do not have sufficient control
of this either. For this reason, we replace (5.1) and (5.2) by other formulae. In the
case of a smooth oriented submanifold of Ω, it is simply Stokes’s formula∫

M

dσ =
∫

∂M

σ (5.3)

for σ ∈ C1
0 (Ω;Λm−1

R
n). It has been shown by Anzellotti et al . [4] that a general-

ization of this can be used to define functions of bounded variation over a current.
A connection between this concept and curvature varifolds has been established by
Delladio and Scianna [11]. The following definition is partially inspired by these
works.

If M ⊂ Ω is a smooth oriented submanifold with smooth boundary and p :M →
G0 is the function that assigns to a point x ∈ M its oriented tangent space, then
we can write (5.3) in the form∫

M

〈Ξ(p),dσ〉 dHm =
∫

∂M

σ.

Now suppose that

ω =
∑

α∈I(n,m−1)

ωα dxα ∈ C1
0 (G0(Ω);Λm−1

R
n)

and σ(x) = ω(x, p(x)). Then

dσ(x) = dω(x, p(x)) +
n∑

i=1

∑
α∈I(n,m−1)

g

(
gradωα(x, p(x)),

∂p

∂xi
(x)

)
dxi ∧ dxα.
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Thus,

∫
M

〈Ξ(p),dω(x, p)〉 dHm +
n∑

i=1

∫
M

g

(
〈Ξ(p),dxi ∧ gradω(x, p)〉, ∂p

∂xi

)
dHm

=
∫

∂M

ω(x, p). (5.4)

The derivatives ∂p/∂xi also characterize the second fundamental form; thus, we
can use this formula instead of (5.2) to generalize the notion to varifolds.

Definition 5.1. Suppose that V ∈ IV0
m(Ω). Then CQV is the set of all Radon

measures

A =
n∑

i=1

Ai dxi

on G0
Q with values in the vector bundle T ∗Ω × TG0

Q over G0
Q(Ω) with the following

property: for every open, precompact set U � Ω there exists a constant C such that,
for all ω ∈ C1

0 (G0(U);Λm−1
R

n) with supp(gradω) ⊂ G0
Q(U),∫

G0(U)
〈Ξ,dω〉 dV +

n∑
i=1

∫
G0

Q(U)
g(〈Ξ,dxi ∧ gradω〉,dAi) � C sup

G0(U)
|ω|. (5.5)

If A ∈ CQV exists, then it follows that the left-hand side of (5.5) is represented
by a Radon measure on G0(Ω) with values in Λm−1R

n, denoted by ∂AV . Thus, we
have∫

G0(Ω)
〈Ξ,dω〉 dV +

n∑
i=1

∫
G0

Q(Ω)
g(〈Ξ,dxi ∧gradω〉,dAi) =

∫
G0(Ω)

〈d∂AV, ω〉. (5.6)

We interpret this as the counterpart of (5.4) for varifolds, and then ∂AV corresponds
to the boundary of V (hence the notation). Indeed, for T = T (V ), we obtain

∂T (ω) =
∫

G0(Ω)
〈d∂AV, ω〉

for all ω ∈ C∞
0 (Ω;Λm−1

R
n).

Note that we do not have uniqueness of the measure A ∈ CQV . In this respect,
the notion of definition 5.1 is different from the curvature varifolds of Hutchinson
and Mantegazza. This is not a consequence of using Stokes’s formula instead of
(5.1), but rather of dropping the condition that |A| is absolutely continuous with
respect to V . Indeed, if suppV ⊂ G0

Q(Ω) and there is an A ∈ CQV that is absolutely
continuous with respect to V (and thus represented by a function), then it can be
shown that V is an oriented version of a curvature varifold with boundary in the
sense of Mantegazza [21]. We leave it to the reader to verify this. For the purpose
of this paper, only the following weaker statement is important.

Proposition 5.2. For every R > 0 there exists a constant C such that the following
holds true. Suppose that V ∈ IV0

m(Ω) and A ∈ CQV . If suppV ∩ (Ω ×B0
2R(q)) = ∅
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for every q ∈ Q, then

δV (ψ) � C
∫

Ω×(G0\
⋃

q∈Q B0
R(q))

|ψ| d|A| + C
∫

G0(Ω)
|ψ| d|∂AV |

for every ψ ∈ C1
0 (Ω; Rn). In particular the first variation of V is represented by a

Radon measure.

Proof. Fix a point p0 ∈ G0. Then we can find an open neighbourhood U ⊂ G0 of
p0 such that there exist smooth maps ε1, . . . , εm : U → R

n with the property that
(ε1(p), . . . , εm(p)) is an orthonormal basis of Π(p) and Ξ(p) = ε1(p) ∧ · · · ∧ εm(p)
for every p ∈ U . Suppose that

εi =
n∑

k=1

εki ek,

and define

γi =
n∑

k=1

εki dxk, i = 1, . . . ,m.

Let

f̃� =
m∑

j=1

(−1)jε�jγ1 ∧ · · · ∧ γj−1 ∧ γj+1 ∧ · · · ∧ γm, � = 1, . . . , n,

and note that

〈Ξ(p),dxk ∧ f̃�(p)〉 =
m∑

j=1

εkj (p)ε�j(p)

for every p ∈ U . Thus, for ψ ∈ C1
0 (Ω; Rn), we have

tr(Pm(p)∇ψ(x)) =
n∑

�=1

〈Ξ(p), d(ψ�(x)f̃�(p))〉

for x ∈ Ω and p ∈ U . Using a partition of unity on G0, we can construct smooth
functions f1, . . . , fn : G0 → Λm−1

R
n such that

tr(Pm∇ψ) =
n∑

�=1

〈Ξ, d(ψ�f�)〉.

We choose a cut-off function χ ∈ C∞
0 (G0) with χ ≡ 0 in B0

R(q) for every q ∈ Q and
χ ≡ 1 in G0 \

⋃
q∈QB2R(q). Then we still have

δV (ψ) =
∫

G0(Ω)
tr(Pm∇ψ) dV =

n∑
�=1

∫
G0(Ω)

〈Ξ, d(ψ�χf�)〉 dV.

If we test (5.6) with ω(x, p) = ψ�(x)χ(p)f�(p), then we immediately obtain the
required inequality.
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We also note that the notion introduced in this section is consistent with the
second fundamental form of a smooth manifold. Part of this fact is already encapsu-
lated in formula (5.4), but we need a more precise statement about the relationship
between A and the second fundamental form.

Proposition 5.3. Let M ⊂ Ω be an oriented m-dimensional submanifold of class
C2 with a boundary ∂M of class C1. Suppose that p : M → G0 is a continuous
map with Π(p(x)) = TxM for every x ∈ M . Furthermore, let A denote the second
fundamental form of M . Consider the oriented m-varifold V = vf(M, 1, 0, p) in Ω.
Then there exists an A ∈ C∅V such that, for all φ ∈ C0

0 (G0(Ω)),∫
G0(Ω)

φd|A| =
∫

M

φ(x, p(x))|A(x)| dHm(x).

If ∂M ∩Ω = ∅, then ∂AV = 0.

Proof. First extend p to Ω in a way such that ν ·∇p(x) = 0 for x ∈M and ν ⊥ TxM .
We define A =

∑n
i=1Ai dxi by the condition that∫

G0(Ω)
g(ψ,dAi) =

∫
M

g

(
ψ(x, p(x)),

∂p

∂xi
(x)

)
dHm(x)

for all continuous sections ψ of Ω × TG0 with compact support. Then A belongs
to C∅V by (5.4), and we also see that ∂AV = 0 if ∂M ∩Ω = ∅. Hence, it suffices to
show that |A| = |dp|.

To this end, we recall that Ξ is an isometry between G0 and a subset of ΛmR
n

by definition. Thus, for ξ = Ξ ◦p, we have |dp| = |dξ|. Locally onM , we can choose
orthonormal vector fields ε1, . . . , εm such that ξ = ε1 ∧ · · · ∧ εm. Now

∂ξ

∂xi
=
∂ε1
∂xi

∧ ε2 ∧ · · · ∧ εm + · · · + ε1 ∧ · · · ∧ εm−1 ∧ ∂εm
∂xi

.

Note that ∂εj/∂xi is perpendicular to εj . Hence, all of the terms in this sum are
perpendicular to one another and we have∣∣∣∣ ∂ξ∂xi

∣∣∣∣
2

=
∣∣∣∣∂ε1∂xi

∧ ε2 ∧ · · · ∧ εm
∣∣∣∣
2

+ · · · +
∣∣∣∣ε1 ∧ · · · ∧ εm−1 ∧ ∂εm

∂xi

∣∣∣∣
2

.

If (·)⊥ denotes the orthogonal projection onto the normal space, then we also see
that ∣∣∣∣ ∂ξ∂xi

∣∣∣∣
2

=
∣∣∣∣
(
∂ε1
∂xi

)⊥∣∣∣∣
2

+ · · · +
∣∣∣∣
(
∂εm
∂xi

)⊥∣∣∣∣
2

.

Summing over i, we obtain the required identity.

6. Localization

Mantegazza [21] proved that his notion of curvature varifolds is stable under local-
ization in Ω as well as in G0. For the concept from definition 5.1, we have a similar
property.
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Lemma 6.1. For every R > 0 there exists a constant C with the following proper-
ties. Suppose that V ∈ IV0

m(Ω) and A ∈ CQV .

(i) If x0 ∈ Ω such that B2R(x0) ⊂ Ω, then there exists a radius r ∈ (R, 2R) such
that the varifolds

V 1 = V �(Br(x0) ×G0) and V 2 = V − V 1

and the measures

A1 = A�(Br(x0) ×G0
Q) and A1 = A−A2

satisfy A1 ∈ CQV
1 and A2 ∈ CQV

2. Furthermore,

|∂A1V 1|(G0(Ω)) + |∂A2V 2|(G0(Ω))

� C‖V ‖(B2R(x0) \BR(x0)) + |∂AV |(G0(Ω)).

(ii) If p0 ∈ G0 such that B0
2R(p0) \ B0

R(p0) ⊂ G0
Q, then there exists a radius

r ∈ (R, 2R) such that the varifolds

V 1 = V �(Ω ×B0
r (p0)) and V 2 = V − V 1

and the measures

A1 = A�(Ω × (B0
r (p0) \ Q)) and A2 = A−A1

satisfy A1 ∈ CQV
1 and A2 ∈ CQV

2. Furthermore,

|∂A1V 1|(G0(Ω)) + |∂A2V 2|(G0(Ω))

� C|A|(Ω × (B0
2R(p0) \B0

R(p0))) + |∂AV |(G0(Ω)).

Proof. The localization in Ω works the same way as the localization in G0, and
both use the same method as in Mantegazza’s paper. As the former is carried out
in detail there, we concentrate on part (ii).

Define H = B0
2R(p0) \B0

R(p0). We first consider the case |A|(Ω ×H) <∞.
Let h ∈ C∞(R) with h ≡ 1 in (−∞,−1], h ≡ 0 in [0,∞) and −2 � h′ � 0. Fix

r ∈ (R, 2R) and define

h�(t) = h(�(t− r)), t ∈ R, � ∈ N,

and
χ�(p) = h�(dist(p, p0)), p ∈ G0.

Let ω ∈ C1
0 (G0(Ω);Λm−1

R
n) with supp(gradω) ⊂ G0

Q(Ω). We test (5.6) with

ω�(x, p) = χ�(p)ω(x, p).

We obtain∫
G0(Ω)

χ�〈Ξ,dω〉 dV +
n∑

i=1

∫
G0

Q(Ω)
χ�g(〈Ξ,dxi ∧ gradω〉,dAi)

+
n∑

i=1

∫
G0

Q(Ω)
〈Ξ,dxi ∧ ω〉g(gradχ�,dAi) =

∫
G0(Ω)

χ�〈d∂AV, ω〉.
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Setting W� = V �χ� and B� = A�χ�, we see that B� ∈ CQW� and ∂B�
W� is given

by∫
G0(Ω)

〈d∂B�
W�, ω〉 =

∫
G0(Ω)

χ�〈d∂AV, ω〉 −
n∑

i=1

∫
G0

Q(Ω)
〈Ξ,dxi ∧ ω〉g(gradχ�,dAi).

We have |gradχ�| � 2�. Thus, if we define

f(ρ) = |A|(Ω × (Bρ(p0) ∩H)),

then we obtain∣∣∣∣
∫

G0
Q(Ω)

〈Ξ,dxi ∧ ω〉g(gradχ�,dAi)
∣∣∣∣ � 2�

(
f(r) − f

(
r − 1

�

))
sup

G0(Ω)
|ω|.

As f is monotone, it is differentiable at almost every ρ ∈ (R, 2R). In particular, we
can choose r ∈ (R, 2R) such that

f ′(r) � 2
R

(f(2R) − f(R)),

and, at the same time,

V (Ω × ∂B0
r (p0)) = 0 and |A|(Ω × ∂B0

r (p0)) = 0.

Then we have W�
∗
⇀ V 1 and B�

∗
⇀ A1 as �→ ∞. Furthermore,

lim sup
�→∞

|∂B�
W�|(G0(Ω)) � 4

R
|A|(Ω ×H) + |∂AV |(G0(Ω)).

Letting �→ ∞, we derive the required properties of V 1 and A1, and the arguments
are essentially the same for V 2 and A2.

If |A|(Ω ×H) = ∞, then the inequality becomes trivial and we merely have to
show that A1 ∈ CQV

1 and A2 ∈ CQV
2. To this end, we choose precompact, open

sets Ωj � Ω, j ∈ N, such that

Ω =
∞⋃

j=1

Ωj .

We use the same arguments as above for the restriction of V to Ωj , but we choose
r such that the corresponding inequality holds simultaneously for all j ∈ N (albeit
with different constants). This then implies the claim.

We will use this lemma at several stages in this paper. The first consequence is
an estimate for ‖V ‖(Ω) in the case of a compactly supported V .

Proposition 6.2. Suppose that Ψ : G0
Q → (0,∞) is a continuous function. Then

for every c > 0 there exists a constant C with the following property: suppose that
V ∈ IV0

m(Ω) has compact support in G0(Ω) and A ∈ CQV . If∫
G0

Q(Ω)
Ψ dV +

∫
G0

Q(Ω)
Ψ d|A| + |∂AV |(G0(Ω)) � c,

then ‖V ‖(Ω) � C.
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Proof. Choose R > 0 such that B2R(q1) ∩B2R(q2) = ∅ for q1, q2 ∈ Q with q1 �= q2.
Using lemma 6.1, we can decompose V into

V = Ṽ +
∑
q∈Q

V q,

where suppV q ⊂ Ω ×B2R(q) and supp Ṽ ∩ (Ω × BR(q)) = ∅ for every q ∈ Q, and
furthermore, we have an Aq ∈ CQV

q with

|∂AqV q|(G0(Ω)) � C1

for a constant C1 that is independent of V or A.
The inequality ∫

G0
Q(Ω)

Ψ dV � c

immediately gives a suitable bound for ‖Ṽ ‖(Ω). Now fix q ∈ Q. In order to estimate
‖V q‖(Ω) as well, we consider the current T q = T (V q). Let Q = Π(q) and suppose
that �q : R

n → Q is the orthogonal projection. Define Sq = �q
#T

q. If R is chosen
sufficiently small, then we have

2‖Sq‖(Q) � ‖T q‖(Ω) = ‖V q‖(Ω).

Moreover,
‖∂Sq‖(Q) � |∂AqV q|(G0(Ω)) � C1.

Note that Sq is of the form Sq = ct(Q, θq, Ξ(q)) for a function θq : Q→ N0 with
compact support. In fact, since ‖∂S‖(Q) <∞, the function θq has bounded varia-
tion in Q and Sq satisfies the isoperimetric inequality [2, theorem 3.46]

‖S‖(Q) � C2(‖∂Sq‖(Q))m/(m−1)

for a constant C2 that depends only on m. Now the desired inequality follows.

7. Compactness

The purpose of this section is to prove compactness of bounded sets of oriented
integral m-varifolds with a uniform bound for the curvature away from Q. In the
case Q = ∅, such a property follows from theorem 4.1, because the first variation is
then controlled by proposition 5.2. In the case Q �= ∅, the main task is to control
the varifolds near the points of Q. The idea is to decompose a given varifold into
a part with a good control of the first variation and several parts with nearly
constant tangent spaces, using lemma 6.1. The first part can then be controlled with
the Allard–Hutchinson compactness theorem again, and the other parts with the
Federer–Fleming compactness result for integer rectifiable currents (theorem 4.2).

Theorem 7.1. For k ∈ N, let Vk ∈ IV0
m(Ω) and Ak ∈ CQVk. Suppose that, for all

compact sets K ⊂ Ω and L ⊂ G0
Q,

sup
k∈N

(‖Vk‖(K) + |Ak|(K × L) + |∂Ak
Vk|(G0(K))) <∞.

Then there exist a subsequence k� → ∞, a varifold V ∈ IV0
m(Ω), and a measure

A ∈ CQV , such that Vk�

∗
⇀ V in G0(Ω) and Ak�

∗
⇀ A in G0

Q(Ω).
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For the proof we need the following lemma.

Lemma 7.2. Suppose that V is an oriented m-varifold in Ω such that for every
k ∈ N there exists a Wk ∈ IV0

m(Ω) satisfying∣∣∣∣
∫

G0(Ω)
φdV −

∫
G0(Ω)

φdWk

∣∣∣∣ � 2−k

∫
Ω

sup
{x}×G0

(|φ| + |gradφ|) d‖V ‖(x)

for all φ ∈ C1
0 (G0(Ω)). Then V ∈ IV0

m(Ω).

Proof. First we see that 1
2‖V ‖ � ‖Wk‖ � 2‖V ‖ for every k. Hence, the measure

µ =
∞∑

k=1

2−k‖Wk‖

is a Radon measure on Ω. Since each Wk is an integral m-varifold, there exists a
countably rectifiable and Hm-measurable set M ⊂ Ω such that µ is absolutely con-
tinuous with respect to Hm �M . Since ‖V ‖ is absolutely continuous with respect
to µ, the varifold V has a representation of the form∫

G0(Ω)
φdV =

∫
M

∫
G0
φ(x, p) dV (x)(p) dHm(x),

where x �→ V (x) is a locally Hm-integrable map from M to the space of Radon
measures on G0. Similarly, we have representations∫

G0(Ω)
φdWk =

∫
M

∫
G0
φ(x, p) dW (x)

k (p) dHm(x), k ∈ N,

of the same type.
Let p+, p− : M → G0 be two Hm-measurable maps such that at Hm-almost every

x ∈ M , we have Π(p+(x)) = Π(p−(x)) = TxM and p+(x) = −p−(x). For p ∈ G0,
let δp denote the Dirac measure centred at p. We have to show that, for Hm-almost
every x0 ∈M , we have

V (x0) = θ+δp+(x0) + θ−δp−(x0) (7.1)

for two numbers θ+, θ− ∈ N0. We already know that W (x0)
k has this form for Hm-

almost every x0 ∈M .
Choose h ∈ C∞(R) with 0 � h � 1, h ≡ 1 in (−∞, 1

2 ] and h ≡ 0 in [1,∞). For
� ∈ N and x0 ∈ Ω, define χ�,x0(x, p) = �mh(�|x− x0|). Let

C =
∫

Rm×{0}
χ1,0 dx1 ∧ · · · ∧ dxm.

Then, for Hm-almost all x0 ∈M and all η ∈ C0(G0), we have∫
G0(Ω)

χ�,x0(x)η(p) dV (x, p) → C

∫
G0
η dV (x0)

and ∫
G0(Ω)

χ�,x0(x)η(p) dWk(x, p) → C

∫
G0
η dW (x0)

k , k ∈ N,
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as � → 0. We fix a point x0 ∈ M such that we have these limits and, in addition,
each W (x0)

k is of the form (7.1).
If V (x0) did not have a representation as in (7.1), then there would be a function

η ∈ C1(G0) and a number α > 0 such that∣∣∣∣
∫

G0
η dV (x0) −

∫
G0
η dU

∣∣∣∣ � α

for every measure U on G0 of the form (7.1). For this η, consider the numbers

γk� =
∫

G0
χ�,x0η dV −

∫
G0
χ�,x0η dWk.

On the one hand, for any fixed k, we have

|γk�| → C

∣∣∣∣
∫

G0
η dV (x0) −

∫
G0
η dW (x0)

k

∣∣∣∣ � Cα as �→ ∞.

On the other hand,

|γk�| � 2−k sup
G0

(|η| + |grad η|)
∫

Ω

χ�,x0 d‖V ‖ → 0 as k → ∞

uniformly in �. Thus, if k is sufficiently large, then we have a contradiction.

Proof of theorem 7.1. It is clear that there exist an oriented m-varifold V and a
Radon measure A such that we have the required convergence for a suitable subse-
quence. Because of the uniform bounds for ∂Ak

Vk, it also immediately follows that
(5.5) is satisfied. The most difficult part of the proof is to show that V ∈ IV0

m(Ω).
As it suffices to prove this locally, we may assume without loss of generality that

sup
k∈N

(‖Vk‖(Ω) + |Ak|(Ω × L) + |∂Ak
Vk|(G0(Ω))) <∞

for every compact set L ⊂ G0
Q.

Fix R > 0 such that B0
2R(q1) ∩B0

2R(q2) = ∅ for q1, q2 ∈ Q with q1 �= q2. We apply
lemma 6.1 to the ball B0

2R(q) for each q ∈ Q. Thus, we obtain a decomposition

Vk = Ṽk +
∑
q∈Q

V q
k ,

with corresponding measures Ãk ∈ CQṼk and Aq
k ∈ CQV

q
k , satisfying

supp Ṽk ⊂ Ω̄ ×
(
G0 \

⋃
q∈Q

B0
R(q)

)

and
suppV q

k ⊂ Ω̄ ×B0
2R(q).

Furthermore,

sup
k∈N

(‖Ṽk‖(Ω) + |Ãk|(G0(Ω)) + |∂Ãk
Ṽk|(G0(Ω))) <∞
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and
sup
k∈N

(‖V q
k ‖(Ω) + |∂Aq

k
V q

k |(G0(Ω))) <∞.

Using proposition 5.2, we see that the varifolds Ṽk satisfy the conditions of the-
orem 4.1. Thus, we may assume that Ṽk

∗
⇀ Ṽ for some Ṽ ∈ IV0

m(Ω).
Now fix q ∈ Q and consider V q

k and the corresponding integer rectifiable current
T q

k = T (V q
k ). We may assume that V q

k
∗
⇀ V q for a varifold V q.

Let ω ∈ C∞
0 (Ω;Λm−1

R
n). Then we have

T q
k (dω) =

∫
G0(Ω)

〈Ξ,dω〉 dV q
k =

∫
G0(Ω)

〈d∂Aq
k
V q

k , ω〉.

Hence,
sup
k∈N

(‖T q
k ‖(Ω) + ‖∂T q

k ‖(Ω)) <∞.

By theorem 4.2, we may assume that there exists an integer rectifiable m-current
T q in Ω such that T q

k
∗
⇀ T q as k → ∞. Let W q = V(T q).

We do not necessarily have equality of V q and W q, because convergence of cur-
rents allows cancellation, whereas convergence of varifolds does not. But since all
m-vectors associated to T q

k are in a ball of radius 2R about Ξ(q), cancellation only
happens to a limited degree. Therefore, the difference of V q and W q is small if R
is small. We now want to make this observation more precise.

For ‖V q‖-almost every x ∈ Ω, a fibre measure V q,(x) exists on G0, such that, for
all φ ∈ C0

0 (G0(Ω)),∫
G0(Ω)

φdV q =
∫

Ω

∫
G0
φ(x, p) dV q,(x)(p) d‖V ‖(x).

Consider a function ξq : Ω → ΛmR
n with

ξq(x) =
∫

G0
Ξ dV q,(x)

for all x ∈ Ω such that this is well-defined. Then we have

T q(ω) =
∫

Ω

〈ξq, ω〉 d‖V q‖

for all ω ∈ C∞
0 (Ω;Λm

R
n). We know that T q ∈ ICm(Ω). Thus, ξq(x) is a simple

m-vector almost everywhere and∫
G0(Ω)

φdW q =
∫

Ω

|ξq|φ
(
x,Ξ−1

(
ξq

|ξq|

))
d‖V q‖

for every φ ∈ C0
0 (G0(Ω)). But since suppV q,(x) ⊂ B0

2R(q) for ‖V q‖-almost every
x ∈ Ω, we have∣∣∣∣

∫
G0
φ(x, ·) dV q,(x) − |ξq(x)|φ

(
x,Ξ−1

(
ξq(x)
|ξq(x)|

))∣∣∣∣ � 4R sup
{x}×G0

(|φ| + |gradφ|)
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for every such x. Hence,∣∣∣∣
∫

G0(Ω)
φdV q −

∫
G0(Ω)

φdW q

∣∣∣∣ � 4R
∫

Ω

sup
{x}×G0

(|φ| + |gradφ|) d‖V q‖(x).

Obviously,

V = Ṽ +
∑
q∈Q

V q.

Set

W = Ṽ +
∑
q∈Q

W q.

This is an oriented integral m-varifold in Ω. We know that∣∣∣∣
∫

G0(Ω)
φdV −

∫
G0(Ω)

φdW
∣∣∣∣ � 4R

∫
Ω

sup
{x}×G0

(|φ| + |gradφ|) d‖V ‖(x).

Since R was chosen arbitrarily, we conclude that V satisfies the hypothesis of
lemma 7.2. Thus, V ∈ IV0

m(Ω).

8. Analysis of the limiting configuration

Now we consider the continuous function Φ : G0 → [0,∞) with Φ−1({0}) = Q again
that gives rise to the functionals Fε in the introduction. We study a sequence of
m-dimensional oriented submanifolds Mk ⊂ Ω of class C2 with ∂Mk ∩Ω = ∅ such
that there exists a sequence εk ↘ 0 with

lim sup
k→∞

Fεk
(Mk) <∞. (8.1)

Furthermore, we assume that either each Mk is compact or

lim sup
k→∞

Hm(Mk ∩K) <∞

for every compact set K ⊂ Ω.
Let Ak denote the second fundamental form of Mk, and let pk : Mk → G0 be

the maps that give the orientations of Mk. We want to determine the asymptotic
behaviour of the manifolds and of the energy densities

1
2

(
εk|Ak|2 +

1
εk

(Φ(pk))2
)
.

By Young’s inequality, we have

lim sup
k→∞

∫
Mk

Φ(pk)|Ak|dHm � lim sup
k→∞

Fεk
(Mk) <∞.

Thus, if Vk = vf(Mk, 1, 0, pk) is the varifold belonging to Mk, then according to
proposition 5.3 there exists an Ak ∈ CQVk with ∂Ak

Vk = 0, such that

lim sup
k→∞

∫
G0

Q(Ω)
Φd|Ak| <∞. (8.2)
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We have local uniform bounds for ‖Vk‖, either directly from our assumptions, or
by proposition 6.2. Hence, we may choose a subsequence such that we have weak∗

convergence of the varifolds and their curvatures. By theorem 7.1, the limits are
an oriented integral m-varifold V ∈ IV0

m(Ω) and a Radon measure A ∈ CQV . For
simplicity, we assume that we have convergence of the whole sequence, that is,
Vk

∗
⇀ V in G0(Ω) and Ak

∗
⇀ A in G0

Q(Ω).

Theorem 8.1. There exist integer rectifiable m-currents T q = ct(F q, θq, Ξ(q)) for
q ∈ Q, such that

V =
∑
q∈Q

V(T q). (8.3)

Furthermore, each boundary ∂T q is an integer rectifiable (m− 1)-current.

Proof. It follows from (8.1) that∫
G0(Ω)

Φ2 dV = 0.

Thus, suppV ⊂ Ω̄×Q. If we localize about every q ∈ Q with the help of Lemma 6.1
(as in the proofs of proposition 6.2 and theorem 7.1), then we obtain a decomposi-
tion

V =
∑
q∈Q

V q,

where suppV q ⊂ Ω̄ × {q}. Furthermore, there exists an Aq ∈ CQV
q. Setting T q =

T (V q), we conclude that V q = V(T q). Clearly, T q has the required structure.
The boundary ∂T q is given by the projection of ∂AqV q onto Ω. So in particular
‖∂T q‖(K) < ∞ for every compact set K ⊂ Ω. By theorem 4.3, we have ∂T q ∈
ICm−1(Ω).

Thus, we can think of V as a generalized polyhedron with faces represented by
T q. Note that (8.3) is stronger than

T (V ) =
∑
q∈Q

T q.

It implies in particular that the collection of the currents T q accounts for all of the
measure ‖V ‖.

The boundaries ∂T q play the role of the edges of the generalized polyhedron. The
analogy with the edges of an actual polyhedron in limited, however, because the
structure of ∂T q can be more complicated. In particular, if for some q ∈ Q we also
have −q ∈ Q, then the common boundary of T q and T−q can have any (m − 1)-
dimensional subspace of Π(q) as a tangent space. On the other hand, if q1, q2 ∈ Q
with q1 �= ±q2, then the tangent spaces of the common boundary of T q1 and T q2 are
restricted to Π(q1)∩Π(q2) almost everywhere. If this is not an (m−1)-dimensional
space, then the corresponding part of the boundary is negligible.

In order to formulate this more precisely, we introduce the set R, comprising all
r ∈ G0(n,m− 1) such that there exist q1, q2 ∈ Q with Πm−1(r) = Π(q1) ∩Π(q2).
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Theorem 8.2. There exist a countably (m − 1)-rectifiable and Hm−1-measurable
set E ⊂ Ω, an Hm−1-measurable map ζ : E → Ξm−1(G0(n,m − 1)) and locally
Hm−1-integrable functions σq : E → Z for q ∈ Q, such that

∂T q(ω) =
∫

E

〈ζ, ω〉σq dHm−1, q ∈ Q,

for all ω ∈ C∞
0 (Ω;Λm−1

R
n). For Hm−1-almost every x ∈ E,∑

q∈Q
σq(x) = 0, (8.4)

and if ζ(x) does not belong to Ξm−1(R), then there exists a q0 ∈ Q such that
−q0 ∈ Q and σq(x) = 0 for all q ∈ Q \ {q0,−q0}.

Proof. We already know that ∂T q ∈ ICm−1(Ω). Consider the measure

µ =
∑
q∈Q

‖∂T q‖.

This can be represented in the form

µ = (Hm−1 �E)� s
for a countably (m− 1)-rectifiable and Hm−1 measurable set E ⊂ Ω and a locally
integrable function s : E → (0,∞). Choose a map ζ such that ζ(x) orients the
approximate tangent space TxE at Hm−1-almost every x ∈ E. Since ‖∂T q‖ is
absolutely continuous with respect to µ, there exists a locally Hm−1-integrable
function σq : E → Z such that

∂T q(ω) =
∫

E

〈ζ, ω〉σq dHm−1

for every ω ∈ C∞
0 (Ω;Λm−1

R
n). We have ∂AV = 0, which implies∑

q∈Q
∂T q = ∂T (V ) = 0.

Hence, for Hm−1-almost every x ∈ E, we have (8.4).
Because T q is given in terms of the constant m-vector Ξ(q), the (m− 1)-vector

ζ(x) must belong to an (m−1)-dimensional subspace Rx ⊂ Π(q) for ‖∂T q‖-almost
every x ∈ E. But for Hm−1-almost all x ∈ E, there must be at least two distinct
points q0, q1 ∈ Q such that Rx ⊂ Π(q0) ∩Π(q1), due to (8.4). This can only be the
case if either Rx ∈ Πm−1(R) or q1 = −q0. Furthermore, if Rx �∈ Πm−1(R), then it
cannot be a subspace of Π(q) for any q ∈ Q \ {q0,−q0}.

Next we examine the limiting curvature A and the measure |A|�Φ that arises
from (8.2) when k → ∞. Let cm−1 be the volume of the (m − 1)-dimensional
unit ball. We expect that at least a part of the energy density concentrates on the
(m− 1)-dimensional set E; therefore, we are interested in the (m− 1)-density

Θ(x) =
1

cm−1
lim inf

ρ↘0

(
ρ1−m

∫
G0

Q(Bρ(x))
Φd|A|

)
.
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Then for every η ∈ C0
0 (Ω) we have∫

E

ηΘ dHm−1 �
∫

G0
Q(Ω)

ηΦd|A| � 1
2

lim inf
k→∞

∫
Mk

η

(
εk|Ak|2 +

1
εk
Φ(pk)

)
dHm

by proposition 5.3 and Young’s inequality. So in order to obtain a lower estimate
for the limiting energy, it suffices to estimate Θ.

To this end, we first consider a new metric on G0. Let gΦ = Φ2g on G0
Q. That

is, we consider the Riemannian metric conformally equivalent to g with conformal
factor Φ2. As a Riemannian metric, this does not extend to G0, because it becomes
degenerate on Q. But it still induces a metric (in the sense of metric spaces) on the
whole of G0. For p, q ∈ G0, let Γ (p, q) be the space of all paths γ ∈ C1([0, 1];G0)
with γ(0) = p and γ(1) = q. Then we set

distΦ(p, q) = inf
γ∈Γ (p,q)

∫ 1

0
Φ(γ)

√
g(γ̇, γ̇) dt.

Now let ∆ ⊂ R
Q be the set of all (αq)q∈Q such that

|αp − αq| � distΦ(p, q), p, q ∈ Q.

Theorem 8.3. For Hm−1-almost every x ∈ E,

Θ(x) � sup
{ ∑

q∈Q
αqσ

q(x) : (αq)q∈Q ∈ ∆
}
.

The most typical case is of course when only two faces meet at an edge. If x ∈ E
such that there exist q1, q2 ∈ Q with σq(x) = 0 for q ∈ Q \ {q1, q2}, and if x
is a point where the conclusions of theorem 8.2 hold, then we necessarily have
σq1(x) = −σq2(x). We then find

Θ(x) � |σq1(x)| distΦ(q1, q2).

In other situations, we have a more complicated expression. Its exact form comes
above all from the method that we use for the proof and may not be optimal.

In order to prove the theorem, we need the following lemma.

Lemma 8.4. Let (αq)q∈Q ∈ ∆. Then there exists a function f ∈ C0,1(G0) with
|grad f | � Φ almost everywhere on G0, such that f(q) = αq for all q ∈ Q.

Proof. We use induction over the size of Q. The statement is obvious for |Q| � 1.
Now suppose that |Q| � 2. Choose q0 ∈ Q with

αq0 = min
q∈Q

αq

and suppose that there exists a function h ∈ C0,1(G0) with |gradh| � Φ almost
everywhere and h(q) = αq for every q ∈ Q \ {q0}.

If h(q0) � αq0 , then the function f = max{h, αq0} has the required properties.
Otherwise, define

f0(p) = αq0 + distΦ(p, q0), p ∈ G0.

Then we have |grad f0| � Φ almost everywhere and f0(q) � αq for all q ∈ Q because
αq − αq0 � distΦ(q, q0). Hence, we can choose f = min{h, f0}.
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Proof of theorem 8.3. First note that in the situation studied here we can rewrite
(5.6) as

0 =
∑
q∈Q

∂T q(ω(·, q)) +
n∑

i=1

∫
G0

Q(Ω)
g(〈Ξ,dxi ∧ gradω〉,dAi),

using the representation (8.3) of V and the fact that ∂AV = 0. Consider a point
x0 ∈ E such that Θ(x0) < ∞ and such that ζ and σq are Hm−1-approximately
continuous at x0 and E has an approximate tangent space Tx0E. Choose a sequence
ρk ↘ 0 such that

lim
k→∞

(
ρ1−m

k

∫
G0

Q(Bρk
(x0))

Φd|A|
)

= cm−1Θ(x0)

and rescale everything as follows.
Define Ωk = ρ−1

k (Ω − x0) and Ek = ρ−1
k (E − x0). For x ∈ Ek, define ζk(x) =

ζ(ρkx+x0) and σq
k(x) = σq(ρkx+ x0), q ∈ Q. Set T q

k = ct(Ek, σ
q
k, ζk). Furthermore,

consider the measures

A(k) =
n∑

i=1

A
(k)
i dxi

on G0
Q(Ωk) satisfying∫

G0
Q(Ωk)

g(φ,dA(k)
i ) = ρ1−m

k

∫
G0

Q(Ω)
g

(
φ

(
x− x0

ρk
, p

)
,dAi(x, p)

)

for every continuous section φ of Ωk × TG0
Q with compact support. Then we have

0 =
∑
q∈Q

∂T q
k (ω(·, q)) +

n∑
i=1

∫
G0

Q(Ω)
g(〈Ξ,dxi ∧ gradω〉,dA(k)

i ) (8.5)

for all ω ∈ C1
0 (G0(Ωk);Λm−1

R
n) with supp(gradω) ⊂ G0

Q(Ωk). Moreover,

lim
k→∞

∫
G0

Q(B1(0))
Φd|A(k)| = cm−1Θ(x0) <∞.

Thus, we may assume that A(k) ∗
⇀ Ã in G0

Q(B1(0)) for a certain Radon measure Ã
on G0

Q(B1(0)) with values in T ∗B1(0) × TG0
Q. Moreover, we have

cm−1Θ(x0) �
∫

G0
Q(B1(0))

Φd|Ã|.

We also know that the currents ∂T q
k converge to ct(Tx0E, σ

q(x0), ζ(x0)). Passing
to the limit in (8.5), we find

0 =
∑
q∈Q

σq(x0)
∫

Tx0E

〈ζ(x0), ω(·, q)〉 dHm−1

+
n∑

i=1

∫
G0

Q(B1(0))
g(〈Ξ,dxi ∧ gradω〉,dÃi) (8.6)

for every ω ∈ C1
0 (G0(B1(0));Λm−1

R
n) with supp(gradω) ⊂ G0

Q(B1(0)).
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For simplicity, we assume that Tx0E = R
m−1 × {0} and ζ(x0) = e1 ∧ · · · ∧ em−1.

We choose a function χ ∈ C∞
0 (B1(0)). Let (αq)q∈Q ∈ ∆ and choose a function

f that satisfies the conditions of lemma 8.4. Fix δ > 0 and let F ∈ C1(G0) with
supp(gradF ) ⊂ G0

Q such that

‖f − F‖C0(G0) � δ and |gradF | � Φ+ δ.

Now we test (8.6) with the (m− 1)-form

ω(x, p) = F (p)χ(x) dx1 ∧ · · · ∧ dxm−1.

This yields

0 =
∑
q∈Q

σq(x0)F (q)
∫

Rm−1
χ(x1, . . . , xm−1, 0, . . . , 0) dx1 ∧ · · · ∧ dxm−1

+
n∑

i=m

∫
G0

Q(B1(0))
〈Ξ,dxi ∧ dx1 ∧ · · · ∧ dxm−1〉χg(gradF,dÃi).

Letting χ tend to the characteristic function of B1(0), we obtain

cm−1

∑
q∈Q

σq(x0)F (q) �
∫

G0
Q(B1(0))

|gradF | d|Ã|.

Finally, we let δ → 0, which gives

cm−1

∑
q∈Q

σq(x0)αq �
∫

G0
Q(B1(0))

Φd|Ã| � cm−1Θ(x0),

as required.

References

1 W. K. Allard. On the first variation of a varifold. Annals Math. (2) 95 (1972), 417–491.
2 L. Ambrosio, N. Fusco and D. Pallara. Functions of bounded variation and free discontinuity

problems, Oxford Mathematical Monographs (New York: Clarendon Press, 2000).
3 S. Angenent and M. E. Gurtin. Multiphase thermomechanics with interfacial structure. II.

Evolution of an isothermal interface. Arch. Ration. Mech. Analysis 108 (1989), 323–391.
4 G. Anzellotti, S. Delladio and G. Scianna. BV functions over rectifiable currents. Annali

Mat. Pura Appl. 170 (1996), 257–296.
5 S. Baldo. Minimal interface criterion for phase transitions in mixtures of Cahn–Hilliard
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