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SUMMARY
A data association algorithm for simultaneous localization and mapping (SLAM) based on central
difference joint compatibility (CDJC) criterion and clustering is proposed to obtain the data associ-
ation results. Firstly, CDJC criterion is designed to calculate joint Mahalanobis distance. Secondly,
ordering points to identify the clustering structure is used to divide all observed features into several
groups. Thirdly, CDJC branch and bound method is designed to be performed in each group. The
results based on simulation data and benchmark dataset show that the proposed algorithm has low
computational complexity and provide accurate association results for SLAM of mobile robot.

KEYWORDS: Mobile robot; Simultaneous localization and mapping; Data association; Central
difference joint compatibility criterion; OPTICS.

1. Introduction
Simultaneous localization and mapping (SLAM) is the process that enables mobile robot to move in
an unknown environment and then to incrementally build a map of this environment while simulta-
neously using this map to estimate its pose.1, 2 SLAM problem was first proposed by Smith et al. in
1987.3 Since Smith et al. kicked off the study of SLAM, SLAM has gradually become a research
focus in some fields, such as intelligent vehicle, intelligent robots, and unmanned aerial vehicle.
SLAM is known as “Holy Grail” of autonomous mobile robot.4, 5

SLAM is a concept and comprises many algorithms. In general, SLAM can be divided into two
major steps: data association and state estimation.6–8 The problem of state estimation contains the
robot’s state estimation and the location estimation of environment landmarks. The correct data
associations are the pre-condition to realize the correct state estimation.

Originally data association is a problem that needs to be solved in target tracking.9, 10 It is used to
determine the correspondence between the sensor measurements and the target. In SLAM, data asso-
ciation is the process to establish the correspondence between the sensor measurements and the map
features to determine whether they originate from the same physical landmark of the environment; it
also includes the process of determining the sensor measurements that do not match the map features
as a new feature or noise data. Data association has always been a key issue for practical SLAM
implementations. Since an incorrect data association often causes divergence into state estimation of
the map, even more serious it can lead failure of the localization algorithm. Good data association
method has two advantages: high accuracy and low computational complexity.
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In the early research, almost all solutions of data association problem are performed using the
gated nearest neighbor (NN) algorithm,11, 12 which is inherited from the target-tracking literature.
Based on the gated NN algorithm, the individual compatibility nearest neighbor (ICNN) algorithm
and sequential compatibility nearest neighbor (SCNN) are proposed to solve the data association
problem.13, 14 ICNN algorithm selects the best matchings according to the individual compatibility
(IC) criterion. This algorithm is simple and easy to implement, but it only considers IC between a
measurement and a feature. Hence, it is unreliable when the error of robot’s pose grows with respect
to sensor error.13 SCNN algorithm is proposed to get the resulting hypothesis which contains jointly
compatible pairings. In this algorithm, it is a random process to choose which measurement should
be processed first, and the result is not affected by the sequence of the measurement processing.
Hence, the likelihood of correct association is higher than ICNN. However, just like ICNN method,
as a greedy algorithm, SCNN algorithm still get the error result of data association in ambiguous
environments, because it neglects the correlations between observations.13

A lot of sophisticated algorithms called the multiple-hypothesis tracker method, such as the multi-
hypothesis Kalman filter15 and FastSLAM,16 pursue multiple data association hypotheses at the same
time to get more accurate data association in a large-scale complex environment. These algorithms
are more robust, but the computational complexity still increases exponentially with the number of
hypothesis. Neira put forward a gold standard method, namely joint compatibility branch and bound
(JCBB) algorithm. Compared with other methods, it considers the association possibility between
all measurements and map features to guarantee the robustness and accuracy of data association.
However, JCBB algorithm has two drawbacks: (1) the joint compatibility (JC) criterion expands the
covariance matrix at the initially estimated pose; hence, it is susceptible to linearization errors when
the pose is estimated inaccurately; (2) the computation cost increases exponentially with the increase
of the measurements because the JC should be constantly calculated. And branch and bound search
algorithms require longer operation time. With the expansion of the environment, the environmental
features increase obviously, and the run-time of JCBB algorithm will be significantly increased.
Hence, JCBB algorithm is inappropriate to be applied to outdoor environment with a large number
of environmental features.

In order to reduce the complexity of JCBB algorithm, Li et al. proposed a posterior-distribution-
based JC test scheme.17 Ref. [18] discovered a special structure in the feature cloud matching problem
and proposed a fast JCBB method. Guo et al. proposed a fast JCBB algorithm, which reduces the
computational complexity of JCBB by setting the upper bound on the number of joint compatible
pairs.19 The upper limit of the number of pairs is between 6 and 10, but the upper bound of the
number of pairs is experiences data. To overcome this problem, Wu et al. proposed an optimized data
association algorithm. In the optimized JCBB algorithm, the upper limit of pairings is determined
according to the environment and batch order.20 A data association algorithm based on K-means
clustering and JCBB is proposed in ref. [21]. In this algorithm, the K-means clustering method is used
to group the measurements, but the number of groups is determined by the environment. The above
three methods ensure higher association accuracy; they also reduce the computational complexity
of data association. However, the selection of the number of pairs depends on the distribution of
environmental features in refs. [19] and [20]; they do not show how the measurements should be
divided after the upper limit of pairings is set. In ref. [21], all measurements of the current moment
are divided into K-means clustering; K value needs to be given in advance in the K-means algorithm;
however, it is difficult to determine the K value in practical applications and the selection of K value
has a great influence on the clustering results. Since measurements have a clear distribution for most
environments, a density-based clustering algorithm, called OPTICS, is used to group measurements
in the proposed algorithm.

In order to reduce the influence of linearization error on JC test, ref. [17] uses the iterated extended
Kalman filter (IEKF) to compute the posterior JC. For the obvious nonlinear observation equa-
tion, IEKF is more effective than extended Kalman filter (EKF) due to iterative computation. But
it also suffers from a number of drawbacks, namely the problem caused by the calculation of the
Jacobian matrices and the linear approximations of the nonlinear functions. Hence, central differ-
ence joint compatibility (CDJC) criterion is set without the calculation of Jacobian matrices and the
linearization error.
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In summary, a SLAM data association algorithm based on CDJC criterion and OPTICS method is
proposed. It will be abbreviated as OCDJCBB. OCDJCBB algorithm has three characteristics.

(1) The local associated strategy is introduced, that is, the local map is divided according to the pose
of the mobile robot and the effective observation range of the sensor, and map features that need
to be associated are limited to the local map.

(2) All measurements of the current moment are divided into groups with small correlation degree
based on the OPTICS method, CDJCBB algorithm is executed at each group, and CDJC
criterion is designed to calculate joint Mahalanobis distance.

(3) The association solutions of each group are combined to get the final association results at the
current moment.

The simulation results based on the simulator and a benchmark dataset verify that the association
performance and computational efficiency of the proposed association algorithm are better than those
of JCBB and SCNN.

The rest of this paper is organized as follows. In Section 2, the data association problem in
SLAM and the computational complexity analysis of JCBB are reviewed. The proposed association
algorithm is presented in Section 3. The simulation results based on the simulator and a bench-
mark dataset are presented in Sections 4 and 5, respectively. The conclusions are given in the final
section.

2. Related Work

2.1. Description of data association problem in SLAM
As a difficult problem in SLAM, the data association problem occurs at the prediction stage. If
the data association is known, the SLAM problem will become simple. But in the real-world envi-
ronment, the correspondence between measurements and environmental features is rarely known.
Suppose there are n environmental features in the constructed map, which are the {F1, F2, ..., Fn}.
There are m measurements from the latest scan at the current time, which are {O1, O2, ..., Om}. The
association hypothesis is expressed as follows:

Ct = {c1, c2, ..., cm} (1)

If the observed feature Oi is matched with the feature Fj of the constructed map, the association
can be obtained, namely ci = j . If the observed feature is not matched with all the features of the
constructed map, then ci = 0, it means that new environmental features have been observed or the
observed feature is false alarm. The data association problem of SLAM is defined as:

d̂t � argmax(P(dt |xt , M, z1:t , u1:t)), dt ⊆ Ct (2)

where dt represents a set of decisions on data association obtained at time t. d̂t is the optimal asso-
ciation set which is obtained by an association algorithm. xt stands for the pose of mobile robot
and M describes the constructed map. z1:t is the set of all measurements {z1, ..., zt} up to time t,
u1:t= {u1, ..., ut} is the control vectors up to time t.Ct is a set of hypotheses at time t.

In the process of data association, a map feature can produce only one observation, and an
observation can only be associated with a map feature.

2.2. JCBB algorithm
JCBB algorithm is an association algorithm which combines the JC criterion with the branch and
bound method. It traverses the interpretation tree in search of the hypothesis with the largest number
of non-null jointly compatible pairings and the optimal solution of data association can be obtained
by combining branch and bound method. The core idea of JCBB is to extend the idea of IC to JC
of multiple measurements and features. In JCBB, the compatibility between all measurements and
map features is taken into account, and the branch and bound search algorithm is used to search the
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association solution space Ct , and then the optimal data association set d̂t is obtained. The definition
of JC criterion is as follows:

DCt = vT
Ct

· S−1
Ct

· vCt ≤ χ2
dim(vCt ),1−α (3)

vCt = zCt − ẑCt (4)

SCt = ∇hCt · PCt · ∇hT
Ct

+ RCt (5)

ẑHt = hHt

(
x̂v, F̂Ht

)
=

[
h
(

x̂v, f̂h1

)
...h

(
x̂v, f̂hm

)]T
(6)

where x̂v is the predictive pose of mobile robot. The jointly predicted locations of the observed map
features are ẑCt . RCt is the covariance of measurement noise. vCt is the joint innovation. SCt is the
innovation covariance. DCt is the joint Mahalanobis distance. It obeys the distribution of degrees
of freedom for dim(vCt ), 1−α is a confidence level, and it usually takes 0.95 or 0.99. When (3) is
established, it is shown that the associated solution Ct satisfies the JC condition.

The key of the JCBB algorithm is to use the JC condition as the criterion of traversal of association
interpretation tree branch to enlighten the new nodes; monotone non-decreasing rule of number of
pairs is considered as boundary condition to discard old nodes that cannot export optimal solutions.
Finally, the maximum association hypothesis is searched as the optimal association solution.

2.3. Computational complexity analysis of JCBB
The process of searching association solutions with JCBB algorithm is actually a graph searching
process of association tree. Suppose there are m sensor measurements at time t, and the constructed
map contains n features. The complexity of JCBB algorithm can be divided into the following two
parts:

(1) The time complexity of JCBB algorithm is considered as a whole, and it is mainly determined
by the size of the associated search space. The search space size is

∏m
i=1(ni+1), where ni expresses

the number of map features that may be associated with the ith measurement after filtering through
the threshold (ni ≤ n). Hence, the time complexity of JCBB is defined as O(mn + ∏m

i=1(ni+1)).7

(2) When performing JC calculations, the computational quantities of matrices such as ẑCt . vCt

and SCt are related to the number of measurements (m). Especially, the computational complexity of
the inverse operation of SCt is O(m3) in the calculation of joint Mahalanobis distance.13

In conclusion, the time complexity of the JCBB algorithm depends not only on the num-
ber of measurements (m) at the current moment but also on the number of features (n) of the
constructed map.

3. Proposed Data Association Method
As the core of JCBB algorithm, the JC criterion takes into account the compatibility between all
measurements and map features. Therefore, when the environmental features are dense and the obser-
vation noise is large, JCBB algorithm can obtain reliable association results. The correct association
results can be obtained even when there is no odometer data and the location error is large. However,
the time complexity of the JCBB algorithm has an exponential relation with the number of observa-
tions, which affects its real-time application in the SLAM process. But beyond that, the JC criterion
used by JCBB is easy to be affected by the linear approximations.

In order to solve the problem of JCBB algorithm, four improvements are made to the JCBB
algorithm. The improvements are as follows: (1) the local association region is set to reduce the
dimensionality of the map features involved in the association, (2) the CDJC criterion is designed to
calculate joint Mahalanobis distance, (3) OPTICS method is used to group measurements, and (4)
the augmented threshold is set up to distinguish the newly visited features and the noise data.

3.1. Local associated strategy
According to the pose of the mobile robot and the effective observation range of the sensor, the
local map involved in the data association is set. The definition of the local association region can be
expressed as follows:
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Fig. 1. Schematic diagram of local association.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

abs(xi − xv) < (r + d)

abs(yi − yv) < (r + d)

(xi − xv) · cos θ + (yi − yv) · sin θ > 0

(xi − xv)
2 + (yi − yv)

2 < (r + d)2

(7)

where (xv, yv, θ) represents the pose of mobile robot, represents the coordinates of a feature in a
constructed map, r is the effective scanning sensor distance, and d represents the compensation
distance. The significance of adding the compensation distance is that the radius of the local map
is slightly larger than the scanning distance of the sensor so as to cover all the features that may be
matched with the measurements. The purpose of local association is that, regardless of the number
of features in the global map, the complexity of the data association is only related to the number of
features present in the local map.

As shown in Fig. 1, the semicircular region is plotted by taking the pose of mobile robot as the
center of the circle and taking the sensor scanning distance as the radius. The dot (.) represents
the environmental features of the constructed map, and the asterisk (*) indicates the environmental
features observed by sensor at current time.

3.2. CDJC criterion
In traditional JCBB algorithm, the JC criterion is usually designed by the EKF. In our paper, central
difference transform (CDT) is used to compute the joint innovation and innovation covariance with-
out the calculation of Jacobian matrices of an observation model and without linearization error. The
joint Mahalanobis distance is calculated as follows.

At time t, there are n environmental features, which are the
{

F1, F2,...Fj ,...Fn
}
. And they are

involved in joint compatible computing. An augmented stochastic state vector xM,[ j]
t |t−1 is defined as

follows:

xM,[ j]
t |t−1 =

[
xM

V,t |t−1

xM
Fj ,t |t−1

]
(8)

and the covariance matrix:

PM,[ j]
t |t−1 =

[
PM

V,t |t−1 0

0 PM
Fj ,t |t−1

]
(9)

where xM
V,t |t−1 is the predicted pose of mobile robot with respect to a base reference frame M, xM

Fj ,t |t−1

is the predicted location of the jth feature, PM
V,t |t−1 is the predicted error covariance of the pose of

mobile robot, and PM
Fj ,t |t−1 is the predicted error covariance of the location of the jth feature.
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The CDT has been proposed which allows the sigma points to be scaled to an arbitrary dimen-
sion.22 A symmetric set of 2L+1 sigma points for the augmented state vector with L-dimensional
state vector is given by:

χ
M,[ j],[i]
t |t−1 =

⎡
⎣χ

M,[ j],[i]
V,t |t−1

χ
M,[ j],[i]
Fj ,t |t−1

⎤
⎦ (10)

χ
M,[ j]
t |t−1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xM,[ j]
t |t−1 i = 0

xM,[ j]
t |t−1 +

(
h ·

√
PM,[ j]

t |t−1

)
i

i = 1, 2, ..., L

xM,[ j]
t |t−1 −

(
h ·

√
PM,[ j]

t |t−1

)
i

i = L + 1, ..., 2L

(11)

where the random variable χ
M,[ j],[i]
t |t−1 contains two components: state component of mobile robot

χ
M,[ j],[i]
V,t |t−1 and observed component χ

M,[ j],[i]
Fj ,t |t−1 . h is the central difference half step length. For Gaussian

distribution, the optimal value of h is
√

3. Then, the measurement sigma points are transformed
through the nonlinear observation model:

N̄ [ j],[i]
t = y

(
χ

M,[ j],[i]
Fj ,t |t−1

)
+ χ

M,[ j],[i]
Fj ,t |t−1 (12)

where y(·) is the nonlinear observation equation.
The predicted measurement z̄[ j]

t and the innovation covariance St are given by:

z̄[ j]
t =

2L∑
i=0

ωm
i N̄ [ j],[i]

t (13)

ζ
[ j]
1i =

√
ω

c1
i ·

(
N̄ [ j],[i]

t − N̄ [ j],[i+L]
t

)

ζ
[ j]
2i =

√
ω

c2
i

(
N̄ [ j],[i]

t + N̄ [ j],[i+L]
t − 2 · N̄ [0]

t

)
(14)

Ct =
[
ζ

[1]
1i ...ζ

[ j]
1i ...ζ

[n]
1i

]T

Dt =
[
ζ

[1]
2i ...ζ

[ j]
2i ...ζ

[n]
2i

]T
(15)

The corresponding mean sequence weight ωm
i and variance sequence weight ω

c1
i , ω

c2
i of each

sampling point are defined as:

ωm
0 = (h2 − L)

h2
, ωm

i = 1

2 · h2
i = 1, ...2L (16)

ω
c1
i = 1

4 · h2
, ω

c2
i = (h2 − 1)

4 · h4
i = 1, ...2L (17)

The joint innovation and joint innovation covariance are calculated as follows:

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

zt(1)

...

zt( j)
...

zt(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z̄[1]
t
...

z̄[ j]
t
...

z̄[n]
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)
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Fig. 2. Schematic diagram of measurements grouping.

St = Ct · CT
t + Dt · DT

t +
⎡
⎢⎣

R 0 0

0
. . . 0

0 0 R

⎤
⎥⎦

n×n

(19)

The central difference joint compatibility (CDJC) criterion is defined as follows:

DHk = vT · S−1
t · v ≤ χ2

dim(vHt ),1−α (20)

3.3. OPTICS method is used to group measurements
The measurements obtained by sensors are usually clearly distributed when mobile robot travels
autonomously in outdoor large-scale environment. As shown in Fig. 2, the current measurements
in group 1 and group 2 are distributed on both sides of mobile robot, and they are not significant
correlation. In the traditional JCBB algorithm, the JC between all measurements and map features
will be computed, and this makes computation extremely large. If the current measurements are
divided into two groups for batch association, then the measurement dimension of each JCBB will be
reduced, and the computational complexity of the algorithm will be reduced. Therefore, the clustering
method is used to group the measurements at each moment in proposed association algorithm.

Up to now, the academic does not have a generally agreed definition of the clustering. The defini-
tion of clustering given by ref. [23] is given here: the entities within a cluster are similar, entities of
different clusters are not alike. A cluster is the convergence of the midpoint in the test space, and the
distance between any two points of the same cluster is less than the distance between any two points
of different clusters. A class cluster can be described as a connected region in a multidimensional,
and this connected region contains a set of points with higher density. Clustering algorithms are
broadly divided into several categories, such as hierarchical clustering algorithm, partitioning clus-
tering algorithm, a clustering algorithm based on density and grid, and a clustering algorithm based
on model. In ref. [21], the measurements are grouped by K-means clustering method. K-means clus-
tering algorithm is a typical partition clustering approach and it often finds spherical shaped clusters
only. However, the size, shape, and number of environmental features observed by sensors at each
moment are different in SLAM; the K value in this method is difficult to determine. Hence, the
density-based clustering algorithm is used to classify the measurements in this paper.

Density-based clustering algorithm is fundamentally different from other clustering algorithms.
Density-based clustering can discover clusters with arbitrary shapes. DBSCAN24 and OPTICS25

are two typical density-based clustering algorithms. The basic idea of the DBSCAN can be simply
described as: define the ε-neighborhood of a point and minimum number of data points MinPts in one
cluster. Picking an arbitrary unvisited point p, if its ε-neighborhood contains at least MinPts points, a
cluster is formed and the points in the ε-neighborhood are added into the cluster. The above processes
have been carried out until all of the points have been processed. There are two initial parameters, ε

(neighborhood radius) and MinPts that require the user to manually set up in DBSCAN. Moreover,
the clustering results are very sensitive to the values of these two parameters, and different values will
lead to different clustering results. In order to overcome this shortcoming, OPTICS was proposed.
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Table I. Algorithm for grouping measurements based on optics.

Algorithm. Grouping measurements for time t based on OPTICS.

1: Begin
2: Input:

x - data matrix; namely the measurements at time t Ot = {oi |i = 1....m}.
MinPts - minimal number of objects considered as a cluster

3: The distance curve is obtained according to x and MinPts, and ε is determined.
4: All noise points are extracted and they are divided into a group.
5: Variables that belong to noise points are removed, and then the matrix x1 is formed by

the remaining variables.
6: [RD, CD, order] = OPTICS(x1, MinPts), RD represents the reachability distances, CD

represents the core distances, order represents the specified ordering of objects.
7: The reachability-plot of search results is got based on RD and order. n clusters are

finally achieved by recognizing the dented regions according to peak values of the
reachability-plot.

8: The measurements for time t are divided into n + 1 groups.
9: End

While expanding a cluster, OPTICS selects each point to be expanded in increasing order of its
distance to the current cluster and changes ε for identifying ε-neighborhood gradually. OPTICS does
not display clustering result; it generates an augmented cluster sorting for clustering analysis. Hence,
the measurements of each moment are divided into several groups by OPTICS algorithm to solve
data association problem of SLAM. The algorithm for grouping measurements based on OPTICS is
described in Table I.

3.4. Setting up the augmented threshold
In the traditional JCBB algorithm, the identity of revisited features and newly visited features is
obtained by optimal association set Cbest. If ci = j , it indicates that the observed feature Oi is matched
with the feature Fj of the constructed map. If ci = 0, it indicates that the observed feature is a newly
visited feature, but this observed feature may be a noise data. Therefore, an augmented threshold Ga

is set up in proposed association algorithm. When ci = 0, the Mahalanobis distance between Oi and
each feature of the constructed map is calculated, and the smallest distance nisi, j of these distances is
selected. If nisi, j > Ga, Oi is regarded as a newly visited feature. If Gd < nisi, j < Ga, Oi is regarded
as a noise data, where Gd represents the association threshold. In summary, the description diagram
of the proposed association algorithm is shown in Fig. 3.

The proposed association algorithm has several improvements compared to the traditional JCBB
algorithm.

(1) Based on the local association strategy, the set of map features involved in the association is
changed from Ft = {

f j | j = 1...n
}

to F
′
t = {

f j | j = 1...N
}
. N represents the number of map

features in the local association region (N < n).
(2) The measurements Ot = {oi |i = 1...m} of the time t are divided into M groups, which can

be represented as: O1
t = {oi |i = 1...m1}. . . Ol

t = {oi |i = 1...ml}. . . OM
t = {oi |i = 1...mM}, where

l indicates the group number, m = m1 + ... + ml + ... + mM .
(4) The size of the search space is changed from

∏m
i=1(ni+1) to

∏m1
i=1(Ni+1)+...+ ∏mM

i=1(Ni+1),
and the overall complexity of the proposed association algorithm is changed from O(mn +∏m

i=1(ni+1)) to O(mN + ∏m1
i=1(Ni+1)+...+ ∏mM

i=1(Ni+1)). Ni represents the number of map
features associated with the i th observed feature after threshold filtering in the local association
region. The computational complexity of the joint Mahalanobis distance in each association
group is reduced because it depends on ml and ml < m.

(4) The accuracy of the JC criterion has improved by CDT.

In conclusion, the OCDJCBB algorithm can improve the computation efficiency and reduce the
time complexity while ensuring reliable association results.
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Fig. 3. Description diagram of the proposed associated algorithm.

4. Simulation Results Based on Simulator

4.1. Simulation model
The simulation model adopts the motion model of intelligent vehicle. It can be represented as:

xv(t) =
⎡
⎢⎣

xt

yt

θt

⎤
⎥⎦ =

⎡
⎢⎣

xt−1 + v · �t · cos (θt−1+G)

yt−1 + v · �t · sin (θt−1 + G)

θt−1 + v · �t · tan(G)/L

⎤
⎥⎦ + wt−1 (21)

where (xt , yt , θt) is the vehicle states, �t is sampling time of the sensor, L is the distance between
wheel axles, v is the velocity, and G is the steering angle. wt−1 refers to various errors in the process
of vehicle movement, which is caused by control noise. The control noise of Eq. (21) is described in
Table II.

The observation model is described as follows:

z j,t =
⎡
⎣

√(
xt − x j

)2 + (
yt − y j

)2

arctan[(yt − y j

)
/
(
xt − x j

) − θt

⎤
⎦ +vt (22)

where z j,t is the observation vector, (x j , y j ) is coordinates of the j th map feature. vt is Gaussian
white noise with covariance of R. The observation noise of Eq. (22) is described in Table II.
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Table II. Parameters used in simulation.

Parameters Values

Vehicle speed 3 m/s
Maximum steering angle 30◦
Vehicle wheel-base 2.25 m
Maximum range 30 m
Control noise (0.3 m/s, 3◦)
Observation noise (0.1 m, 1◦)
Control frequency 40 Hz
Observation frequency 5 Hz

–100 –50 0 50 100
–100

–50

0

50

100

x(m)

)
m(y

Fig. 4. Simulation environment.

4.2. Simulation environment
Bailey et al. developed the SLAM simulator and opened it to the public on a Web site.26 This
simulator makes the comparison of different SLAM algorithms possible. As shown in Fig. 4, a sim-
ulation environment is designed based on this simulator. The SLAM algorithm based on OCDJCBB
association method (OCDJCBB-SLAM) is compared with the SLAM algorithm based on JCBB
(JCBB-SLAM) and the SLAM algorithm based on SCNN (SCNN-SLAM) in order to verify the
performance of OCDJCBB association method in this simulation environment. In the three SLAM
algorithms, EKF is used to estimate the pose of intelligent vehicle and feature position in state
estimation stage.

In Fig. 4, suppose that the intelligent vehicle starts at the initial state of Xv(0)=[0, 0, 0]T and
moves uniformly around an irregular region of the 240*200 m2. The blue line represents vehicle
trajectory, “*” denotes the landmark location. Simulation parameters are shown in Table II.

4.3. Computational complexity
In the same simulation environment, 50 experiments are performed on three SLAM algorithms.
The computational cost of the three SLAM algorithms is compared using Matlab simulations on
an Intel(R) Core(TM)i5-3470 CPU@3.2GHz PC. The CPU time of implementing each SLAM algo-
rithm and the CPU time of the three association algorithms performed in the SLAM process are
utilized to evaluate computational complexity. The average CPU time calculated over 50 simulation
runs with same simulation parameters is shown in Table III.

As shown in Table III, the associated process of the OCDJCBB algorithm is less than that of the
other two algorithms, because the OCDJCBB association algorithm is performed only in the local
map and the time complexity of the algorithm is only related to the number of features in the local
map. In addition, the OPTICS method is used to group the measurements of the current moment in
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Table III. Running time of three algorithms.

Algorithm CPU time of SLAM algorithm (s) CPU time of associated process(s)

OCDJCBB-SLAM 62.661 32.016
SCNN-SLAM 262.322 234.256
JCBB-SLAM 286.626 259.289
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Fig. 5. Execution time of each step with three data association algorithms.

the proposed association algorithm, and then the dimensionality of the observation vectors is reduced
when the CDJCBB is executed. Since the proposed association algorithm has the least execution
time, the execution time of OCDJCBB-SLAM algorithm based on OCDJCBB is much less than the
execution time of other two SLAM algorithms.

Figure 5 shows the execution time of each step with the OCDJCBB algorithm, JCBB algorithm,
and SCNN algorithm. As shown in Fig. 5, the execution time of both the SCNN algorithm and the
JCBB algorithm increases with the simultaneous localization and building of the intelligent vehicle,
but the execution time of each step with SCNN algorithm is less than that of JCBB algorithm. After
the 500th step, the execution time of each step with JCBB algorithm and SCNN algorithm is all
over 0.2 s. Hence, these two algorithms could not meet the real-time requirement in the simulation
environment shown in Fig. 4, because the observation frequency is 0.2 s.

Because of the restriction of local association region and the use of clustering algorithm, the
execution time of OCDJCBB algorithm changes smoothly in comparison with JCBB algorithm and
SCNN algorithm. The execution time of each step with OCDJCBB algorithm is stable at about 0.04
s, which is far less than the observation frequency. Therefore, the improved association algorithm
can meet the real-time requirement of SLAM in large-scale dense environment.

4.4. Association performance
Figure 6 shows the data association performance of OCDJCBB algorithm, JCBB algorithm, and
SCNN algorithm, respectively. There are four indexes for evaluating the performance of data associ-
ation, namely true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false
negative rate (FNR).27−28 They are defined as follows:

TPR = TP/ (TP + TN + FP + FN) (23)

TNR = TN/ (TP + TN + FP + FN) (24)

FPR = FP/ (TP + TN + FP + FN) (25)

FNR = FN/ (TP + TN + FP + FN) (26)

where true positive(TP) denotes the number of association pairs detected by the association algo-
rithms. True negative (TN) denotes the number of new environment features that are detected. False
positive (FP) denotes the number of association pairs that are wrongly checked by the associated
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Fig. 6. Association performance of three algorithms. (a) OCDJCBB, (b) JCBB, and (c) SCNN.

algorithm and FNR denotes the number of association pairs that are omitted by the associated
algorithm. The sum of TP, TN, FP, and FN denotes the number of all association pairs.

Figure 6 shows the association performance of three algorithms. In order to compare the asso-
ciation performance of each algorithm more easily, the average TPR, TNR, FPR, and FNR of each
algorithm are calculated, respectively, as shown in Table IV. Since the proposed association algo-
rithm is executed within the local association area, the FPR is slightly higher than the other two
algorithms. But the TPR of OCDJCBB algorithm is higher than that of JCBB and SCNN, and it can
correctly judge the new landmarks observed at each moment and add them to the map. Not only that,
the FNR of OCDJCBB is obviously smaller than the other two algorithms. Table IV and Fig. 6 show
that the proposed algorithm outperforms the other two algorithms in association performance.

In order to evaluate the performance of OCDJCBB association algorithm more intuitively, the
average association accuracy (AA) of three SLAM algorithms is obtained over 50 Monte Carlo runs
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Table IV. Association performance of three algorithms.

Algorithm TPR TNR FPR FNR

OCDJCBB 0.9678 0.0233 0.0052 0.0037
JCBB 0.9653 0.0213 0.0024 0.0113
SCNN 0.9613 0.0212 0.0013 0.0162

Table V. Accuracy of three algorithms.

Algorithm AA

OCDJCBB-SLAM 0.9911
JCBB-SLAM 0.9866
SCNN-SLAM 0.9825

Table VI. Average error for vehicle pose.

Algorithm X(m) Y(m) Heading angle (rad)

OCDJCBB-SLAM 0.2297 0.5321 0.0137
JCBB-SLAM 0.4632 0.6391 0.0141
SCNN-SLAM 0.6212 0.7285 0.0147

under the simulation environment shown in Fig. 4. AA reflects whether the association algorithm
can correctly detect the association pairs and find the new environment features, its expression is as
follows:

AA = (TP + TN)/(TP + TN + FP + FN) (27)

The results of Table V show that the accuracy of the three association algorithms is all over
0.98. However, the AA of OCDJCBB algorithm is higher than that of the other two algorithms.
Furthermore, the proposed association algorithm has the advantage of low computational complexity.
Hence, it is more suitable for SLAM of intelligent vehicle.

4.5. Comparison and analysis of SLAM accuracy
Figure 7 shows the estimation results of SLAM based on three different association algorithms. The
blue dotted line represents the estimation path, and the red solid line represents the ideal path for
vehicle planning. The green “*” represents the landmark in the environment, and the red circle rep-
resents the estimated landmark. As shown in Fig. 7, the vehicle path estimated by the SLAM based
on OCDJCBB and JCBB algorithms is more close to the ideal path and the location of the estimated
environmental features is more accurate, in comparison with the SLAM based on the SCNN algo-
rithm. As shown in Fig. 8, the pose accuracy of the three algorithms is more intuitively contrasted
based on the error curve. Table VI shows the average error for vehicle pose in the X axis, Y axis, and
heading angle. Results show that the vehicle’s pose error of OCDJCBB-SLAM is less than that of
JCBB-SLAM and SCNN-SLAM. The reason is that the association results of the proposed algorithm
are more accurate than the other two algorithms, and then the vehicle path and the location of the
environmental features are correctly estimated in the estimation stage of SLAM.

The simulation results show that the proposed association algorithm reduces the computational
complexity of the whole SLAM system and improves the estimation accuracy of SLAM.

5. Outdoor Environments
The Victoria dataset is the popular and standard dataset in the SLAM community.29 The dataset
was collected by a four-wheeled vehicle, as shown in Fig. 9(a). This vehicle is equipped with Sick
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Fig. 7. Estimation results of SLAM based on three association methods.

laser range and bearing sensor, linear variable differential transformer sensor for the steering, back
wheel velocity encoder, and GPS. The benchmark Sydney Victoria Park dataset was collected in
the Victoria Park; the vehicle was driven around about 30 min and moved over 4 km in mild uneven
terrain and different types of surfaces. The environmental landmarks were mostly nearby trees in
the Victoria Park. GPS gave intermittent data due to limited satellite availability and these data were
used to evaluate the ground truth. Figure 9(b) shows the Victoria Park and trees in Google Earth; the
yellow line in the picture represents the ground truth of the vehicle recorded by the GPS.
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Fig. 8. Comparison of the vehicle’s pose error.

Fig. 9. The four-wheeled vehicle and Victoria Park.

Victoria Park dataset is a challenge for some data association algorithms. In this paper, the SLAM
algorithm based on OCDJCBB is compared with the SLAM algorithm based on JCBB and the SLAM
algorithms based on SCNN by the Victoria Park dataset. The control noises in the experiment are
δv = 0.8m/s, δG = 1.8◦, and the measurement noises are δr = 1.5 m, δθ = 2.8◦. The control frequency
is 25 ms and the observation frequency is 214 ms. The confidence level is 0.99.

As shown in Fig. 10, the estimated vehicle state and the estimated positions of trees are obtained
based on three algorithms. Figure 10 shows that the estimation errors of the OCDJCBB-SLAM algo-
rithm are lower than the two other algorithms because the result of the proposed algorithm (such as
the estimated path marked by circles in the figure below) matches with the GPS ground truth better.

The run-time of the three SLAM algorithms and the execution time of the data association method
in SLAM are shown in Fig. 11. In this figure, the execution time of the data association based on
OCDJCBB algorithm is significantly smaller than the other two association algorithms, and then
OCDJCBB-SLAM algorithm cuts the execution time by half compared to the other two SLAM
algorithms.

Figure 12 shows the execution time of each association step with three algorithms in experiment on
the Victoria Park dataset. As shown in Fig. 12, there are a lot of association moments running longer
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Fig. 12. Execution time of each step with three data association methods.
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than observation frequency (214 ms) with JCBB and SCNN; they are not suitable for EKFSLAM
with the Victoria Park dataset. But the execution time of each step with OCDJCBB algorithm is less
than 0.214 s. It can meet the real-time requirement in experiment on the Victoria Park dataset.

In summary, the experimental results show that the proposed algorithm can obtain the reliable
localization and mapping and greatly reduces the computational complexity. It is suitable for SLAM
of intelligent vehicle in large-scale environments.

6. Conclusion
Data association is a difficult problem in SLAM for mobile robot. JCBB algorithm can obtain very
reliable association results, but its computational complexity is exponentially related to the number of
measurements, which seriously limits its real-time application. A SLAM data association algorithm
based on CDJC criterion and clustering is proposed. Partial batch data association and CDJC crite-
rion are adopted in the proposed algorithm. The proposed algorithm has three advantages. Firstly,
the dimensionality of the associated map feature is reduced at each moment. Thus, the problem that
the computational complexity of the algorithm increases gradually with the expansion of the con-
structed map is solved. Secondly, it is significantly more accurate on nonlinear problems based on
CDT. Finally, the clustering method is used to group the measurements to solve the problem that the
complexity of the JCBB algorithm increases exponentially with the increase of the measurements.
Experiments based on simulator and benchmark dataset verify these advantages. The results show
that the proposed algorithm outperforms JCBB and SCNN on both efficiency and association perfor-
mance. It can provide reliable guarantee for the real-time and accuracy of SLAM for mobile robot in
complex large-scale environments.
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