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Abstract

We study an ergodic singular control problem with constraint of a regular one-
dimensional linear diffusion. The constraint allows the agent to control the diffusion only
at the jump times of an independent Poisson process. Under relatively weak assumptions,
we characterize the optimal solution as an impulse-type control policy, where it is opti-
mal to exert the exact amount of control needed to push the process to a unique threshold.
Moreover, we discuss the connection of the present problem to ergodic singular con-
trol problems, and illustrate the results with different well-known cost and diffusion
structures.
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1. Introduction

In many biological and economical control problems, the decision maker is faced with the
situation where the information of the evolving system is not available all the time. Instead,
the decision maker might observe the state of the system only at discrete times, for example
daily or weekly. Thus, in the following we model the times when the controller receives the
information of the evolving system as jump times of a Poisson process with a parameter λ. It
is assumed that the decision maker can only exert control at these exogenously given times,
in other words, they cannot act in the dark. Also, we restrict ourselves to controls of impulse
type. Whenever control is applied, the decision maker has to pay a cost which is directly
proportional to the size of the impulse. Otherwise, when there are no interventions, we assume
that the system evolves according to one-dimensional linear diffusion X that is independent of
the Poisson process. In the literature these types of restriction processes on the controllability
of X are often referred to as constraints or signals, see [24, 26, 30, 31, 32].

In the classical case, the decision maker has continuous and complete information, and
hence control is allowed whenever the decision maker wishes. The objective criterion to be
minimized is often either a discounted cost or an ergodic cost (average cost per unit time).
Both discounted cost and ergodic problems have been studied in the literature, but the ergodic
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2 H. SAARINEN AND J. LEMPA

problems have received less attention. This is because they are often mathematically more
involved. However, from the point of view of many applications this is a bit surprising, as
the discounting factor is often very hard or impossible to estimate. Also, outside of financial
applications the discounting factor might not have a very clear interpretation.

The simplest case in the classical setting is where control is assumed to be costless. As a
result, the optimal policy is often a local time of X at the corresponding boundaries; see [1, 29]
for discounted problems and [3, 4, 19] for ergodic problems. One drawback of this model is
that the optimal strategies are often singular with respect to Lebesgue measure, which makes
them unappealing for applications. One way to make the model more realistic is to add a fixed
transaction cost on the control. Then the optimal policy is often a sequential impulse control
where the decision maker chooses a sequence of stopping times {τ1, τ2, . . .} to exert control,
and corresponding impulse sizes {ζ1, ζ2, . . .}; see [2, 5, 18]. In addition, it is possible that the
flow of information is continuous but imperfect. This type of problem, often referred to as
filtering problems, is also widely studied; see [8, 14, 33] for a textbook treatment and further
references. In this case, the disturbance in the information flow is assumed to be such that the
decision maker sees the underlying process all the time, but only observes a noisy version of it.

As in the model at hand, another possibility is to allow the decision maker to control only at
certain discrete exogenously given times. These times can be, for example, multiples of inte-
gers, as in [23, 35], or given by a signal process. Often, as in our model, the times between
arrivals of the signal process are assumed to be exponentially distributed; see [26, 36, 39].
In [36], this framework was used as a simple model for liquidity effects in a classical invest-
ment optimization problem. Reference [39] investigates both discounted cost and an ergodic
cost criterion while tracking a Brownian motion under quadratic cost, and [26] generalizes
the discounted problem to a more general payoff and underlying structure. Related studies in
optimal stopping are [12, 24]. In [12], the authors consider a perpetual American call with
underlying geometric Brownian motion, and in [24] the results are generalized to a larger
class of underlying processes. Studies related to more general signal processes are found in
[30, 31, 32]. In these, the signal process can be a general, not necessarily independent, renewal
process, and the underlying process is a general Markov–Feller process. There are also multi-
ple studies that are less directly related, where an underlying Poisson process brings a different
friction to the model by either affecting the structure of the underlying diffusion [17, 20] or the
payoff structure [6, 25, 27].

The main contribution of this paper is that we allow the underlying stochastic process X
to follow a general one-dimensional diffusion process, and also allow a rather general cost
function. This is a substantial generalization of [39], where the case of Brownian motion with
quadratic cost is considered. We emphasize this in the illustrations in Section 5 by explic-
itly solving multiple examples with different underlying dynamics and cost functions. These
generalizations have not, to the best of our knowledge, been studied before in the literature.
Furthermore, we are able to connect the problem to a related problem in optimal ergodic
singular control [3].

The rest of the paper is organized as follows. In Section 2 we define the control problem and
prove auxiliary results. In Section 3, we first investigate the necessary conditions of optimality
by forming the associated free boundary problem, followed by the verification. We connect the
problem to a similar problem of singular control in Section 4, and then illustrate the results by
explicitly solving a few examples in Section 5. Finally, Section 6 concludes our study.
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Ergodic control of diffusions 3

2. The control problem

2.1. The underlying dynamics

Let (�,F , {Ft}t≥0, P) be a filtered probability space which satisfies the usual conditions.
We consider an uncontrolled process X defined on (�,F , {Ft}t≥0, P) that evolves in R+ and
is modelled as a solution to regular linear Itô diffusion

dXt =μ(Xt)dt + σ (Xt)dWt, X0 = x,

where Wt is the Wiener process and the functions μ, σ : (0,∞) →R are continuous and
satisfy the condition

∫ x+ε
x−ε

1+|μ(y)|
σ 2(y)

dy<∞. These assumptions guarantee that the diffusion
has a unique weak solution (see [22, Section 5.5]). Although we consider the case where the
process evolves in R+, we remark that this is done only for notational convenience, and the
results would remain the same, with obvious changes, if the state space were replaced with
any interval of R.

We define the second-order linear differential operator A that represents the infinitesimal
generator of the diffusion X as

A=μ(x)
d

dx
+ 1

2
σ 2(x)

d2

dx2
,

and for a given λ> 0 we respectively denote the increasing and decreasing solutions to the
differential equation (A− λ) f = 0 by ψλ > 0 and ϕλ > 0.

The differential operator λ−A has an inverse operator called the resolvent Rλ defined by

(Rλ f )(x) =Ex

[ ∫ τ

0
e−λsf (Xs)ds

]

for all x ∈R+ and functions f ∈Lλ1, where Lλ1 is the set of functions f on R+ which satisfy the
integrability condition Ex[

∫ τ
0 e−λs|f (Xs)|ds]<∞. Here, τ is the first exit time from R+, i.e.

τ = inf{t ≥ 0 | Xt �∈R+}. We also define the scale density of the diffusion by

S′(x) = exp

(
−

∫ x 2μ(z)

σ 2(z)
dz

)
,

which is the (non-constant) solution to the differential equation A f = 0, and the speed measure
of the diffusion by

m′(x) = 2

σ 2(x)S′(x)
.

It is well known that the resolvent and the solutions ψλ and ϕλ are connected by the formula

(Rλf )(x) = B−1
λ ψλ(x)

∫ ∞

x
ϕλ(z) f (z)m′(z)dz (1)

+ B−1
λ ϕλ(x)

∫ x

0
ψλ(z) f (z)m′(z)dz,

where

Bλ = ψ ′
λ(x)

S′(x)
ϕλ(x) − ϕ′

λ(x)

S′(x)
ψλ(x)
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4 H. SAARINEN AND J. LEMPA

denotes the Wronskian determinant (see [10, p. 19]). We remark that the value of Bλ does not
depend on the state variable x because an application of the harmonicity properties of ψλ and
ϕλ yields

dBλ(x)

dx
= 0.

In calculations, it is sometimes also useful to use the identity∫ y

x
μ(z)m′(z)dz = 1

S′(y)
− 1

S′(x)
. (2)

2.2. The control problem

We consider a control problem where the goal is to minimize the average cost per unit time,
so that the controller is only allowed to control the underlying process at exogenously given
times. These times are given as the arrival times of an independent Poisson process, called the
signal process or constraint, and thus the interarrival times are exponentially distributed.

Assumption 1. The Poisson process Nt and the controlled process Xt are assumed to be
independent, and the process Nt is {Ft}t≥0-adapted.

More precisely, the set of admissible controls Z is given by those non-decreasing left-
continuous processes ζt≥0 that have the representation

ζt =
∫

[0,t)
ηsdNs,

where N is the signal process and the integrand η is {Ft}t≥0-predictable. The controlled
dynamics are then given by the Itô integral

Xζt = X0 +
∫ τ

ζ
0 ∧t

0
μ(Xζs )ds +

∫ τ
ζ
0 ∧t

0
σ (Xζs )dWs − ζt, 0 ≤ t ≤ τ ζ0 ,

where τ ζ0 is the first exit time of Xζt from R+, i.e. τ ζ0 = inf{t ≥ 0 | Xζt �∈R+}.
Define the average cost per unit time or ergodic cost criterion as

J(x, ζ ) := lim inf
T→∞

1

T
Ex

[∫ T

0
(π (Xζs )ds + γ dζs)

]
,

where γ is a given positive constant and π : R+ →R is a function measuring the cost of
continuing the process. Now define the value function

V(T, x) = inf
ζ∈Z

Ex

[∫ T

0
(π (Xs)ds + γ dζs)

]
(3)

and denote by β the minimum average cost. The objective of the control problem is to minimize
J(x, ζ ) over all the admissible controls ζ ∈Z and to find, if possible, the optimal control ζ ∗
such that β = infζ∈Z J(x, ζ ) = J(x, ζ ∗).

We now define the auxiliary functions πγ : R+ →R,

πγ (x) = π (x) + γ λx,
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Ergodic control of diffusions 5

and πμ : R+ →R,
πμ(x) = π (x) + γμ(x).

In order for our solution to be well behaved, we must pose the following assumptions:

Assumption 2. We assume that

(i) the lower boundary 0 and upper boundary ∞ are natural;

(ii) the cost π is continuous, non-negative, and minimized at 0;

(iii) the function πμ and id : x �→ x are in Lλ1;

(iv) there exists a unique state x∗ ∈R+ such that πμ is decreasing on (0, x∗) and increasing
on [x∗,∞). Also, limx↑∞ πμ(x)> 0.

The boundaries of the state space are assumed to be natural, which means that, in the
absence of interventions, the process cannot become infinitely large or infinitely close to zero in
finite time. In biological applications these boundary conditions guarantee that the population
does not explode or become extinct in the absence of harvesting. We refer to [10, pp. 18–20]
for a more thorough discussion of the boundary behaviour of one-dimensional diffusions. Also,
it is worth mentioning that no second-order properties of πμ are assumed.

In addition, the following limiting and integrability conditions on the scale density and
speed measure must be satisfied. These conditions assure the existence of a stationary
distribution of the underlying diffusion.

Assumption 3. We assume that

(i) m(0, y) = ∫ y
0 m′(z)dz<∞ and

∫ y
0 πμ(z)m′(z)dz<∞ for all y ∈R+;

(ii) limx↓0 S′(x) = ∞.

Remark 1. The conditions of Assumption 3 alone guarantee that the lower boundary 0 should
be either natural or entrance, and hence unattainable. However, in the proof of Lemma 1
we must exclude the possibility of entrance to assure that L(x) (defined below) also attains
negative values. If we wanted to include this possibility, we would also have to assume that
limx→0 πμ(x) = ∞; see the proof of Lemma 1.

2.3. Auxiliary results

Define the auxiliary functions L : R+ →R and H : R+ →R as

L(x) = λ

∫ ∞

x
πμ(z)ϕλ(z)m′(z)dz + ϕ′

λ(x)

S′(x)
πμ(x),

H(0, x) =
∫ x

0
πμ(z)m′(z)dz − πμ(x)m(0, x).

These functions will offer a convenient representation of the optimality equation in Section 3,
and thus their properties play a key role when determining the optimal control policy.

Lemma 1. Under Assumption 1, the functions L(x) and H(0,x) aer such that there exists a
unique x̃< x∗ and a unique x̂> x∗ such that

(i) L(x)
<=
>

0 when x
<=
>

x̃,

(ii) H(0, x)
<=
>

0 when x
>=
<

x̂.
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6 H. SAARINEN AND J. LEMPA

Proof. The proof of the claim on L is similar to that of [26, Lemma 3.3]. However, to show
that the results are in accordance with Remark 1, we need to adjust the argument on finding a
point x1 < x∗ such that L(x1)< 0. Thus, assume for a while that limx→0 πμ(x) = ∞, and that
x∗ > y> x. Then

L(x) − L(y) = λ

∫ y

x
πμ(z)ϕλ(z)m′(z)dz

+
[
πμ(x)

ϕ′
λ(x)

S′(x)
− πμ(y)

ϕ′
λ(y)

S′(y)

]

≤ ϕ′
λ(y)

S′(y)
(πμ(x) − πμ(y)),

which shows that limx→0 L(x) = −∞.
To prove the second part, assume first that y> x> x∗. Since the function πμ is increasing

on (x∗,∞), we see that

H(0, y) − H(0, x) =
∫ y

x
πμ(z)m′(z)dz − πμ(y)m(0, y) + πμ(x)m(0, x)

<πμ(y)(m(x, y) − m(0, y)) + πμ(x)m(0, x)

= m(0, x)(πμ(x) − πμ(y))

< 0,

proving that H is decreasing on (x∗,∞). It also follows from

H(0, y) − H(0, x)<m(0, x)(πμ(x) − πμ(y))

that limy→∞ H(0, y)< 0. Next, assume that x∗ > y> x. Because πμ is decreasing on (0, x∗),
we find similarly that

H(0, y) − H(0, x) =
∫ y

x
πμ(z)m′(z)dz − πμ(y)m(0, y) + πμ(x)m(0, x)

>πμ(y)(m(x, y) − m(0, y)) + πμ(x)m(0, x)

= m(0, x)(πμ(x) − πμ(y)),

> 0,

implying that H is increasing on (0, x∗). Furthermore, H is positive when x< x∗. Hence, by
continuity, H has a unique root, which we denote by x̂. �
Proposition 1. There exists a unique solution x̄ ∈ (x̃, x̂) to the equation

S′(x)m(0, x)L(x) = −ϕ′
λ(x)H(0, x).

Proof. Define the function

P(x) = S′(x)m(0, x)L(x) + ϕ′
λ(x)H(0, x).

https://doi.org/10.1017/jpr.2020.80 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.80


Ergodic control of diffusions 7

Assuming that x1 > x̂> x∗, we get, by Lemma 1, that

P(x1) =S′(x1)m(0, x1)L(x1) + ϕ′
λ(x1)H(0, x1) ≥ 0.

Similarly, when x2 < x̃< x∗ we have that

P(x1) =S′(x2)m(0, x2)L(x2) + ϕ′
λ(x2)H(0, x2) ≤ 0. (4)

By continuity, the function P(x) must have at least one root. We denote one of these roots by z.
To prove that the root z is unique, we first notice that the naturality of the upper boundary

implies that [10, p. 19]

lim
x→∞

ϕ′
λ(x)

S′(x)
= 0.

Hence,

−1

λ

ϕ′
λ(y∗)

S′(y∗)
=

∫ ∞

y∗
ϕλ(z)m′(z)dz. (5)

Thus, we see that the equation P(x) = 0 is equivalent to∫ ∞
x πμ(y)ϕλ(y)m′(y)dy∫ ∞

x ϕλ(y)m′(y)dy
=

∫ x
0 πμ(y)m′(y)dy∫ x

0 m′(y)dy
.

Now, differentiating the left-hand side yields

ϕλ(x)m′(x)L(x)

I(x)2
,

where I(x) = ∫ ∞
x ϕλ(y)m′(y)dy. Differentiating the right-hand side and evaluating it at z, we

get, using the equation P(z) = 0,

πμ(z)m′(z)

m(0, z)
−

∫ z
0 πμ(y)m′(y)dy

m(0, z)

m′(z)

m(0, z)
= −m′(z)L(z)

I(z)m(0, z)
.

Because L(y)> 0 in the region (x̃, x̂), and all the other terms are positive everywhere, by
comparing the derivatives we find that

−m′(z)L(z)

I(z)m(0, z)
<
ϕλ(z)m′(z)L(z)

I(z)2
.

Therefore, by continuity, the intersection between the curves

I(x)−1
∫ ∞

x
πμ(y)ϕλ(y)m′(y)dy

and

m(0, x)−1
∫ x

0
πμ(y)m′(y)dy

is unique. This unique point is denoted by x̄. �
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8 H. SAARINEN AND J. LEMPA

In the next lemma we make some further computations that are needed for the sufficient
conditions of the control problem. Define the functions J : R+ →R and I : R+ →R as

J(x) = γ − (Rλπγ )′(x)

ϕ′
λ(x)

, I(x) =
∫ x

0 πμ(x)m′(t)dt

m(0, x)
.

Lemma 2. Under Assumption 2,

(i) J′(x)
>=
<

0 when x
>=
<

x̃,

(ii) I′(x)
>=
<

0 when x
>=
<

x̂.

Here, x̃ and x̂ are as in Lemma 1.

Proof. The first claim follows from the formula

J′(x) = 2S′(x)

σ 2(x)ϕ′
λ(x)2

L(x),

which can be derived using representation (1) and straightforward differentiation (see [26,
Lemma 3] for details). The claim on I follows similarly, as differentiation yields

I′(x) = − m′(x)

m2(0, x)
H(x).

�

3. The solution

3.1. Necessary conditions

Denote the candidate solution for (3) as F(T , x). We use the heuristic that F(T , x) can be
separated for large T as

F(T, x) ∼ βT + W(x). (6)

In mathematical finance literature, the constant β usually denotes the minimum average cost
per unit time and W(x) is the potential cost function (see [15, 37]). The fact that the leading
term βT is independent of x is, of course, dependent on the ergodic properties of the underlying
process. We also note that this heuristic can be used as a separation of variables to solve a partial
differential equation of parabolic type related to the expectation in (3) via the Feynman–Kac
formula [16].

We shall proceed as in [26]. We assume that the optimal control policy exists and is given
by the following. When the process is below some threshold y∗ (called the waiting region) we
let the process run, but if the process is above the threshold value y∗ (called the action region)
and the Poisson process jumps we exert the exact amount of control to push the process back
to the boundary y∗ and start it anew.

In the waiting region [0, y∗] we expect that the candidate solution satisfies Bellman’s
principle,

F(T, x) =E

[∫ U

0
π (Xs)ds + F(T − U, XU)

]
,

where U is an exponentially distributed random variable with mean 1/λ.
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Ergodic control of diffusions 9

Using the heuristic (6) and noticing the connection between the random times U and the
resolvent, we get, by independence and the strong Markov property, that

E

[∫ U

0
π (Xs)ds + F(T − U, XU)

]

= lim
r→0

(Rrπ )(x) +Ex[W(XU)] − β

λ
+ βT −Ex

[∫ ∞

U
π (Xs)ds

]

= lim
r→0

(Rrπ )(x) + λ(RλW)(x) − β

λ
+ βT −Ex

[
lim
r→0

(Rrπ )(XU)

]

= lim
r→0

(Rrπ )(x) + λ(RλW)(x) − β

λ
+ βT − λ lim

r→0
(RλRrπ )(x).

Hence, we arrive at the equation

W(x) − lim
r→0

(Rrπ )(x) = λRλ(W(x) − lim
r→0

(Rrπ )(x)) − β

λ
.

We next choose f (x) = W(x) − limr→0 (Rrπ )(x) in [24, Lemma 2.1], and notice that the lemma
remains unchanged even if we add a constant β/λ. Thus, we expect, by our heuristic arguments,
that the pair (W, β) satisfies the differential equation

AW(x) + π (x) = β.

This type of equation often arises in ergodic control problems and there is lots of literature on
sufficient conditions for the existence of a solution [7, 15, 34]. We remark here that usually
these conditions rely heavily on the solution of the corresponding discounted infinite-horizon
control problem, and thus apply the so-called vanishing discount method. However, in our case
we can proceed by explicit calculations.

Next, we shall determine the equation for the pair (W, β) in the action region [y∗,∞]. The
Poisson process jumps in infinitesimal time with probability λdt, and in that case the agent has
to pay a cost γ (x − y∗) + F(T, y∗). On the other hand, the Poisson process does not jump with
probability 1 − λdt, and in this case the agent has to pay π (x)dt +Ex [F(T − dt, Xdt)]. Thus,
the candidate function F should satisfy the condition

F(T, x) = λdt(γ (x − y∗) + F(T, y∗)) + (1 − λdt) (π (x)dt +Ex [F(T − dt, Xdt)]).

Now, again using the heuristic (6) and that, intuitively, dt2 = 0, we find that

W(x) = λdt(γ (x − y∗) + W(y∗)) + π (x)dt − βdt + (1 − λdt)Ex [W(Xdt)].

By formally using Dynkin’s formula on the last term and simplifying we get

0 = λdt(γ (x − y∗) + W(y∗)) + π (x)dt − βdt + (A− λ)W(x)dt.

We conclude that in the action region, the pair (W, β) should satisfy the differential equation

(A− λ)W(x) = −(π (x) + λ(γ (x − y∗) + W(y∗)) − β).

Now, we first observe that

AW(x) + π (x) − β =
{

0, x< y∗,
λ(W(x) − γ x − (W(y∗) − γ y∗)), x ≥ y∗,
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10 H. SAARINEN AND J. LEMPA

which implies that W(x) satisfies the C1-condition W ′(y∗) = γ . We have thus arrived at the
following free boundary problem: find a function W(x) and constants y∗ and β such that

W ∈ C2,

W ′(y∗) = γ,

(A− λ)W(x) + π (x) + λ(γ (x − y∗) + W(y∗)) = β, x ∈ [y∗,∞), (7)

AW(x) + π (x) = β, x ∈ (0, y∗). (8)

Remark 2. Another common approach to heuristically form the Hamilton–Jacobi–Bellman
(HJB) equation of the problem is to use the value function Jr(x) of the corresponding dis-
counted problem (see [26, p. 4]) and the vanishing discount limits rJr(x̄) → β and Wr(x) =
Jr(x) − Jr(x̄) → W(x), where x̄ is a fixed point in R+ (see [34, p. 284] and [15, p. 427]). This
argument yields the HJB equation

AW(x) + π (x) − λ(W ′(x) − γ )1{x∈S} = β,

where S = [y∗,∞) is the control region.
To solve the free boundary problem, we consider (8) first. In this case we write the

differential operator A as [38, p. 285]

A= d

dm(x)

d

dS(x)
,

which allows us to find that
dW ′(x)

dS′(x)
= (β − π (x))m′(x). (9)

Therefore, integrating over the interval (0, y∗) gives

W ′(y∗)

S′(y∗)
= β

∫ y∗

0
m′(z)dz −

∫ y∗

0
π (z)m′(z)dz.

Hence, by Assumption 3 and the C1-condition W ′(y∗) = γ , we get

β =
[ ∫ y∗

0
m′(z)dz

]−1
[∫ y∗

0
π (z)m′(z)dz + γ

S′(y∗)

]
.

Finally, using (2), we arrive at

β =
[ ∫ y∗

0
m′(z)dz

]−1
[∫ y∗

0
πμ(z)m′(z)dz

]
. (10)

Next, we consider (7). We immediately find that a particular solution is

W(x) = (Rλπγ )(x) − β

λ
− γ y∗ + W(y∗).

Hence, we conjecture analogously to [26, p. 113] that the solution to (7) is

W(x) = (Rλπγ )(x) − β

λ
− γ y∗ + W(y∗) + Cϕλ(x). (11)
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To find the constants C and β, we first use the continuity of W at the boundary y∗, which allows
us to substitute x = y∗ into (11). This yields

0 = (Rλπγ )(y∗) − β

λ
− γ y∗ + Cϕλ(y∗). (12)

Then, by applying the condition W ′(y∗) = γ to (11), we find that

C = γ − (Rλπγ )′(y∗)

ϕ′
λ(y∗)

.

Combining this with (12) gives

β = λ(Rλπγ )(y∗) − λγ y∗ + γ − (Rλπγ )′(y∗)

ϕ′
λ(y∗)

λϕλ(y∗).

To rewrite this expression, we first notice that a straightforward differentiation gives

d

dx

(
x
ϕ′
λ(x)

S′(x)
− ϕλ(x)

S′(x)

)
= −m′(x)ϕλ(x)(μ(x) − λx).

Thus, by the fundamental theorem of calculus and the naturality of the upper boundary, we get

y∗ ϕ′
λ(y∗)

S′(y∗)
− ϕλ(y∗)

S′(y∗)
=

∫ ∞

y∗
m′(z)ϕλ(z)(μ(z) − λz)dz. (13)

Next, using (1), we find that

(Rλπγ )(y∗)ϕ′
λ(y∗) − (Rλπγ )′(y∗)ϕλ(y∗) = −S′(y∗)

∫ ∞

y∗
ϕλ(z)πγ (z)m′(z)dz.

Combining these observations with (5), the constant β reads

β =
[ ∫ ∞

y∗
ϕλ(z)m′(z)dz

]−1[ ∫ ∞

y∗
ϕλ(z)πγ (z)m′(z)dz + γ

∫ ∞

y∗
m′(z)ϕλ(z)(μ(z) − λz)dz

]
.

Finally, by recalling the definition of πμ(x), we have

β =
[ ∫ ∞

y∗
ϕλ(z)m′(z)dz

]−1[ ∫ ∞

y∗
ϕλ(z)πμ(z)m′(z)dz

]
. (14)

Now, by equating the representations (10) and (14) of β, we find the optimality condition∫ y∗

0
πμ(z)m′(z)dz

∫ ∞

y∗
ϕλ(z)m′(z)dz =

∫ y∗

0
m′(z)dz

∫ ∞

y∗
ϕλ(z)πμ(z)m′(z)dz,

which can be re-expressed, using the functions L(x) and H(0, x), as

m(0, y∗)L(y∗) = −ϕ′
λ(y∗)H(0, y∗). (15)

We proved in Proposition 1 that there exists a unique solution x̄ to (15), and thus we will
assume in the following that y∗ = x̄.

Remark 3. As often in ergodic optimal control problems, the potential value function W(x) sat-
isfies second-order differentiability across the boundary limx↓y∗ W ′′(x) = limx↑y∗ W ′′(x). This
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can be verified as follows. When x> y∗, the differentiation and the harmonicity properties
(Rλ(A− λ)πγ )(x) + πγ (x) = 0 and (A− λ)ϕλ(x) = 0 yield

lim
x↓y∗ W ′′(x) = (Rλπγ )′′(y∗) + Cϕ′′

λ(y∗)

= 2

σ 2(y∗)

[
λ(Rλπγ )(y∗) − πγ (y∗) −μ(y∗)(Rλπγ )′(y∗)

+ γ − (Rλπγ )′(y∗)

ϕ′
λ(y∗)

(λϕλ(y∗) −μ(y∗)ϕ′
λ(y∗))

]
,

which after cancellation and applying (13) and (1) equals

2

σ 2(y∗)

[
− λS′(y∗)

ϕ′
λ(y∗)

∫ ∞

y∗
ϕλ(z)m′(z)(πγ (z) − γ λz +μ(z)γ )dz − πμ(y∗)

]
.

Therefore, by using (5) and (14) we find that

lim
x↓y∗ W ′′(x) = 2

σ 2(y∗)
[β − πμ(y∗)].

On the other hand, when x< y∗ we notice that

d

dx

[
W ′(x) − γ

S′(x)

]
= (AW ′(x) − γπ (x))m′(x) = (β − πμ(x))m′(x).

Hence, by differentiating the left-hand side and plugging in x = y∗, we find by the first-order
condition W ′(y∗) = γ that

lim
x↑y∗ W ′′(x) = 2

σ 2(y∗)
[β − πμ(y∗)].

3.2. Sufficient conditions

We begin with an initial remark. When x> y∗, we get, by differentiating (11) and using
Lemma 2, that

W ′(x) − γ = ϕ′
λ(x)

[
(Rλπγ )′(x) − γ

ϕ′
λ(x)

− (Rλπγ )′(y∗) − γ

ϕ′
λ(y∗)

]
> 0.

In the opposite case, when x< y∗, we have

d

dx

[
W ′(x) − γ

S′(x)

]
= (β − πμ(x))m′(x).

Thus, by integrating over the interval (0, x), and using (10) and Lemma 2, we find that

W ′(x) − γ

S′(x)
= m(0, x)

[∫ y∗
0 πμ(t)m′(t)dt

m(0, y∗)
−

∫ x
0 πμ(t)m′(t)dt

m(0, x)

]
< 0.

These observations imply that, under the standing assumptions, the function W(x) − γ x has a
global minimum at y∗, which shows that W(x) satisfies the variational equality

AW(x) + π (x) + λ
[

inf
y≤x

{(W(y) − γ y) − (W(x) − γ x)}
]
= β. (16)
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Proposition 2. (Verification.) Under Assumptions 1, 2, and 3, the optimal policy is as follows.
If the controlled process Xζ is above the threshold y∗ at a jump time of N, i.e. XζT− > y∗,

the decision maker should take the controlled process Xζ to y∗. Further, the threshold y∗ is
uniquely determined by (15), and the constant β characterized by (10) and (14) gives the
minimum average cost,

β = inf
ζ

lim inf
T→∞

1

T
Ex

[ ∫ T

0
(π (Xs)ds + γ dζs)

]
.

Proof. Define the function

�(x) := inf
y≤x

{(W(y) − γ y) − (W(x) − γ x)}

= {W(y∗) − W(x) + γ (x − y∗)}1[y∗,∞)(x),

and a family of almost surely finite stopping times τ (ρ)ρ>0 as τ (ρ) := τ
ζ
0 ∧ ρ ∧ τ ζρ , where τ ζρ =

inf{t ≥ 0 : Xζt �∈ (1/ρ, ρ)}. By applying the Doléans–Dade–Meyer change of variables formula
to the process W(Xt), we obtain

W(Xt∧τ (ρ)) − W(x) =
∫ t∧τ (ρ)

0
AW

(
Xζs

)
ds +

∫ t∧τ (ρ)

0
σ
(
Xζs

)
W ′(Xζs

)
dBs

+
∑

0≤s≤t∧τ (ρ)

[
W

(
Xζs

) − W
(
Xζs−

)]
.

Because the control ζ jumps only if the Poisson process N jumps, we have that W(Xζs ) −
W(Xζs−) + γ (�ζs) ≥�(Xζs−). By combining these two observations with (16), we get

W(Xt∧τ (ρ)) ≥ W(x) + β(t ∧ τ (ρ)) −
∫ t∧τ (ρ)

0

[
π

(
Xζs

)
ds + γ dζs

] + Zt∧τ (ρ) + Mt∧τ (ρ), (17)

where

Mt :=
∫ t

0
σ
(
Xζs

)
W ′(Xζs

)
dBs, Zt :=

∫ t

0
�

(
Xζs

)
dÑs.

Here, Ñt = (Nt − λt)t≥0 is the compensated Poisson process. It follows from the calculation
above that Zt∧τ (ρ) + Mt∧τ (ρ) is a submartingale and thus Ex[Zt∧τ (ρ) + Mt∧τ (ρ)] ≥ 0. Taking
expectation on both sides, dividing by t ∧ τ (ρ), and letting t, ρ→ ∞, we find that

lim inf
T→∞

1

T
Ex

[
W

(
XζT

) +
∫ T

0
(π

(
Xζs

)
ds + γ dζs)

]
≥ β.

Thus, if lim infT→∞ 1
T Ex[W(XζT )] = 0, it follows that J(x, ζ ) ≥ β; we postpone the proof of

this limiting property to the following lemma.
Next, we prove that J(x, ζ ∗) ≤ β. We proceed as above and note that (17) holds as equality

when ζ = ζ ∗. Hence, the local martingale term MT + ZT is now uniformly bounded from below
by −W(x) − βT , and is therefore a supermartingale. Thus, we have

Ex

[ ∫ T

0

(
π

(
Xζs

)
ds + γ dζ ∗

s

)] ≤ βT + W(x) −Ex[W(XT )] ≤ βT + W(x).

Finally, dividing by T and letting T → ∞, we get J(x, ζ ∗) ≤ β, which completes the proof. �
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14 H. SAARINEN AND J. LEMPA

As is usual in ergodic control problems, we noticed in the proof that the verification theorem
holds under the assumption that lim infT→∞ 1

T Ex[W(XζT )] = 0. Thus, in the following lemma
we give the sufficient condition on π (x) under which the limit equals zero.

Lemma 3. The limit

lim inf
T→∞

1

T
Ex

[
W

(
XζT

)] = 0 (18)

holds if π (x) ≥ C(xα − 1), where α and C are positive constants.

Proof. Let x> y∗. Then W(x) reads

W(x) = (Rλπγ )(x) − β

λ
− γ y∗ + W(y∗) + Cϕλ(x),

W(x) = (Rλπμ)(x) − β

λ
+ γ (x − y∗) + W(y∗) + Cϕλ(x).

Because ϕλ(x) is bounded in this region, we only need to deal with the resolvent term. By the
Markov property and the substitution k = s + T , we find that

Ex[(Rλπγ )(XT )] =
∫ ∞

0
e−λs

Ex
[
EXT

[
πγ (Xs)

]]
ds

=
∫ ∞

0
e−λs

Ex
[
Ex

[
πγ (Xs+T ) |FT

]]
ds

=
∫ ∞

0
e−λs

Ex
[
πγ (Xs+T )

]
ds

= eλT
∫ ∞

T
e−λk

Ex
[
πγ (Xk)

]
dk.

By l’Hôpital’s rule and the assumption that id and π are elements of Lλ1, we find that

lim inf
T→∞

eλT

T

∫ ∞

T
e−λk

Ex
[
πγ (Xk)

]
dk = lim inf

T→∞
1

T
Ex

[
πγ (XT )

]
.

On the other hand, if

lim inf
T→∞

1

T
Ex[XT ]> 0,

there exists T1 such that

Ex[Xs]> ε
s

(α + 1)1/α
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for all s> T1. Together with the assumption π (x) ≥ C(xα − 1), this leads to contradiction as

∞> lim inf
T→∞

1

T
Ex

[ ∫ T

0
(π (Xs)ds + γ dζs)

]

≥ lim inf
T→∞

1

T
Ex

[ ∫ T

0
π (Xs)ds

]

≥ −C + C lim inf
T→∞

1

T
Ex

[ ∫ T

0
Xαs ds

]

≥ −C + C lim inf
T→∞

1

T
Ex

[
εα

α+ 1

∫ T

0
sαds

]
= −C + Cεα lim inf

T→∞ Tα = ∞.

Similarly, we must have

lim inf
T→∞

1

T
Ex[π (XT )] = 0,

and thus conclude that the limit (18) must vanish.
In the opposite case x< y∗, we find by integrating in (9) that

W ′(y)

S′(y)
= γ

S′(y∗)
+

∫ y∗

y
m′(z)(π (z) − β)dz.

Multiplying by S′(x) and integrating over the interval (x, y∗), we have

W(x) = W(y∗) − γ

S′(y∗)

∫ y∗

x
S′(z)dz −

∫ y∗

x

∫ y∗

y
m′(z)(π (z) − β)dzS′(y)dy.

Since the second term is negative and π (x) is positive everywhere, this has the upper bound

W(x) ≤ W(y∗) + β

∫ y∗

x

∫ y∗

y
m′(z)dzS′(y)dy.

As the last integral is positive, we can by Assumption 3 expand the region of the inner integral
to get

W(x) ≤ W(y∗) + β

∫ y∗

x

∫ y∗

0
m′(z)dzS′(y)dy.

Thus,
W(x) ≤ W(y∗) + βm(0, y∗)(S(y∗) − S(x)).

Consequently, the upper bound is of the form W(x) ≤ C0S(x) + C1, where C0 and C1 are con-
stants. Since S(Xt) is a non-negative local martingale [9, p. 88] and hence a supermartingale,
we have

Ex[W(XT )] ≤ C0Ex[S(XT )] + C1 ≤ C0Ex[S(X0)] + C1

= C0S(x) + C1.

Hence, also in this case the limit (18) must vanish. �
Remark 4. Another approach to see that the limit vanishes is to get a suitable upper bound for
W(x). Indeed, if W(x) ≤ A0 + A1π (x) for some constant A0 and A1, then the result also holds
by [39, Lemma 3.1].
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4. Ergodic singular control problem: Connecting the problems

The singular control problem, where the agent is allowed to control the process Xt without
any constraints, is studied in the case of Brownian motion in [21] and in the case of a more
general one-dimensional diffusion in [3, 19]. In this corresponding singular problem the opti-
mal policy is a local time reflecting barrier policy. The threshold y∗

s characterizing the optimal
policy is the unique solution to the optimality condition [3, p. 17]

H(0, y∗
s ) = 0. (19)

Heuristically, one would expect that in the limit λ→ ∞, this optimal boundary y∗
s coincides

with the optimal boundary y∗. This is because, in the limit, the decision maker has more fre-
quent opportunities to exercise control. This is shown in the next proposition after an auxiliary
lemma.

Lemma 4. Let ϕλ(x) be the decreasing solution to the differential equation (A− λ) f = 0, and
assume that x< z; then

ϕλ(z)

ϕλ(x)
λ→∞−−−→ 0.

Proof. Taking the limit λ→ ∞ in [10, p. 18]

Ex[e−λτz ] = ϕλ(z)

ϕλ(x)
,

where τz = inf{t ≥ 0 | Xt = z} is the first hitting time to z, yields the result by monotone
convergence. �

We now have the following result.

Proposition 3. Define a function G : R+ →R as

Ĝ(x) = L(x) + ϕ′
λ(x)

S′(x)m(0, x)
H(0, x).

Let y∗ and y∗
s be the unique solutions to Ĝ(x) = 0 and H(0, x) = 0, respectively. Then Ĝ(y∗

s ) → 0
as λ→ ∞.

Proof. Because H(0, y∗
s ) = 0 and the upper boundary ∞ is natural, we have

Ĝ(y∗
s )

ϕλ(y∗
s )

= L(y∗
s )

ϕλ(y∗
s )

=
∫ ∞

y∗
s

ϕλ(z)

ϕλ(y∗
s )

(πμ(z) − πμ(y∗
s ))m′(z)dz.

Thus, taking the limit λ→ ∞ yields the result by Lemma 4. �
It is also reasonable to expect that when λ increases, it is more likely that the decision maker

postpones the exercise of control as they have more information about the underlying process
available. Therefore, we expect that the optimal threshold y∗ is increasing as a function of λ.
The next proposition shows that this is indeed the case.

Proposition 4. Assume that μ(x)> 0. Then the unique root y∗
λ of the function

Gλ(x) = L(x)

ϕ′
λ(x)

+ H(0, x)

S′(x)m(0, x)

is increasing in λ.

https://doi.org/10.1017/jpr.2020.80 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.80


Ergodic control of diffusions 17

Proof. Let λ̂ > λ. From the proof of Lemma 4, we find that, for every x< z,

ϕλ(z)

ϕλ(x)
≥ ϕ

λ̂
(z)

ϕ
λ̂
(x)
,

which is equivalent to
ϕλ(z)

ϕ
λ̂
(z)

≥ ϕλ(x)

ϕ
λ̂
(x)

. (20)

Because λ̂ > λ, there exists r> 0 such that λ̂= λ+ r. Thus, utilizing the fact that
(A− λ)ϕλ+r = (A− (λ+ r))ϕλ+r + rϕλ+r = rϕλ+r with [2, Corollary 3.2], we have

ϕλ(x)ϕ
λ̂
′(x) − ϕ

λ̂
(x)ϕ′

λ(x) = −rS′(x)
∫ ∞

x
ϕλ(y)ϕλ+r(y)m′(y)dy ≤ 0.

Reorganizing the above, we get
ϕλ(x)

ϕ
λ̂
(x)

≥ ϕ′
λ(x)

ϕ
λ̂
′(x)

. (21)

Combining (20) and (21), we deduce that

ϕλ(z)

ϕ′
λ(x)

≤ ϕ
λ̂
(z)

ϕ
λ̂
′(x)

.

Hence, the function Gλ(x) satisfies

Gλ(x) =
∫ ∞

x

ϕλ(z)

ϕ′
λ(x)

πμ(z)m′(z)dz +
∫ x

0 πμ(z)m′(z)dz

S′(x)m(0, x)
≤ G

λ̂
(x).

This implies that y∗
λ ≤ y∗

λ̂
as, by (4), Gλ(x) is positive in the interval (0, y∗

λ) and has a unique
root. �
Remark 5. The assumption that μ(x)> 0 is somewhat restricting, and is there to guarantee
that πμ(x)> 0. It would be enough that

L(y∗
λ)

ϕ′
λ(y∗

λ)
≤ L(y∗

λ)

ϕ
λ̂
′(y∗
λ)

.

It is often hard to show this exactly; however, in applications it can be verified numerically.

Remark 6. Denote by βs the average cost per unit time of the singular problem. Then β
λ→∞−−−→

βs [28, p. 12].

5. Illustrations

5.1. Verhulst–Pearl diffusion

We consider a standard Verhulst–Pearl diffusion

dXt =μXt(1 − βXt)dt + σXtdWt, X0 = x ∈Rr,
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TABLE 1: The values for the optimal threshold y∗ for some values
of the intensity λ.

λ y∗

5 0.317
10 0.496
50 0.656

100 0.684
1000 0.726

where μ> 0, σ > 0, and β > 0. This diffusion is often used as a model for stochasticly
fluctuating populations [4, 13]. The scale density and speed measure in this case are

S′(x) = x
− 2μ
σ2 e

2μβ
σ2 x

, m′(x) = 2

σ 2
x

2μ
σ2 −2e− 2μγ

σ2 x.

We assume that the cost π (x) = x2 and γ = 1. Hence, πμ(x) = x2 − xμ(1 − βx). In this setting,
we note that if μ> σ 2/2 then

m(0, x) = 2

σ 2

(
σ 2

2μβ

) 2μ
σ2 −1([

�

(
2μ

σ 2
− 1

)
− �

(
2μ

σ 2
− 1,

2μβx

σ 2

)])
.

The minimal excessive functions read [11, pp. 201–203]

ϕλ(x) = xα1 U

(
α1, 1 + α1 − α2,

2μβx

σ 2

)
,

ψλ(x) = xα1 M

(
α1, 1 + α1 − α2,

2μβx

σ 2

)
,

where U and M are Kummer’s confluent hypergeometric functions of the second and first kind
respectively, and

α1 = 1

2
− μ

σ 2
+

√(
1

2
− μ

σ 2

)2

+ 2λ

σ 2
, α2 = 1

2
− μ

σ 2
−

√(
1

2
− μ

σ 2

)2

+ 2λ

σ 2
.

We see that our assumptions are satisfied, and thus the result applies. Unfortunately, (15) for
the optimal threshold y∗, and the formula for the minimum average cost β (14), are compli-
cated and therefore left unstated. However, we can illustrate the results numerically. In Table 1
the optimal threshold y∗ is calculated with the values μ= 1, σ = 1, and β = 0.01 for a few
different values of λ. We see from the table that as λ increases the threshold y∗ gets closer to
the corresponding threshold y∗

s ≈ 0.743 of the singular control problem (19).

5.2. The standard Ornstein–Uhlenbeck process

As remarked in the introduction, the results also hold for R with straightforward changes.
Indeed, we only have to adjust the assumptions slightly, by changing the lower boundary from
0 to −∞ in Assumptions 2 and 3, and change all the formulas accordingly. With this change
we can study a larger class of processes.
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TABLE 2: The value of the optimal threshold y∗ for a controlled Ornstein–Uhlenbeck
process for β = 0.1 and a few choices of λ.

λ y∗

1 0.182
5 0.301

10 0.353
100 0.469
300 0.496

Consider dynamics that are characterized by the stochastic differential equation

dXt = −βXtdt + dWt, X0 = x,

where β > 0. This diffusion is often used to model continuous-time systems that have mean-
reverting behaviour. To illustrate the results we choose the running cost π (x) = |x|, and
consequently πμ(x) = |x| − γβx. The scale density and the density of speed measure in this
case are

S′(x) = exp
(
βx2), m′(x) = 2 exp

( − βx2),
and the minimal excessive functions read [10, pp. 141]

ϕλ(x) = e
βx2

2 D−λ/β
(

x
√

2γ
)
, ψλ(x) = e

βx2

2 D−λ/β
(

− x
√

2γ
)
,

where Dν(x) is a parabolic cylinder function. Equation (15) for the optimal threshold again
takes a rather complicated form and thus the results are only illustrated numerically in Table 2.
In the singular control case (19) gives y∗

s ≈ 0.535. Thus, as expected, the threshold value y∗
gets closer to y∗

s when λ increases.

6. Conclusions

We have considered ergodic singular control problems with the constraint of a regular one-
dimensional diffusion. Relying on basic results from the classical theory of linear diffusions,
we characterized the state after which the decision maker should apply an impulse control
to the process. Our results are in agreement with the findings of [3], where the correspond-
ing unconstrained singular control problem is studied. Indeed, no second-order or symmetry
properties of the cost are needed. In addition, we proved that as the decision maker gets more
frequent chances to exercise control, the value of the problem converges to that of the singular
problem.

There are a few directions in which the constrained problems could be studied further. To
the best of our knowledge, the finite-horizon problem with constraint remains open, even for
the case of Brownian motion. Thus, it would be interesting if a similar analysis to [21] could be
extended to also cover this case. In this case, we would expect similar connections between the
finite-horizon time and the present problem as for those without any constraints [21, p. 241].

Moreover, the related two-sided problem, where the decision maker could control both
downwards and upwards, but only at jump times of a Poisson process, could be studied.
Unfortunately, these extension are outside the scope of the present study, and are therefore
left for future research.
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