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Laboratory experiments have been conducted that test the predictions of Holmboe
(Geofys. Publ., vol. 24, 1962, pp. 67–112). Symmetric Holmboe instabilities are observed
during steady, maximal two-layer exchange flow in a long laboratory channel of
rectangular cross-section. Internal hydraulic controls at each end of the channel
isolate the subcritical region within the channel from disturbances in the reservoirs.
Inside the channel, the instabilities form cusp-like waves that propagate in both
directions. The phase speed of the instabilities is consistent with Holmboe’s theory
and increases along the length of the channel as a result of the gradual acceleration of
each layer. This acceleration causes the wavelength of any given instability to increase
in the flow direction until it is approximately twice the most amplified wavelength. At
this point new waves develop with the result that the average wavelength is almost
constant along the length of the channel.

1. Introduction
Flows in the environment often consist of well-defined layers of different densities. A

density difference can result from salinity (e.g. in an estuary or the ocean), temperature
(e.g. in a lake), sediment (e.g. gravity current) or other factors. Studies of geophysical
flows have shown that wave-like features occur at the interface between sheared
layers (Geyer & Smith 1987; Wesson & Gregg 1994; Tedford et al. 2009). As these
interfacial features or instabilities grow, fluid is exchanged vertically between the
layers. Mixing between layers is important because it controls the vertical transfer of
salt, heat, nutrients, pollutants and momentum.

Stratified shear flows in the laboratory also exhibit a variety of wave-like features.
The most well-known are the Kelvin–Helmholtz (KH) instabilities observed in
the classic experiments of Thorpe (1971). In these experiments the shear between
two homogeneous layers of slightly different salinity causes instabilities that are
exceptionally uniform in wavelength and amplitude. These instabilities quickly grow
into stationary billows which, in turn, break down into three-dimensional turbulence.
Of the shear instabilities that occur in stratified flows, the KH instability has been
studied most extensively, but in recent years increasing attention has been paid to the
Holmboe instability.

† Email address for correspondence: ttedford@eos.ubc.ca
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Figure 1. Close-up image of the interface between two layers. The upper fresh layer is
moving to the right, and lower saline layer is moving to the left. The upward-pointing cusp
is a positive, rightward-propagating Holmboe instability, and the downward-pointing cusp
is a negative, leftward-propagating Holmboe instability. The colour varies from blue to red,
marking high to low fluorescence of the dye. The decrease in fluorescence below the interface is
caused by the dissipation of light. To generate particle streaks the shutter speed of the camera
was set to 0.5 s.

Holmboe (1962) analysed the stability of a sharp density interface subjected to shear.
He predicted that when stratification is strong enough to suppress the KH instability,
two wavetrains develop that travel with equal and opposite phase speeds with respect
to the mean flow. An example of Holmboe’s instability from the present experiments
is shown in figure 1. The potential importance of Holmboe instabilities was recently
highlighted by the direct numerical simulations of Smyth & Winters (2003), who
found that although Holmboe instabilities grow less rapidly than KH instabilities, the
total amount of mixing can be greater (see also Smyth 2006; Carpenter, Lawrence &
Smyth 2007; Smyth, Carpenter & Lawrence 2007). Note that while Holmboe (1962)
assumed a density step, Alexakis (2005) has shown that Holmboe instabilities can
occur, if the thickness of the velocity interface is more than double the thickness
of the density interface. Holmboe instabilities are thought to occur in natural flows
such as the exchange flow through the Strait of Gibraltar (Farmer & Armi 1998) and
salinity intrusions in strongly stratified estuaries (Yoshida et al. 1998; Tedford et al.
2009).

Several techniques have been used to study Holmboe instabilities in the laboratory.
In the splitter-plate experiments of Koop & Browand (1979) and Lawrence, Browand
& Redekopp (1991) only one of the two modes predicted by Holmboe appeared.
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Holmboe instabilities in an exchange flow 139

A series of cusps from which wisps of interfacial fluid were occasionally ejected
formed on only one side of the interface. This ‘one-sidedness’ was a result of
a vertical displacement between the sharp density interface and the shear, an
inherent condition in splitter-plate experiments. While Carpenter et al. (2007) have
postulated that one-sided instabilities may be an important source of mixing,
we will restrict our attention to symmetric (two-sided) instabilities in the present
study.

Using immiscible fluids and varying viscosity, Pouliquen, Chomaz & Huerre (1994)
conducted tilting-tube experiments to generate Holmboe instabilities. Due to the slow
growth of the instabilities and the inherently short duration of tilting-tube experiments
they were only able to observe the early onset of instabilities, and unlike Thorpe (1971),
they were required to use regularly spaced obstacles to force uniformity.

The one-sidedness of splitter-plate experiments, and the short duration of tilting-
tube experiments, can be avoided by using exchange flow. Zhu & Lawrence (2001)
studied Holmboe instabilities in exchange flow through a channel of uniform width
with a sill. However, symmetric Holmboe instabilities were only a transient feature of
these experiments. Hogg & Ivey (2003) studied exchange flow through a contraction.
However, this contraction was relatively short so that only a small number of
instabilities were present at any given time, and the background flow conditions
changed over a single wavelength. While the observations of Zhu & Lawrence (2001)
provided some confirmation of the linear predictions of Holmboe (1962), Hogg &
Ivey (2003) observed phase speeds that were significantly different from the linear
predictions. In the present study we carefully examine the linear predictions using
observations from a long channel of uniform cross-section in which many waves are
present at any given time.

The goals of this study are to carry out experiments in the laboratory that
generate Holmboe instabilities and to compare the properties of these instabilities with
the predictions of Holmboe (1962). In the next section, the linear model of Holmboe
(1962) is described. Section 3 describes the laboratory set-up and methods. In § 4, the
evolution of the mean flow and the observed wave characteristics are described. In
§ 5, the observations are compared with the linear predictions.

2. Background theory
2.1. Hydraulics of exchange flow

The basic features of exchange flow can be described by two-layer hydraulics (Armi
1986). Here we briefly review the concept of internal hydraulic controls and their
relevance to the instabilities. In single-layer flows the concept of ‘hydraulic control’ is
used to determine how flow rate relates to channel geometry. A single-layer control
can occur where the flow exits a restriction, such as a horizontal expansion or an
increase in bed slope. At the control the flow speed is equal to the long-wave speed
and is therefore said to be critical. In subcritical flow, waves may propagate in both
directions, upstream and downstream. In supercritical flow waves can only propagate
in one direction, downstream. At the control there is a transition from subcritical to
supercritical flow.

Two-layer flows also exhibit hydraulic controls, but their occurrence is complicated
by factors such as flow in both directions, channel geometry influencing each layer
differently, shear influencing the long-wave speed and mixing between the layers.
Although waves can form on both the free surface and the interface between the
layers, here we are solely concerned with interfacial (internal) waves and instabilities.
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Figure 2. Definition sketch for piecewise linear profiles used in the analysis of Holmboe
instabilities. Also shown are sample density and velocity profiles from the current study.

Similar to single-layer flows an internal control occurs at a transition from subcritical
to supercritical flow. In subcritical flow, internal waves, including instabilities, may
propagate in both directions. In supercritical flow they can propagate in only one
direction. In the present study we focus on maximal exchange flows, which are
characterized by a control at each end of the channel (Gu & Lawrence 2005). The
flow is subcritical within the channel and supercritical outside of it. In the supercritical
regions just outside of the channel, waves can only propagate away from the channel;
i.e. waves from the reservoirs cannot enter the channel.

2.2. Dispersion relation and instability

To investigate the dynamics of instabilities, Holmboe (1962) analysed the piecewise
linear velocity and density profiles shown in figure 2. The sharp density interface
within a uniform shear layer approximates conditions observed in salt-stratified shear
flows at laboratory scales; sample profiles from the present experiments are shown in
figure 2. Holmboe’s analysis assumes the density interface is centred within the shear
layer and does not account for the influence of the boundaries. The key parameters in
the stability analysis are the velocity difference between the layers �U = U1 − U2, the
shear-layer thickness h = �U/(dU/dz)max and the reduced gravitational acceleration,
g′ = g�ρ/ρ0 (where �ρ is the density difference and ρ0 is the average density). The
subscripts 1 and 2 indicate the upper and lower layers, respectively. To characterize
the total shear across the interface, U1 and U2 are defined as the free-stream velocity
in each layer.

The shear and stratification parameters are combined to form the bulk Richardson
number J = g′h/�U 2. Following Holmboe’s analysis, Lawrence et al. (1991) used the
Taylor–Goldstein equation to relate the complex phase speed (c = cr + ici) to the
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Figure 3. (a) Dispersion relation for the Holmboe flow configuration at J = 0.3. The labels H,
v and g indicate line segments associated with Holmboe (unstable), vorticity and gravity modes
respectively. (b) Exponential growth rate (αci) of the Holmboe mode. The wavenumber of
maximum growth (α = 1.9) corresponds to a dimensional wavelength λ≈ 7 cm for the present
experiments. The phase speed is shown non-dimensionalized by �U/2; the wavenumber is
non-dimensionalized by the shear-layer thickness h; and the growth rate is non-dimensionalized
by 2h/�U .

wavenumber (α) and J :

c2 =
−a1 ±

√
a1

2 − 4a2

2
, (2.1)

where

a1 = β+β− − n2, a2 = n2β2
−, β± = [e−α ± (1 − α)]/α, n2 = 2J/α.

For brevity, all of the terms in (2.1) are non-dimensional, and the phase speed is
relative to the mean of the free-stream velocities, Ū = (U1 + U2)/2. The dimensional
phase speed is c∗ = c �U/2 + Ū , and the dimensional wavelength is λ= 2πh/α.

The dispersion relation (2.1) is plotted in figure 3 for J =0.3 corresponding to
conditions in our laboratory experiments (table 1). At high wavenumber the flow
supports two stable gravity modes and two stable vorticity modes (so called because
wave propagation is governed by buoyancy in the first instance and by the vorticity
gradient in the second). The rightward-propagating vorticity mode is associated with
the upper vorticity interface (upper kink in the velocity profile), and the leftward-
propagating vorticity mode is associated with the lower vorticity interface. As the
wavenumber decreases the vorticity mode and gravity mode propagating in the same
direction merge into one unstable mode (α ≈ 2.7). At lower wavenumber (α � 0.75)
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H (cm) L (cm) W (cm) g′ (cm s−2) h (cm) �U (cm s−1) J

10.8 200 10 1.39 2.1 3.1 0.3

Table 1. Experimental parameters.

the dispersion relation bifurcates back to four stable modes. Unlike the KH instability,
the unstable mode particular to the Holmboe configuration is non-stationary.

When J =0.3 the maximum growth rate of the Holmboe instability, αci =0.28,
occurs at α = 1.9 (figure 3b) with a corresponding phase speed cr = ±0.53.
Dimensionalization by h = 2.1 cm and �U/2 = 1.56 cm s−1, as observed in our
experiments, yields a maximum growth rate at a wavenumber k = 2π/λ= 0.9 cm−1

(λ= 7 cm) and a phase speed of c∗
r = Ū ± 0.83 cm s−1. The dimensional growth rate

kc∗
i = 0.2 s−1 results in a doubling time of 3.5 s. In the following sections we will

compare the observed wave characteristics with predictions from (2.1), particularly at
the wavenumber of maximum growth.

3. Experimental set-up
A schematic of the laboratory set-up is shown in figure 4. The overall tank was

370 cm long, 106 cm wide and 30 cm deep as in Zhu & Lawrence (2001). The tank
was divided into two equally sized reservoirs and connected by a channel 10 cm wide
and 200 cm long. The water was well mixed between the reservoirs to ensure uniform
temperature (≈ 20◦C) throughout the tank. A removable gate was placed in the
middle of the channel isolating the left and right sides. Salt was mixed into the right
reservoir to provide a density difference of 1.41 kg m−3 (g′ of 1.39 cm s−2). The basic
experimental parameters are provided in table 1.

The experiments differ from those of Zhu & Lawrence (2001) in that the water
depth was kept relatively shallow (H = 10.8 cm), and there was no sill in the channel
(flat bottom). These changes resulted in more gradual horizontal variations in U

and J and therefore more uniform wave properties. In addition, the shallower depth
resulted in a prolonged period of maximal exchange. Experiments using yet shallower
depths or smaller density differences were attempted but resulted in the suppression of
instabilities (presumably due to viscous effects). Larger density differences were also
used but were subject to a number of problems including shortened experiment
duration, large changes in the index of refraction at the density interface and
diminished image quality (due to the higher shutter speeds required to capture
faster waves). To gather the data used in this study the experiment was repeated 16
times with depth and �ρ held constant (see table 2).

Laser-induced fluorescence (LIF) was used to visualize the density interface by
illuminating fluorescein dye in the lower layer with a continuous 4 W argon-ion laser.
The laser beam was passed through a Powell lens to generate a downward-radiating
light sheet along the centre of the channel. Images were collected using a digital
camera; a sample image is shown in figure 4(b). The interface was identified by
locating the maximum vertical gradient in light intensity.

A Dantec particle image velocimetry (PIV) system was used to measure the velocity
of pliolite VT-L particles (Goodyear Chemical Co.). The particles were pulverized
and sieved to obtain those with diameters less than 0.24 mm. While these particles are
slightly denser than water (ρ ≈ 1030 kg m−3) their settling time is much longer than

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

77
33

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007733


Holmboe instabilities in an exchange flow 143

ρ1

Left reservoir

ρ1

Right reservoir

(a)

(b)

1.06 m

3.7 m

L = 2.0 m

0.108 m

x (m)

T
im

e 
fr

om
 g

at
e 

re
m

ov
al

 (
s)

(c)

0 0.5–1.0 –0.5 1.0
0

50

100

150

200

250

300

350

400

Figure 4. (a) Plan and (b) side view of the experimental set-up and (c) plot of wave
characteristics. The left and right reservoirs initially contain fresh and saline water respectively.
The side view (b) includes a sample image of the interface over the entire length of the channel
plus a portion of each reservoir at t = 400 s. The lower layer contains dye and is illuminated
from above with a laser-generated light sheet. The characteristics (c) represent a compilation
of interface heights observed in several thousand images. The shading is scaled such that black
indicates the interface is near the bottom of the channel, and white indicates the interface is
near the free surface. Diagonal light and dark streaks represent interfacial waves.

the duration of the experiment. Pairs of images (�t = 0.04 s) were collected every 3 s.
A three-step adaptive correlation algorithm was used to calculate velocities. The final
interrogation areas were 32 pixels wide and 16 pixels high (2.8 mm × 1.4 mm) with a
50 % overlap resulting in a 0.7 mm vertical spacing of vectors. The total image size
was 11 cm wide and 9 cm high. Small scratches on the acrylic wall limited PIV to
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Experiment Measurement Location Replicates Parameter Figure

1–7 LIF −0.9<x < 0.9 7 h2 6, 8, 9
8–12 PIV x =0 5 h, U1, U2 5, 6
13 LIF −1.2<x < 1.2 1 h2 4, 7
14 PIV and LIF x =0 1 h, U1, U2 2
15 Particle streak x = −0.8 1 − 1
16 Bottle samples x = −1, 0, 1 1 g′ −

Table 2. Summary of laboratory experiments.

a single location (x =0). The Dantec system was also used to determine density by
quantitative measurement of dye fluorescence.

In experiment 13, LIF was performed over the entire viewable region of
the tank (−1.2 m<x < 1.2 m). This experiment allowed us to include the critical
and supercritical regions of the flow in our qualitative description of the wave
characteristics. In experiment 14 both PIV and LIF were performed simultaneously
to confirm that the density interface was much thinner than the shear layer (figure 2).
Particle streak images (figure 1) were collected in experiment 15 to examine the
structure of individual instabilities. Finally, fluid samples were collected with a syringe
and analysed in a densitometer to verify �ρ between the layers.

4. Evolution of mean flow
The experiment begins when the gate separating the fresh and the salt water at

the centre of the channel is removed. Two gravity currents immediately form and
propagate in opposite directions; these gravity currents exit the channel at t ≈ 60 s
(figure 4c). The gravity currents generate mixed fluid which is gradually flushed out of
the channel, leaving two uniform layers separated by an interface approximately 2 mm
thick (t ≈ 200 s). In addition a barotropic oscillation known as Helmholtz resonance
(Miles & Munk 1961) is generated when the gate is removed. This oscillation has a
period of 28 s and persists until t ≈ 400 s (figure 5).

Once the Helmholtz oscillations dampen out, the flow enters a long period of
relatively steady maximal exchange, which ends when the control at the right end
of the channel is flooded, and the flow becomes subcritical in the right reservoir.
After the control is lost, disturbances can enter the channel from the reservoir (not
visible in figure 5). In the present study we focus on instabilities generated within
the channel during the long period of maximal exchange when conditions are steady
(400 s < t < 800 s). During this period interfacial wave properties remain relatively
constant.

For the steady period the mean interface height shows a gradual slope ( ≈ 0.02)
throughout most of the channel (figure 6a); a steeper slope occurs at the ends of
the channel, consistent with the presence of controls. The observed interface height
compares well with the analytical predictions of Gu & Lawrence (2005) with their
α = 0.41 and r =1. The time-averaged velocity profile observed at x =0 is shown
in figure 6(a). At this point the average flow speed in each layer is 1.1 cm s−1.
This is just over half the flow speed predicted by the inviscid two-layer theory
(
√

g′H/2 = 1.9 cm s−1).
The observed velocity profile can be approximated by a piecewise linear fit with

free-stream (maximum) velocities in the upper and lower layers of U1c = 1.55 cm s−1
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Figure 5. Phase velocities of rightward-propagating (positive) and leftward-propagating
(negative) waves at x = 0. The phase velocities were calculated using the cross-correlation
of the interface between successive images. Oscillations with periods less than 20 s have been
filtered out. Helmholtz resonance with a period of 28 s is evident for t < 400 s. The horizontal
lines are the phase speeds predicted using the linear theory.

and U2c = −1.57 cm s−1, respectively. The subscript c denotes the centre of the channel
(x = 0). Because of the bottom boundary layer the lower layer has a slightly greater
maximum velocity than the upper layer, resulting in Ūc ≈ − 0.01 cm s−1. The velocity
profile has a shear-layer thickness h = 2.1 cm.

To understand the evolution of the waves discussed in the next section it is useful
to estimate the mean Ū (x) = (U1(x) + U2(x))/2 along the entire length of the channel.
We assume that U1(x) and U2(x) can be estimated from the velocities observed at
the centre of the channel using Ui(x) = Uicyic/yi(x), where the layer thicknesses yi are
based on the observed interface height (figure 6a). The resulting velocity estimates are
plotted in figure 6(b) and will be used below to describe the evolution of the waves.

5. Wave evolution
The two waves in figure 1 exhibit the classic features of fully developed Holmboe

instabilities. The upward-pointing (positive) cusp is moving to the right with the upper
layer, and the downward-pointing (negative) cusp is moving to the left with the lower
layer. The positive cusp is ejecting a wisp of interfacial fluid into the upper layer. The
particle streaks indicate an elliptical vortex leading the positive cusp. The centre of
the vortex has nearly stationary particles and is well above the density interface. Such
vortices are typically present in numerical simulations of these flows (e.g. Smyth &
Winters 2003) and play an important role in the generation of the wisps. The vortex
carries partially mixed interfacial fluid back towards the cusp in which there is a
horizontal convergence. The convergence at the cusp carries the fluid vertically away
from the interface. These wisps of mixed fluid either can get caught in the leading
vortex or, in some cases, are ejected above the vortex into a region of decreased shear
and higher velocity. A similar vortex leads the lower cusp. Its presence is masked by
the dye in the lower layer.
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Figure 6. (a) Mean interface height along the channel during the period of steady exchange.
The interface height predicted by two-layer hydraulics (see the text) is shown as a dashed
line. Also shown is the average velocity profile observed at x =0 and the piecewise linear
profile used in the stability analysis. The maximum speeds in the upper and lower layers at
x = 0 are U1 = 1.55 cm s−1 and U2 = −1.57 cm s−1 respectively. (b) Estimates of the free-stream
(maximum) velocities U1(x) and U2(x), the total shear �U (x) and the mean velocity Ū (x).
(c) Horizontal gradient in the mean velocity ∂Ū (x)/∂x. (d ) Bulk Richardson number. The
vertical dotted lines show the locations of the channel ends.

During the steady period (400–800 s) there is a roughly even distribution of
rightward- and leftward-propagating waves as can be seen in the diagram of the
characteristics given in figure 7(b). The characteristics represent a compilation of the
interface height observed in a sequence of several thousand images (e.g. the image
in figure 4b). The time-averaged interface height (figure 6a) has been removed, and
the shading is scaled such that black indicates the trough of an instability, and white
indicates the crest. White and black diagonal lines represent the propagating cusps
of positive and negative instabilities, respectively. In general the instabilities form
quickly (<20 s) and maintain a nearly constant amplitude while they are within the
channel. Despite irregularities in the characteristics the instabilities can be filtered
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Figure 7. Characteristics during the period of steady exchange. The shading indicates the
deviation of the interface elevation from the mean. Pure white (black) indicates a positive
(negative) deviation greater than 3 mm. The characteristics in (b) were split into (a) rightward-
and (c) leftward-propagating components using the two-dimensional FFT. The ends of the
channel are at x = ±1 m.

into distinct rightward- and leftward-propagating (figures 7a and 7c respectively)
components using the two-dimensional fast Fourier transform (FFT).

The influence of the controls can be seen in the characteristics at the ends
of the channel (x = ±1 m; figures 7a and 7c). Within the channel, disturbances
move in both directions (subcritical), and beyond the ends of the channel they
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only move outward into the reservoirs (supercritical). Although difficult to see, both
upward- and downward-cusping modes are propagating outward in the supercritical
regions (e.g. figure 7c; x = −1.05 m, t = 625–650 s). As expected the controls block
disturbances from entering the channel; i.e. waves propagating within the channel
have formed there rather than within the reservoirs. Because one of the two Holmboe
modes is stationary near each control, the separation of the modes using the two-
dimensional FFT is less effective near the ends of the channel. In addition, the nearly
stationary waves near the ends of the channel have a very low frequency resulting
in very few waves per experiment and therefore greater uncertainty in quantifying
wave properties. For these reasons our analysis below will focus on −0.9 m<x <

0.9m.
To further illustrate the wave evolution we have traced out the crests of a set of the

positive, rightward-propagating waves (figure 8a). At the left end of the channel four
wave crests pass x = −0.9 m over a period of approximately 110 s, indicating a wave
period of 37 s (frequency ω = 0.027 Hz). At x = +0.9m, there is still 110 s between the
first and last wave crests; however, here there are 13 wave crests in total, indicating
an average wave period of 9.2 s (ω = 0.11Hz). This increase in frequency is a result
of new waves forming throughout the channel.

The frequency evolution is quantified by counting all of the zero crossings that occur
over the period of steady exchange (400 s) and averaging over seven experiments
(experiments 1–7). The characteristics were low-pass filtered (wavelengths > 1 cm)
before counting the zero crossings to minimize the upward bias associated with noise.
As in the traces, the zero crossings show an increase in the number of positive waves
from left to right (figure 8b). The negative waves show the same accumulation in the
opposite direction.

The formation of new waves is related to the changes in phase velocity that the
waves undergo as they propagate along the channel. The phase velocity of a wave is
given by the inverse of the slope of its characteristic (dx/dt). A nearly vertical line
indicates a slow-moving wave, while a nearly horizontal line indicates a fast-moving
wave. The positive (rightward-propagating) waves shown in figure 8(a) therefore
accelerate from left to right (the traced lines become more horizontal). The dominant
phase velocity of the waves (i.e. the slope of the wave characteristics) is determined
by cross-correlating time series of the interface height at adjacent locations along
the channel. This phase velocity is calculated for experiments 1–7 and then averaged
(figure 8c). The average shows that both the positive and negative waves accelerate
as they propagate along the channel.

The wave acceleration is most easily understood by considering the variation in
the mean velocity Ū over the length of the channel (figure 6b). The mean velocity
is replotted in figure 8(c) and shows a slope that is similar to the slope of the
observed phase speeds. In other words, with respect to a frame of reference moving
at the mean velocity, the velocities of both the rightward- and leftward-propagating
waves remain approximately constant. By adding Ū to the predicted phase speed
for the Holmboe instability (2.1) we predict the phase speed over the whole channel.
This phase speed is shown for both the rightward- and leftward-propagating waves,
c∗
r (x) = Ū (x)±0.83 cm s−1, in figure 8(c) and matches closely the observed phase speed

evolution.
This prediction of the phase speed (figure 8c) does not take into account possible

changes in J along the length of the channel. However, over the central region of the
channel, the variation in J is too small (figure 6d ) to have a noticeable effect on the
wavenumber of maximum growth and the corresponding phase speed.
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Figure 8. (a) Characteristics of rightward-propagating waves; grey shading indicates a wave
trough, and white indicates a crest. The lines were traced by hand, following individual wave
crests. (b) The average frequencies of the rightward- and leftward-propagating waves (ω+

and ω− respectively) based on zero crossings. (c) The thick solid lines represent the phase
velocities of the observed rightward-propagating (positive) waves (c∗

+) and leftward-propagating

(negative) waves (c∗
−). The thin line shows Ū calculated using the velocity profile and interface

height shown in figure 5. The dashed lines are the predicted phase speed of Holmboe
instabilities. (d ) The distribution of the wavelength for the rightward-propagating waves
with the average plotted as a heavy line and the 10 and 90 percentiles as thin lines.
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Figure 9. Spectra of waves during the steady period between x = −0.8 m and x = 0.8 m.
(a, b) Temporal evolution of the spectra for the rightward- and leftward-propagating waves
respectively. The shading is scaled logarithmically from white (low energy) to black (high
energy). (c, d ) Time-averaged spectrum. The heavy vertical line indicates the wavenumber of
maximum growth (k ≈ 0.9 cm−1, λ≈ 7 cm), and the thin vertical lines indicate the stability
boundaries (k ≈ 0.36 cm−1, λ≈ 17 cm and k ≈ 1.3 cm−1, λ≈ 5 cm).

The distribution of wavelength with respect to position is shown in figure 8(d )
for rightward-propagating waves. The average wavelength and position of all the
waves was determined using zero crossings (similar to the frequency in figure 8b).
The wavelength remains nearly constant (λ≈ 10 cm) throughout x. This is because
the two processes, wave formation and wave acceleration, tend to cancel each other
out.

Acting by itself, the increase in frequency associated with wave formation will
shorten the average wavelength, λB =(ωA/ωB)λA, where the subscripts A and B
represent different locations in x. The effect of the convective acceleration (∂Ū/∂x)
on the wavelength is not so obvious. As is commonly observed in surface waves (e.g.
Peregrine 1976), the acceleration will stretch the waves, increasing their wavelength,
i.e. λA =(cA/cB)λB .

Wave stretching is most apparent in the temporal evolution of the wavenumber
spectrum (figures 9a and 9b). Similar to the characteristics, the spectral evolution
was determined by compiling the spectrum of the interface height at each time and
then contouring. Note that the horizontal axis in figure 9 is the wavenumber, not the
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Figure 10. Schematic of stretching and formation of rightward-propagating waves. The
interface elevation is shown at three times tracking the same wave. The horizontal distance
at each time is relative to the trailing crest of the wave. The wave is shown initially with a
wavelength equal to the wavelength of maximum growth. Eventually the wave is stretched
to twice this length. At the same time new waves form, also at the wavelength of maximum
growth. The resulting interface has waves of mixed amplitude and wavelength. The time scale
shown for doubling of the wavelength (approximately 140 s) is based on the observations (see
figures 9a and 9b).

distance. The dark (high-energy) diagonal streaks represent energy associated with
waves moving through the channel in time (the vertical axis). The slope of the streaks
is a result of stretching of individual waves; i.e. waves are continuously decreasing in
the wavenumber (increasing in the wavelength).

The time-averaged spectra (figures 9c and 9d ) show the peaks in the wave
energy occurring at approximately 0.5 cm−1 (λ= 12.5 cm). The temporal evolution and
average spectrum together show the waves form near the wavenumber of maximum
growth (k ≈ 0.9 cm−1, λ≈ 7 cm) get stretched and start to lose energy near the lower
stability boundary (k ≈ 0.36 cm−1, λ≈ 17 cm).

The two processes, wave stretching and wave formation, are illustrated in the
simplified schematic shown in figure 10. The schematic shows the interface elevation
at three times. The reference frame (x = 0 in the figure) is moving at the speed
of the trailing wave crest. As shown in figure 8(c) the waves undergo the same
convective acceleration as Ū (x). In the central region of the channel this acceleration
is approximately 0.005 s−1 (see ∂Ū/∂x in figure 6c). As the pair of crests propagate
through the channel the horizontal variation in Ū gives the leading crest a slightly
greater phase speed than the trailing crest (λ ∂Ū/∂x = 0.035 cm s−1). This difference
in phase speed allows the leading crest to pull away from the trailing crest. As the
spacing between the two crests (λ) increases, their growth rate decreases (i.e. they
are no longer at the wavelength of maximum growth). On the other hand, as the
spacing increases the interface between the crests becomes unstable to shorter waves
(i.e. waves that are closer to the wavenumber of maximum growth), and a new wave
forms. The new waves grow and stretch, and eventually the process repeats itself (see
figure 8a).

6. Summary and conclusions
Instabilities were investigated using an exchange flow through a long rectangular

channel with a rectangular cross-section. The channel connected two large freshwater
and saltwater reservoirs. A long period of steady maximal exchange occurred after the
cessation of Helmholtz resonance and ended when one of the controls was flooded.
During this time symmetric Holmboe instabilities were observed. These instabilities
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evolved into cusps with a leading elliptical vortex. The vortices drew mixed fluid from
the cusp into the free stream. The observed density interface was sharper than, and
centred within, the shear layer.

The gradual slope of the interface along the length of the channel resulted in the
convective acceleration of each layer. The Holmboe instabilities also accelerated as
they propagated through the channel. This acceleration caused the distance between
successive cusps to increase, and new waves formed. The new waves formed uniformly
along the channel such that the average wavelength remained nearly constant.

By focusing on the central section of the channel we selected the region in which
the bulk Richardson number is relatively constant. This, together with the prolonged
period of steady exchange and simple channel geometry, resulted in instabilities that
had average wave properties that were in good agreement with the linear predictions
of Holmboe.

Financial assistance from the Natural Sciences and Engineering Research Council
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