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Abstract

An animal’s social behaviour both influences and changes in response to its parasites. Here we
consider these bidirectional links between host social behaviours and parasite infection, both
those that occur from ecological vs evolutionary processes. First, we review how social beha-
viours of individuals and groups influence ecological patterns of parasite transmission. We
then discuss how parasite infection, in turn, can alter host social interactions by changing
the behaviour of both infected and uninfected individuals. Together, these ecological feed-
backs between social behaviour and parasite infection can result in important epidemiological
consequences. Next, we consider the ways in which host social behaviours evolve in response
to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of
sociality while minimizing fitness costs of parasites. Finally, we consider how host social beha-
viours shape the population genetic structure of parasites and the evolution of key parasite
traits, such as virulence. Overall, these bidirectional relationships between host social beha-
viours and parasites are an important yet often underappreciated component of popula-
tion-level disease dynamics and host-parasite coevolution.

Introduction

Social behaviours, which serve key roles in parasite transmission, can both influence and
respond to parasite infection through ecological and evolutionary processes (Fig. 1; Ezenwa
et al., 2016a). While past work has documented diverse ways in which an animal’s social beha-
viours influence parasite ecology (Fig. 1A), the ability of parasites to, in turn, alter host social
behaviours via ecological (Fig. 1B) or evolutionary (Fig. 1C) processes has been understudied
relative to predators, the other major class of natural enemy (Krause and Ruxton, 2002).
Further, the role of host social behaviours in driving the evolution of parasite traits
(Fig. 1D) such as virulence and host range has received surprisingly little attention
(Schmid-Hempel, 2017). Given the importance of social behaviours for the transmission,
and thus fitness, of diverse types of parasites, understanding the ways in which parasites
and host social behaviours interact is critical for predicting both parasite evolution
(Schmid-Hempel, 2017), and disease dynamics at population scales (Ezenwa et al., 20164).
Here we consider the key bidirectional interactions, both ecological and evolutionary, that
occur between parasites and host social behaviours, which we define broadly as any direct
behavioural interaction between conspecifics (Box 1). Work to date has shown that host social
behaviours can be important yet complex drivers of parasite risk through ecological processes
(Fig. 1; Arrow A; Altizer et al., 2003; Schmid-Hempel, 2017). For example, social behaviours
such as gregariousness (Box 1) can increase the probability or extent of parasitism by bringing
hosts into close proximity (Rifkin et al., 2012), but gregariousness can also augment the ability
of hosts to resist or tolerate parasites and pathogens once exposed (Ezenwa et al., 2016b).
Parasite infection, in turn, can have reciprocal and far-reaching ecological effects on animal
social behaviours (Arrow B), both by altering the social behaviours of infected hosts (e.g.
Lopes et al., 2016) and, in some cases, the uninfected conspecifics with which they interact
(e.g. Behringer et al., 2006). In addition to these ecological processes, parasites can influence
animal social behaviours via evolutionary mechanisms (Arrow C) by driving selection on
group size and avoidance behaviours that help to ameliorate the costs associated with a heigh-
tened risk of parasitism for highly social individuals (e.g. Loehle, 1995; Buck et al., 2018).
Finally, social behaviours of hosts are predicted to exert strong selection on traits of parasites
(Arrow D) given the importance of these host behaviours for parasite fitness (i.e. spread and
long-term persistence). Thus, we end by considering how host social behaviours might shape
the genetic structure of parasite populations and the evolution of parasite traits (Arrow D).
Given the vast literature on host social behaviours and parasites, we do not attempt an
exhaustive review, but instead selectively synthesize key concepts in the field and exciting
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Fig. 1. Host social behaviours influence and respond to parasites via both ecological
(light green arrows) and evolutionary (dark blue arrows) processes. In terms of eco-
logical processes, social behaviours such as allogrooming can influence exposure and
physiological responses to parasites (A). In turn, parasite infection can alter social
behaviours of actively infected hosts and their uninfected conspecifics (e.g. allo-
grooming given or received) (B). In terms of evolutionary processes, parasites can
shape the evolution of group size and relative investment in parasite avoidance beha-
viours such as allogrooming (C). Host social behaviours such as allogrooming can
also exert selection on parasite traits like virulence by altering host connectedness
(D). Inset picture: Gray langur (Semnopithecus sp.): https://commons.wikimedia.org/
wiki/File:Monkeys_Grooming.jpg

new findings or perspectives. We structure our review by consid-
ering ecological and evolutionary processes independently, but we
note that these processes will show considerable overlap and feed-
back. Importantly, ecological processes for hosts often occur on
timescales relevant for parasite evolution. Thus, we end our
review with a brief discussion of ecological-evolutionary feedbacks

Box 1. Glossary of terms commonly used throughout the paper (note that
this list is not exhaustive but includes terms for which definitions
sometimes vary across contexts).

Gregariousness/sociality: Used interchangeably to describe the tendency to
associate with conspecifics in social groups. The temporal stability of group
associations can be highly variable across taxa.

Infection intensity: The number of parasites of a certain type in a single
infected host.

Modularity: The degree of substructuring or subdivisions within and among
social groups in a given interaction network.

Parasite/pathogen: Used interchangeably to represent organisms that live
on or within hosts, deriving benefit while reducing the fitness of their hosts.

Social behaviour: Defined here broadly as behavioural interactions that
occur among conspecifics and vary in duration (Blumstein et al., 2010).
These interactions can be ‘negative’ (e.g. aggression, avoidance) or
‘positive’ (e.g. allogrooming, affiliation) in nature (Hofmann et al., 2014),
and can occur within or outside the context of discrete social groups. For
brevity, we do not discuss mating behaviours in this paper, although they
fall within the scope of our definition.

Socially transmitted parasite: Used here to encompass parasitic taxa that
spread via close contact between host conspecifics over space or time. For
our purposes, this includes several types of horizontal transmission
(defined broadly as that occurring within a generation): direct contact
(touching, biting, etc.), airborne (respiratory) and two indirect modes:
fomite (spread via surfaces) and environmental, which includes fecal-oral
spread (as per Antonovics et al., 2017). For brevity, we do not discuss sexual
horizontal transmission.

Susceptibility/Resistance: Used interchangeably to represent a host’s
physiological ability (‘resistance’) or lack thereof (‘susceptibility’) to prevent
or eliminate infection by parasites or pathogens.

Tolerance: The ability of hosts to reduce the fitness costs of a given parasite
load.

Virulence: The degree of harm that a parasite causes its host, typically
measured as reductions in host fitness.
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between host social behaviours and parasites. We limit the taxo-
nomic scope of our review to animal hosts, but by defining social
behaviours broadly, we discuss concepts and examples that apply
to taxa exhibiting a wide degree of sociality (Box 1). Finally,
although the COVID-19 pandemic underscores the importance
of reciprocal interactions between social behaviours and parasites
in humans (e.g. Block et al., 2020), we focus our review on non-
human animals for brevity, while recognizing that the concepts
discussed here can be extended to all social taxa and their para-
sites (e.g. Townsend et al., 2020).

Ecology: social behaviours influence and respond to
parasite infection

Social behaviours, which by definition bring conspecifics into
close proximity, have long been recognized as particularly likely
to influence and respond to parasite spread (e.g. Alexander,
1974; Loehle, 1995). In this section, we consider both how social
behaviours alter parasite transmission (Arrow A; Fig. 1), and in
turn, how parasite infection can dynamically alter host social
behaviours (Arrow B). Although it has long been recognized
that parasites can alter animal behaviour (reviewed in Moore,
2002), the extent to which parasites influence the social dynamics
of hosts via ecological processes, and the degree of individual het-
erogeneity in infection-induced changes in sociality, are only
beginning to be uncovered. We focus on this exciting growing
area, highlighting potential sources of heterogeneity in parasite-
mediated changes in host social behaviours (Fig. 2), and their con-
sequences for epidemiological and coevolutionary feedbacks
(Ezenwa et al., 2016a).

Host social behaviours alter parasite ecology (Arrow A)

Parasites spread via close contact between conspecifics over time
or space (which we term ‘socially transmitted parasites’ hereafter
for simplicity; Box 1) are hypothesized to pose a greater risk for
host species that exhibit social behaviours such as group living
(Krause and Ruxton, 2002). Classic mathematical models for
socially transmitted parasites [e.g. susceptible-infectious-
recovered (SIR) compartmental models] often assume that the
rate of contact between susceptible and infectious individuals
increases with host density (Begon et al, 2002). On a local
scale, this results in higher contact rates, and thus parasite trans-
mission, for animals in larger social groups. Indeed, two
meta-analyses support the hypothesis that larger social groups
generally harbour higher prevalence and/or infection intensity
(Box 1) of parasites spanning diverse transmission modes
(Rifkin et al., 2012; Patterson and Ruckstuhl, 2013). In contrast,
however, there is some evidence that group living can dilute
host risk of infection with highly mobile parasites by reducing
per capita attack rates (the encounter-dilution effect; Coté and
Poulin, 1995). The encounter-dilution effect primarily applies to
parasites that actively seek hosts by flying or swimming; the like-
lihood of being singled out by these parasites can decrease with
increasing group size (Coté and Poulin, 1995; Patterson and
Ruckstuhl, 2013).

Recent work suggests that social group substructure may in
some cases be equally or more important than group size in pre-
dicting parasite risk (Griffin and Nunn, 2012; Nunn et al., 2015;
Sah et al., 2018). If the majority of close social interactions in large
groups occur between subsets of individuals (e.g. ‘cliques’), this
modularity (Box 1) can act as a ‘social bottleneck’ that contains
parasite spread within subgroups and reduces spread to the
group at large (e.g. Nunn et al.,, 2015). In support of this idea,
the social networks of eusocial insect colonies can be highly struc-
turally subdivided, and epidemiological models show that this
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Fig. 2. Factors both intrinsic and extrinsic to indivi- A
duals underlie heterogeneity in the extent to which -

Factors driving individual heterogeneity in social behavior change

Infected animal

B. Uninfected animal

hosts alter social behaviours in the face of infection.
Here we list factors that have thus far been shown to
influence the degree of parasite-induced social behav-
iour changes for infected (A) or uninfected (B) hosts,
with representative references. While parasite manipu-
lation can also alter social behaviours of infected hosts
(A), here we focus solely on behavioural changes
hypothesized to be host-mediated. [1] Stephenson
(2019); [2] Houde and Torio (1992); [3] Siva-Jothy
and Vale (2019); [4] Walker and Hughes (2009); [5]
Owen-Ashley and Wingfield (2006); [6] Stockmaier
et al. (2020b); [7] Lopes et al. (2012); [8] Zylberberg
et al. (2012); [9] Bouwman and Hawley (2010); [10]
Stroeymeyt et al. (2018); [11] Stephenson et al.
(2018); [12] Poirotte and Charpentier (2020).

Intrinsic

Sex [1,3]

Extrinsic
Seasonality [5]

constitutive modularity dampens the transmission of an entomo-
pathogenic fungus within colonies (Stroeymeyt et al., 2018).
Similarly, a comparative study of 19 non-human primate species
found that higher levels of modularity may help ameliorate the
heightened risk of parasite spread in large social groups, as higher
modularity was associated with lower parasite richness (Griffin
and Nunn, 2012). However, perhaps because of its protective
function, social group modularity tends to increase with group
size across taxa (Nunn et al, 2015), making it challenging to
tease apart whether resulting patterns of parasitism are a function
of group size, modularity or both.

Individual variation in social behaviours can also have import-
ant effects on transmission risk. As shown through descriptive
network approaches that quantify social connections among con-
specifics using direct behavioural interactions or physical proxim-
ity, individuals that have ties to multiple social ‘cliques’
(VanderWaal et al., 2016) or those highly connected to neigh-
bouring conspecifics (e.g. Bull et al., 2012) can have an increased
likelihood of parasite infection (but see Drewe, 2010 for the
importance of type and directionality of interactions). Similarly,
bold or ‘pro-active’ personality traits, which correlate with social
network centrality in some taxa (e.g. Aplin et al, 2013), may
influence social parasite transmission: two studies of mammalian
species found that bolder individuals had a higher seroprevalence
of viruses largely spread via aggressive interactions (Natoli et al.,
2005; Dizney and Dearing, 2013). While these correlational stud-
ies suggest the effects of variation in social behaviour on parasite
risk, field studies generally cannot directly elucidate cause and
effect (Arrow A vs B: does behaviour affect parasites or vice
versa?). Further, it is challenging to disentangle the relative con-
tributions of individual variation in exposure vs susceptibility to
field patterns of transmission [VanderWaal and Ezenwa, 2016;
see ‘Synthesis: ecological feedbacks between social behaviours
and parasite infection’ section], particularly when traits relevant
for both exposure and susceptibility can simultaneously be influ-
enced by social context (e.g. Miller-Klein et al, 2019).
Experimental studies, while not possible for all host-parasite sys-
tems, can isolate the effects of host social behaviour per se on
parasite transmission risk. For example, Keiser et al. (2016)
used experimental epidemics to show that bolder female social
spiders (Stegodyphus dumicola) had a higher risk of acquiring a
cuticular microbe. Future studies could examine how individual
differences in ‘social personalities’, which are seldom quantified
in themselves (e.g. Kulahci et al.,, 2018), influence the transmis-
sion dynamics of socially transmitted parasites.

Opverall, the social behaviours of groups and individuals appear
to strongly influence parasite transmission risk (Arrow A).
However, in order to fully elucidate the effects of social
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behaviours on parasite transmission, it is critical to also consider
how parasite infection affects host social behaviours (Arrow B), as
both processes together will ultimately underlie the dynamics of
socially transmitted parasites.

Parasite infection influences host social behaviours (Arrow B)

The way in which parasite infection alters the social behaviours of
both infected hosts and their uninfected conspecifics (Arrow B) has
received relatively less attention than the effects of social behaviours
on parasite risk (Arrow A) ]. This is somewhat surprising given
that it has long been recognized that hosts often behave differently
during infection (reviewed in Moore, 2002). Changes in social
behaviours during infection can broadly result from parasite-
mediated manipulation of host behaviours to promote transmis-
sion to new hosts (reviewed in Klein, 2003), or from host-mediated
behavioural changes, which typically occur from one of three
mechanisms: (1) as side-effects of tissue damage or energy needs
associated with infection, (2) via expression of ‘sickness behaviours’
that are part of a host’s broader, adaptive immunological responses
to infection (Hart, 1988), or (3) as active self-isolation to prevent
ongoing spread, a behaviour largely seen in eusocial insects
(Shorter and Rueppell, 2012). All four possibilities, whether
parasite- or host-mediated, can lead to notable changes in social
behaviours of hosts, with important consequences for parasite
transmission. For example, three-spined sticklebacks (Gasterosteus
aculeatus) infected with the socially transmitted parasite Glugea
anomala are more likely than their uninfected counterparts to be
attracted to conspecifics, a behaviour predicted to augment trans-
mission (Petkova et al, 2018). Whether behavioural changes in
that system are parasite- or host-mediated remains unclear, but
in this section, we focus on changes in behaviour during infection
that are likely host-mediated, and consider parasite-mediated
behavioural changes in ‘Host social behaviours influence parasite
evolution (Arrow D)’ section.

Host-mediated changes in behaviour during infection, such as
self-isolation and sickness behaviours, often reduce the degree of
interaction with conspecifics and thus the spread of socially trans-
mitted parasites. While active self-isolation is rare outside of
eusocial insects, sickness behaviours are a conserved component
of vertebrate immune responses that include general reductions
in activity levels and specific reductions in non-essential activities
(Hart, 1988), such as many forms of social interaction (e.g. allo-
grooming). For example, Lopes et al. (2016) stimulated sickness
behaviours in wild house mice (Mus musculus domesticus) by
injecting individuals with bacterial endotoxin, and found that
immune activation resulted in lower activity levels and fewer direct
social interactions with conspecifics relative to controls. Similarly,
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work in two other mammalian systems found that infected indivi-
duals (or those expressing sickness behaviours) are less likely than
control individuals to engage in affiliative allogrooming with con-
specifics [banded mongooses (Mungos mungo), Fairbanks et al.,
2014; vampire bats (Desmodus rotundus), Stockmaier et al.,
2018]. In vampire bats, these changes in allogrooming during sick-
ness behaviour expression, potentially in combination with reduced
contact calling (Stockmaier et al., 2020a), result in significant
reductions in several measures of social connectedness relative to
controls (Ripperger et al., 2020). Overall, host-mediated reductions
in social interactions during infection, particularly when they occur
during the host’s infectious period, likely reduce transmission of
socially transmitted parasites.

The extent to which infected hosts alter their social behaviour
is likely to depend on the energetic costs of a given parasite
infection and the importance of that social behaviour for main-
taining host fitness (Ezenwa et al., 2016b). In some systems,
social behaviours of hosts appear to be maintained during infec-
tion (Powell et al., 2020), which may be common for infections
by low-virulence parasites. In other cases, infected animals may
maintain a subset of social interactions potentially most import-
ant to host recovery, including those with high inclusive fitness
benefits. For example, vampire bats injected with endotoxin to
induce sickness behaviours continued to groom close kin
(mother or offspring) at levels similar to controls, but reduced
the extent to which they groomed non-kin (Stockmaier et al.,
2020b). In some systems, social behaviours of hosts can even
be augmented during infection. For example, male guppies
(Poecilia reticulata) with high loads of a socially transmitted
ectoparasite showed higher sociality relative to males with
lower parasite loads (Stephenson, 2019), and rhesus monkeys
(Macaca mulatta) given low-dose endotoxin injection show
marked increases in social behaviours with conspecifics
(Willette et al., 2007). The ultimate mechanisms underlying
these patterns remain unknown, but in some systems, the main-
tenance or even augmentation of sociality during infection may
be a form of tolerance (Box 1), allowing hosts to minimize the
fitness impacts of infection via group living (Ezenwa et al.,
2016b). For example, recent work in Grant’s gazelle (Nanger
granti) suggests that association with larger groups benefits gaz-
elle infected with gastrointestinal parasites by allowing them to
better ameliorate the costs associated with infection-induced
anorexia (Ezenwa and Worsley-Tonks, 2018). Given that
infected hosts experience anorexia (e.g. Adelman et al., 2013)
and higher predation risk (e.g. Alzaga et al., 2008; Stephenson
et al, 2016) in many social taxa, future work should examine
whether enhanced gregariousness during infection is a common
mechanism of tolerance across taxa, with important conse-
quences for ecological feedbacks between social behaviour and
parasite transmission.

Parasite infection can also alter social interactions by changing
the behaviour of uninfected hosts towards their infected conspe-
cifics. Among taxa spanning fish, birds, crustaceans, social insects
and mammals, infected or immune-activated individuals display
visual cues of infection (e.g. lethargy: Zylberberg et al., 2012) or
release distinct chemical cues that conspecifics can use to avoid
them (e.g. Arakawa et al., 2009; Anderson and Behringer, 2013;
Stephenson and Reynolds, 2016) or, in the case of honey bees
(Apis mellifera), remove them from the colony (Baracchi et al,
2012). Intriguingly, recent work in mice suggests that the scent
of uninfected hosts themselves can change when they are housed
with an infected conspecific (Gervasi et al., 2018), suggesting the
potential for complex downstream effects of infection status on
social group dynamics and resulting transmission.

In some highly social animals, uninfected groupmates con-
tinue to engage in intimate interactions such as allogrooming
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with conspecifics that are infected or expressing sickness beha-
viours. At the extreme are some eusocial insects, where indivi-
duals care for infected conspecifics, likely because their high
degree of relatedness favours the evolution of seemingly ‘altruistic’
behaviours via kin selection [see ‘Parasites and the evolution of
host social behaviour (Arrow C)’ section]. But even in systems
where groupmates are not as closely related, uninfected indivi-
duals often maintain intimate social interactions with infected
conspecifics. For example, uninfected conspecifics in two social
mammals groom visibly diseased groupmates or those expressing
sickness behaviours at a similar intensity to controls, even when
allogrooming reciprocity from these individuals is greatly reduced
(e.g. mongooses: Fairbanks et al., 2014; vampire bats: Stockmaier
et al., 2018); furthermore, uninfected vampire bats continue to
share food with conspecifics expressing sickness behaviours
(Stockmaier et al., 2020b). In mandrills (Mandrillus sphinx), the
degree to which uninfected individuals maintain social interac-
tions with infected conspecifics appears to depend on kinship:
mandrills reduce grooming towards parasitized partners that are
non-kin, but maintain grooming if these potentially contagious
partners are offspring or close maternal kin (Poirotte and
Charpentier, 2020). Finally, in other systems, uninfected conspe-
cifics are attracted to feed near (male house finches, Haemorhous
mexicanus: Bouwman and Hawley, 2010) or socially explore
(mice: Edwards, 1988) infected conspecifics. Understanding het-
erogeneity in the behaviour of uninfected hosts towards infected
conspecifics (Fig. 2B), which can vary from avoidance to attrac-
tion, will help predict the conditions in which parasite-induced
changes in sociality lead to positive or negative ecological feed-
backs that ultimately maintain or dampen parasite epidemics
(Fig. 1).

The effects of infection on social interactions between groups
are also key to understanding pathogen transmission dynamics
(Cross et al., 2005), but have generally received less attention
than within-group social interactions. Because infected indivi-
duals or those expressing sickness behaviours are less likely to
explore their surroundings than uninfected individuals (e.g.
Lopes et al., 2016), they may be less likely to interact with other
social groups, either temporarily or permanently (as occurs in
banded mongooses; Fairbanks et al, 2014). In other cases,
infected individuals may be more likely to leave an existing
group, as has been observed among European badgers (Meles
meles meles) with bovine tuberculosis (Cheesman and
Mallinson, 1981; Weber et al., 2013). Whether infected indivi-
duals join new social groups, either temporarily or permanently,
will also depend on whether infected individuals are ‘accepted’
by conspecifics in the new social group (Butler and Roper,
1996). Uninfected guppies appear to largely prevent the integra-
tion of experimental intruders with ectoparasite infections into
existing shoals (Croft et al., 2011). In contrast, honey bee colonies
were more likely to accept entry by foreign bees infected with
Israeli acute paralysis virus than foreign controls, which may
represent a unique case of pathogen manipulation of chemical
signals that mediate aggressive interactions in this species
[Geffre et al., 2020; see ‘Host social behaviours influence parasite
evolution (Arrow D)’ section]. The movement or dispersal of
uninfected individuals between groups can also be driven by con-
specific infection or disease status, as occurs in western lowland
gorillas (Gorilla gorilla gorilla), where adult females are more
likely to emigrate from social groups with a higher prevalence
of facial lesions associated with a contact-transmitted skin disease
(Baudouin et al., 2019). Overall, more studies are needed on how
parasite infection influences among-group movements for both
infected hosts and uninfected conspecifics, particularly for taxa
where social group composition is relatively fluid, such as fis-
sion-fusion societies.
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Studies have only recently begun to address how changes in
social behaviours of both infected and uninfected conspecifics
scale up to influence host social networks and disease dynamics.
Chapman et al. (2016), for example, used a deworming approach
to examine how parasite infection in vervet monkeys (Chlorocebus
pygerythrus) influenced social interactions in ways relevant to
population-level spread. Dewormed individuals (particularly
juveniles) had more frequent social interactions with more total
conspecifics, suggesting that uninfected individuals may generally
be more central in vervet monkey social networks, thereby attenu-
ating parasite spread. Likewise, two recent studies combined
experimental manipulations of infection status or sickness behav-
iour with network modelling to examine how parasite infection
might influence the dynamics of socially transmitted pathogens
(Lopes et al., 2016; Stroeymeyt et al., 2018). Lopes et al. (2016)
used empirical contact data from mice induced to express sickness
behaviours to simulate disease outbreaks across social networks,
showing that changes in social interactions associated with sick-
ness behaviours resulted in highly attenuated disease outbreaks.
Although Lopes et al. (2016) did not find evidence of conspecific
avoidance in their system, recent work in Lasius niger ants showed
that responses of both parasite-contaminated ants and their
uncontaminated nestmates contributed together to changes in
group social networks that inhibited the spread of pathogens
through colonies (Stroeymeyt et al., 2018). Thus, understanding
the behaviour of both infected hosts and the uninfected conspeci-
fics they interact with is key for elucidating ecological feedbacks
that dampen or augment disease spread within and among social
groups.

Synthesis: ecological feedbacks between social behaviours and
parasite infection

The bidirectional feedbacks between host social behaviours and
parasite infection make it challenging to determine whether eco-
logical patterns such as group size—parasitism relationships [‘Host
social behaviours alter parasite ecology (Arrow A)’ section] result
from the effect of social interactions on parasite risk (Arrow A),
the effect of infection on social behaviours (Arrow B) or both.
Experimental manipulation of parasite infection allows direct elu-
cidation of causality. For example, Ezenwa and Worsley-Tonks
(2018) treated a subset of Grant’s gazelles with anti-helminthic
drugs and found that individuals in larger social groups
re-acquired gastrointestinal parasites more rapidly, supporting
the idea that larger group sizes augment the risk of acquiring
parasites (Arrow A). Because they also found that parasitized gaz-
elle benefit from larger group sizes where they can spend more
time foraging [see ‘Parasite infection influences host social beha-
viours (Arrow B)’ section], parasitized Grant’s gazelles may
actively seek out larger social groups (Arrow B), further contrib-
uting to patterns of higher parasite prevalence in larger groups.
Although such changes in sociality with parasitism have not yet
been explicitly examined in this system, the ability of gregarious-
ness to augment host tolerance of infection may produce positive
feedbacks between infection and social behaviour, facilitating
longer persistence of parasite loads in larger groups.

The strength of ecological feedbacks between social behaviour
and infection will be influenced by the degree of heterogeneity in
the behaviour of both infected and uninfected hosts (Fig. 2),
as well as the way in which behavioural heterogeneity covaries
with physiological resistance to parasites. Recent studies reveal
that individual variation in social behaviour among uninfected
individuals often covaries with their susceptibility to infection
(Fig. 2B), a pattern with unknown causality but hypothesized to
result from hosts balancing their investment in behavioural vs
physiological immunity. Individual hosts with less effective
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physiological defences against parasites appear to avoid beha-
viours entailing high infection risk (Barber and Dingemanse,
2010): mice (Filiano et al, 2016) and zebrafish (Danio rerio;
Kirsten et al., 2018) that express lower levels of interferon y
(and are therefore potentially more susceptible to intracellular
parasites) are less social, and house finches with lower levels of
circulating immune proteins more strongly avoid conspecifics
expressing sickness behaviours (Zylberberg et al, 2012).
Stephenson (2019) built on these findings by demonstrating
that the pattern is similar, with the most susceptible individuals
showing strongest conspecific avoidance, when considering sus-
ceptibility to the most prevalent parasites in an animal’s environ-
ment, rather than a general immune component. Intraspecific
variation in parasite susceptibility can therefore covary with intra-
specific variation in behaviour, leading to potential dampening of
ecological feedbacks, and reduced epidemic potential, if indivi-
duals that are the most social are also least likely to acquire infec-
tion (Hawley et al., 2011).

Once transmission occurs, behavioural changes of parasite-
contaminated or actively infected hosts are also heterogeneous
(Fig. 2A). Factors extrinsic to the host, such as social context
(Lopes, 2014) and seasonality (Owen-Ashley and Wingfield,
2006), as well as factors intrinsic to the host, such as sex (Silk
et al, 2018; Stephenson, 2019), social caste (Stroeymeyt et al,
2018) and previous exposure to the parasite (Walker and
Hughes, 2009), can dramatically affect behavioural changes in
response to infection. Additionally, behavioural changes of infected
animals often positively covary with infection intensity (Edwards,
1988; Houde and Torio, 1992; Barber and Dingemanse, 2010),
which is naturally highly variable in host populations (Shaw
et al., 1998). Thus, hosts that harbour the highest infection intensity
(a potential proxy for infectiousness) are also typically the ones
most likely to alter their social behaviours (and thus contact
rates) in ways that result in ecological feedbacks relevant for para-
site transmission. Hawley et al. (2011) used an SIR model to show
that positive covariation among individuals between their infec-
tiousness and contact rate, whereby the most heavily infected indi-
viduals are the most social, can lead to rapid epidemic spread.
Recent work demonstrating that infected animals can benefit
from living in groups (Almberg et al, 20155 Ezenwa and
Worsley-Tonks, 2018) suggests that this positive covariation may
occur broadly in systems where animals use social behaviour to
increase tolerance. Conversely, when the most infectious indivi-
duals elicit the strongest avoidance in uninfected conspecifics
(e.g. in guppies: Stephenson et al., 2018), this negative covariation
can lead to rapid fade-out of a parasite from a host population.
Experimental probing of individual-level relationships (e.g.
Stephenson, 2019) will ultimately allow a better understanding of
the potential ecological feedbacks that arise from bidirectional rela-
tionships between social behaviour and parasite infection, and the
way in which these feedbacks are influenced by sources of hetero-
geneity both intrinsic and extrinsic to hosts (Fig. 2; Hawley et al.,
2011; VanderWaal and Ezenwa, 2016; White et al., 2018).

Evolution: parasites drive, and evolve in response to, host
social evolution

Parasites are considered key drivers of and constraints on the evo-
lution of host social behaviour (Alexander, 1974; Hart, 1990;
Loehle, 1995; Buck et al., 2018; Fig. 1, Arrow C), but the effects
of parasites on host social evolution have largely been inferred
using comparative studies within and among taxa to elucidate sig-
natures of the ‘ghosts of parasites past’ (cf Mooring et al., 2006).
In this section, we consider ways in which parasites likely influ-
ence the evolution of host social behaviours, and discuss some
of the constraints on and opportunities for studying these effects.
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In addition, parasites themselves are likely to evolve in response to
variation in host social behaviours (Hughes et al, 2008;
Schmid-Hempel, 2017), which provide key opportunities for para-
site transmission and thus fitness (Fig. 1, Arrow D). We therefore
consider how host social behaviours can shape parasite popula-
tion genetics and their potential to respond to selection, as well
as the ways in which host social behaviours impose selection on
parasite traits such as virulence, transmission mode and host
manipulation.

Parasites and the evolution of host social behaviour (Arrow C)

Akin to parasite-induced changes in social behaviour via eco-
logical processes (Arrow B), the social behaviours of both infected
and uninfected individuals can evolve in response to parasites
(Townsend et al., 2020). Here, we focus on evolutionary changes
in the social behaviours of uninfected hosts that are likely to
reduce the fitness costs imposed by their socially transmitted
parasites. These include reductions in overall individual gregari-
ousness (mechanism 1) that manifest as lower average group
sizes for group-living taxa; reductions in social interactions with
some but not all conspecifics (mechanism 2), which often mani-
fest as increases in modularity; and reductions or augmentation in
specific social behaviours that either increase or decrease parasite
risk, respectively (mechanism 3). While these three mechanisms
involve fixed phenotypic changes in social behaviours in response
to parasite-mediated selection, the costs associated with reduced
sociality for many taxa may favour the evolution of conspecific
avoidance only in the presence of specific cues of infection (mech-
anism 4; Amoroso and Antonovics, 2020; Townsend et al., 2020).
We briefly explore each of these four mechanisms and discuss
constraints associated with evolving phenotypic changes in social
behaviours in the face of parasites.

Mechanism 1: evolutionary changes in overall gregariousness

Given the higher risk of parasite spread associated with larger
group sizes for many systems (e.g. Nunn and Altizer, 2006;
Woodroffe et al., 2009; Rifkin et al., 2012), socially transmitted
parasites are predicted to exert selection against individual asso-
ciation with larger groups. For example, given the heritable vari-
ation in individual gregariousness (e.g. halictid bees: Kocher
et al., 2018; shoaling guppies: Kotrschal et al., 2020), socially
transmitted parasites may drive the evolution of reduced gregari-
ousness and lower average host group sizes by causing higher
parasite-mediated mortality in more gregarious individuals.
Recent evidence suggests, for example, that attraction to conspe-
cific chemical cues in social Caribbean spiny lobsters (Panulirus
argus) has declined over time, potentially in response to the
emergence of the lethal PaVI virus (although other factors
might have contributed; Childress et al., 2015). Overall, direct
empirical evidence for parasite-mediated shifts in gregariousness
resulting from evolutionary processes is scarce, potentially (at
least in part) because these shifts are obscured by those driven
by predators, which are often hypothesized to have opposing
effects to those of parasites (Mikheev et al., 2019). Larger groups
can serve a protective function against predators, and empirical
studies have documented heritable, positive associations between
predation pressure and social tendencies of prey (e.g. Seghers,
1974; Jacquin et al., 2016). While the immediate mortality asso-
ciated with predation could exert stronger selection pressure
than that associated with many parasites (e.g. Koprivnikar and
Penalva, 2015; Daversa et al., 2019), parasites and the ‘landscape
of disgust’ that they elicit (i.e. the detection and avoidance of
areas with high potential parasite risk; Weinstein et al., 2018)
are posited to have far-reaching evolutionary consequences,
rivalling those of predators, for host behaviours. Nonetheless,
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determining the relative strength of selection by parasites vs
predators on host social behaviours remains a considerable
challenge.

Common garden and experimental evolution studies that rely
on variation in parasite presence (either naturally, for common
garden studies, or experimentally) provide promising approaches
for directly characterizing evolutionary effects of parasites on host
gregariousness. However, even these studies can be challenging to
interpret, as results will depend on the virulence of the parasite
considered, as well as the competing fitness benefits generated
by particular social behaviours. One common-garden study in
Trinidadian guppies, for example, found consistent evidence for
a heritable, positive effect of predatory pressure on shoal size,
but a relatively weak and non-heritable negative effect of parasite
pressure on shoal size (Jacquin et al., 2016). However, populations
were characterized as having been under selection by parasites
based on one observation of the presence or absence of a single
species of ectoparasite. In general, strong selection against social-
ity is most likely imposed by highly virulent parasites with epi-
demic rather than endemic dynamics (Kessler et al, 2017), as
may be the case for many emerging pathogens (Bolker et al,
2010). Further, opposing selection pressures from predation and
the many other benefits of group living [e.g. access to mates
(Adamo et al., 2015), foraging efficiency (Krause and Ruxton,
2002), transfer of protective microbes (Ezenwa et al., 2016b),
opportunities for social learning and information transfer
(McCabe et al., 2015; Romano et al., 2020) and social support
(Snyder-Mackler et al., 2020)] likely limit the ability of many
hosts to evolve lower levels of gregariousness in response to para-
site pressure (Townsend et al., 2020).

The evolution of lower gregariousness in response to socially
transmitted parasites will also be constrained by the conflicting
selection pressure that other parasites can place on host
social behaviours (Townsend et al., 2020). For example, while
socially transmitted parasites should generally select against gre-
gariousness and association with large groups (Anderson and
May, 1982; Schmid-Hempel, 2017), some mobile and vector-
borne parasites may select for higher gregariousness in systems
where per capita attack rate declines with group size [Mooring
and Hart, 1992; see ‘Host social behaviours alter parasite ecology
(Arrow A)’ section]. Given that all hosts are likely affected by
communities of parasites with distinct transmission modes (e.g.
Townsend et al., 2018), opposing selection pressures across para-
site taxa could obscure parasite-mediated selection on gregarious-
ness. Further, even parasites that are socially transmitted might
not always select against sociality if group living ameliorates the
fitness costs of a given parasite infection, as appears to be com-
mon across taxa (Almberg et al, 2015; Ezenwa et al, 2016b;
Ezenwa and Worsley-Tonks, 2018; Snyder-Mackler et al., 2020).
For example, the food-finding benefits or enhanced predator pro-
tection provided by social groups might be sufficiently important
for parasitized individuals (e.g. Adelman et al, 2017) that the
same parasite can exert opposing selection pressures on its host:
selection against overall gregariousness to reduce infection risk,
but selection for gregariousness to reduce fitness costs once
infected. Thus, the degree to which specific social behaviours
are favoured will depend on the parasites that are prevalent and
most virulent in a given environment, and the extent to which
a given social behaviour leads to infection or reduces fitness
costs for each parasite.

Mechanism 2: evolutionary reductions in social interactions with
some but not all conspecifics

Given the diverse benefits of group living, parasite-mediated
selection may favour reductions in particular social interactions
within or among host social groups, rather than reductions in
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overall gregariousness (and thus group size). Reductions in inter-
actions with certain conspecifics can, in some cases, manifest as
higher modularity either within or among groups. Nunn et al.
(2015) found that diverse social taxa show higher levels of modu-
larity in larger social groups, and that this within-group substruc-
turing protected larger groups from socially transmitted parasites
in network-based models [see ‘Host social behaviours alter para-
site ecology (Arrow A)’ section]. However, it remains unknown
whether this higher modularity in larger social groups represents
an evolved response to limit parasite spread (as likely occurs in
eusocial insects; Stroeymeyt et al., 2018), or simply a side-effect
of the need for individuals to limit social interactions within lar-
ger groups (Nunn et al., 2015). Further, while colony-level selec-
tion from parasites could generate the within-colony modularity
(Stroeymeyt et al., 2018) and even the age-structured division of
labour (Udiani and Fefferman, 2020) seen in many eusocial
insects, the behavioural traits on which individual-level selection
would act to generate emergent differences in within-group
modularity for social taxa outside of eusocial insects remain
unclear.

Reducing interactions with other groups or colonies (often
termed ‘outgroup’ interactions) may have protective effects for
individuals by reducing the input of parasites from outside groups
(Freeland, 1976). While there is indirect support in humans for
the idea that heightened parasite stress promotes in-group inter-
actions (e.g. Fincher and Thornhill, 2012), it remains unknown
whether there is heritable, individual-level variation in the degree
of ingroup vs outgroup interactions in non-human animals, and
whether such behaviour responds to selection from socially trans-
mitted parasites. Finally, as with overall gregariousness, there are
likely numerous constraints on the ability of taxa to evolve their
social structure in ways that minimize the spread of all socially
transmitted parasites. For example, Sah et al. (2018) found that
no single social network organization had the lowest epidemic
probability or duration when the transmission potential of a
hypothetical parasite was varied in network simulations. Thus,
behavioural traits that underlie social network structure such as
modularity may be unlikely to respond to selection if they do
not provide protection against a wide range of socially transmitted
parasites infecting a given host taxa.

Mechanism 3: evolutionary changes in specific social behaviours
Parasite-mediated selection may be most likely to favour reduc-
tions in specific high-risk social behaviours such as agonistic
interactions, allowing hosts to reduce transmission risk without
concomitant loss of the broader benefits of sociality. For example,
in banded mongooses, within-troop aggression facilitates wound
invasion by Mpycobacterium mungi (Flint et al, 2016). Thus,
given the heritable variation in aggression in this species, this
emerging pathogen could favour reductions in the degree of
aggression in which banded mongooses engage. Tasmanian
devil facial tumour disease (DFTD), a disease caused by conta-
gious cancer cells that are transmitted largely via biting
(Hamede et al., 2013), may represent an example of this process:
Hubert et al. (2018) document that some of the genes under selec-
tion in devils (Sarcophilus harrisii) since the emergence of DFTD
have homologues associated with human social behavioural
disorders.

Similarly, selection pressure from parasites could favour a
higher frequency of specific social behaviours that reduce parasite
spread, such as social grooming or hygienic behaviours (i.e.
removal of dead or infected individuals from the colony, as occurs
in many eusocial insects; Cremer et al., 2018). Indeed, in eusocial
insect colonies, hygienic behaviours are known to be heritable
(Spivak and Reuter, 2001), with candidate genes that show
evidence for positive selection (Harpur ef al., 2019). Increases in
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allogrooming frequency may similarly evolve in response to
parasite-mediated selection from ectoparasites when such beha-
viours effectively reduce ectoparasite load (e.g. de Brooke,
1985). However, allogrooming can simultaneously expose the
groomer to socially transmitted endoparasites such as those
spread via fecal-oral routes (Biganski et al., 2018). Thus, hosts
may be under simultaneous selection pressure to avoid grooming
individuals with endoparasitic infections, as occurs in mandrills
(Poirotte et al., 2017).

Mechanism 4: evolution of avoidance of infected conspecifics
Parasite-mediated selection on social behaviours is likely to favour
the ability of hosts to specifically avoid individuals that pose a
high infection risk. This would allow social interactions with
uninfected individuals, and their associated benefits, to be main-
tained, while reducing interactions most likely to facilitate patho-
gen transmission (Amoroso and Antonovics, 2020). Thus, it is no
surprise that diverse social taxa have evolved the ability to detect
and avoid conspecifics that likely pose infection risk [see ‘Parasite
infection influences host social behaviours (Arrow B)’ section].
The degree of heritability of these avoidance behaviours in natural
systems, and thus their ability to respond to selection, is not well
understood, but the genetic basis of the detection and avoidance
of conspecifics has been demonstrated in mice (Kavaliers et al.,
2005), whereas imprinting during development appears to be
key in guppies (Stephenson and Reynolds, 2016). Future work
should examine the extent to which the detection and avoidance
of infected conspecifics is heritable, which may require the use of
study systems amenable to captive breeding.

Kin selection may play a role in the degree to which infected
animals evolve to express sickness behaviours, thus altering the
ability of uninfected animals to detect and avoid them in ways
that promote inclusive fitness. Shakhar and Shakhar (2015), for
example, proposed that kin selection would most likely favour
social withdrawal after infection in species that live in close con-
tact with kin, leading to the prediction that sickness behaviours
and social withdrawal would be more pronounced in these spe-
cies. Although this prediction has not been tested with respect
to sickness behaviours in particular, active self-isolation of
infected individuals (e.g. Bos et al., 2012) is present almost exclu-
sively within eusocial insects, for which high within-colony
relatedness facilitates the evolution of several seemingly altruistic
collective defence behaviours (i.e. ‘social immunity’ or ‘behav-
ioural immunity’) via kin selection (reviewed in Schmid-
Hempel, 2017; Cremer et al., 2018). While these patterns support
the existence of an ‘inclusive behavioural immune system’
(Shakhar and Shakhar, 2015), studies outside the eusocial insects
are sorely needed.

Kin selection will also alter the extent to which uninfected
individuals evolve to avoid or care for infected individuals. In
terms of avoidance, the degree to which a reduction in affiliative
social behaviours is favoured after infection may vary with the
inclusive fitness benefits that these behaviours confer (Shakhar
and Shakhar, 2015), as occurs in mandrills [see ‘Parasite infection
influences host social behaviours (Arrow B)’ section]. Certain
parasites could even favour the evolution of care-giving, as seen
in eusocial insects that preferentially allogroom pathogen-
contaminated individuals (Cremer et al, 2018) if the care of
infected kin contributes to inclusive fitness by enhancing host
recovery and subsequent reproduction. The degree to which
such care is favoured is also likely to depend on the potential
costs of infection. For example, a simulation-based analysis of
human societies (Kessler et al., 2017) suggested that parasites
with intermediate virulence (e.g. measles) could select for sub-
stantial care-giving behaviour towards kin; in contrast, pathogens
with high fatality and transmission rates (e.g. Ebola) selected for
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the avoidance of all infected individuals, while low-virulence,
widespread pathogens (e.g. scabies) were relatively neutral, as
care-giving and avoidance had little effect on either recovery or
transmission. Other parasites might favour care-giving even if
highly virulent. For example, parasites that have strong, negative
impacts on fecundity (e.g. that cause host castration) but are
not easily transmitted among group members might promote
helping behaviour by infected individuals, essentially creating a
sterile caste of helpers within their family groups (O’Donnell,
1997). Thus, traits of parasites such as virulence and transmission
mode, which can themselves evolve in response to host social
behaviours, are critical to consider.

Host social behaviours influence parasite evolution (Arrow D)

For socially transmitted parasites, host social behaviours shape
transmission opportunities (Arrow A), which in turn determine
a parasite’s population structure and evolutionary dynamics.
The relatively short generation time of parasites means that host
social behaviours may lead to genetic changes in parasite popula-
tions within just one or a few host generations. Here, we consider
the influence of host social behaviours on (1) fundamental popu-
lation genetic processes and (2) adaptive evolution of parasites.
Our scope of social behaviours includes a diversity of host interac-
tions (Box 1) that may have distinct effects on parasite evolution
(Schmid-Hempel, 2017). We focus on social behaviours that
change the size and connectivity of host groups, with a brief con-
sideration of behaviours that might change host relatedness.

We first consider the role of host behaviour in shaping the
population genetics of parasites and thereby their potential to
respond to selection. Increases in the size and connectivity of
host social groups can decrease parasite population structure,
increase gene flow and promote genetic diversity, leading to over-
all increases in the effective size of parasite populations. This pre-
diction applies particularly when parasite prevalence increases
with host group size, and when transmission opportunities
increase with host connectivity. Because larger host groups
often maintain larger parasite populations [see Host social beha-
viours alter parasite ecology (Arrow A) section; Rifkin et al., 2012;
Patterson and Ruckstuhl, 2013], host social grouping can contrib-
ute to the maintenance of parasite genetic diversity at neutral loci
and loci under selection by limiting the probability of stochastic
extinction of parasite populations (Barrett et al., 2008). In add-
ition, connectivity of social groups can increase connectivity of
groups of parasites (i.e. demes) if parasite transmission increases
alongside direct contacts of hosts. Increased connectivity means
increased gene flow and reduced genetic differentiation between
parasite groups, both at the level of host individual and popula-
tion (e.g. Nadler et al., 1990). In a test of these predictions, Van
Schaik et al. (2014) compared the parasites of greater mouse-eared
bats (Myotis myotis) and Bechstein’s bats (M. bechsteinii), conge-
ners which differ in their social system: maternal colonies of
M. myotis mix readily, and individuals hibernate in large clusters,
mate in harems and migrate relatively long distances, while mater-
nal colonies of M. bechsteinii never mix, and individuals hibernate
alone, meet briefly during mating and migrate relatively short
distances. Their respective Spinturnix wing mite species differ
accordingly in their population genetic structure: nuclear genetic
diversity of S. myoti is very high, with little genetic differentiation
between mites in different bat colonies, while nuclear genetic
diversity of S. bechsteini is lower, with marked differentiation
between colonies, suggesting strong genetic drift in small, isolated
mite populations. This work demonstrates that larger, more
connected social groups host parasite populations that are more
genetically diverse.
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Increasing host connectivity can also reduce parasite aggrega-
tion, with parasites more uniformly distributed rather than
clumped on a subset of hosts. Reducing parasite aggregation lowers
within-host competition and variance in reproductive success,
increasing effective population size for parasites (Whitlock and
Barton, 1997; Poulin, 2007). Empirical data support reduced aggre-
gation for ectoparasites with increased host sociality: comparative
studies show reduced aggregation of lice in colonial bird species
relative to territorial species (Rozsa et al, 1996; Rékasi et al.,
1997) and in large vs small social groups of Galapagos hawks for
amblyceran lice (Buteo galapagoensis; Whiteman and Parker,
2004). Taking these processes of parasite connectivity and aggrega-
tion together, we generally expect increases in the size and connect-
ivity of host social groups to decrease the effects of genetic drift and
promote responses to selection in parasite populations (reviewed in
Nadler, 1995; Barrett et al., 2008). However, in both bat and avian
systems, the sensitivity to host social system varied among parasite
taxa, with the structure of some parasites (bat flies and avian
ischnoceran lice) unresponsive to differences in group size and
connectivity of the same bat (M. bechsteinii) and bird (B. galapa-
goensis) hosts (Whiteman and Parker, 2004; Reckardt and Kerth,
2009; van Schaik et al,, 2015) that produced notable changes in
the population structure of wing mites and amblyceran lice,
respectively. This contrast between parasite taxa highlights the
fact that host social behaviour is but one of many factors that
can shape parasite population genetics, and it would be valuable
to weigh its relative importance across a broader diversity of
host-parasite systems.

In addition to shaping the population genetic structure of their
parasites, host group size and connectivity may impose direct
selection on virulence, a key parasite trait (Box 1). The common
assumption of a trade-off between transmission and virulence
predicts that reduced connectivity, or increased modularity, of
host groups selects against virulence. The ecological structure of
host groups means that parasites with high transmission and viru-
lence should end up with low effective transmission rates because
they rapidly deplete the local density of susceptible hosts. This
process of ‘self-shading’ favours mutants with low transmission
and low virulence, which maintain a higher average density of
susceptible hosts and lower probability of extinction (Boots and
Sasaki, 1999). Genetic structure could also lead to ‘kin shading™
within host groups, nearby parasites are likely kin, such that
reduced transmission also confers an inclusive fitness benefit
(Wild et al., 2009; Lion and Boots, 2010). Moreover, Lipsitch
et al. (1995) proposed a ‘law of diminishing returns’: repeated
contact between hosts selects for lower virulence because the
increased opportunities for transmission between individuals
make the benefits of increasing transmission rate too small to oft-
set the cost of increased virulence. By these arguments, the clus-
tering associated with the modularity of social groups should
select for parasites with low virulence.

Though they do not directly consider social behaviour, theor-
etical models support the evolution of reduced virulence with
increased modularity of host populations (e.g. Claessen and de
Roos, 1995; Rand et al., 1995; Boots and Sasaki, 1999). In models
that explicitly incorporate spatial structure, transmission ranges
from global to local, either by modifying transmission of the para-
site (e.g. Boots and Sasaki, 1999) or by varying host contact struc-
ture from random interactions between hosts to clustered, regular
interactions, modelling modularity within social groups (e.g. Van
Baalen, 2002). Generally, as transmission becomes increasingly
local, or host contacts become more clustered, the evolutionary
optima for transmission rate and correlated virulence shift lower
(though see Read and Keeling, 2003). Consistent with theory,
Boots and Mealor (2007) found that, in experimental populations
of the host Plodia interpunctella, a granulosis virus (PiGV)
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evolved reduced infectivity when host mobility was reduced (for
further experimental support from other systems, see Kerr et al,
2006; Dennehy et al., 2007; Berngruber et al., 2015). In contrast
to modularity, other characteristics of social groups - such as
size — may select for increased virulence. Indeed, increasing the
size of host modules in spatial models brings the evolutionary
dynamics closer to that of well-mixed host populations (Van
Baalen, 2002). With transmission and/or host interactions less
clustered and regular, the cost of self-shading falls, boosting the
evolutionary optima for transmission and virulence. While these
models generally assume that host mobility or contact networks
(and by extension, modularity) do not vary with parasite status,
it is important to also consider infection-induced changes in
behaviour and their inherent heterogeneity [‘Synthesis: ecological
feedbacks between social behaviours and parasite infection * sec-
tion; Fig. 2]. These dynamic behavioural feedbacks in response
to infection (Arrow B) may alter predictions for virulence evolu-
tion (e.g. see Pharaon and Bauch, 2018 on human social
behaviour).

Virulence may also evolve indirectly in response to selection
that host social behaviour imposes on parasite transmission
mode. For parasites with genetic variation in transmission mode,
frequent transmission opportunities in host social groups are
expected to select for an increased rate of horizontal transmission,
whereas among solitary or territorial hosts, reduced transmission
opportunities should favour vertical transmission, which ensures
transmission from parent to offspring (Antonovics et al, 2017).
Selection on transmission mode may in turn impose selection on
virulence: experimental studies show that parasite lineages evolve
higher virulence with increased opportunities for horizontal trans-
mission (Bull et al, 1991; Turner et al., 1998; Messenger et al.,
1999; Stewart et al., 2005), whereas a recent comparative study sug-
gests that vertical transmission favours the evolution of obligate
mutualisms (Fisher et al, 2017). Thus, assuming a trade-off
between transmission modes, social grouping may indirectly select
for increased virulence via evolutionary shifts in transmission
mode. It is not clear, however, how many host-parasite systems
have a significant genetic variation in transmission mode
(Antonovics et al., 2017). Moreover, in a key proof of principle
study, Turner et al. (1998) did not find that transmission mode
evolved in response to host density, a potential proxy for host social
behaviour.

A further indirect mechanism through which host social
behaviour may affect parasite virulence evolution is through its
effects on the likelihood of coinfection, which is hypothesized
to alter the costs and benefits of virulence for parasites
(Bremermann and Pickering, 1983; Alizon et al., 2013). Several
studies have found that larger, more connected host groups sup-
port richer, more genetically diverse parasite communities (Ranta,
1992; Griffin and Nunn, 2012) and populations (e.g. van Schaik
et al., 2014). These studies suggest that hosts in such groups are
more likely to be co-infected with multiple species or strains of
parasites (though see Bordes et al., 2007). Coinfection could select
for increased virulence if virulence stems from the depletion of
host resources: in this case, within-host competition favours
more virulent parasites that draw more aggressively on host
resources (Bremermann and Pickering, 1983; Frank, 1992; de
Roode et al., 2005). Alternatively, coinfection could lead to
reduced virulence if virulence stems from collective action, like
the production of public goods: in this case, competition between
unrelated strains favours cheaters, limiting the growth of the para-
site population and suppressing virulence (Turner and Chao,
1999; Chao et al., 2000; Brown et al., 2002). As of yet, these pre-
dictions are untested in the context of host sociality.

Overall, there is a substantial body of theory and data indicat-
ing that host social behaviours likely drive virulence evolution
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through several interacting pathways: host group size and modu-
larity affect parasite population genetics, and impose both direct
and indirect selection on virulence. In contrast, there is sur-
prisingly little research investigating the effect of host social
behaviours on the evolution of other parasite traits (Schmid-
Hempel, 2017). Here we highlight two topics - host specialization
and manipulation - that have received some attention, in hopes of
stimulating more research in these areas. First, behaviours that
dictate how social groups or modules assemble may determine
parasite prevalence and selection for specialization. In many sys-
tems, individual hosts preferentially interact with kin due to active
choice or physical proximity (e.g. Grosberg and Quinn, 1986;
Archie et al., 2006; Davis, 2012). Parasitism may even enhance
kin grouping if, for example, individuals actively avoid parasitized
non-kin but continue to associate with parasitized kin [see
‘Parasite infection influences host social behaviours (Arrow B)’
section]. Kin association boosts the mean relatedness of hosts
encountered by a parasite lineage, above that predicted if hosts
met at random. Taken to its extreme, socializing with kin could
create conditions for a parasite akin to host monoculture (King
and Lively, 2012; Lively, 2016): on average, increased relatedness,
or decreased genetic diversity, of host groups promotes parasite
transmission (i.e. the monoculture effect as in Baer and
Schmid-Hempel, 1999; Altermatt and Ebert, 2008; Ekroth et al.,
2019). Moreover, host relatedness can mimic the selection
parasites face under serial passage (Ebert, 1998): generations of
transmission within relatively homogeneous host groups may
lead to the evolution of host specialization (Bono et al., 2017),
either due to trade-offs or relaxed selection for performance on
alternate hosts (Kassen, 2002). In systems where hosts do not
associate with kin (e.g. Russell et al., 2004; Riehl, 2011; Godfrey
et al., 2014), we expect the opposite: increased genetic diversity
of interacting hosts should limit parasite spread and maintain
parasite populations with relatively broad host ranges. This
argument makes the interesting prediction that parasites that
jump to novel host populations or species may preferentially
derive from diverse host groups. We emphasize that there are
few tests of these ideas — our predictions for the impact of
group assembly on parasite evolution are based on studies of
non-social systems and a few social insect systems (Sherman
et al., 1988; Schmid-Hempel, 2017).

Finally, behavioural manipulation of hosts, which includes any
parasite-induced change in host behaviour that promotes parasite
transmission (Poulin, 2010), is a trait that may experience selec-
tion in the context of social behaviour. Parasites transmitted
socially could increase their probability of transmission by
increasing the rate at which infected hosts interact with suscep-
tible hosts. By this argument, selection of parasite manipulation
would intensify host social behaviour. Nonetheless, there is little
evidence in support of this hypothesis. Although there is strong
evidence of host manipulation in parasites with other transmis-
sion modes such as trophic (e.g. trematodes — Carney, 1969) or
vector-borne transmission (e.g. Leishmania — Rogers and Bates,
2007), there are few accounts of socially transmitted parasites
manipulating host contact rates (Poulin, 2010). Some socially
transmitted viruses, including rabies, can increase aggression
and thereby physical contact, but whether this constitutes adap-
tive manipulation remains under review due to the variable mani-
festation of symptoms (Lefevre et al., 2009; Poulin, 2010). In fact,
across parasites, it is far more common that parasitism leads to
reduced activity and social isolation (Poulin, 2019). An exception
are the microsporidia and cestode parasites of brine shrimp
(Artemia franciscana and A. parthenogenetica): these parasites
increase swarming of brine shrimp near the water surface,
which may increase trophic transmission of the cestode to its
avian host and direct transmission of microsporidia to nearby
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Artemia (Rode et al., 2013). Poulin (2010) hypothesizes that evi-
dence for host manipulation in socially-transmitted parasites is
limited because the benefits of manipulation are smaller than
the costs: for host taxa with high degrees of sociality, many factors
already promote interactions with conspecifics, so parasites may
gain relatively little in the way of additional transmission oppor-
tunities by augmenting contact within groups. Recent work, how-
ever, suggests that parasites may induce behavioural changes that
increase an infected host’s probability of acceptance into new
social groups. Geffre et al. (2020) found that honey bees infected
with Israeli acute paralysis virus (IAPV) are accepted into foreign
colonies at higher rates than control bees, even though bees
can detect and avoid IAPV-infected nestmates. In comparison,
colonies did not show higher acceptance of foreign bees that
were immune-stimulated but not infected, suggesting a specific
manipulation by IAPV to increase between-colony transmission.
The authors speculate that these results point to a coevolutionary
battle between parasite manipulation of host social behaviour and
hosts’ own social defences.

Synthesis: evolutionary feedbacks between host social
behaviour and parasite traits

The evolution of host social behaviours in response to parasites
(Arrow C) and parasites in response to hosts (Arrow D) support
the potential for coevolutionary feedback between social behaviour
and parasite traits. Although direct examination is challenging, the-
oretical models have begun to explore reciprocal adaptation
between host social behaviour and parasite traits, and the impact
of the behavioural environment on coevolutionary trajectories.
For example, Bonds et al. (2005) examined feedback between viru-
lence and social behaviour, measured as variation in host contact
rate. They made the key assumption that more gregarious hosts
live longer, so increased contact carries both a fitness benefit and
cost (parasite transmission). As a result, increasing contact rates
select against virulence: the lower death rate of more gregarious
hosts prolongs the window for parasite transmission, reducing
the advantage of parasites with high transmission rates and, by cor-
relation, high virulence. Decreasing virulence reduces the cost of
social behaviour, thereby selecting for host contact. These changes
in virulence and contact rate increase parasite prevalence, which, at
its highest level, further selects for host contact: hosts may as well
reap the benefits of socializing when there is no hope of avoiding
infection. Prado et al. (2009) extended this work to incorporate
spatial structure, showing that sociality selects for high parasite
virulence and that high virulence, in turn, selects against sociality.
Though their results differ somewhat, both models suggest that
coevolutionary feedbacks between social behaviour, parasite preva-
lence and virulence could generate either positive or negative cor-
relations between parasitism and social traits, such as group size,
depending upon the life history and coevolutionary history of the
study populations.

Other studies suggest that social behaviour is a contextual
variable that alters the trajectory of coevolution between host
resistance and parasite traits. Best et al. (2011) explored the evo-
lution of host resistance and parasite virulence in a coevolutionary
model with spatial structure. As in the above models of virulence
evolution, Best et al. (2011) did not explicitly consider social
behaviour, but drew parallels between social grouping of hosts
and the treatment of host reproduction and parasite transmission
as local (i.e. host offspring or new infections are placed in neigh-
bouring sites, forming clusters) or global (ie. placed randomly
across the network). They found that local host reproduction
and transmission select for increased host resistance and reduced
parasite virulence. Similar to prior evolutionary models, the
explanation for these coevolutionary patterns lies in the spatial
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distribution of susceptible and infected hosts (ecological struc-
ture) and the clustering of kin (genetic structure). A key result
from Best et al. (2011) is that reproduction and transmission
within local (e.g. social) groups could lead to heavily defended
hosts with parasites that have low transmission rates and low viru-
lence. Interestingly, this theoretical result matches Hughes et al.
(2008)’s verbal prediction for social insects and their parasites.
Given the importance of the scale of host interactions and trans-
mission for these predictions, further understanding of the
among-group movements of infected hosts [see ‘Parasite infection
influences host social behaviours (Arrow B)’ section, Geffre et al.,
2020] would facilitate prediction of coevolutionary outcomes.

Host social behaviour may further alter coevolutionary trajec-
tories if behavioural defences negatively covary with physio-
logical defences against parasites . Physiological defences may
decline in the presence of behavioural defences if there are trade-
offs between defence components (Sheldon and Verhulst, 1996;
Parker et al., 2011) or if physiological defences prove redundant
and thus experience relaxed selection (Evans et al, 2006;
Amoroso and Antonovics, 2020). There is some support for
negative covariance of behavioural and physiological defences
in social insect systems (Evans et al, 2006; Viljakainen et al.,
2009; Harpur and Zayed, 2013; Lopez-Uribe et al., 2016) and
more broadly [Klemme et al., 2020; see ‘Synthesis: ecological
feedbacks between social behaviours and parasite infection ’ sec-
tion]. A key implication of covariance between defence traits is
that host social behaviours could fundamentally alter the host
defences against which parasites battle and thereby change the
traits predicted to be under coevolutionary selection. Given the
potential for behavioural defences to alter not only host evolu-
tion but also the strength and nature of reciprocal adaptation,
it would be valuable to use an experimental evolution approach
to directly test the trade-offs between behavioural and physio-
logical defences.

Finally, host social behaviour may structure coevolutionary
dynamics via its effect on parasite population genetics.
Specifically, data from natural host-parasite interactions suggest
that the size and connectivity of host social groups contribute to
determining genetic diversity and gene flow in their associated
parasite populations [see ‘Host social behaviours influence para-
site evolution (Arrow D)’ section]. Coevolutionary models show
that gene flow and genetic variation define the capacity for para-
site populations to adapt to their evolving host populations and
thereby drive coevolution (Lively, 1999; Gandon, 2002; Gandon
and Michalakis, 2002). In particular, experimental evolution
studies (Forde et al, 2004; Morgan et al, 2005) and meta-
analyses of tests with natural host-parasite populations
(Greischar and Koskella, 2007; Hoeksema and Forde, 2008)
show that relatively low rates of gene flow can prevent parasites
from adapting to their local host populations. While social
behaviour entails its own complexities, the parallels we highlight
suggest that the extensive body of work on the geography
and spatial structure of host-parasite coevolution may prove
valuable in formulating hypotheses and experiments on the
evolution and coevolution of host sociality and parasites
(Thompson, 2005).

Conclusions

The fundamental interactions between a host’s social behaviours
and its parasites have long been of interest, but we still have
much to learn about the reciprocity of these interactions, and
how these relationships play out for both ecological and evolution-
ary dynamics (Ezenwa et al, 2016a). The bidirectional relation-
ships between host social behaviour and parasites, which we
visualize as four distinct arrows (Fig. 1), have largely been studied
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independently, although some have begun to connect these arrows.
For example, Stephenson (2019) examined the full ecological feed-
back loop between behaviour and parasitism (i.e. Arrows A and B)
by quantifying social behaviours of guppies both before and during
infection, and illustrated that susceptibility-behaviour correlations
can change dramatically in the presence of infection. While male
guppies most susceptible to parasite infection were most likely to
avoid social groups that may pose parasite risk, these highly suscep-
tible guppies became most attracted to social groups once infected
(Stephenson, 2019). Because these correlations between host sus-
ceptibility and social behaviour likely have important implications
for both epidemiological and coevolutionary dynamics , these feed-
back loops should be examined using systems amenable to experi-
mental infections and, ideally, experimental evolution. Such a
system would enable, for example, artificially imposing selection
on host social behaviour and testing whether parasite susceptibility
evolves in tandem, or vice versa; exploring how parasites evolve in
response to such artificially selected host lines; and testing how host
social behaviours evolve in response to endemic parasitism.

While we largely considered ecological and evolutionary pro-
cesses separately here, they are likely to interact in important
ways (Ezenwa et al., 2016a). For example, our discussion of eco-
logical interactions suggests that more gregarious host populations
maintain larger, more genetically diverse parasite populations.
This increase in the size and diversity of parasite populations
may apply strong selection on host traits, including social beha-
viours such as gregariousness (Arrow A affects C). Further,
their large effective population size means that parasite popula-
tions of gregarious hosts could respond more readily to selection
imposed by their host populations, resulting in more rapid evolu-
tionary changes in virulence, stronger local adaptation (Arrow A
affects D), and ultimately more intense coevolution. These evolu-
tionary changes in host social behaviours and parasite traits could
feed back to alter the ecological interactions of host and parasite:
for example, evolutionary changes in host sociality (Arrow C
affects A) and parasite virulence (Arrow D affects A) would
both affect parasite prevalence and hence parasite population
size. While there are informative models investigating some of
these ideas (e.g. Bonds et al, 2005; Pharaon and Bauch, 2018),
experimental studies explicitly addressing these eco-evolutionary
feedbacks between host social behaviour and parasite evolution
would be welcome additions to this field.

Individual host heterogeneity is one factor that needs more
explicit consideration from an eco-evolutionary perspective.
Here we discuss one potential source of such heterogeneity as
an example, though there are many others (Fig. 2). In many sys-
tems, host sex affects both an individual’s social behaviour in the
presence and absence of infection (Stephenson, 2019), and indi-
vidual susceptibility (Klein, 2000; Duneau and Ebert, 2012). As
a result, male and female hosts support parasite communities dif-
fering in size and composition, and provide their parasites with
different transmission opportunities (e.g. Christe et al, 2007;
Stephenson et al., 2015; Gipson et al., 2019). Parasite fitness there-
fore depends on the sex of the host, so selection should favour
parasite preference for or specialization on one host sex
(Duneau and Ebert, 2012), which a growing body of evidence sup-
ports (Christe et al, 2007; Duneau et al., 2012; Campbell and
Luong, 2016). Whether such host specialization by parasites con-
tributes to sex-specific evolution of physiological or behavioural
parasite resistance (such as sex-specific social behavioural evolu-
tion) is an exciting and as yet untested idea. Overall, an explicit
theoretical examination of the eco-evolutionary implications of
heterogeneity between hosts, such as that due to sex, for
behaviour-infection feedbacks is sorely needed.

The recent large-scale social distancing by humans in
response to COVID-19 is arguably one of the most dramatic
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illustrations of the way in which host social behaviour can
both influence and respond to parasite spread (Block et al.,
2020). Perhaps one small positive outcome of this otherwise
devastating pandemic will be renewed interest in the dynamic
interactions between a host’s social behaviours and the ecology
and evolution of its parasites. Understanding these interactions
not only sheds important light on basic scientific questions
such as the costs and benefits of animal sociality, but also
addresses critical public health questions about the way in
which the behaviours of ourselves and our domesticated animals
(via imposed housing conditions) may facilitate pathogen emer-
gence, spread and evolution.
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