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thrust bearings
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We present a detailed derivation of the Reynolds equation and its corresponding energy
equation for three-dimensional, steady, laminar, compressible flows of single-phase
Navier–Stokes fluids in thrust bearings. These equations are shown to be valid over most of
the dense and supercritical gas regime except for the vicinity of the thermodynamic critical
point. It is shown that the primary thermodynamic function governing the lubrication
flow of high-pressure gases is the effective bulk modulus defined as the ratio of the bulk
modulus to the shear viscosity. Numerical solutions to our Reynolds equation are obtained
using a finite difference scheme for both moderate and high-speed flows. Approximate
solutions to our Reynolds equation for high-speed flows are also derived through a
perturbation analysis. It is found that boundary layers form on three out of four edges of
the thrust pad. At the inner and outer radii of the pad, the flow is governed by a nonlinear
heat equation. As the main flow leaves the pad, the flow is governed by a nonlinear
relaxation equation. These three boundary layer solutions are rendered consistent by the
construction of boundary layer solutions in the corner regions. A composite solution
is developed which provides a single approximation and has the same accuracy as the
individual approximations in their respective regions of validity.

Key words: compressible flows, lubrication theory

1. Introduction

The science of thin viscous films has been developed for a wide variety of applications
including the lubrication of mechanical components, the spreading of droplets, coating
processes, particle–particle interactions and biomechanics. It is well known that the flow
dynamics in such films is governed by the Reynolds equation which, in its simplest form,
is written as

d
dx

(
h3 dp

dx

)
= 6μU

dh
dx

, (1.1)
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where x is the spatial variable in the main flow direction, h = h(x) is the film thickness,
p = p(x) is the fluid pressure, μ > 0 is the constant shear viscosity and U is a
measure of fluid velocity in the main flow direction. Since first introduced by Osborne
Reynolds (1886), equation (1.1) has formed the foundation of lubrication theory. To
date, many scientists and engineers have extended (1.1) to include the effects of three
dimensionality, non-Newtonian fluids, unsteadiness, turbulence, phase changes and more
complex configurations.

The key restrictions involved with the derivation and generalization of (1.1) are that

ho

L
� 1 and Re

h2
o

L2 � 1, (1.2a,b)

where ho is a measure of the thickness of the fluid layer, L is a measure of spatial variations
in the main flow direction and Re is the Reynolds number based on U and L. The first
equation of (1.2a,b) requires that the fluid layer be thin compared with the length scales
associated with the variations in the main flow direction. The result of applying the second
equation of (1.2a,b) is that flow inertia is negligible and that the dynamics is governed by
a balance of shear and pressure forces.

Interest in replacing liquids with gases as lubricating fluids has been increasing with the
development of advanced power systems and turbomachinery; see, e.g. Dostal, Driscoll
& Hejzlar (2004), DellaCorte et al. (2008), Zagarola & McCormick (2006), Wright et al.
(2010), Conboy et al. (2012), Crespi et al. (2017). The advantages of gases over liquids
include the obvious weight reduction for aeronautical and space applications, the reduction
of fouling due to oil leaks and the elimination of complications due to cavitation. The shear
viscosity of gases is known to be smaller than that of liquids; as a result, gas lubrication can
reduce the friction losses of rotating machines. However, in order to generate the normal
stresses required to support a given load, the speed must be higher than that in viscous
liquids. Gas lubrication therefore tends to be compressible.

When ideal, i.e.low pressure, gases are of interest, the perfect gas model is used to
modify the Reynolds equation (1.1) to account for the compressibility of the gas film.
This approach is found in many studies (Pinkus & Sternlicht 1961; Gross et al. 1980;
Hamrock, Schmidt & Jacobson 2004; Peng & Khonsari 2004; DellaCorte et al. 2008;
Szeri 2010). Recently, research has focused on lubrication with pressurized gases, i.e.gases
corresponding to pressures and temperatures of the order of that of the thermodynamic
critical point. These studies include those of Conboy (2013), Kim (2016), Dousti & Allaire
(2016), Qin (2017), Heshmat, Walton & Cordova (2018) and Guenat & Schiffmann (2018)
who employed numerical schemes to solve different versions of their Reynolds equation.
Most of these studies evaluated the thermodynamic properties of pressurized gases using
digital table lookups. Examples include the NIST REFPROP database (Lemmon, Huber
& McLinden 2002) used by Conboy (2013), Kim (2016) and Qin (2017), and the CoolProp
database (Bell et al. 2014) used by Guenat & Schiffmann (2018). While table lookups
can be useful in detailed numerical simulations of specific configurations, it is difficult to
identify key physical and thermodynamic parameters governing the flow; the present study
identifies these key factors. The numerical results of Dousti & Allaire (2016) used a gas
model based on a linear pressure-density relation, but this model may not be valid over the
full range of thermodynamic states corresponding to the dense gas and supercritical fluid
regime (Heshmat et al. 2018).

Analytical studies include those of Marusic-Paloka & Starcevic (2010) and Ciuperca
et al. (2018) who carried out a derivation of the Reynolds equation for isothermal steady
flows followed by proofs of existence and uniqueness. Almqvist et al. (2019) examined
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laminar isothermal thin film flows with an equation of state of the form ρ = const. × pβ ,
where β is a constant and ρ is the density. For an ideal gas, the authors have argued
that inertial effects will be non-negligible if the Mach number (referred to as a modified
Reynolds number in the article) is of order one. Almqvist et al. (2019) also presented
a comparison of the solutions to a one-dimensional steady Reynolds equation to those
of a Navier–Stokes solver for an ideal gas, slider bearing and moderate values of the
speed number. For the cases considered, it was shown that the differences between
the Navier–Stokes and Reynolds solution were less than 10 %. The conclusion that the
Reynolds equation breaks down when the Mach number becomes of order one was
also made by Dupuy, Bou-Said & Tichy (2015) who examined a subsonic laminar
quasi-one-dimensional steady flow using an ideal gas and an assumed velocity profile.
This conclusion mirrors those of Chien (2019), Chien, Cramer & Untaroiu (2017) and the
present study in which it was concluded that the Reynolds equation is no longer accurate
when the Mach number is order one; the primary difference is that the conclusions of
these authors are based on the role of thermal expansion in high-pressure environments.
Dupuy et al. (2016) have examined the effects of turbulent high subsonic and supersonic
flows of a perfect gas in a slider bearing. The main results were obtained by numerical
solutions of the Navier–Stokes equations. Regions of supersonic flow were identified and
it was concluded that shock waves were possible in these thin film flows.

The transport and thermodynamic properties of pressurized gases, particularly
supercritical fluids, are known to have a rapid and sometimes singular dependence on
density and temperature; see, e.g. figures 3–6 of Chien et al. (2017). Chien et al. (2017)
performed a careful analysis to examine the approximations leading to the Reynolds
equation for compressible lubrication flows in pressurized gases. They derived a general
form of the Reynolds and corresponding temperature equation and delineated their region
of validity. Besides the usual lubrication approximations, i.e.(1.2a,b), and mild conditions
on the imposed temperature difference between isothermal walls, their analysis revealed
that the validity of the Reynolds equation further requires the thermodynamic states to be
sufficiently far from the thermodynamic critical point. Chien et al. (2017) also showed that
energy convection is negligible whenever the Reynolds equation is valid.

Chien & Cramer (2019a,b,c) derived the approximate solutions to the Reynolds and
corresponding temperature equations of Chien et al. (2017) for high-speed high-pressure
lubrication flows between non-concentric cylinders. Their results provide the explicit
formulae for the local values of the pressure, temperature and heat flux in terms of material
functions, e.g. the viscosity, bulk modulus and thermal expansivity (Chien & Cramer
2019b). The approximations for global parameters, including the total force and total
friction loss, were also developed in Chien & Cramer (2019a,b). While the numerical and
analytic results of Chien & Cramer (2019a,b,c) delineate the effects of pressurization for
a simple two-dimensional configuration, the complication due to the three dimensionality
of the flow has not yet been investigated in their analysis.

The goal of the present study is to examine the compressible lubrication flows in a thrust
bearing for pressurized gases. The thrust bearing is commonly used in a wide variety
of applications, including the automotive, marine and aerospace industries whenever a
rotating shaft also carries an axial load. An example of the geometry of a thrust bearing is
sketched in figure 1. The upper portion of the bearing is a plate or disk which rotates with
the angular speed ω; we refer to this rotating surface as the ‘rotor’. A lower plate remains
stationary and is separated from the rotor by a lubricating fluid; this stationary plate will
be referred to as the ‘stator’. In order to generate normal forces, a variation in the film
thickness is required; this is provided by the series of sector-shaped pads sketched at the
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Load

ω

�θ

Rotor

Lubricant Bearing pad

or stator

Bearing pad

Ri

Ro

Figure 1. Schematic diagram of a thrust bearing.

right of figure 1. These pads result in a variation of the film thickness in the direction
of rotation which, in turn, results in an increase of pressure over the background static
pressure.

In the first part of the present study we outline the derivation of the Reynolds
equation governing the compressible high-pressure flow over a bearing pad. While
previous studies have only considered either ideal gases or have not examined the role
of singularities occurring at the thermodynamic critical point, our detailed derivation
provides a justification of the Reynolds equation in the high-pressure and supercritical
regimes and gives explicit limits on its use.

The form of our Reynolds equation is seen to differ from those of previous investigations
in that it is a single equation for the density. More importantly, we find that the flow
over the pad is governed by a single thermodynamic function referred to as the effective
bulk modulus as well as a dense gas version of the speed number. Both the effective bulk
modulus and the speed number are defined explicitly in § 3.

We then provide numerical solutions to the derived Reynolds equation. These reveal
previously unanticipated regions of strong gradients in the density and pressure on three
out of the four edges of the pad when the speed number becomes large. The second part
of the present study provides a deeper look at the flow structure when the speed number
becomes large by constructing approximate solutions to the Reynolds equation. The flow is
found to consist of a core region in which the lowest-order density is inversely proportional
to the film thickness, boundary layers at the inner and outer edges of the pad, and a
third boundary layer formed where the flow leaves the pad. Each approximation is made
consistent with that in the neighbouring regions through use of the method of matched
asymptotic expansions (MMAE). In § 11 we construct a composite solution which reduces
to the individual approximations in their respective regions. This composite solution is
then compared with the solutions to the exact Reynolds equation.

2. Formulation

Because of the symmetry, we consider only the single bearing pad sketched in figures 2
and 3. We take the flow to be three-dimensional, steady, compressible, single-phase and
laminar. The body force and volumetric energy supplies are taken to be zero. We consider
the pressures and temperatures to be outside of the liquid-like regime. The top view of a
single pad corresponding to figure 1 is sketched in figure 2. The rotor, stator and the main

939 A38-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.240


Compressible high-pressure lubrication flows in thrust bearings

Flow

direction

�θ

θ

Pad

Ro

r

y

x

Ri

Figure 2. Sketch of a single bearing pad (top view).

flow lie in the x–y or r–θ plane. The radii of the inner and outer boundaries of the pad
are denoted by Ri and Ro, respectively. The width of the pad is denoted as �θ ≡ θend.
The side view of the bearing pad, as viewed from the origin of figure 2, is sketched in
figure 3. The rotor surface is located at z = ho = const. and has the constant angular speed
ω in the positive θ -direction. In general, the equation of the stator surface can be taken to
be z = hof (θ, r/L), where L is any reasonable measure of the length of the pad in the θ

direction; throughout this study we have taken L = Ri. Generally, the function f (θ, r/L)

can be any sufficiently smooth function. The gap width therefore is

h = h
(
θ,

r
L

)
= ho(1 − f ). (2.1)

We will place the positive x-axis at the leading edge of the pad so that the pad occupies

Ri ≤ r ≤ Ro, 0 ≤ θ ≤ θend. (2.2)

The boundary conditions for the fluid are

vr = vθ = vz = 0 on z = hof
(
θ,

r
L

)
, (2.3)

vr = vz = 0 and vθ = rω on z = ho, (2.4a,b)

where vr, vθ and vz are the r-, θ - and z-components of the fluid velocity. We follow the
previous investigations of Conboy et al. (2012), Conboy (2013), Qin (2017) by requiring
that the pressures all have the same value at θ = 0, θ = θend, r = Ri and r = Ro. Thermal
boundary conditions include the isothermal-wall condition where the surfaces of the rotor
and stator have fixed known temperatures, and the adiabatic-wall condition where one of
the walls is taken to be adiabatic and another wall has a fixed known temperature.
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�θ = θend

ho  f (θend)

z = ho  f (θ)

Vrotor =  ω r eθ

ho

Pad

z

Rotor

Stator

Lubricant

Figure 3. Schematic diagram of a thrust bearing. View from the origin of figure 2. As indicated in the figure,
the primary direction of flow is from right to left.

The non-dimensional steady flow Navier–Stokes equations in cylindrical polar
coordinates can now be written as

1
r̄

∂(ρ̄ r̄v)

∂ r̄
+ 1

r̄
∂(ρ̄u)

∂θ
+ ∂(ρ̄w)

∂ z̄
= 0, (2.5)

Re
h2

o

L2 ρ̄

(
v̄ · ∇̄v − u2

r̄

)
+ ∂ p̄

∂ r̄
= ∂τ̄zr

∂ z̄
+ h2

o

L2
1
r̄

[
∂(r̄τ̄rr)

∂ r̄
+ ∂(r̄τ̄θr)

∂θ
− τ̄θθ

]
, (2.6)

Re
h2

o

L2 ρ̄
(
v̄ · ∇̄u − uv

r̄

)
+ 1

r̄
∂ p̄
∂θ

= ∂τ̄zθ

∂ z̄
+ h2

o

L2

[
1
r̄2

∂(r̄2τ̄θr)

∂ r̄
+ 1

r̄
∂τ̄θθ

∂θ

]
, (2.7)

Re
h4

o

L4 ρ̄v̄ · ∇̄w + ∂ p̄
∂ z̄

= h2
o

L2

[
1
r̄

∂(r̄τ̄rz)

∂ r̄
+ 1

r̄
∂τ̄θz

∂θ
+ ∂τ̄zz

∂ z̄

]
, (2.8)

Re
h2

o

L2 Prρ̄cpv̄ · ∇̄T̄ = PrEc(βT v̄ · ∇̄p̄ + Φ̄)

+ h2
o

L2

[
1
r̄

∂

∂ r̄

(
r̄k̄

∂T̄
∂ r̄

)
+ 1

r̄
∂

∂θ

(
k̄
r̄
∂T̄
∂θ

)]

+ ∂

∂ z̄

(
k̄
∂T̄
∂ z̄

)
, (2.9)

where r̄ = r/L and z̄ = z/ho. The scaled velocity vector is denoted as v̄ ≡ (u, v, w)

such that vθ ≡ Uu, vr ≡ Uv, vz ≡ Uwho/L. The scalings for the thermodynamic pressure,
density and temperature are

p̄ = ( p − pref )
h2

o

μref UL
, ρ̄ = ρ

ρref
and T̄ = T − Tref

�T
, (2.10a–c)

respectively, where the subscript ‘ref’ denotes the value of quantities evaluated at a
reference thermodynamic state. This reference state is simply a thermodynamic state
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representative of the order of magnitude of the states occurring in the flow. Throughout
this study, we take the reference state to be that at θ = 0. The quantity �T is a measure
of the temperature differences occurring in the flow. The shear viscosity (μ), thermal
conductivity (k) and the specific heat at constant pressure (cp) are scaled as

μ̄ = μ(ρ, T)

μref
, k̄ = k(ρ, T)

kref
and c̄p = cp(ρ, T)

cpref
, (2.11a–c)

respectively. The quantity β ≡ β(ρ, T) is the dimensional thermal expansivity. The
non-dimensional parameters are defined as

Re ≡ ρref UL
μref

= the Reynolds number, (2.12)

Pr ≡ μref cpref

kref
= the Prandtl number, (2.13)

Ec ≡ U2

cpref �T
= the Eckert number. (2.14)

The components of the non-dimensional stress tensor are given by

τ̄rr = 2μ̄
∂v

∂ r̄
+ λ̄(∇̄ · v̄), (2.15)

τ̄θθ = 2μ̄

(
1
r̄

∂u
∂θ

+ v

r̄

)
+ λ̄(∇̄ · v̄), (2.16)

τ̄zz = 2μ̄
∂w
∂ z̄

+ λ̄(∇̄ · v̄), (2.17)

τ̄rθ = τ̄θr = μ̄

[
r̄

∂

∂ r̄

(u
r̄

)
+ 1

r̄
∂v

∂θ

]
, (2.18)

τ̄rz = τ̄zr = μ̄

[
h2

o

L2
∂w
∂ r̄

+ ∂v

∂ z̄

]
, (2.19)

τ̄θz = τ̄zθ = μ̄

[
∂u
∂ z̄

+ h2
o

L2
1
r̄

∂w
∂θ

]
, (2.20)

where λ̄ = λ(ρ, T)/μref is the scaled second viscosity λ; for the present purposes, we
can regard λ̄ = O(1). The scaled stress components (2.15)–(2.20) are related to the
dimensional stress components by

τ̄rr = L
μref U

τrr, τ̄θθ = L
μref U

τθθ , τ̄zz = L
μref U

τzz; (2.21a–c)

τ̄rθ = L
μref U

τrθ , τ̄rz = ho

μref U
τrz, τ̄θz = ho

μref U
τθz. (2.22a–c)
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The non-dimensional viscous dissipation is given by

Φ̄ = h2
o

μref U2 Φ = 2μ̄
h2

o

L2

[(
∂v

∂ r̄

)2

+
(

1
r̄

∂u
∂θ

+ v

r̄

)2

+
(

∂w
∂ z̄

)2
]

+ μ̄

[
h2

o

L2

(
1
r̄

∂v

∂θ
+ ∂u

∂ r̄
− u

r̄

)2

+
(

∂u
∂ z̄

+ h2
o

L2
1
r̄

∂w
∂θ

)2

+
(

h2
o

L2
∂w
∂ r̄

+ ∂v

∂ z̄

)2]

+ h2
o

L2 λ̄(∇̄ · v̄)2. (2.23)

Equations (2.5)–(2.8) are recognized as the scaled versions of the mass equation and the
r-, θ - and z-components of the momentum equation. Equation (2.9) is the energy equation
written in terms of the scaled temperature and pressure.

3. Three-dimensional compressible Reynolds equation

We now apply the well-known approximation of lubrication theory, i.e.(1.2a,b), to the
exact Navier–Stokes equations (2.5)–(2.8). The results are

1
r̄

∂(ρ̄ r̄v)

∂ r̄
+ 1

r̄
∂(ρ̄u)

∂θ
+ ∂(ρ̄w)

∂ z̄
= 0, (3.1)

∂ p̄
∂ r̄

= ∂

∂ z̄

(
μ̄

∂v

∂ z̄

)
+ O

(
Re

h2
o

L2 ,
h2

o

L2

)
, (3.2)

1
r̄

∂ p̄
∂θ

= ∂

∂ z̄

(
μ̄

∂u
∂ z̄

)
+ O

(
Re

h2
o

L2 ,
h2

o

L2

)
, (3.3)

∂ p̄
∂ z̄

= O
(

Re
h4

o

L4 ,
h2

o

L2

)
= O

(
h2

o

L2

)
. (3.4)

Inspection of (3.4) reveals that the pressure variation across the gap is negligible, i.e.p̄ ≈
p̄(r̄, θ) only. As a result, (3.2) and (3.3) can be integrated with respect to z̄ at least once.

To proceed further we need to determine the density variations across the fluid gap. In
the present study we take the fluid state to be sufficiently far from that corresponding to the
thermodynamic critical point. Under these conditions the Prandtl number, ratio of specific
heats, γ = γ (ρ, T), βT = βT(ρ, T), and the Grueneisen parameter

G ≡ βa2

cp
, (3.5)

can be taken to be O(1). Here

a = a(ρ, T) ≡
√

∂p
∂ρ

∣∣∣∣
s
=

√
γ

κT

ρ
, (3.6)

is the thermodynamic sound speed, s denotes the entropy and

κT = κT(ρ, T) ≡ ρ
∂p
∂ρ

∣∣∣∣
T

≥ 0 (3.7)

is the bulk modulus. With these restrictions, Chien (2019) has shown that changes in the
density due to thermal expansion are of order M2

ref ≡ U2/a2
ref if either the rotor or stator
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surfaces are adiabatic. If the rotor and stator have specified constant temperatures, Chien
(2019) has further required that the temperature changes �T satisfy �T/Tref = O(M2

ref ).
In order that the flow be compressible, Chien (2019) has also shown that

M2
ref = O

(
Re

h2
o

L2

)
� 1. (3.8)

The resultant scaled expressions for the derivatives of ρ are

1
ρ̄

∂ρ̄

∂ r̄
=

M2
ref

Re
h2

o

L2

γ

ρ̄ā2
∂ p̄
∂ r̄

+ O(M2
ref ), (3.9)

1
ρ̄

∂ρ̄

∂θ
=

M2
ref

Re
h2

o

L2

γ

ρ̄ā2
∂ p̄
∂θ

+ O(M2
ref ), (3.10)

1
ρ̄

∂ρ̄

∂ z̄
= O

(
Pr

h2
o

L2 , PrRe
h2

o

L2

)
� 1. (3.11)

From (3.11) we see that we can take ρ̄ = ρ̄(r, θ) only. From (3.9) and (3.10) we see that
the density variations are primarily due to the pressure variations.

To evaluate the changes in the shear viscosity, we expand μ in a Taylor series for T ≈
Tref , i.e.

μ(ρ, T) − μ(ρ, Tref )

μref
= Tref

μref

∂μ

∂T

∣∣∣∣
ρ

�T
Tref

T̄ + · · · = O(Mref
2) � 1. (3.12)

Here we used the condition that β�T = O(M2
ref ) � 1 or, for isothermal stator and rotor

surfaces, our imposed condition that �T/Tref = O(M2
ref ) � 1, each of which was derived

in Chien (2019). We have also recognized that

Tref

μref

∂μ

∂T

∣∣∣∣
ρ

= O(1). (3.13)

Hence, the variation of the shear viscosity can be taken to be dependent on density only,
i.e.

μ(ρ, T) ≈ μ(ρ, Tref ) ≈ μ(r, θ). (3.14)

If we carry out a similar analysis for the thermal conductivity, bulk modulus and thermal
expansion coefficient, we find that

k(ρ, T) ≈ k(ρ, Tref ) ≈ k(r, θ), (3.15)

κT(ρ, T) ≈ κT(ρ, Tref ) ≈ κT(r, θ), (3.16)

βT(ρ, T) ≈ βT(ρ, Tref ) ≈ βT(r, θ), (3.17)

whenever the flow is not in the vicinity of the thermodynamic critical point.
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We now can integrate the r̄- and θ -momentum equations, i.e.(3.2) and (3.3), twice with
the boundary conditions (2.3) and (2.4a,b). The results are

u = 1
2μ̄r̄

∂ p̄
∂θ

(z̄ − 1)(z̄ − f ) + r̄
1 − f

(z̄ − f ), (3.18)

v = 1
2μ̄

∂ p̄
∂ r̄

(z̄ − 1)(z̄ − f ). (3.19)

If we substitute (3.18) and (3.19) in the mass equation (3.1) and integrate from z̄ = f to
z̄ = 1, we then obtain the compressible Reynolds equation for the thrust bearing

1
r̄

∂

∂ r̄

(
ρ̄ r̄h̄3

μ̄

∂ p̄
∂ r̄

)
+ 1

r̄
∂

∂θ

(
ρ̄h̄3

μ̄r̄
∂ p̄
∂θ

− 6ρ̄ r̄h̄
)

= 0, (3.20)

where h̄ = h/ho. Examination of (3.9) and (3.10) reveals that the variations of p in the r-
and θ -direction can be regarded as being proportional to the variation of ρ in the r- and
θ -direction, respectively, i.e.

∂p
∂ r̄

≈ κT(ρ, Tref )

ρ

∂ρ

∂ r̄
[1 + O(M2

ref )], (3.21)

∂p
∂θ

≈ κT(ρ, Tref )

ρ

∂ρ

∂θ
[1 + O(M2

ref )], (3.22)

where (3.7) has been used. If we substitute (3.21) and (3.22) in (3.20), we then obtain the
non-dimensional compressible Reynolds equation in cylindrical polar coordinates, i.e.

1
r̄

∂

∂ r̄

(
r̄h̄3κ̄Te(ρ̄)

∂ρ̄

∂ r̄

)
+ 1

r̄
∂

∂θ

(
h̄3κ̄Te(ρ̄)

r̄
∂ρ̄

∂θ

)
= Λ

∂(ρ̄h̄)

∂θ
, (3.23)

where the quantity κTe is the effective bulk modulus defined as

κTe ≡ κTe(ρ, Tref ) ≡ κT(ρ, Tref )

μ(ρ, Tref )
, (3.24)

and the scaled version of effective bulk modulus is denoted as

κ̄Te ≡ κTe(ρ, Tref )

κTe(ρref , Tref )
= κTe(ρ, Tref )

κTe|ref
. (3.25)

The effective bulk modulus gives a measure of relative importance of the local fluid
stiffness to the fluid friction. The quantity

Λ ≡ 6UL
h2

oκTe|ref
, (3.26)

is the speed number and is regarded as a measure of flow compressibility. As mentioned
in § 2, we take the pressure to be the reference value at the boundaries of the pad. The
above analysis has demonstrated that the temperature is approximately Tref . Thus, ρ is
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approximately ρref at the boundaries and the Reynolds equation (3.23) must satisfy

ρ̄ = 1 at θ = 0, r̄ ∈
[

1,
Ro

Ri

]
, (3.27)

ρ̄ = 1 at θ = θend, r̄ ∈
[

1,
Ro

Ri

]
, (3.28)

ρ̄ = 1 at r̄ = 1, θ ∈ [0, θend], (3.29)

ρ̄ = 1 at r̄ = Ro

Ri
, θ ∈ [0, θend]. (3.30)

Once the density is determined from (3.23) and (3.27)–(3.30), the velocity components
are obtained by combining (3.18) and (3.19) with (3.21) and (3.22) to yield

u = r̄
1 − f

(z̄ − f ) + 1
Λ

κ̄Te

2r̄ρ̄
∂ρ̄

∂θ
(z̄ − 1)(z̄ − f ), (3.31)

v = 1
Λ

κ̄Te

2ρ̄

∂ρ̄

∂ r̄
(z̄ − 1)(z̄ − f ). (3.32)

The first term on the right of (3.31) is recognized as a Couette-like term due to the fluid
being dragged over the pad by the rotor. The second term on the right of (3.31) and the
term on the right of (3.32) represent the flow induced by the pressure gradients. When
Λ = O(1), the velocities are combinations of the rotor-induced flow and the flow due to
pressure gradients. When Λ � 1, the flow is primarily due to the rotor motion and is in
the θ -direction. It is of interest to note that separation is not possible when Λ is large even
in the end boundary layer discussed in § 9; this is due to the fact that f ≤ z̄ ≤ 1 and that ρ̄

decreases with θ in the end boundary layer.
The direction of the local velocity due to the pressure gradients is seen to be given

by the relative size of the density gradients computed from the Reynolds equation. The
magnitude of the pressure induced velocity is proportional to the effective bulk modulus
and the magnitude of the density gradients.

4. Energy equation

When we apply the lubrication approximation (1.2a,b) to the temperature equation (2.9)
the resultant simplified temperature equation reads as

∂

∂ z̄

(
k̄
∂T̄
∂ z̄

)
= −Pr Ec

[
βT

(
v
∂ p̄
∂ r̄

+ u
r̄

∂ p̄
∂θ

)
+ Φ̄

]
+ O

(
Re

h2
o

L2 Pr,
h2

o

L2

)
, (4.1)

where

Φ̄ ≈ μ̄

[(
∂u
∂ z̄

)2

+
(

∂v

∂ z̄

)2
]

, (4.2)

when Pr = O(1). Thus, when the thermodynamic states are sufficiently far from the
critical point, the energy convection terms are negligible; a similar result was demonstrated
by Chien et al. (2017) for the case of a journal bearing. The temperature distribution is
determined by a balance of conduction in the z-direction, viscous dissipation and flow
work.

Due to (3.14), (3.15) and (3.17) and the fact that T ≈ Tref , we found that the temperature
equation can be integrated explicitly. The only function of z̄ will be introduced by
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combining (3.18) and (3.19) with (4.1) and (4.2). Details of the integrations are supplied in
Appendix A for the cases of having adiabatic surfaces and that where the rotor and stator
have fixed known temperatures.

5. Near-critical region

In §§ 3 and 4 we have taken the pressures and temperatures to be sufficiently far from the
near-critical region. When the thermodynamic state is in the vicinity of the thermodynamic
critical point, i.e.ρ ≈ ρc and T ≈ Tc, the quantities of βT, cp and Pr become singular
(Chien et al. 2017) such that the Reynolds equation (3.23) and its corresponding simplified
temperature equation (4.1) are no longer valid.

Examination of (3.2)–(3.4) reveals that the pressure will remain nearly constant in the
z-direction, and the flow inertia will remain negligible in the near-critical region. However,
when

Pr Re
h2

o

L2 = O(1), (5.1)

which will occur near the thermodynamic critical point, energy convection is no longer
negligible in (4.1). If we apply (5.1) to (3.11), we can further show that the variation of
density in the z-direction will no longer be negligible, i.e.

1
ρ̄

∂ρ̄

∂ z̄
= O(1). (5.2)

While the shear viscosity is found to remain independent of temperature, the density
variation with z will imply that μ = μ(r, θ, z). As a result, a simple integration of (3.2) and
(3.3) becomes impossible. Therefore, the Reynolds equation (3.23) and its corresponding
simplified temperature equation (4.1) are insufficient to describe the compressible
lubrication flows when (5.1) holds. These results are consistent with the finding of Chien
et al. (2017) for a two-dimensional configuration. In the present three-dimensional case,
we follow the analysis of Chien et al. (2017) to find that near-critical effects lead to a
breakdown of the present theory whenever

ρ − ρc

ρc
= O

(
Re

h2
o

L2

)1/2

and
T − Tc

Tc
= O

(
Re

h2
o

L2

)3/2

. (5.3a,b)

In the remainder of this paper, we take the flow to be sufficiently far from this near-critical
region so that (3.23), (3.31) and (3.32), and (4.1) and (4.2) hold.

6. Numerical scheme for Reynolds equation

In order to obtain the numerical solution to the compressible Reynolds equation (3.23)
we impose the boundary conditions (3.27)–(3.30) and employ a numerical scheme based
on a finite difference method. The fluid domain is discretized using a uniform grid with
rectangular elements in r–θ space. A central difference scheme is applied to both the first
and second derivatives in (3.23). The resulting system of equations is coupled with the
Redlich–Kwong–Soave (RKS) equation of state described in Reid, Prausnitz & Poling
(1987) and the viscosity model of Chung et al. (1988), Chung, Lee & Starling (1984). A
detailed discussion of the Chung et al model and its accuracy is found in Reid et al. (1987).
The specific heats were computed from the polynomial fits found in Appendix A of Reid
et al. (1987) and standard thermodynamic identities for the density dependencies. Once
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θ

0

0.5

1.0

1.5

0.2 0.4 0.6 0.8

h‾ (θ)

Figure 4. Film thickness function h̄ ≡ h̄(θ).

discretized, the resultant system of algebraic equations was solved using a iterative linear
solver provided by MATLAB. The iteration process begins with an initial guess for ρ̄ and
continues until the average variation of ρ̄ is less than 10−5. The pressure distribution is
obtained by substituting the resultant density field into the RKS equation of state.

In order to investigate dependence on the resolution, we compared the numerical results
of grids of 100, 200 and 300 elements in the r direction and 200, 400, 600, 800 and 1000
elements in the θ direction. Grid convergence was checked by integrating the computed
pressure to obtain the axial load. It was found that grids of 200 × 800 yielded 0.01 %
difference in the load when compared with a grid of 300 × 1000. In the remainder of this
study, we take the gap thickness of the pad sketched in figures 2 and 3 to be independent
of r and given by

h̄ =
{

1 + (h̄s − 1) sin(π
2

θ
θs

) for 0 ≤ θ ≤ θs,

h̄s for θs ≤ θ ≤ θend,
(6.1)

with h̄s ≡ 1/2, θs ≡ π/12 and θend ≡ π/4 and δo = Ro/Ri = 2. We have plotted the
function (6.1) in figure 4. The region where h̄ increases from 1 to h̄s will be referred
to as the ramp or ramp region. The region where h̄ = h̄s = const. will be referred to as
the plateau or plateau region. We select the fluid to be carbon dioxide (CO2) and the
physical parameters of CO2 to be taken from Reid et al. (1987). Unless stated otherwise,
we take the reference specific volume, i.e.V ≡ 1/ρ, and the reference temperature to be
Vref ≡ V(θ = 0, r) = 5Vc and Tref ≡ T(θ = 0, r) = 1.05Tc, respectively. The pressure at
these points is approximately 38.7 bar so that the thermodynamic state can be regarded as
that of a dense gas or, due to our choice of temperature, a slightly supercritical fluid.

We have plotted the variation of the scaled density at the centreline of the pad in the r
direction, i.e.at r = 1.5Ri, for Λ = 5, 15, 25, 35 and 45 in figure 5. The variation of ρ̄ with
respect to r̄ ≡ r/Ri is illustrated in figure 6 at θ = θend/2. Contours of the density variation
for Λ = 5, 25 and 45 are plotted in figure 7. As the gap width decreases with θ , the density
and, because the flow is nearly isothermal, the pressure increases until the plateau region
is reached. When Λ = O(1), e.g. at Λ = 5, the pressure and density vary gradually over
the pad. As the speed number increases, the overall density and pressure levels increase
and become nearly constant in the plateau region. As shown in § 7, the density approaches
h̄−1 as Λ −→ ∞. Because the value of h̄ at the boundary is not equal to one there will be
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Figure 5. Scaled density vs θ at r = 1.5Ri. The reference state Vref = 5Vc and Tref = 1.05Tc.

0

0.5

1.0

1.5

2.0

2.5

ρ
/
ρ

re
f

r/Ri

Λ = 45

Λ = 35

Λ = 25

Λ = 15

Λ = 5

1.0 1.2 1.4 1.6 1.8 2.0

Figure 6. Scaled density vs r/Ri at θ = θend/2 = π/8. The reference state Vref = 5Vc and Tref = 1.05Tc.

a rapid variation of density and pressure near the r = Ri, Ro and θ = θend boundaries. The
formation of these boundary layers is clearly seen in figures 5–7. Such boundary layers are
always expected to occur when Λ is large and the pad thickness is non-zero at the edges.

The numerical results for large Λ suggest that the axial load on the rotor will increase not
only because the densities and pressures increase with Λ, but that the maximum pressures
are distributed over most of the pad at high-speed numbers. We also note that the regions
of large gradients will pose challenges in numerical studies; the scalings associated with
the boundary layer regions are of particular interest. We investigate this important special
case in the following sections.

7. Large speed number approximation

In the remaining sections we seek approximate solutions to the Reynolds equation (3.23)
for high-speed flows, i.e.flows with large speed numbers. In addition to the condition that
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Figure 7. Distribution of scaled density at Vref = 5Vc and Tref = 1.05Tc. Contour lines are drawn at equal
intervals of ρ̄ between 1 and 2. Results are shown for (a) Λ = 5, (b) Λ = 25 and (c) Λ = 45.

h̄ = h̄(θ ) we further require that

h̄ = 1 at θ = 0 and r̄ ∈ [1, δo], (7.1)

h̄ = h̄end ≤ 1 at θ = θend and r̄ ∈ [1, δo], (7.2)

dh̄
dθ

= 0 at θ = θend and r̄ ∈ [1, δo], (7.3)

where δo ≡ Ro/Ri and h̄end ≡ h̄(θend).
We first obtain the simplest solution valid over most of the pad. We found that the

first-order expansion for the scaled density can be written as

ρ̄ = 1
h̄

+ 1
Λh̄r̄2

(
dh̄
dθ

∣∣∣∣
θ=0

− κ̄Te

(
1
h̄

)
h̄

dh̄
dθ

)
+ O

(
1

Λ2

)
(7.4)

for Λ −→ ∞. Because of (7.1), we can easily show that (7.4) satisfies the boundary
condition (3.27); here we have used the fact that κ̄Te(1) = 1. However, (7.4) cannot
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Ri
Ro

x

y
End boundary layer

(eBL)

Corner boundary layer

(cBLo)

Corner boundary layer

(cBLi)

r-boundary layer

(rBLo)

r-boundary layer

(rBLi)

Core

region

Figure 8. Sketch of flow structure for large Λ. Boundary layers are required at r ≈ Ri and ≈ Ro and at
θ ≈ θend . The corner boundary layers are required for consistency between the r-boundary layers and the end
boundary layer.

satisfy the boundary conditions at θ = θend and r̄ = 1 and δo, i.e.(7.4) cannot satisfy
(3.28)–(3.30). In order to obtain the approximations valid over the whole pad, we seek
boundary layer solutions in these regions.

The regions of interest are those sketched in figure 8. The solution (7.4) is valid in the
core region where θ = O(1) and r̄ = O(1). The r-boundary layers are located at the inner
and outer radii of the pad, i.e.near r̄ = 1 and δo = Ro/Ri, and can be shown to have the
thickness of O(Λ−1/2). We will refer to the inner and outer r-boundary layers by using the
acronym ‘rBLi’ and ‘rBLo’, respectively. The end boundary layer is located near θ = θend,
and will be referred to by using the acronym ‘eBL’. The thickness of the end boundary
layer can be shown to be O(Λ−1).

In the course of our analysis, we found that boundary layers were also required where
the end boundary layer and the r-boundary layers meet. These corner boundary layers are
in the regions where r̄ − 1 = O(Λ−1/2), δo − r̄ = O(Λ−1/2) and |θ − θend| = O(Λ−1).
We will refer to the inner and outer corner boundary layers by using the acronym ‘cBLi’
and ‘cBLo’, respectively.

In §§ 8–10 we will present the lowest-order approximation in each boundary layer
region. Consistency among the solutions in all six regions is ensured through the use of
the MMAE (van Dyke 1975; Nayfeh 1981).

8. The r-boundary layers

To analyse the flow in the r-boundary layers, we rescale the radial coordinate as

r̂ ≡ σ(r̄ − δ)
√

Λ ⇐⇒ r̄ ≡ δ + r̂

σ
√

Λ
, (8.1)
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with r̂ = O(1), θ = O(1), and

σ = 1, δ = 1, for the inner r-boundary layer, i.e. r̄ ≈ 1, (8.2)

σ = −1, δ = δo, for the outer r-boundary layer, i.e. r̄ ≈ δo. (8.3)

The advantage of this formulation is that it will permit us to analyse both r-boundary layers
simultaneously rather than separately. Where convenient we will refer to the r-boundary
layers using this combined formulation with the acronym and superscripts ‘r-boundary
layers’.

The density in the r-boundary layers is expanded for large Λ as

ρ̄ = ρrBL(θ, r̂) + O
(

1
Λ1/2

)
, (8.4)

where ρrBL is the lowest-order density in the r-boundary layers region and the size of
the dropped terms, i.e.those of order Λ−1/2, were determined by an inspection of the
higher-order terms in the Reynolds equation.

If we substitute (8.1) and (8.4) in (3.23) and equate like powers of Λ, we find that the
flow in the r-boundary layers region is governed by

∂(h̄ρrBL)

∂θ
≈ σ 2h̄3 ∂

∂ r̂

[
κ̄Te(ρ

rBL)
∂ρrBL

∂ r̂

]
+ O

(
1

Λ1/2

)
, (8.5)

which is a nonlinear, variable coefficient, parabolic partial differential equation for ρrBL.
The boundary conditions for this equation are

ρrBL = 1 at r̂ = 0, for all 0 ≤ θ < θend, (8.6)

ρrBL = 1 at θ = 0, for all r̂ ≥ 0. (8.7)

Condition (8.7) acts as the ‘initial condition’ for (8.5). Condition (8.6) is recognized as
(3.29) and (3.30) recast in terms of (8.2) and (8.3). The final boundary condition in r̂ must
come from a matching to the core solution (7.4). A straightforward application of MMAE
requires that ρrBL approaches the first term of (7.4) as r̂ −→ ∞, i.e.

ρrBL ∼ 1
h̄(θ)

+ o(1) as r̂ −→ ∞, θ ≥ 0. (8.8)

The solution for ρrbl(r̂, θ) will therefore be determined completely by the boundary value
problem (8.5)–(8.8). If we denote this solution as

ρrBL ≡ F (r̂, θ) + o(1), (8.9)

the solutions in the individual boundary layers are

ρrBLi ≡ F ((r̄ − 1)
√

Λ), θ) + o(1) for the inner r-boundary layer, (8.10)

ρrBLo ≡ F ((δo − r̄)
√

Λ), θ) + o(1) for the outer r-boundary layer. (8.11)

That is, we just replace r̂ in F by its definition in each boundary layer region.
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9. End boundary layer

We now analyse the flow in the end boundary layer, i.e.the region near θ = θend, where ρ̄

makes transition from the core solution, i.e. ρ̄ ≈ 1/h̄end, to the boundary condition (3.28).
Here, we rescale θ as

θ̂ ≡ Λ(θend − θ) ⇐⇒ θ = θend − θ̂

Λ
, (9.1)

with θ̂ = O(1) and r̄ = O(1). We also expand the density in a large Λ expansion of the
form

ρ̄ = ρeBL(θ̂, r̄) + O
(

1
Λ2

)
, (9.2)

where ρeBL = O(1) is the lowest-order approximate density in the end boundary layer
region. If we expand the h̄(θ) in a Taylor series near θ ≈ θend, we find that

h̄(θ) = h̄end + θ̂2

2Λ2
d2h̄
dθ2

∣∣∣∣∣
θ=θend

+ O
(

1
Λ3

)
, (9.3)

where we have used (7.3) and (9.1).
If we substitute (9.1)–(9.3) in (3.23) and equate like powers of Λ, we find that the

equation for ρeBL can be written as

∂ρeBL

∂θ̂
≈ − h̄2

end

r̄2
∂

∂θ̂

(
κ̄Te(ρ

eBL)
∂ρeBL

∂θ̂

)
+ O

(
1

Λ2

)
. (9.4)

The boundary conditions corresponding to (9.4) are found to be

ρeBL = 1 at θ̂ = 0, r̄ �≈ 1, δo, (9.5)

ρeBL ∼ 1
h̄end

+ o(1) as θ̂ −→ ∞, (9.6)

where the condition (9.5) is the lowest-order form of (3.28) and the condition (9.6) has
again been obtained matching to the core solution (7.4).

A first integral of (9.4) can be obtained by direct integration to yield

ρeBL = − h̄2
end

r̄2 κ̄Te(ρ
eBL)

∂ρeBL

∂θ̂
+ B(r̄), (9.7)

where B(r̄) is an integration function. According to (9.6), ρeBL approaches a constant as
θ̂ −→ ∞. Thus,

∂ρeBL

∂θ̂
−→ 0 as θ̂ −→ ∞. (9.8)

As a result, we found that

B(r̄) = 1
h̄end

, (9.9)

and we can rewrite (9.4) as

κ̄Te(ρ
eBL)

∂ρeBL

∂θ̂
= r̄2

h̄2
end

(
1

h̄end
− ρeBL

)
+ o(1), (9.10)
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which is recognized as a nonlinear, variable coefficient, relaxation equation. Because
κ̄Te > 0 and h̄end < 1, a straightforward analysis of (9.5) and (9.10) shows that ρeBL

increases monotonically from 1 to 1/h̄end with increasing θ̂ or decreasing θ .
The relaxation equation (9.10) can be integrated to show that

θ̂ = h̄3
end

r̄2

∫ ρeBL

1

dξ

κ̄Te(ξ)[1 − h̄endξ ]
. (9.11)

From either (9.10) or (9.11) we conclude that ρeBL is a function of r̄ only through the
product r̄2θ̂ .

10. Corner boundary layers

The corner region is taken to be rectangular in shape and has the same length in the
r̄ direction as each r-boundary layers and the same width in the θ direction as the end
boundary layer, i.e.

r̄ − δ = O
(

1√
Λ

)
, |θ − θend| = O

(
1
Λ

)
. (10.1a,b)

The scaling for r̄ and θ are therefore the same as those in the r-boundary layers and end
boundary layer, i.e.

r̄ ≡ δ + r̂

σ
√

Λ
⇐⇒ r̂ = σ(r̄ − δ)

√
Λ,

θ ≡ θend − θ̂

Λ
⇐⇒ θ̂ = Λ(θend − θ) = O(1).

⎫⎪⎪⎬
⎪⎪⎭ (10.2)

We expand the density in the corner region for large Λ, i.e.

ρ̄ = ρcBL(r̂, θ̂ ) + O
(

1√
Λ

)
, (10.3)

where ρcBL is the lowest-order density in the corner boundary layer region. When using
the general variables (10.2), we refer to the corner boundary layers with the single acronym
and superscripts ‘cBL’.

The expansion of h̄(θ) near θ = θend, i.e.(9.3), can also be applied in the corner
boundary layers. Substitution of (10.2), (10.3) and (9.3) in (3.23) yields

∂ρcBL

∂θ̂
= − h̄2

end

δ2
∂

∂θ̂

(
κ̄Te(ρ

cBL)
∂ρcBL

∂θ̂

)
+ o(1), (10.4)

which is similar to the end boundary layer equation, i.e.(9.4). The boundary condition for
the corner boundary layer equation (10.4) is

ρcBL = 1 at θ̂ = 0, (10.5)

which corresponds to (3.28). The second boundary condition for (10.4) is obtained by
matching to the r-boundary layers solutions. Thus,

ρcBL −→ ρrBL(r̂, θend) + o(1) as θ̂ −→ ∞. (10.6)
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We can obtain a first integral of (10.4) subject to (10.5) and (10.6) in a manner similar
to that of § 9. The resultant equation governing the flow in the corner boundary is

κ̄Te(ρ
cBL)

∂ρcBL

∂θ̂
= δ2

h̄2
end

(ρrBL(r̂, θend) − ρcBL) + o(1). (10.7)

It is easily verified that the corner solution satisfying (10.5)–(10.7) also correctly matches
the solution of the end boundary layer, i.e.(9.5)–(9.10), as r̂ −→ ∞. We note that the
primary difference between (10.7) and (9.10) is due to the fact that the density must
approach the density variation in the r-boundary layers in (10.7) rather than the constant
core solution in (9.10).

11. Construction of a composite solution

The solutions derived in the previous sections comprise five boundary layer solutions and
the core solution of § 7. For purposes of comparison to our numerical computations, it
will be convenient to combine these six solutions into a single composite solution. A
discussion of composite solutions in the MMAE can be found in any text on perturbation
methods; see, e.g. Nayfeh (1981) and van Dyke (1975). The strategy is to note that the
core and r-boundary layers solutions can be solved independently of the end and corner
boundary layers. We then form a single composite solution which has the same accuracy
as the core and r-boundary layers solutions in their respective regions. We then form a
second composite solution comprised of the end and corner boundary layers. The resultant
composite solutions are then used to generate a single composite solution which is valid
over the whole pad to the same accuracy as each solution in their respective regions.

A composite solution for the core and r-boundary layers solutions is found to be

ρr−comp = G (r̄, θ) ≡ ρcore + ρrBLi + ρrBLo − 2
h̄(θ)

= ρcore + F ((r̄ − 1)
√

Λ, θ) + F ((δo − r̄)
√

Λ, θ) − 2
h̄(θ)

, (11.1)

where ρcore is the first-order core solution (7.4). In the language of MMAE, the last term
in (11.1) is recognized as the matched or common part of the two boundary layers and the
core.

We now consider the second composite solution, this time uniformly valid in the end
boundary layer and the corner boundary layers. If we compare the relaxation equations
(9.10) and (10.7), it should be clear that

κ̄Te(ρ
eBL∗)

∂ρeBL∗

∂θ̂
= − r̄2

h̄2
end

(ρeBL∗ − G (r̄, θend)), (11.2)

subject to

ρeBL∗ = 1 at θ̂ = 0, (11.3)

yields a solution having the same accuracy as (9.10) and (10.7) in their respective regions.
To verify that ρeBL∗ = ρeBL in the end boundary layer, we write

G (r̄, θend) = ρcore(r̄, θend) + F ((r̄ − 1)
√

Λ, θend)

+ F ((δo − r̄)
√

Λ, θend) − 2
h̄(θend)

. (11.4)
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Because r̄ �≈ 1 or δo in the end boundary layer, we have

G (r̄, θend) = ρcore(r̄, θend) + F (∞, θend) + F (∞, θend) − 2
h̄(θend)

= ρcore(r̄, θend) + 1
h̄(θend)

+ 1
h̄(θend)

− 2
h̄(θend)

+ o(1)

= 1
h̄(θend)

+ o(1). (11.5)

Substitution of this result in (11.2) confirms that ρeBL∗ ≈ ρeBL to the accuracy of the end
boundary layer within the end boundary layer.

In the corner boundary layer near the inner edge of the pad, i.e. in the inner corner
boundary layer, we have r̄ = 1 + r̂/

√
Λ = 1 + O(Λ−1/2), δo − r̄ = O(1). Thus,

G (r̄, θend) = ρcore(r̄, θend) + F (r̂, θend) + F (∞, θend) − 2
h̄end

= 1
h̄end

+ F (r̂, θend) + 1
h̄end

− 2
h̄end

+ o(1)

= F (r̂, θend) + o(1)

= ρrBLi(r̂, θend) + o(1). (11.6)

Noting that δ ≡ 1 in the inner corner boundary layer in (10.7) and r̄ ≈ 1, (11.2) is seen to
reduce to (10.7) in the inner corner boundary layer, again to the appropriate accuracy.

In like manner, we can show that ρeBL∗ reduces ρcBLo in the outer corner boundary
layer and we can regard ρeBL∗ as a composite solution for the region comprising the end
boundary layer and both corner boundary layers.

The composite solution for the whole pad, i.e.that uniformly valid over 0 ≤ θ ≤ θend, 1
≤ r̄ ≤ δo will be taken to be the composite of the composite solutions, i.e.

ρ̄ = G (r̄, θ) + ρeBL∗ − G (r̄, θend), (11.7)

where the last term is recognized as the matched or common part of (11.1) and ρeBL∗.
Note that in the eBL* region, G (r̄, θ) ∼ G (r̄, θend) + o(1) yielding ρ ∼ ρeBL∗ + o(1) as
required. In the core and r-boundary layers regions, ρeBL∗ ∼ G (r̄, θend) + exponentially
small terms so that ρ̄ ∼ G (r̄, θ) + exponentially small terms as required.

The algorithm for the generation of numerical solutions therefore is as follows.

(i) Compute ρcore from (7.4) and ρrBL from (8.5)–(8.8) for all 1 ≤ r̄ ≤ δo and 0 ≤ θ ≤
θend.

(ii) Compute G (r̄, θ) for all 1 ≤ r̄ ≤ δo and 0 ≤ θ ≤ θend.
(iii) Compute or save G (r̄, θend) for all 1 ≤ r̄ ≤ δo.
(iv) Compute ρeBL∗ from (11.2) and (11.3).
(v) Compute ρ̄ using (11.7).

To obtain the detailed solutions we applied the Crank–Nicolson scheme to the nonlinear
diffusion equation (8.5) and solved the resultant system of equations using an iterative
linear solver by MATLAB. We continued the Crank–Nicolson iteration process until the
average change in the solution was found to be less than 10−5. The nonlinear relaxation
equation, i.e.(11.2), is solved using the second-order Runge–Kutta method. Discretization
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Figure 9. Distribution of scaled density at Λ = 30. The reference state Vref = 5Vc and Tref = 1.05Tc. Contour
lines are drawn at equal intervals of ρ̄ between 1 and 2. (a) Composite solution and (b) solution to Reynolds
equation.

errors were checked for all computations presented here. The difference in the load
between the grids of 200 x 800 and 300 x 1000 points was less than 10−4%.

In figures 9–11 we have plotted the constant density contours based on our composite
solution and on the numerical solutions of (3.23). The same scales have been used for both
and the h̄(θ) function is that given by (6.1). The reference state is taken to be Vref ≡ V(θ =
0, r) = 5Vc and Tref ≡ T(θ = 0, r) = 1.05Tc and the gas models are those described in
§ 6. Inspection of figures 9–11 suggests that the composite solution described above agrees
well with the numerical solutions of (3.23) for Λ ≥ 60. One can observe small deviations
between the composite and numerical solution in the plots corresponding to Λ = 30. The
most noticeable difference is the white area in the vicinity of r̄ = 1 in figure 9(a); this
indicates that the composite solution generates values of ρ̄ which are <1. To examine this
discrepancy in more detail, we have plotted the variation of ρ̄ with r̄ at a fixed θ in figure 12
for the case depicted in figure 9. The value of θ chosen was θ = θend/2 = π/8. Inspection
of figure 12 shows that the composite solution still agrees well with the numerical solutions
to (3.23) in the core region, but noticeable differences are seen in the inner r-boundary
layer region. The reason for this numerical discrepancy is due to the nature of all composite
solutions. While the r-boundary layers satisfy the boundary condition exactly, the accuracy
of the composite solution is controlled by the difference between the core solution and the
matched part of the solution. These are different functions but the difference will always
be on the order of the errors in the boundary layer approximation. This error decreases as
Λ −→ ∞. This expected decrease in the discrepancy at the boundary is clearly seen in
figures 9–14. It can also be verified that the mismatch at the boundary is O(Λ−1/2) when
θ < θend.

We note that the accuracy of the composite solution is quite good in the core region. At
large Λ, the main contribution to the global properties, i.e.the thrust and loss, is expected
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Figure 10. Distribution of scaled density at Λ = 60. The reference state Vref = 5Vc and Tref = 1.05Tc.
Contour lines are drawn at equal intervals of ρ̄ between 1 and 2. (a) Composite solution and (b) solution
to Reynolds equation.

to come from this core solution so that we expect that the load and loss will be predicted
to reasonable accuracy.

Inspection of figures 6 and 12–14 reveals that the scaled density increases slightly
between r = 1.2Ri and 1.8 Ri; this corresponds to the core region in the large Λ cases.
This mild increase of the scaled density can be described by the first correction term of
(7.4). As the flows enters the plateau region, i.e.θs ≤ θ ≤ θend, h̄ = const. and because
dh̄/dθ = 0 the effective bulk modulus no longer affects the core solution. Because

dh̄
dθ

∣∣∣∣
θ=0

< 0, (11.8)

the scaled density in the core will increase as r̄ increases.
Inspection of figures 9–11 also suggests that the composite solution has excellent

agreement in the variation of the scaled density in the main flow direction even when
Λ = 30. This can be seen more clearly by an examination of the variation of the scaled
density at r = 1.5Ri for Λ = 30. This variation is plotted in figure 15. Because the error
of the end boundary layer solution is O(Λ−1) � O(Λ−1/2), any mismatches are expected
to first appear in the r-boundary layers region as Λ decreases.

12. Summary

In the present study we examine the steady, laminar, compressible flow over a single thrust
bearing pad. The first part of our analysis was to derive the relevant Reynolds equation and
establish its range of validity. We have identified the effective bulk modulus (3.24) as the
single thermodynamic function governing the pad flow. The results are shown to be valid
over most of the dense and supercritical gas regimes.
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We have also shown that energy convection is negligible whenever the Reynolds
equation is valid, i.e.when the flow is sufficiently far from the thermodynamic critical
point. The temperature distribution is found to be determined by a balance of viscous
dissipation, flow work and conduction at each value of r and θ . An advantage of this
observation is that the energy equation can be integrated to obtain explicit formulae
for temperature and heat flux; these are exact within the context of the lubrication
approximation.

The Reynolds equation (3.23) has been solved numerically using a well-known gas
model, an accurate viscosity model, the pad shape given in (6.1) and a range of speed
numbers; solutions for the scaled density are illustrated in figures 5–7.

A new feature revealed by the computations is that boundary layers form at the inner and
outer radii and the flow exit of the pad as the speed number Λ is increased. At large Λ, the
pressure and density in the plateau region is nearly constant at values greater than 1. The
boundary layers form in order to satisfy the imposed boundary conditions (3.27)–(3.30).
The radial boundary layers are very different than those seen in large-Reynolds-number
aerodynamics. In the present case there is a strong pressure gradient across the radial
boundary layers which increases the relatively small radial mass flux found in the core
region. The parabolic equation derived in § 8 can be shown to represent the change in flow
in the θ -direction due to the increase in the inward and outward mass flux. In the end
boundary layer described in § 9, the radial velocities are negligible and we can interpret
the governing equation (9.4) as expressing a one-dimensional conservation of mass, i.e.

∂(uaveρ̄h̄)

∂θ̂
≈ ∂(uaveρ̄h̄end)

∂θ̂
≈ 0, (12.1)

where

uave ≡ 1
h̄

∫ 1

f
u dz̄ = 1

2

(
r̄ − h̄2κ̄Te

ρ̄Λr̄
∂ρ̄

∂θ

)
. (12.2)

It is natural to ask whether the large gradients at the boundaries will give rise a
breakdown of the lubrication approximation. However, this is not a concern in practice
where the values of ho/L are typically of the order of 10−4 to 10−3. An inspection of the
errors in each boundary layer region reveals that the largest error is of order

Λ2 ho
2

L2 , (12.3)

which is always small for the values of Λ used here.
In order to compare to numerical solutions we have constructed a composite solution

which has the same accuracy as the approximations in their respective regions. The
composite solution is compared with our pure numerical solution found in § 6 in
figures 9–15. The agreement is seen to be excellent as Λ increases.
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Figure 11. Distribution of scaled density at Λ = 90. The reference state Vref = 5Vc and Tref = 1.05Tc.
Contour lines are drawn at equal intervals of ρ̄ between 1 and 2. (a) Composite solution and (b) solution
to Reynolds equation.
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Figure 12. Scaled density vs r/Ri at θ = θend/2 = π/8 at Λ = 30. The reference state Vref = 5Vc and
Tref = 1.05Tc.
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Figure 13. Scaled density vs r/Ri at θ = θend/2 = π/8 at Λ = 60. The reference state Vref = 5Vc and
Tref = 1.05Tc.
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Tref = 1.05Tc.

Composite solution

Exact Reynolds

ρ
/
ρ

re
f

0.5

1.0

1.5

2.0

2.5

θ

0 0.2 0.4 0.6 0.8

Figure 15. Scaled density vs θ at r = 1.5Ri at Λ = 30. The reference state Vref = 5Vc and Tref = 1.05Tc.

939 A38-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.240


Compressible high-pressure lubrication flows in thrust bearings

Appendix A. Solutions to the energy equation

As pointed out in § 4, we can integrate (4.1) and (4.2) explicitly to obtain the temperature
variations and surface heat fluxes in the thrust bearing. To do so, we define

β1 = β1(r̄, θ) = βT
∂ p̄
∂ r̄

, (A1)

β2 = β2(r̄, θ) = βT
r̄

∂ p̄
∂θ

, (A2)

A1 = A1(r̄, θ) = 1
2μ̄r̄

∂ p̄
∂θ

, (A3)

A2 = A2(r̄, θ) = 1
2μ̄

∂ p̄
∂ r̄

, (A4)

B1 = B1(r̄, θ) = −(1 + f )
1

2μ̄r̄
∂ p̄
∂θ

+ r̄
1 − f

, (A5)

B2 = B2(r̄, θ) = −(1 + f )
1

2μ̄

∂ p̄
∂ r̄

, (A6)

D1 = D1(r̄, θ) = f
[

1
2μ̄r̄

∂ p̄
∂θ

− r̄
1 − f

]
, (A7)

D2 = D2(r̄, θ) = f
2μ̄

∂ p̄
∂ r̄

, (A8)

such that the (3.18) and (3.19) can be rewritten as

u = A1z̄2 + B1z̄ + D1, (A9)

v = A2z̄2 + B2z̄ + D2. (A10)

The simplified temperature equation (4.1) can also be rewritten as

∂

∂ z̄

(
k̄
∂T̄
∂ z̄

)
= −PrEc(G1z̄2 + G2z̄ + G3), (A11)

where

G1 = G1(r̄, θ) = β1A2 + β2A1 + 4μ̄(A2
1 + A2

2), (A12)

G2 = G2(r̄, θ) = β1B2 + β2B1 + 4μ̄(A1B1 + A2B2), (A13)

G3 = G3(r̄, θ) = β1D2 + β2D1 + μ̄(B2
1 + B2

2). (A14)

We note that the contribution due to the flow work are those terms with the factors β1 and
β2. These are the first two terms in (A12)–(A14) while other terms without the factors β1
and β2 are those due to the viscous dissipation.

We first consider the case where both stator and rotor surfaces have prescribed
temperatures, i.e.T = TR = const. at z̄ = 1 and T = TS = const. at z̄ = f . It is easily shown
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that the resultant solution to (4.1) is

T − TS

TR − TS
= z̄ − f

1 − f
+ PrEc

12k̄

(
G1

[
1 − z̄4 − 1 − f 4

1 − f
(1 − z̄)

])

+ 2G2

[
1 − z̄3 − 1 − f 3

1 − f
(1 − z̄)

]

+ 6G3

[
1 − z̄2 − 1 − f 2

1 − f
(1 − z̄)

]
, (A15)

where we have taken �T ≡ TR − TS in the expression for (2.14) in this case. The first term
on the right-hand side of (A15) is recognized as that due to conduction in the z̄ direction.
The remaining terms represent contributions due to flow work and viscous dissipation.

The scaled heat flux

q̄ ≈ −k̄
∂T̄
∂ z̄

, (A16)

corresponding to (A15) can be computed by differentiating the temperature. The heat flux
at the rotor surface (z̄ = 1) was found to be

q̄R = − k̄
1 − f

+ PrEc
12(1 − f )

[G1(3 − 4f + f 4)

+ 2G2(2 − 3f + f 3)

+ 6G3(1 − f )2]. (A17)

The scaled heat flux at the stator surface (z̄ = f ) was found to be

q̄S = − k̄
1 − f

− PrEc
12(1 − f )

[G1(1 − 4f 3 + 3f 4)

+ 2G2(1 − 3f 2 + 2f 3)

+ 6G3(1 − f )2]. (A18)

If we subtract (A18) from (A17), we find that

q̄R − q̄S = PrEc
6

[2G1(1 − f 3) + 3G2(1 − f 2) + 6G3(1 − f )]. (A19)

Thus, at each r̄ and θ , (A19) gives the net heat energy that must be conducted through the
solid surfaces.

We now consider the case where the stator surface, i.e.the z̄ = f surface, is adiabatic and
the rotor surface has a fixed temperature TR. Integration of (4.1) yields

T − TR

U2

2cpref

= −Pr
6k̄

[G1(z̄4 − 1 − 4f 3(z̄ − 1))

+ 2G2(z̄3 − 1 − 3f 2(z̄ − 1))

+ 6G3(z̄2 − 1 − 2f (z̄ − 1))]. (A20)

Thus, when the stator is adiabatic and the energy convection is negligible, all the heat
energy due to flow work and viscous dissipation must be conducted through the rotor
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surface. The scaled heat flux, obtained by differentiation of (A20), at z̄ = 1 is found to be
identical to the right-hand side of (A19).

The temperature at the adiabatic stator can be represented by a recovery factor obtained
by evaluating (A20) at z̄ = f yielding

rf ≡ TS − TR

U2

2cpref

= Pr
6k̄

[G1(1 − f 4 − 4f 3(1 − f ))

+ 2G2(1 − f 3 − 3f 2(1 − f ))

+ 6G3(1 − f 2 − 2f (1 − f ))]. (A21)

Finally, if we take the rotor to be adiabatic and T = TS at z̄ = f , the temperature
distribution is found to be

T − TS

U2

2cpref

= −Pr
6k̄

[G1(z̄4 − f 4 − 4(z̄ − f ))

+ 2G2(z̄3 − f 3 − 3(z̄ − f ))

+ 6G3(z̄2 − f 2 − 2(z̄ − f ))]. (A22)

The expression for scaled heat flux at the stator surface, i.e.at z̄ = f , is found to be just the
negative of the right-hand side of (A19). The temperature at the adiabatic rotor is again
expressed as a recovery factor. If we set z̄ = 1 in (A22), we find that

rf ≡ TR − TS

U2

2cpref

= −Pr
6k̄

[G1(1 − f 4 − 4(1 − f ))

+ 2G2(1 − f 3 − 3(1 − f ))

+ 6G3(1 − f 2 − 2(1 − f ))]. (A23)
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