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Abstract
Matching is a conceptually straightforward method to make groups of units comparable on observed char-

acteristics. The method is, however, limited to settings where the study design is simple and the sample is

moderately sized.We illustrate these limitations by askingwhat the causal effects would have been if a large-

scale voter mobilization experiment that took place in Michigan for the 2006 election were scaled up to the

full population of registered voters. Matching could help us answer this question, but no existing matching

method can accommodate the six treatment arms and the 6,762,701 observations involved in the study. To

offer a solution for this and similar empirical problems, we introduce a generalization of the full matching

method that can be used with any number of treatment conditions and complex compositional constraints.

The associated algorithm produces near-optimal matchings; the worst-case maximumwithin-group dissim-

ilarity is guaranteed to be nomore than four times greater than the optimal solution, and simulation results

indicate that it comes considerably closer to the optimal solution on average. The algorithm’s ability to

balance the treatment groups does not sacrifice speed, and it uses littlememory, terminating in linearithmic

time using linear space. This enables investigators to construct well-performing matchings within minutes

even in complex studies with samples of several million units.

Keywords: causal inference, matching methods, treatment effects

1 Introduction
A central task in many empirical investigations is to equalize covariate distributions between

groupsofunits. This could, for example, be inaneffort to reducebiasdue to confounded treatment

assignment under a selection-on-observables assumption. Matching is a popular approach for

making such adjustments (Cochran and Rubin 1973). A matching method constructs groups

of units that are as homogeneous as possible with respect to observed covariates, under the

restriction that all matched groups contain at least one unit from each treatment group.

The popularity of matching is arguably due to its conceptual simplicity; fairly complex adjust-

ments can be fully represented as discrete groups of matched units. This makes the analysis easy

to understand and easy to communicate to a broader audience. Investigators also appreciate

that the method generally is nonparametric and does not require restrictive functional form

assumptions. But the conceptual simplicity is deceiving. While the method is easy to understand

and use with the matched groups in hand, it is o�en difficult to construct the groups in the first

place. This is because their construction involves an intricate integer programming problem that

is computationally intractable unless the sample is small and the design is simple. This forces

investigators to use ad hoc methods, which may produce matchings of poor quality. This paper

describes a matching method with proven optimality properties that can accommodate complex

designs and large samples.

The method we describe is a generalization of full matching, which is a flexible matching

method that is optimal formanycommonuse cases (Rosenbaum1991;Hansen2004). Inparticular,

among all matching methods that do not discard units, full matching produces matched groups
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with the least within-group covariate heterogeneity. Conventional full matching is, however,

restricted to studies with two treatment conditions where the investigator requires no more than

one unit of each treatment condition in each matched group. Subsequently, the application of

the method is limited, and investigators are forced to resort to suboptimal approaches for more

intricate designs andmatching constraints. Themethodwe introduce generalizes full matching to

facilitate designs with multiple treatments and complex compositional restrictions.

Existing matching algorithms cannot be used to derive generalized full matchings. The most

widely used algorithm for full matching derives optimal solutions (Hansen and Klopfer 2006),

and it is thus an excellent choice when it is an option. However, its focus is traditional designs

with two treatment conditions. Moreover, the derivation of optimal solutions is computationally

demanding, meaning that the algorithm by Hansen and Klopfer (2006) cannot be used with large

samples even when the design is simple. The main contribution of this paper is the development

of an algorithm to derive generalized full matchings in a wide range of settings.

The algorithm we describe derives near-optimal generalized full matchings, and it does so

quickly even in large samples. A matching produced by the algorithm is guaranteed to be within

a factor of four of the optimal solution, ensuring that its worst-case quality is not arbitrarily

bad. Simulations show that the algorithm on average performs roughly on par with the optimal

full matching algorithm in cases where the optimal algorithm can be used. The generalized full

matching algorithm scales well in the sample size, and it terminates in linearithmic time on

average. The simulation study shows that it is several orders of magnitude faster than existing

approaches. For example, a sample with one million units can be matched in less than a minute

on an ordinary laptop computer.

The central discovery that facilitates the results in this paper is that the generalized full

matchingproblemcanbe represented ina sparse, unweightedgraph. This representationencodes

information about the units’ treatment assignments, the similarity between units, and the con-

straints the investigator imposes on thematched groups. With the sparse representation in hand,

the construction of the groups is straightforward and fast, so the main computational challenge

is to construct the representation from the original data. The main technical contribution of the

paper is to show how this can be done quickly for standard metric spaces.

We have previously used a similar approach to derive a blocking algorithm for treatment

assignment in randomized experiments (Higgins, Sävje, and Sekhon 2016). The experimental

designproblem is simpler than thematchingproblembecause treatments are not yet assigned, so

theunits areunlabeled, and the sparse representationof theblockingproblem ismore immediate.

The algorithm in this paper demonstrates that more complex relationships and constraints can

also be encoded using a sparse graph representation, and the techniques we discuss heremay be

helpful in applications involving complex clustering problemsmore generally.

2 An Illustrative Application
To illustrate the use of the generalized full matching method, we revisit a large-scale voter

mobilization experiment by Gerber, Green, and Larimer (2008). The motivation of the original

study was the seemingly puzzling fact that rational people vote in elections (Downs 1957). The

probability that any particular voter is pivotal is negligible, so the benefit of voting appears to be

small, but the cost is not. Gerber et al. (2008) investigate whether social norms can provide an

explanation.

The authors randomly assigned 344,084 registered voters in the 2006 primary election in

Michigan to one of five treatment conditions. The condition of main interest was the receipt of

a postcard documenting the voting history of the recipient and their neighbors. The recipients

were also informed that updated postcards would be sent out a�er the election. The purpose was

to use social pressure to motivate the recipients to vote. If a recipient abstained, their neighbors
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would know that they did not conform to the social norm of voting, possibly incurring social costs

or stigma. Turnout among recipients of the postcard was 37.8%. This is to be compared with

a turnout of 29.7% in the control group, who did not receive a postcard. The estimated causal

effect is therefore 8.1 percentage points, indicating that social pressurewas amotivation for these

voters.

The Michigan experiment is impressive in both scale and design, but it has one important

shortcoming: the sample used in the experiment is not representative of the overall population.

Turnout amongall registered voters inMichiganwas17.7%in the2006primary election.Wewould

expect this figure to be close to the turnout of 29.7% in the control group if the sample were

representative of the population. The purpose of the experiment was to establish whether social

pressure can be a determinant of voting, so the authors constructed a sample with individuals

deemed to be receptive to the postcard intervention. The practice is methodologically sound in

that it maximizes power with respect to the question at hand, but it makes it harder to answer

other questions about voting behavior. A careful analysis, adjusting for the systematic differences

between the sample andpopulation, is needed toextrapolate from theexperiment. This is the task

we undertake in this application.

The exercise of generalizing findings from an experiment to a larger population has attracted

much recent interest (see, e.g., Stuart et al. 2011; Tipton 2013; Hartman et al. 2015; Kern et al. 2016;

Buchanan et al. 2018; Dehejia, Pop-Eleches, and Samii 2019). The typical approach is based on

the assumption that all factors used to construct the experimental sample are observed. If this is

indeed the case, methods traditionally used to account for confounded treatment assignment in

observational studies can be used for the extrapolation. Units not included in the experimental

study can be seen as being assigned to an alternative treatment condition, so we can apply

methods that aim to adjust for covariate differences between treatment groups. The results from

the extrapolation are less reliable than those from the experiment itself, because we rarely know

what factors determined the sample. However, the Michigan experiment is an exception in this

regard. The construction of the experimental sample was based on the voter file, containing a

record for every registered voter in Michigan, and we have access to this data set. In other words,

the selection-on-observables assumption is known to be satisfied.

Conceptually, the task ahead is straightforward: we simply need to make the experimental

sample comparable to the overall populationwith respect to observed characteristics in the voter

file. Practically, the task is far from trivial. The first challenge is how to account for the information

in the voter file. Gerber et al. (2008) worked with a political consultant to construct the sample

using proprietary indices of partisanship and voting behavior. We know that these indices were

constructed based on information in the voter file, including geographical coordinates derived

from addresses, but we do not know how the information was used. While the information

itself is observed, the relevant functional form is unknown and likely complex. In particular, we

cannot rule out that auxiliary geographical information has been merged with the voter file and

subsequently used in the construction of the sample.

The presumingly complex sample selection procedure rules out adjustment methods that

aim to equalize aggregated characteristics between the treatment groups. Examples of such

methods include various types of regression adjustments and methods that assign weights to

the observations to equalize targeted covariate moments (see, e.g., Graham, De Xavier Pinto, and

Egel 2012; Hainmueller 2012; Diamond and Sekhon 2013; Imai and Ratkovic 2014). In contrast,

matching methods can accommodate arbitrary metrics encoding similarity between units, and

such metrics can be constructed to include the geographical coordinates in a flexible, nonpara-

metric way. Matching is for this reason a good choice as an adjustment method in the current

application. Unlike moment-based approaches, the treatment groups a�er matching adjustment

will beapproximately similarwith respect to theentire joint covariatedistribution if anappropriate
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distance function is used. However, this comes at the cost of less balance on themoments that are

specifically targeted by the moment-based approaches.

The choice of matching-based adjustments for the analysis leads us to the second challenge.

The experiment was large and complex, with 344,084 participants and five treatment condi-

tions. A�er adding the overall population from the complete voter file, the data set consists of

6,762,701 observations dividedbetween six effective treatment conditions. The typical application

of matchingmethods involves a study with two treatment conditions and atmost a few thousand

observations. To the best of our knowledge, no existing matching method can accommodate this

setting, and thisprovides themotivation for thedevelopmentof thematchingmethodwedescribe

in this paper.

The subsequent sections describe the generalized full matching method and the associated

algorithm in detail. We conclude by returning to the Michigan voter mobilization experiment to

investigate what the effect would have been if the treatments were scaled up to the complete

population.

3 Generalized Full Matching

3.1 Background
Matching methods make treatment groups comparable by reweighting units with treatment

assignments that are over- or underrepresented given their characteristics. That is, units assigned

to a treatment condition that is uncommon locally in the covariate space are given a larger

weight than neighboring units assigned to a common condition. The reweighting is sometimes

implicit. For example, this is the case for matching methods that discard units. In the Michigan

experiment, people with a higher baseline propensity to vote were overrepresented, so theymust

be downweighted to make the experimental sample representative of the overall population.

Wemight be able to perfectly equalize the covariate distribution between the treatment groups

when the confounders are few and coarse. That is, we can construct an exact matching. This is

achievedby stratifying the sample basedon the confounders so that all unitswithin eachmatched

group are identical. Exact matchings are rarely possible because balance is o�en sought on

continuous and other high-dimensional variables. In these cases, the units are instead partitioned

into groups that are as homogeneous as possible, but not necessarily identical, producing an

approximate matching.

The construction of matched groups involves several considerations. Themost immediate one

is the objective of the matching, namely, to make the matched groups homogeneous. Homo-

geneity is typically assessed through pairwise distances between units based on some distance

function deemed relevant for the application at hand. Common choices are the absolute differ-

ence between propensity scores (Rosenbaum and Rubin 1983), and Euclidean and Mahalanobis

distances in the covariate space (Cochran and Rubin 1973).

Another important consideration is the composition of the matched groups. The archetypical

composition is nearest neighbormatching, which is also called 1:1-matching. Eachmatched group

is here required to contain exactly one treated unit and exactly one control unit. The matching

can be done with replacement, where the same unit can be matched to several other units, or

without replacement, where each unit is matched to at most one other unit. In both cases, units

withoutmatchesarediscarded.Nearestneighbormatchingo�enyieldshomogeneousgroups,but

the approach comeswith the obvious disadvantage that large parts of the samplemay be ignored

in the subsequent analysis.

Rosenbaum (1991) introduced full matching to address the issue. The method imposes two

compositional constraints. First, all units must be assigned to matched groups, so none are dis-

carded. Second, all groupsmust contain at least oneunit of each treatment condition. Rosenbaum

(1991) studies this type of matching in settings with two treatment conditions, and shows that all
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matched groups in an optimalmatching under the two constraints will contain exactly one unit of

at least one treatment conditions. The insight allows him to construct an algorithm to construct

optimal matchings for a wide range of distance functions. The method enables investigators

to construct matched groups of high quality without discarding units. Hansen (2004) provides

important developments, which we discuss in more detail in the concluding remarks.

The conventional formulation of full matching requires a particular design. It can only be

used in studies with two treatment conditions when the investigator accepts matched groups

with only two units. While most observational studies conform to this design, many do not,

meaning that conventional fullmatching cannotbeused. Examples includewhen thereare several

treatment conditions or when larger matched groups are needed for heterogeneous treatment

effect analysis or variance estimation. Currently, such studiesmust use crudermatchingmethods

thatmay introducebias or increase variance. The following subsection introduces a generalization

of conventional full matching that can be used in these more complex settings.

3.2 A Generalization of Full Matching
Consider a sample consisting of n units indexed byU = {1,2, . . . ,n}. The units have been assigned

tooneofk treatment conditions indexedby {1,2, . . . ,k } throughanunknownorpartially unknown

process. LetWi denote the condition that unit i is assigned to. We construct a set wx for each

treatment condition x that collects the units assigned to the corresponding treatment:

wx = {i ∈ U :Wi = x }.

Amatched groupm is a nonempty set of unit indices. AmatchingM is a set of matched groups:

M = {m1,m2, . . .}. Amatching problem is defined by a set of constraints and an objective function.

The constraints describe a collection of admissible matchingsM, and the objective function L :

M →Òmaps from the admissible matchings to a real-valuedmeasure of match quality.

DEFINITION 1. An optimal matchingM∗ is an admissible matching that minimizes the matching

objective:

L(M∗) = min
M∈M

L(M).

Generalized full matching imposes the constraint that each unit is assigned to exactly one

group. The investigator can also impose constraints on the composition of the matched groups.

In particular, for each treatment condition x, one can require that each matched group contains

at least cx units assigned to the corresponding condition. One can also require that each group

contains at least t units in total, irrespective of treatment assignment.

DEFINITION 2. An admissible generalized full matching for constraints C = (c1, . . . ,ck , t ) is a

matchingM that satisfies:

1. (Spanning)
⋃
m∈Mm = U,

2. (Disjoint) [m,m′ ∈ M,m ,m′ =⇒ m∩m′ = ∅,

3. (Treatment constraints) [m ∈ M,[x ∈ {1, . . . ,k }, |m∩wx | ≥ cx ,

4. (Overall constraint) [m ∈ M, |m| ≥ t .

The setMC collects all admissible generalized full matchings for constraints C.

As an example, consider a studywith three treatment conditions. The constraintC = (2,2,4,10)

would restrict the admissiblematchings to thosewhere eachmatched group contains at least two
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units each of the first and second treatment conditions, at least 4 units of the third condition and

at least 10 units in total.

When we impose the constraint that each matched group contains at least one unit of each

treatment condition, we recover the conventional full matching definition for studies with an

arbitrary number of treatment conditions.

DEFINITION 3. A conventional full matching in a study with k treatment conditions is a general-

ized full matching with the matching constraints C = (1,1, . . . ,1,k ).

Our definition of full matching differs slightly from the original definition in Rosenbaum (1991).

For studies with two treatment conditions, the conventional definition requires, in addition the

conditions in Definition 3, that eachmatched group contain exactly one treated unit or exactly one

control unit. That is, we have |m∩w1 | = 1 or |m∩w2 | = 1 for eachm in M. However, as implied

by Proposition 1 in Rosenbaum (1991), the optimal generalized full matching with constraints

C = (1,1,2) is by necessity a full matching according to the original definition. As a result, we

candisregard the additional conditions imposedbyRosenbaum (1991) and equivalently define full

matchings as theoptimal solution to thebroader class ofmatchingproblemsgivenbyDefinition 2.

3.3 Near-Optimal Matchings
The problem of finding an optimal generalized full matching is NP-hard (Higgins et al. 2016).

Informally, thismeans that the problem is at least as computationally difficult as any NP problem,

which is a class of decision problems for which proofs of affirmative answers are verifiable

in polynomial time. Formally, the property signifies that every NP problem can be reduced in

polynomial time to an instance of the generalized full matching problem (Sipser 2012). This is

relevant from a practical perspective because near consensus exists among computer scientists

that NP-hard problems are infeasible to solve to optimality for large inputs. Hence, it is unlikely

that an algorithm exists that is both computationally tractable and optimal for the generalized full

matching problem.

The route we take to achieve computational tractability is to focus on approximate optimality.

That is, to facilitate an algorithm that is useful in practice, we will accept matchings that are not

fully optimal. But we want to avoid matchings of low quality, so we seek a guarantee that the

quality of the produced matching is close to optimal. As formalized in the following definition, a

matching is said tobeapproximately optimal if it iswithin a constant factor of theoptimal solution.

An algorithm is said to be approximately optimal if the matchings it constructs are guaranteed to

be approximately optimal.

DEFINITION 4. An α -approximate matchingM† is an admissible matching that is within a factor

of α of an optimal matching: L(M†) ≤ αL(M∗).

4 An Algorithm for Generalized Full Matchings
We now turn to the description of the algorithm used to construct near-optimal generalized full

matchings. The algorithm is an extension of the blocking algorithm introduced by Higgins et al.

(2016). Blocking is an experimental design where similar units are grouped together into blocks

and treatment is assigned within the blocks. Matching and blocking are similar in that they try to

balance covariate distributions across treatment conditions throughagroupingof units. However,

because treatment has not yet been assigned in blocking problems, such algorithms only need to

consider overall size constraints. To solve matching problems, we must be able to impose more

detailed compositional constraints.
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4.1 Matching Objective
The matching objective is based on summaries of pairwise distances between units. Let d : U×

U→Ò+ be a distance function capturing similarity between any pair of units, where lower values

indicate greater similarity. We allow for the use of a pseudometric,meaning that distance function

satisfies:

1. (Non-negativity) [i , j ∈ U,d (i , j ) ≥ 0,

2. (Self-similarity) [i ∈ U,d (i , i ) = 0,

3. (Symmetry) [i , j ∈ U,d (i , j ) = d (j , i ),

4. (Triangle inequality) [i , j ,ℓ ∈ U,d (i , j ) ≤ d (i ,ℓ )+d (ℓ , j ).

All commonly used similarity measures satisfy these conditions, including absolute differences

between propensity scores, and Euclidean and Mahalanobis distances in a covariate space.

Theobjective functionused in fullmatching is conventionally either aweightedmeanofwithin-

groupdistances between treated and control units (Rosenbaum 1991) or the sumof such distances

(Hansen 2004). We will depart from this convention in two ways. First, we use a bottleneck

objective function; that is,weminimize themaximumwithin-groupdistance. Themainmotivation

for this shi� is that the bottleneck objective facilitates the computationally efficient algorithm

we present below. However, while we only prove approximate optimality with respect to the

maximum distance, the simulation study indicates that the algorithm also performs well with

respect to themeandistance. Apart fromcomputational considerations,minimizing themaximum

distance has the advantage of avoiding devastatingly poor matches that might be undetected by,

for example, the mean distance (Rosenbaum 2017).

The second departure is that we consider all within-group distances, not only those between

units assigned to different treatment conditions as in the existing literature. In the conventional

full matching setting, there is little difference between the two objectives, but with more than

two treatment conditions and larger matched groups, the conventional objective risks ignoring

important within-group distances. To maintain consistency with the current literature, we will

also investigate the bottleneck objective that only includes within-group distances between units

assigned to different conditions. In symbols, the two objective functions are

LBN(M) =max
m∈M

max{d (i , j ) : i , j ∈m},

LWBN(M) =max
m∈M

max{d (i , j ) : i , j ∈m∧Wi ,Wj }.

4.2 Graph Theoretical Preliminaries
The description of the algorithm and the proofs of its properties rely heavily on graph theory.

The central insight is that one can describe relations between units in the sample using directed

graphs, or digraphs. A digraphG = (V,E) consists of a set of vertices V and a set of directed edges,

or arcs, E connecting some or all of the vertices. In our case, the vertices of the graphs represent

the units, and the arcs encode various relations between them. The graph can be weighted, in

which case each arc is associated with a value. In our case, this value is the similarity between the

connected units as given by the distance function d (i , j ).

We use this graph representation instead of a conventional distance matrix. The reason is that

a distance matrix stores the distances between all pairs of units in the sample and thus contains

too much information. Considering all pairwise distances is intractable for large samples, and a

graph allows us to focus on themost consequential relations. In particular, the full distancematrix

corresponds toacompletegraph, inwhicharcs connect all unitswithall otherunits, but thegraphs

we use are sparse, meaning that almost all of the arcs are removed. A sparse graph makes the
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problem tractable. Importantly, unlike a sparsified distancematrix, our graph representation does

not need to be rectangular.

We next define the most central concepts used to construct the graph representation of the

matching problem. The supplementary materials provide a brief overview of additional graph

theoretical concepts and terminology.

DEFINITION5. A closedneighborhoodof vertex i indigraphG = (V,E) is a subsetof verticesN[i ] ⊂

V consisting of i itself and all vertices j ∈ Vwith an arc from i to j:

N[i ] = {j ∈ V : (i , j ) ∈ E} ∪ {i }.

DEFINITION 6. An IJ-digraph, denotedG (I→ J), is a graphG = (I∪J,EIJ) with arcs drawn from

all vertices in I to all vertices in J:

EIJ = {(i , j ) : i ∈ I∧ j ∈ J}.

Self-loops (arcs from i to i) are drawn for all vertices i ∈ I∩J.

DEFINITION 7. A κ-nearest neighbor digraph ofG = (V,E) is a spanning subgraph of Gwhere an

arc (i , j ) ∈ E is in the nearest neighbor digraph if j is one of the κ closest vertices to i according to

d (i , j ) amongall its outward-pointing arcs. That is, for each i ∈ V, sort (i , j ) ∈ Eby d (i , j ) andkeep

the κ smallest arcs. If ties exist, givepriority to self-loops andotherwise resolve themarbitrarily.

We denote κ-nearest neighbor graphs as NN(κ,G ).

4.3 The Algorithm
The following steps describe how a matching is constructed given a sample U, matching con-

straints C = (c1, . . . ,ck , t ), and distance metric d (i , j ). Figure 1 provides an illustration.

1. For each treatment condition x ∈ {1,2, . . . ,k }, construct the cx -nearest neighbor digraph of

the Uwx -digraph. Construct the union of these graphs:

Gw = NN(c1,G (U→w1))∪ · · · ∪NN(ck ,G (U→wk )).

2. Let r = t −c1− · · ·−ck be the number of units needed to satisfy the overall size constraint in

excess of the treatment-specific constraints. Construct a digraphGr by drawing an arc from

i to each of its r nearest neighbors (of any treatment status) given that this arc does not exist

inGw :

Gr = NN(r ,G (U→ U)−Gw ),

where G (U→ U) is the complete digraph over U and the graph difference G (U→ U)−Gw

removes all arcs in G (U→ U) that exist in Gw . We refer to the union GC = Gw ∪Gr as the

C-compatible nearest neighbor digraph.

3. Find a set of vertices S ⊂ U, referred to as seeds, such that their closed neighborhoods inGC

are nonoverlapping and maximal in the sense that adding any additional vertex to Swould

create some overlap. That is, S has the following two properties with respect toGC :

• (Independence) [i , j ∈ S,N[i ] ∩N[j ] = ∅.
• (Maximality) [j < S,\i ∈ S,N[i ] ∩N[j ] , ∅.
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4. Assign a unique label to each seed. Assign the same label to all vertices in the seed’s

neighborhood inGC . We refer to vertices that are labeled in this step as labeled vertices.

5. For each vertex i without a label, find its closed neighborhood N [i ] inGC and assign it the

same label as one of the labeled vertices in the neighborhood.

When the algorithm terminates, each vertex has been assigned a label. Vertices that share the

same label form amatched group. The collection of labels thus forms amatching. LetMALG denote

this matching.

5 Properties
The algorithm and the matching it constructs have two key properties. First, MALG is a 4-

approximate generalized full matching. That is, it is an admissible generalized full matching, and

themaximumwithin-groupdistance in thematching is guaranteed tobe less or equal to four times

the maximum within-group distance in an optimal matching. Second, the algorithm terminates

quickly. In this section, we discuss these properties in detail. Formal proofs are presented in the

supplementary materials.

5.1 Optimality
Approximate optimality follows from two properties of the C-compatible nearest neighbor

digraph, described by the following two lemmas.

LEMMA 8. The closed neighborhood of each vertex in theC-compatible nearest neighbor digraph

GC = (V,EC) satisfies the matching constraints C = (c1, . . . ,ck , t ):

[i ∈ V, [x ∈ {1, . . . ,k }, |N[i ] ∩wx | ≥ cx and [i ∈ V, |N[i ] | ≥ t .

LEMMA9. Thedistancebetweenany twovertices connectedbyanarc in theC-compatiblenearest

neighbor digraph GC = (V,EC) is less or equal to the maximum within-group distance in an

optimal matching:

[(i , j ) ∈ EC, d (i , j ) ≤ min
M∈MC

LBN(M).

Lemma 8 states that the C-compatible nearest neighbor digraph encodes the matching con-

straints in the units’ neighborhoods in GC . Admissibility of MALG follows from the fact that each

matched group is a superset of such a closed neighborhood. Since each neighborhood satisfies

the matching constraints, so will each matched group.

Lemma9provides a connection between the arcweights in theC-compatible nearest neighbor

digraph and the maximum distance in the optimal solution. To understand this connection,

observe that one can construct a digraph that is compatible with C, in the sense that it satisfies

the matching constraints in Lemma 8, as a subgraph of the cluster graph induced by an optimal

matching. Thisdigraphsatisfies theproperty in Lemma9because its constructiondoesnot require

the addition of any arc not already in the optimalmatching. We show in the supplementarymate-

rials that GC is the digraph that minimizes the bottleneck objective among all digraphs that are

compatible with C. Consequently, the distances between adjacent units inGC must be bounded

in the same way as in the subgraph induced by an optimal matching, and Lemma 9 follows.

Approximate optimality follows from the triangle inequality. In particular, we show in the

supplementary materials that there always exists a path of at most two arcs in the C-compatible

nearest neighbor digraph between each unit and the seed in its matched group. This implies that

any twounits in the samematched group are atmost at a geodesic distance of four arcs. Theworst
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Figure 1. The generalized full matching algorithm. The sample in this example consists of 14 units divided between three treatment conditions. We require that each matched group
contains at least one unit of each treatment condition and at least three units in total. We use Euclidean distances based on two covariates. (A) The units are represented as points on the
covariate plane. The treatment conditions of the units are indicated by the points’ color and pattern. (B) Step 1: One of the building blocks ofGw is shown, namely the nearest neighbor
digraph between the whole sample and the patterned units: NN(1,G (U→wpatterned)). (C) Step 2: The C-compatible nearest neighbor digraphGC is created. Note that all vertices in this
graph are pointing to one vertex of each treatment condition and that no graph exists with shorter arcs that satisfy this condition. (D) Step 3: A set of seeds is found. Seeds are indicated
with a diamond shape enclosed in their circles. The arcs pointing out from the seeds are highlighted. Note that no two seeds are pointing to a common unit. Step 4: Each seed and its
neighbors are given a unique label as indicated by the numbers. (E) Step 5: Some units are still unlabeled. Each such unit is assigned a label that is represented in its neighborhood. All
outward-pointing arcs from unlabeled units are shown in this panel. (F) The algorithm has terminated. Matched groups are formed by units sharing the same label.
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A B

1

2

Figure 2. Illustration of the 4-approximate optimality property.

case is when the five vertices connected by these four arcs are lined up on a straight line in the

metric space. In that case, the distance between the two end vertices is the sum of the distances

of the intermediate arcs. Lemma 9 provides a bound for the intermediate arc distances and thus a

bound for all within-group distances, arriving at the following theorem.

THEOREM 10. MALG is a 4-approximate generalized full matching with respect to the matching

constraint C = (c1, . . . ,ck , t ) andmatching objective LBN:

MALG ∈MC and LBN(MALG) ≤ min
M∈MC

4LBN(M).

Figure 2 provides an illustration of the intuition behind Theorem 10. The figure depicts two

matched groups. Both matched groups contain five units, and two of the units in each group are

labeled with either {1,2} or {A,B}. The depicted arcs are a subset of the arcs in the C-compatible

nearest neighbor digraph. The labeled unitswithin eachmatched group are at a geodesic distance

of four from each other,meaning that the shortest path fromone of the units to the other contains

four arcs. How the geodesic distance translates into distances in the underlying metric space,

which in this example is the two-dimensional plane, depends on the geometry of the matched

groups.

In the matched group on the le�-hand side in the figure, the arcs form a curve in the plane so

that units 1 and 2 are quite close to each other as judged by the distance function, even though

they are separated by four arcs inGC . The distance d (1,2) between units 1 and 2 is depicted by the

dotted line in the figure. We see that the factor of four in Theorem 10 is very conservative in this

case. Thegroupon the right-handside represents theworst-casegeometry, namelywhen theunits

on the path between the end units are ordered on a straight line in the metric space. A geodesic

distance of four arcs between units A and B now translates to a distance in the metric space that

is the sum of the arc lengths. Such a geometry produces the largest distance between the units

given the arc lengths, which is the worst-case captured by the theorem.

We can use a similar approach to bound the LWBN objective for the matching produced by the

algorithm. In particular, Lemma 9 holds also for the bottleneck objective function with distances

only between treated and controls in conventional full matching problems, as described by

Definition 3, which yields the following theorem.

THEOREM 11. MALG is a 4-approximate conventional full matching with respect to the matching

constraint C = (1, . . . ,1,k ) andmatching objective LWBN:

MALG ∈MC and LWBN(MALG) ≤ min
M∈MC

4LWBN(M).

5.2 Complexity
Following the convention in the matching literature (Abadie and Imbens 2006), we consider the

number of treatment conditions and the matching constraints as fixed asymptotically. The time
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complexity is still polynomial if we let these numbers grow proportionally to n, but the exposition

becomes less clear.

THEOREM 12. In theworst case, the generalized fullmatching algorithm terminates in polynomial

time using linear memory.

Thealgorithmcanbedivided into twoparts. The first andmore intricate part is the construction

of the C-compatible nearest neighbor digraph. This essentially acts as a preprocessing step of the

remainder of the algorithm. The idea is thatGC encodes sufficient information about the sample

to ensure approximate optimality, but that it is sparse enough to ensure quick execution. OnceGC

is constructed, the remaining steps are completed in linear time.

Asdiscussed in theproofofTheorem12 in the supplementarymaterials, theC-compatiblenear-

est neighbor digraph canbe constructedbyO (n) calls to anearest neighbor search subroutine. For

an arbitrary metric, each such call has a time complexity of O (n logn) and a space complexity of

O (n). It follows that the overall worst-case time complexity isO (n2 logn).

Specialized nearest neighbor search algorithms exist for the most commonly used distance

functions. For example, when themetric is the Euclidean orMahalanobis distances in some vector

space, large improvements can be expected by storing the data points in a kd-tree (Friedman,

Bentley, and Finkel 1977). Given that the covariate distribution is not too skewed, each search

can then be completed inO (logn) time on average. Using this approach, the overall average time

complexity would be reduced to linearithmic time,O (n logn), which is the same time complexity

as sorting a list of n numbers.

A disadvantage of the data structures that facilitate fast nearest neighbor search is that they

do not scale well with the dimensionality of the underlying vector space. Possible alternative

approaches in such cases include reducing thedimensionality prior tomatching (e.g., bymatching

on estimated propensity scores, Rosenbaum and Rubin 1983), repeatedmatching in random low-

dimensional projections of the covariate space (Li et al. 2016) and using approximate nearest

neighbor search algorithms (Arya et al. 1998).

6 Extensions
The algorithm described in Section 4.3 admits several extensions and refinements. First, the set

of seeds derived in the third step of the algorithm is not unique. The properties discussed in the

previous section hold for any set of seeds, but the exact performance of thematching depends on

the units that are selected. A valid set of seeds is the same as amaximal independent vertex set in

the graph described by the adjacency matrix AA′+A+A′, where A is the adjacency matrix ofGC .

We expect improvements if a larger maximal independent set is used as seeds.

Second, in the fi�h step of the algorithm, unassigned vertices are assigned to groups based on

the C-compatible nearest neighbor digraph. However, as all matching constraints have already

been fulfilled in the fourth step, the restrictions encoded in GC are no longer necessary. By

restricting the matches to arcs in GC , we might miss matched groups that are closer to the

unassigned units. We could improve quality by searching for the closest labeled vertex among all

vertices.

Third, it is sometimes beneficial to relax the restriction that all units must be assigned to a

matched group. For example, if some regions of the covariate space are sparse with respect to

a treatment condition, we could be forced to construct groups of poor quality in order to avoid

discarding units. A common way to avoid groups of poor quality is to apply a caliper. That is,

we restrict the maximum allowable distance within any matched group to some value. Units

that cannot be assigned a group without violating the caliper are discarded. In the algorithm we

describe, such a caliper can be imposed in the construction ofGC . In particular, by restricting the
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length of the arcs in GC , we implicitly restrict the maximum allowable distance in the resulting

matching. If the second refinement is implemented, we can impose a caliper (perhaps of different

magnitude) alsowhen assigning units in the fi�h step. Note that the use of a calipermay implicitly

change the targeted population, and thus the causal estimand, unless appropriate adjustments

are made a�er the matching step.

Fourth, investigators are occasionally interested in estimating treatment effects only for some

subpopulation. Forexample, it is commontoestimate theaverage treatmenteffectonly for treated

units. To estimate such an effect, we only require that units from the subpopulation of interest are

assigned to matched groups, and other units can be le� unassigned. It can still be beneficial to

assign all units to groups as we then take advantage of all information in the sample. However, if

there are sparse regions in the covariate space, including all units will o�en lead to poor match

quality. The algorithm allows us to focus the matching to a certain set of units. In particular, by

substituting U with some subset B ⊂ U in the first two steps of the algorithm, we ensure that all

units in B are assigned to matched groups. Units not in B are only assigned to groups insofar as

they are needed to satisfy the matching constraints. The unassigned units may later be assigned

to groups in the fi�h step, preferably with a caliper to avoid impacting match quality.

7 Estimation and Adjustment
Matching methods can be used together with a diverse set of approaches for adjustment and

estimation. It is beyond the scope of this paper to review all of them in detail, but we will briefly

discuss two such approaches that are o�en used by investigators. One approach omitted from

thisdiscussion,whichmany investigators finduseful, is permutation-based inference (Rosenbaum

2002, 2010). Stuart (2010) provides an extensive review of other approaches for adjustment and

estimation that we were forced to omit.

The first approach is the estimator described by Abadie and Imbens (2006) and Imbens and

Rubin (2015) to estimate the average treatment effect for the subpopulation of treated units (ATT).

This estimator calculates the mean outcome difference between treated and control units within

eachmatched group, and it then averages the differences over all groupsweighted by the number

of treated units:

τ̂ATT(M) =
∑

m∈M

|w1∩m|

|w1 |

[∑
i ∈mWiYi

|w1∩m|
−

∑
i ∈m(1−Wi )Yi

|w0∩m|

]
,

whereWi is a conventional binary treatment indicator.

With only a small modification, we can tailor the estimator to estimate the treatment effect

between two arbitrary treatments in a study with more than two treatment conditions for an

arbitrary subpopulation. Let a,b ∈ {1,2, . . . ,k } be the labels of the two treatment conditions in

the treatment effect contrast we seek to estimate, and let B be all units in the sample that belong

to the targeted subpopulation. The generalized estimator is then

τ̂a,b,B(M) =
∑

m∈M

|B∩m|

|B|

[∑
i ∈m 1[Wi = a]Yi

|wa ∩m|
−

∑
i ∈m 1[Wi = b]Yi

|wb ∩m|

]
.

Observe that we recover the original estimator by setting a = 1, b = 0, and B =w1.

The estimator τ̂a,b,B(M) is well-defined as long as each matched group containing at least one

targeted unit also contains at least one unit assigned to treatment a and at least one unit assigned

to treatment b. The standard version of the generalized full matching algorithm described in

Section 4.3 ensures that this condition holds. The condition also holds if the fourth extension
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discussed in Section 6 is used, provided that the targeted subpopulation B in the estimator is the

same subpopulation targeted by the algorithm.

The second approach is the use of matching as a preprocessing step before some other main

analysis. This could, for example, be in an effort tomake the subsequent analysis less sensitive to

modelmisspecification (Ho et al. 2007). For nearest neighbormatching andother simplematching

methods, the preprocessing is automatic because the method discards a large portion of the

units in the matching step. Generalized full matching does not discard units unless specifically

instructed to do so by, for example, imposing a caliper. To achieve matching preprocessing with

generalized full matching, wemust instead weight the units.

Let w(i ) andm(i ), respectively, be the treatment group and matched group that contain unit

i. For a targeted subpopulation B, which may be the whole sample, the preprocessing weight for

unit i is given by

vi =
|B∩m(i )|

|B| × |w(i )∩m(i )|
,

where vi = 0 if m(i ) = ∅, which is the case when unit i is not assigned a matched group. The

reweighted sample using v1, . . . ,vn as weights is preprocessed so that each treatment group has a

covariate distribution that is approximately equal to the covariate distribution inB. This highlights

the connection between the two approaches discussed in this section: the estimator can be

interpreted as the ordinary difference in means estimator when we preprocess the sample using

B as the targeted subpopulation. In particular, we have the equality

τ̂a,b,B(M) =
∑

i ∈wa

viYi −
∑

i ∈wb

viYi .

8 Simulation Study
We present the results from a small simulation study of an implementation of the generalized

full matching algorithm. The comparison is with conventional full matching and nearest neighbor

matching with and without replacement. We investigate the standard version of the generalized

full matching algorithm, as described in Section 4.3, and a refined version that incorporates the

first two extensions discussed in Section 6. We include both optimal and heuristic (“greedy”)

implementations of nearest neighbor matching.

We focus on a simple setting where each unit has two covariates distributed uniformly on a

plane:

X1i ,X2i ∼U(−1,1).

To facilitate the comparisonwith previousmethods, there are only two treatment conditions:Wi ∈

{0,1}. The units are randomly assigned to one of the two conditions using a logistic propensity

score that maps from the covariates to treatment probabilities as

Pr(Wi = 1|X1i ,X2i ) = logistic

[
(X1i +1)2+ (X2i +1)2−5

2

]
.

Units with larger covariate values are thusmore likely to be treated. The conditional probability of

being assigned treatmentWi = 1 ranges from 7.6% at (−1,−1) to 81.8% at (1,1). The unconditional

treatment probability is 26.5%. The outcome is given by

Yi = (X1i −1)2+ (X2i −1)2+ ε,
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where ε is standard normal. The outcome does not depend on the assigned treatments, so the

treatment effect is constant at zero.Weuse the estimator τ̂ATT(M) discussed in the previous section

to estimate treatment effects.

The Savio cluster at UC Berkeley was used to run the simulations using version 3.3.2 of R.

Each simulation round was assigned a single CPU core, largely reflecting the performance of

a modern computer. To derive generalized full matchings, we used a development version of

the quickmatch R package. Optimal conventional full matchings and optimal nearest neighbor

matchingswerederivedusingversion0.9-7of theoptmatchRpackage (HansenandKlopfer2006).

Version 4.9-2 of the Matching R package (Sekhon 2011) was used to derive greedy matchings and

matchings with replacement.

The conventional and generalized full matching methods use the same matching constraints,

namely that each group contains at least one treated and control unit. We used Euclidean dis-

tances on the covariate plane as the similaritymeasure in all cases. The quickmatchpackage uses

the maximumwithin-group distance as its objective function, as discussed above. The Matching

and optmatch packages use the sum of within-group distances between treated and control

units as their objectives. All functionality beside the matching functions (e.g., the estimator)

was implemented independently and is common for all matching methods. Replication code is

available on the Harvard Dataverse (Sävje, Higgins, and Sekhon 2020).

8.1 Run Time and Memory
We matched 1,000 randomly generated samples with each matching method for sample sizes

ranging from 100 units to 100 million units. Figure 3 presents the computational resources used

by each implementation as a function of sample size. Average run times are presented in the first

three panels, and memory use is presented in the subsequent three panels. The results are split

into several panels with different scales due to the large differences in performance. Table S5 in

the supplementary materials provides additional details.

Panels A and D present results for samples with up to 50,000 units. For small sample sizes, all

implementations perform well. However, as the sample grows, the optmatch package struggles

both with respect to runtime and memory. Already with 10,000 units, optimal nearest neighbor

matching takes more than 25 minutes to terminate on average, and with sample sizes over

40,000 units, the package allocates more than 40 gigabytes of memory. The implementations in

optmatch are the only ones that derive optimal solutions, but this comes at a large computational

cost. The other packages terminate almost instantly with negligiblememory use for these sample

sizes.

Results for samples with up to 500,000 units are presented in Panels B and E. Implementations

from the quickmatch package still terminate virtually instantly with negligible memory use. The

Matching package terminates quickly for samples with less than 200,000 units, but its runtime

increases a�er that. More than 30 minutes are required for samples larger than about 300,000

units. Memory use is, however, still negligible.

Panels C and F present samples with up to 100 million units. Both implementations of the

generalized full matching algorithm terminate quickly for sample sizes of less than 20 million

units. With a sample of 100 million units, the implementation without refinements terminates

within 15 minutes on average, while the version with refinements adds about 5 minutes to the

runtime. Memory use increases at a slow, linear rate. With a sample of 20 million units, it uses

about 4 gigabytes of memory on average. With 100million units, it allocates slightly more than 17

gigabytes.
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Figure 3. Runtime andmemory use bymatchingmethod. Marker symbols are actual simulation results, and connecting lines are interpolations. The colors represent differentmatching
packages, and the shape of themarker symbols represent different implementations within the packages. Memory use was identical for methods from the same package, so we present
results for only one implementation from each package. Eachmeasure is based on 1,000 simulation rounds. The simulation errors are negligible.
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Table 1. Performance of matching methods with samples of 10,000 units.

Covariate balance Estimator performance

X1 X2 X21 X22 X1X2 Bias SE RMSE
Bias
RMSE

Unadjusted 500.32 502.00 101.07 100.69 131.37 1087.12 1.48 39.81 0.999

Greedy 1:1 50.19 50.32 62.74 62.56 139.13 53.68 1.04 2.22 0.884

Optimal 1:1 50.10 50.25 62.24 62.07 139.80 54.14 1.04 2.24 0.885

Replacement 1:1 0.41 0.41 0.73 0.73 0.80 0.32 1.17 1.17 0.010

Full matching 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.037

GFM 0.71 0.71 0.71 0.72 0.76 0.57 1.03 1.03 0.020

Refined GFM 1.03 1.03 0.97 0.97 1.09 1.19 1.01 1.01 0.043

Note: The first five columns present treatment group differences in the first two moments of the covariates
a�er matching adjustment. The next three columns present the bias, standard error and root mean square
error of a matching treatment effect estimator. The final column is the bias-to-root mean square error ratio.
All columns except the last have been normalized by the result for full matching.

8.2 Match Quality
To investigate thequalityof thematchedgroups,wematched 10,000 randomlygenerated samples

containing 1,000 and 10,000 units. The results differ little with sample size, so we present the

results for samples with 10,000 units here, and the results for samples with 1,000 units in the

supplementary materials. We also restrict our attention in the main paper to covariate balance

and the behavior of the treatment effect estimator. We investigate group structure and various

aggregated distance measures in the supplementary materials.

The first five columns of Table 1 present the absolute mean difference between the adjusted

treatment groups on the first two moments of the covariates. The adjustment used to assess

covariate balance is the same as for the estimator. We include the balance in the unadjusted

sample before matching for comparison. The scaling of the balance is arbitrary, so the results are

normalized by the results for conventional full matching to ease interpretation.

How well the methods balance the samples depends on the data generating process. If, for

example, the propensity score is constant, matching would only correct chance imbalances due

to sampling variability and, thus, only lead to minor improvements compared to the unadjusted

sample. We do not know how representative the simulation study is of themethods’ performance

in general, but we have no reason to believe the qualitative conclusions would change.

All matching methods yield large improvements in covariate balance compared to the unad-

justed sample. The one exception is the cross-moment of the covariates for the two imple-

mentations of nearest neighbor matching without replacement, where the balance is slightly

worse than when no adjustment is performed. This is largely an effect of those moments already

being fairly balanced in the unadjusted sample. The four remaining implementations lead to

large improvements on all moments. Nearest neighbor matching with replacement produces the

greatest balance, with the full matching methods as a close second. Nearest neighbor matching

with replacement achieves its balance by discarding 54.7% of the units in the sample (see Table

S2 in supplementary materials). The full matching method does not discard any units, so it takes

advantage of all information in the sample, and it does so with only a small decrease in balance.

We note that generalized fullmatchingwithout refinements leads to better balance than the other

two full matching methods. We have not found an explanation for this behavior, and we do not

expect it to hold across settings.

We continue with an investigation of the behavior of the treatment effect estimator under the

different matching methods. As with the balance measures, these results depend on the details
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of the data generating process. While the quantitative detailsmight not generalize, the qualitative

conclusions should. The final four columns in Table 1 present the results.

The first of these four columns presents the absolute value of the bias of the estimator. As

expected, theestimatorhas substantial bias in theunadjusted sample.Nearest neighbormatching

without replacement leads to a reduction of about 95%. While this is a large improvement, it is

still more than an order of magnitude greater than the bias for nearest neighbor matching with

replacement and full matching.

The secondcolumnpresents theestimator’s standarderror. The standarderror dependsmainly

on two factors. First,while thepurposeofmatching is to adjust for systematic covariatedifferences

between the treatment groups, it will also adjust for unsystematic differences. Such chance-

imbalances lead to increased estimator variance, andmatchingmay therefore improve precision.

Second, for a given level of balance, larger variation in the weights induced by the matching will

lead to a greater standard error because the information in the sample is used less effectively.

The trade-off between balance and weight variability is reflected in the standard errors. This is

particularly evident when the standard errors for nearest neighbor matching with and without

replacement are compared. Matchingwith replacement induces a larger variation in thematching

weights, and the standard error is 12.5% larger compared to matching without replacement.

The final two columns investigate the root mean square error (RMSE) of the estimator and the

bias’s share of this error. The full matching methods lead to both low bias and variance, so they

yield a low total error. Matching with replacement yields a 17% larger RMSE compared to con-

ventional full matching, but this is still considerably lower than matching without replacement.

The bias-to-RMSE ratio shows whether conventional confidence statements will capture the true

uncertainty of the treatment effect estimator. In particular, if the systematic error is a large part of

the total error, variance estimators will not reflect the true accuracy of the estimation, and conclu-

sions drawn from the results may bemisleading. This measure is scale-free, and it is therefore not

normalized. As expected, the RMSE consists almost exclusively of bias in the unadjusted sample.

Anyconclusions fromsuchanalysesare likely verymisleading.Matchingwithout replacementonly

produces minor improvements. In stark contrast, matching with replacement and full matching

lead to large reductions in the ratio; the bias is only between 1% and 4% of the RMSE. This ratio

critically depends on the dimensionality of the covariate space (Abadie and Imbens 2006), but we

expect a similar pattern to hold across settings.

9 Extrapolation from a Voter Mobilization Experiment
We return to the voter mobilization experiment discussed in Section 2. The objective is to extrap-

olate the results from the experiment to the overall population of registered voters in the 2006

Michigan primary election. The experimental sample was constructed from Michigan’s Qualified

Voter File (QVF). The Bureau of Elections in Michigan created the QVF in 2002 in an effort to

modernize their decentralized voter registration system, and by 2006, the file contained 6,762,701

registered voters.1 We ask what the voter turnout would have been if the treatments in the

experiment were assigned to the complete population of registered voters in the voter file.

Our focus in this application is point estimation.Given the large sizeof theexperiment, the stan-

dard errors are negligible compared to the treatment effects. The bias of the estimator, rather than

its variance, is therefore the main concern here, and estimated standard errors will misrepresent

the true accuracy of the point estimates. For this reason, we report the point estimates without

associated estimates of their variance. In applications where variance is a first-order concern,

1 The transfer of the voter registration system to the QVF was not complete by 2006, and a small portion (5.8%) of the
electorate ismissing fromthedata set. This explains thedifferencebetween the17.7%turnout rate cited in the introduction
and the rates presented in Table 2.

Fredrik Sävje et al. ` Political Analysis 440

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

32
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.32


Table 2. Unadjusted andmatching adjusted average turnout in the 2006 primary election.

Control Civic duty Hawthorne Self Neighbors Nonexperiment

Unadjusted turnout (%) 29.66 31.45 32.24 34.52 37.79 18.01

Adjusted turnout (%) 21.43 23.73 23.01 25.16 26.88 18.60

Observations 191,243 38,204 38,218 38,201 38,218 6,418,617

standard methods of variance estimation for matching estimators can be used (see, e.g., Stuart

2010; Imbens and Rubin 2015).

The treatment condition of main interest in Gerber et al. (2008) was the postcard with the

voting history of the recipient’s neighborhood (the “Neighbors” condition). The authors were,

however, worried that the postcards could affect voting behavior through other channels than

social pressure, so they added additional treatment conditions to shed light on this. The first

concern was that the postcard would simply remind the recipient of the upcoming election,

perhaps prompting an intrinsic sense of moral obligation to vote. A condition was added (“Civic

Duty”) with a postcard stating that it was the recipient’s civic duty to vote in the upcoming

election, but containing no information about voting history. If social pressure were an important

determinant of voting in this sample, we would expect there to be a noticeable difference in

turnout between the Neighbors and Civic Duty conditions. A second concern was the so-called

Hawthorne effect, namely, that the knowledge that one is being studied can itself affect behavior.

A third condition was added (“Hawthorne”) with a postcard stating that the authors would be

studying voting behavior in the election, and would be observing the recipient’s voting decision

through public records. The final concern was that being reminded of one’s own voting history

might affect behavior irrespective of knowledge about the voting pattern of one’s neighbors. The

fourth condition (“Self”) was a postcard listing the voting history of the recipient without any

information about their neighbors. The final condition was a pure control group in which the

registered voters did not receive a postcard.

The first row in Table 2 presents the average turnout within each of the five treatment condi-

tions. We see that the Neighbors condition led to the largest turnout of 37.8%, but the three other

postcard conditions still increased turnout compared to the control condition. The final column in

Table 2 presents turnout among registered voters not included in the experiment. People in this

group were not sent a postcard, so their treatment is effectively the same as the control group

in the experiment. Even so, voter turnout was more than eleven percentage points higher in the

control group than in the nonexperimental group. This gives an indication of how selective the

experimental sample was.

To extrapolate the results, we construct matched groups using all registered voters in the

voter file such that each group contains at least one unit from each treatment condition. The

matching was performed in R using the generalized full matching algorithm implemented in the

quickmatchpackage, and itwas completedwithin twominutes on a laptop computer.We include

all covariates discussed by the original authors: age measures in days, gender, and past voting

history. The votinghistory consists of indicators ofwhether aperson voted in theprimary elections

in August of 2000, 2002, and 2004, and in the general elections in November of 2000 and 2002.

The exclusion of the general election in 2004 is discussed below. We also include geographical

coordinates of the address of each registered voter. Mahalanobis distances are used to measure

similarity.

Table 3 presents averages of all variables except the geographical coordinates for the control

condition and thenonexperimental groupbefore anda�ermatching. The supplementarymaterial

presents unadjustedandadjusted covariate averages for all treatment conditions. As expected,we
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Table 3. Covariate balance before and a�er matching adjustment.

Unadjusted Matching adjustment

Control Nonexperiment Control Nonexperiment

Birth year 1956.19 1957.96 1958.16 1957.87

Female (%) 49.89 53.32 53.29 53.15

Voted Aug 2000 (%) 25.19 14.65 15.19 15.19

Voted Aug 2002 (%) 38.94 22.59 23.42 23.43

Voted Aug 2004 (%) 40.03 18.71 19.80 19.80

Voted Nov 2000 (%) 84.34 52.49 54.11 54.11

Voted Nov 2002 (%) 81.09 41.93 43.94 43.92

Voted Nov 2004 (%) 100.00 67.57 100.00 68.76

see large improvements in balance a�ermatching adjustment except for the final covariate, which

is voting in the general election in 2004.

The second row in Table 2 presents turnout for the six conditions a�er matching adjustment.

Thenumbers shouldbe interpretedas estimates of turnout for the six conditions if scaledup to the

whole population; that is, the turnoutwhenall registered voters, both those in the experiment and

those not, were exposed to the corresponding treatment. We expect the estimates to be accurate

representations of the counterfactual turnout if the matching was successful and the selection-

on-observables assumption holds. We see that voter turnout is lower for all treatment conditions

compared to the experiment, reflecting the fact that the experimental sample predominantly

consisted of voters with a high baseline propensity to vote.

There is generallynoway to test the selection-on-observablesassumption, and thequalityof an

extrapolation can o�en only be assessed indirectly. However, we can directly test the assumption

in this application because the pure control group and the nonexperimental group received

the same treatment. Turnout should therefore be essentially the same for the two conditions

if the matching adjustment were successful. But this is not what we observe: voter turnout is

almost three percentage points higher for the control condition than for the nonexperimen-

tal condition. The failure of this placebo test is a strong indication that the extrapolation was

unsuccessful.

We need to consider the voting history in the 2004 general election to understand this result.

The authors’ sample selectionwas based on the proprietary indices discussed in the introduction,

but they also required that all registered voters in the experimental sample had voted in the 2004

general election. In contrast, only 67.6% of the registered voters not included in the experiment

voted in that election. The consequence is that the support of the covariate distribution in

the experiment does not overlap with covariate distribution in the population. Therefore, no

adjustment exists to balance the distributions along this dimension. The only way to salvage the

validity of the matching estimates presented above is to assume that voting behavior in the 2004

general election is independent of voting behavior in the 2006primary election conditional on the

remaining covariates. This assumption is unlikely to hold.

A simple solution is to change the inferential target to the set of registered voters in the overall

population who did vote in the 2004 general election. Overlap is ensured with respect to this

subpopulation, so extrapolation can be successful without the strong assumptions that otherwise

would have been necessary. Of course, the effects in this subpopulation are likely different than

theeffects in the completepopulation, so theestimatesmaynotprovideananswer to thequestion

of ultimate interest. The information at hand always limits what questions can be answered, and

wemust abide.

Fredrik Sävje et al. ` Political Analysis 442

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

32
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.32


Table 4. Turnout in the 2006 primary election among voters in the 2004 general election.

Control Civic duty Hawthorne Self Neighbors Nonexperiment

Unadjusted turnout (%) 29.66 31.45 32.24 34.52 37.79 25.56

Adjusted turnout (%) 26.59 28.86 27.95 30.87 32.90 25.89

Observations 191,243 38,204 38,218 38,201 38,218 4,337,193

Table 4 presents turnout for the six conditions before and a�er adjustment for the subpopula-

tion of voters in the 2004 general election. The unadjusted turnout in the nonexperimental group

increases compared to Table 2. As we might expect, these voters were more likely to vote in the

election in the absence of any postcard. There is, however, still a substantial difference between

the control and nonexperimental groups, indicating that further adjustments are required. The

second row in Table 4 presents the results a�er adjustment using generalized full matching.

The difference between the control and nonexperimental groups is now small but still not zero,

showing that the adjustment is not perfect. The remaining difference could, for example, indicate

that sample selection was based on some additional information, which we do not have access

to, or that themetric we use is not entirely appropriate. The placebo test can, however, bemarked

as a “weak pass,” and the results should provide a reasonable, but not perfect, indication of the

counterfactual turnout if the treatments were scaled up to this subpopulation.

The adjusted averages in Table 4 suggest that the postcards would have increased turnout.

The Neighbors condition leads to the highest turnout at 32.9%. This is almost five percentage

points lower than in the experimental sample, accounting for the lower baseline propensity to

vote. Of particular note is that the effect of the Neighbors condition relative to control is lower

than in the experiment. The effect was 8.1 percentage points in the experiment but only 6.3

points in this subpopulation a�er adjustment. A naive extrapolation using the treatment effect

in the experiment would thus have been misleading. The remaining treatment conditions follow

a similar pattern: voter turnout is lower a�er adjustment, and the effects relative to the control

condition are lower than in the experiment. Of note here is also the rank switch between the Civic

Duty and Hawthorne conditions, where the former had the lowest turnout among the postcard

conditions in the experiment while the latter is lowest a�er the adjustment.

10 Concluding Remarks
Matching is an important tool for empirical researchers, but conventional matching methods are

not always applicable. Algorithms with guaranteed optimality properties have limited scope and

require vast computational resources. They are rarely usefulwhendesigns are complexor samples

are large. Investigators have therefore been forced to use alternative approaches to construct

their matches, either by simplifying the problem or by using ad hoc methods such as greedy

matching.

We illustrate these issues with an extrapolation exercise of the treatment effects in a complex,

large-scale experiment to an even larger population. Investigators face similar concerns when

adjusting for confounded treatment assignment in large observational studies under a selection-

on-observablesassumption.Well-performingandcomputationally efficientmethods for covariate

adjustment are needed in these situations, and the method we describe in this paper provides a

possible solution.

Generalized full matching is applicable in a wide range of settings. Like its predecessor, the

method admits goodmatch quality without discarding large parts of the sample. However, unlike

conventional full matching, it is not restricted to one particular design but can accommodate any

number of treatment conditions and intricate compositional constraints over those conditions.
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Studieswith such designs have conventionally solved severalmatching problems andmerged the

resulting matchings in a postprocessing step. Aside from being tiring and error-prone, such an

approach does not maintain optimality even if the underlying methods are optimal with respect

to each separatematching problem.Generalized fullmatching allows the investigator to construct

a singlematching that directly corresponds to the desired design. The algorithmused to construct

these matchings, as implemented in the quickmatch package, uses computational resources

efficiently. This enables investigators to use the approach also in large studies where matching

methods previously have been infeasible.

The appropriate compositional constraints in a matching problem depend on the application

at hand. If investigators only desire point estimates of average treatment effects, it is generally

sufficient to require only one unit of each treatment condition in each matched group. How-

ever, the construction of confidence intervals and hypothesis tests may require group-specific

variance estimates, in which case the matched groups must contain at least two units of each

treatment condition unless one borrows information between groups. Estimation of hetero-

geneous treatment effects o�en require even larger groups. While some applications require

larger matched groups, investigators should not make the groups larger than necessary because

this may impair the quality of the matching. By the same token, when possible, investigators

should target the matching to the subpopulation of interest using the fourth extension dis-

cussed in Section 6. This gives the algorithmmore flexibility to construct matched groups of high

quality.

We conclude by stressing that our algorithm is a complement to existing matching methods.

There are some settings where we would discourage its use. Unlike existing approaches based on

network flows (see, e.g., Hansen andKlopfer 2006), the approach presented in this paper does not

necessarily derive optimal solutions. For this reason, best practice is still to use existing optimal

algorithms when possible. Furthermore, several refinements to the conventional full matching

algorithm have been developed since its conception. For example, Hansen (2004) demonstrates

how to impose bounds on the ratio between the number of treated and control units within the

matched groups. This limits the weight variation of the matching and allows the investigator to

directly control how aggressive the adjustment may be. When used with care, such control can

greatly improve one’s inferences because one can tailor the bias–variance trade-off underlying

the matching problem to the application at hand. A similar effect can be achieved by adjusting

the compositional constraints in a generalized full matching, but it is a blunt solution without the

same level of control as in Hansen’s formulation.

Network flow algorithms can also be adapted to construct matchings with fine balance

(Rosenbaum, Ross, and Silber 2007). Here, thematched groups are constructed to ensure that the

adjusted treatment groups have identicalmarginal distributions for a set of categorical covariates.

The current implementation of our algorithm cannot accommodate such global objectives.

Pimentel et al. (2015) introduces a refinement of fine balancing in which categorical covariates

can be prioritized so that they are balanced in a hierarchical fashion. This ensures fine balance on

covariates deemedmore important, before improving covariate balancemore generally. Pimentel

et al. (2015) also show how large samples can be accommodated by thinning out the edges in

the network flow problem. Building on this idea, Yu, Silber, and Rosenbaum (2019) discuss a

preprocessing procedure that finds the smallest caliper such that the resultingmatching problem

still has at least one admissible solution. This allows investigators to use network flow algorithms

with finebalancing constraints inmoderately large studieswith two treatment conditions, thereby

making thepreprocessingprocedureby Yu et al. (2019) an important complement to the algorithm

we describe.

Another preprocessing approach that facilitates matching in large data sets was introduced by

Iacus, King, and Porro (2012). The method coarsens the covariate space into discrete bins, which
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are then used to construct an exact matching. The coarsening can be performed in linear time in

the sample size, so the approach is generally very fast. Its purpose is, however, somewhat different

from that of generalized full matching. The approach by Iacus et al. (2011) gives researchers

fine-grained control over the worse-case covariate balance, but the control has costs. Valuable

informationmaybe lostwhen the covariates are coarsened, and themethod is prone todiscarding

units because it does not ensure that all treatment conditions are represented in the bins. Full

matching admits less control over the covariate balance, but it fully uses the covariate information

and does not discard units from the matching unless instructed to do so.

Finally, it may be feasible to use algorithms with an exponential time complexity if the sample

is sufficiently small. One such example is Zubizarreta (2012), who provides a general framework

for directly solving the integer programming problem that underlies thematching problem.When

feasible, this approach gives the investigator the greatest control over thematched groups, which

allows for superior performance when applied with care. Bennett, Vielma, and Zubizarreta (2020)

show that the underlying integer program can in some instances be relaxed to a more tractable

linear program. When used together with template matching to construct a small reference

group (Silber et al. 2014), the approach can accommodate samples of several hundred thousand

observations divided betweenmore than two treatment conditions.

Investigators will find these alternative matching methods attractive in many situations, for

good reasons. However, they cannot be used with the complex compositional conditions and

large samples accommodated by the method and algorithm introduced in this paper. The task

of extrapolating the results from the voter mobilization experiment in Michigan is one such case.

We believe challenges of this typewill become increasingly common as data sets grow in size, and

we hope investigators will find the work presented in this paper useful in such situations.
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