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Abstract
In this article, we delve into the optimal scheduling challenge for many-to-many on-orbit services, taking into
account variations in target accessibility. The scenario assumes that each servicing satellite is equipped with singu-
lar or multiple service capabilities, tasked with providing on-orbit services to multiple targets, each characterised
by distinct service requirements. The mission’s primary objective is to determine the optimal service sequence,
orbital transfer duration and on-orbit service time for each servicing satellite, with the ultimate goal of minimising
the overall cost. We frame the optimal scheduling dilemma as a time-related colored travelling salesman problem
(TRCTSP) and propose an enhanced firefly algorithm (EFA) to address it. Finally, experimental results across vari-
ous scenarios validate the effectiveness and superiority of the proposed algorithm. The principal contribution of this
work lies in the modeling and resolution of the many-to-many on-orbit service challenge, considering accessibility
variations — a domain that has, until now, remained unexplored.

Nomenclature
x = a, e, �, i, ω, θ the orbital element vector
tinitial

i,p , tend
i,p the initial and end time of the pth sub-mission for the ith satellite

tlambert
i,p , tlambert

i,back time required for satellite i to transfer orbit
tparking

i ,tservice
i,p,k time required of satellite i for parking and on-orbit service

tend
i the time for servicing satellite i to return to the space station
δvi,p the change in velocity vector for satellite i during the pth manoeuver
S =∑m

i=1

{
Strans

i , Stime
i

}
optimisation variables

C total cost
ai

q,w the binary variable that elucidate the transfer path of satellite i
β0, γ , ᾱ, N, Nd, Mp firefly algorithm parameters
sk

i , sk
j individual fireflies

Abbreviations
OOS on-orbit service
NP-hard non-deterministic polynomial hard
TSP travelling salesman problem
VRP vehicle routing problem
GA genetic algorithm
FA firefly algorithm
ACO ant colony optimisation
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PSO particle swarm optimisation
LNS large neighbourhood search
TRCTSP time-related coloured travelling salesman problem
CTSP coloured travelling salesman problem
EFA enhanced firefly algorithm
PSMS positional substitution mutation strategy
DES differential evolution strategy
T-PSO Taguchi-based particle swarm optimisation

1.0 Introduction
In recent years, on-orbit service (OOS) has emerged as a focal point of interest within the aerospace
domain, driven largely by its significant economic implications and the promising applications it her-
alds. Routine on-orbit servicing operations encompass visual inspections, refueling, maintenance and
debris removal, among sundry others. Regardless of the OOS mission’s type, the servicing satellite must
initially traverse from a parking orbit to effectuate a rendezvous with the target. Subsequently, it must
sustain proximity to the target until proceeding to the subsequent target or returning as requisite. As space
technology advances, the paradigm of OOS has shifted from a one-to-one to a one-to-many and many-
to-many configuration. This evolution entails deploying one or more servicing satellites to sequentially
deliver services to multiple targets. In the context of one-to-many and many-to-many service modalities,
the prudent planning of service sequences can significantly reduce the economic costs associated with
missions. Consequently, exploring mission planning and orbital manoeuver strategies under these OOS
configurations becomes critically important. Indeed, whether the issue pertains to visual inspections,
refueling, maintenance, debris removal or any other form of on-orbit service scheduling optimisation, it
fundamentally revolves around optimising the sequence of routes to the servicing satellites. Hence, this
investigation transcends the confines of any specific on-orbit service category, delving into the essence
of route sequence optimisation for servicing satellites, which constitutes the fundamental challenge in
achieving optimal scheduling for on-orbit services.

This optimal scheduling conundrum for route sequences epitomises a quintessential non-
deterministic polynomial (NP) hard problem, amenable to modelling as the travelling salesman problem
(TSP) [1] and the vehicle routing problem (VRP) [2], among various other related variants. Deterministic
methodologies are only feasible for addressing small-scale NP-hard problems. As the complexity of
these problems increases, deterministic approaches falter in delivering optimal solutions within limited
time. A multitude of meta-heuristic algorithms are employed to address this class of challenges, includ-
ing the genetic algorithm (GA) [3], the firefly algorithm (FA) [4], particle swarm optimisation (PSO) [5],
ant colony optimisation (ACO) [6] and their various adaptations, among others. In the study by Yang [7],
an economical manoeuvering strategy for inspecting multiple geosynchronous satellites was proposed,
rooted in GA-based optimisation. The research presented in Ref. [8] framed the optimisation problem
of multi-orbit routing and scheduling for refuelable space robots in on-orbit servicing as a variant of the
VRP, adeptly addressed through the arc creation algorithm. Zhang and Li [9, 10] offered solutions to the
challenges of multi-satellite refueling planning in near-circular low-Earth orbit and Sun-synchronous
orbit, respectively, employing GA and combinatorial heuristic algorithms. In Ref. [11], a sophisticated
two-stage optimisation framework leveraging GA was introduced to concurrently address orbit design
and mission scheduling for an on-orbit refueling system operating in sun-synchronous orbit. References
[12] and [13] both focused on refining GA to determine the optimal sequence for active debris removal
by servicing satellites. Yu [14], tackled the complexities of mission scheduling for active debris removal
in low-Earth orbit using PSO, meticulously accounting for communication time-window constraints,
terminal state constraints and time distribution constraints. Shen [15], reformulated the optimisation
problem of debris swarm removal as an extended TSP and resolved it using ACO. Bang introduced
a sophisticated two-stage framework in Ref. [16] to address the multi-objective optimisation problem
associated with active debris removal tasks. In Ref. [17], a large neighbourhood search (LNS) adaptive
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GA was introduced to strategise on-orbit repair tasks, with explicit attention to task duration constraints
for many-to-many geosynchronous orbit satellites. Additionally, some research endeavors, such as those
in Refs [18, 19], focus on orchestrating the manoeuvers of servicing satellites during OOS operations,
rather than optimising scheduling for a specific OOS mission. However, constrained by the choice of
orbital manoeuvering strategies, the aforementioned findings limit the flexibility to dictate the temporal
expenditure of on-orbit services. While approaches like Hohmann-based orbital manoeuvers excel in
fuel efficiency, they restrict the flexibility in configuring the duration of orbital manoeuvers, which can
be critical for missions with stringent time constraints.

In the studies conducted by Bakhtiari [20] and Daneshjou [21], both researchers addressed the chal-
lenge of scheduling on-orbit service missions while allowing for free determination of orbit change
timing. Their approaches involved optimisation frameworks based on PSO and Taguchi-based PSO (T-
PSO) combined with the Lambert-based orbit change strategy. It is noteworthy that the models founded
on the Lambert manoeuver strategy in Refs. [20, 21] optimise the temporal variable, thereby placing
greater demands on the optimisation algorithms, especially when dealing with a large number of ser-
vice objectives. Unfortunately, the number of service targets in both cases does not exceed ten. Moreover,
Refs [20, 21] do not incorporate additional constraints within the optimal scheduling process of on-orbit
services.

The prevailing limitation in optimising on-orbit service scheduling encompasses constraints such as
fuel limitations, time window constraints and J2 perturbations, as thoroughly examined in Refs [9, 10,
15, 17]. While significant research has been devoted to the optimal scheduling of OOS, we argue that
certain critical limitations, such as differences in target access capabilities, have yet to be addressed.
Current studies typically assume that each servicing satellite can universally access every target, imply-
ing an omnipresent capacity to serve any target. However, this assumption is unrealistic. For example,
servicing satellites designed primarily for refueling may lack the capability to perform maintenance
services. Even within the same category of on-orbit servicing missions, such as maintenance, varying
specific maintenance requirements can lead to scenarios where only particular servicing satellites are
equipped to handle specific targets. As space science and technology advance, a likely future scenario
involves deploying a constellation of servicing satellites, each with one or more service capabilities,
tasked with providing on-orbit services to a diverse array of targets with varying demands. In this
complex environment, conventional scheduling models that ignore variations in access capabilities may
become inadequate. This scenario highlights the urgent need for more sophisticated scheduling models
capable of managing the specific needs of diverse targets while considering the heterogeneous access
capabilities of each satellite. Unfortunately, to our knowledge, no existing literature explores the optimal
scheduling of on-orbit services with consideration for variations in target access capabilities.

To address this research gap, we present a novel approach for modeling the optimal scheduling of on-
orbit services, carefully incorporating variations in target accessibility. This is framed as a time-related
coloured travelling salesman problem (TRCTSP), and we propose an enhanced firefly algorithm (EFA)
to methodically tackle this complex issue. The key contributions of this paper are succinctly outlined as
follows:

(1) The pursuit of optimal scheduling for on-orbit services, accounting for varying target accessi-
bility, is innovatively reframed as a TRCTSP. Unlike the coloured traveling salesman problem
(CTSP) [22], the TRCTSP incorporates both time-bounded and time-dependent cost functions.

(2) The TRCTSP model developed in this study significantly surpasses the complexity of the tradi-
tional CTSP model, due to the nuances of orbital dynamics and the constraints imposed by target
accessibility. To address this challenge, a novel EFA is introduced. This advanced algorithm com-
bines the positional substitution mutation strategy (PSMS) with the differential evolution strategy
(DES). Experimental results demonstrate that EFA outperforms GA [3], LNS-GA [17], PSO [5],
T-PSO [21] and FA [4] in the given problem scenario.
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Figure 1. The overview of the on-orbit service mission process.

The structure of this article is as follows: Section 2 outlines the necessary prerequisites. Section 3
details the optimisation model, while Section 4 explores the algorithmic design. Section 5 presents
numerical simulations to validate the proposed approach. Finally, Section 6 offers the conclusion.

2.0 Problem scenario and on-orbit service strategy
In the envisioned mission scenario, m satellites are deployed to perform on-orbit servicing operations at
n designated targets. The service categories include visual inspection, refueling, maintenance and debris
removal, numbered sequentially as 1, 2, 3 and 4, respectively. All servicing satellites are equipped with
the capability for visual inspection. For each servicing satellite i (where i ≤ m), it possesses one or more
of the following service functions in addition to visual inspection: refueling, maintenance or debris
removal. Alternatively, servicing satellite i may be equipped solely with visual inspection capabilities.
Each designated target j (where j ≤ n) has a single specific service requirement. Typically, the on-orbit
services are carried out in the following phases: The servicing satellite departs from the space station
and enters a transfer orbit. It then exits the transfer orbit to rendezvous with the designated target at the
servicing point, where it performs the required tasks. Afterward, the satellite proceeds to the next target,
completes all servicing operations and eventually returns to the space station.

In Fig. 1, we provide a detailed illustration of the entire mission process, showcasing two on-orbit
service operations carried out by satellite i. Satellite i is assigned to perform on-orbit services for Pi

targets (
∑m

i=1 Pi = n), necessitating Pi manoeuvers and corresponding service operations. Thus, satellite
i is responsible for Pi sub-missions in total. In the context of Fig. 1, Pi = 2. The ith servicing satellite co-
orbits with the space station within the parking orbit for a time denoted as tparking

i . Subsequently, it begins
its first sub-mission by manoeuvering to and servicing its initial target. During this phase, the manoeuver
time is represented as tlambert

i,1 , the change in velocity vector from the manoeuver is δvi,1, and the service
time for the first target is denoted as tservice

i,1,k , where k ∈ {1, 2, 3, 4} indicates the type of on-orbit service.
After completing the first sub-mission, satellite i allocates a time period of tlambert

i,2 to achieve rendezvous
with the next service target. The changes in the velocity vector during this maneuver are represented as
δvi,2. The duration for servicing the second target is denoted as tservice

i,2,k . Once all designated targets have
been serviced, satellite i requires tlambert

i,back to return to the space station, with velocity vector adjustments
documented as δvi,back. The temporal, orbital state and mass relationships throughout the on-orbit service
for the multi-satellite mission are depicted below.
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2.1 Time relationship
The time instants tinitial

i,p and tend
i,p marking the initial and end of the pth sub-mission for the ith servicing

satellite (1 ≤ p ≤ Pi) are determined by

tinitial
i,p =

{
tparking
i (p = 1)

tend
i,p−1(1 < p ≤ Pi)

tend
i,p = tinitial

i,p + tlambert
i,p + tservice

i,p,k

(1)

The time instant, tend
i , for servicing satellite i to return to the space station after accomplishing all

on-orbit services can be formulated as
tend
i = tend

i,Pi
+ tlambert

i,back . (2)

2.2 Orbital element vector of a target after time �t

The dynamics of an object in space can be delineated through the orbital element vector x =
[a, e, �, i, ω, θ ], where a represents the semimajor axis, e signifies the eccentricity, � represents the
right ascension of the ascending node, i stands for the inclination, ω denotes the argument of perigee,
and θ represents the true anomaly. When targets revolve in a specific Keplerian orbit, it is primarily the
true anomaly that undergoes variations. Given a target state x (t0) at t0 and a time interval 	t, we can
calculate x(t0 + 	t) as:

x(t0 + 	t) = G(x (t0) , 	t) (3)
For a detailed derivation, see the Appendix 6.

2.3 Lambert-based manoeuver
Each servicing satellite needs to perform orbital transfers during the mission to rendezvous with the
service target. In this study, servicing satellites undergo orbital transfer procedures based on Lambert’s
theorem. Two manoeuvers are taken into account for each orbital transfer. Provided with the initial
position vector r1, final position vector r2, and the transfer time 	t of the transfer orbit, the necessary
velocity changes for the two manoeuvers can be computed as:

v1 =L1(r1, r2, 	t) , v2 =L2(r1, r2, 	t) (4)
For a detailed derivation, see the Appendix.
In addition, if the orbital element x of an object at a specific point along an orbit are known, it allows

for the determination of the object’s position and velocity vectors r and v at that point, and vice versa.
We represent this functional relationship as:

x = Tx(r, v), r = Tr(x), v = Tv(x). (5)
Suppose that the pth sub-mission of the ith servicing satellite requires a manoeuver to rendezvous

with the jth target. The initiation time of this sub-mission is denoted as tinitial
i,p , and the duration of the

Lambert-based manoeuver is tlambert
i,p . The orbital elements for the ith servicing satellite and the jth target at

tinitial
i,p are known and designated as xi

(
tinitial
i,p

)
and xj

(
tinitial
i,p

)
. Combining the previously derived information,

the change in velocity vector δvi,p required for ith servicing satellite to manoeuver during the pth sub-
mission is

vi,p = ‖L2

(
Tr

(
xi

(
tinitial
i,p

))
, Tr

(
G
(
xj

(
tinitial
i,p

)
, tlambert

i,p

))
, 	t

)
− Tv

(
G
(
xj

(
tinitial
i,p

)
, tlambert

i,p

)) ‖ + ‖ Tv

(
xi

(
tinitial
i,p

))
−L1

(
Tr

(
xi

(
tinitial
i,p

))
, Tr

(
G
(
xj

(
tinitial
i,p

)
, tlambert

i,p

))
, 	t

) ‖ (6)
Given that the initial mass of the ith servicing spacecraft is mi,0 and its mass after completing the pth

sub-mission is mi,p, the mass of fuel consumed by the ith servicing spacecraft in the pth sub-mission is
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δmi,p = mi,p−1 − mi,p−1 exp

(−δvi,p

g0Isp

)
(7)

where g0 is the sea-level standard acceleration of gravity, and Isp is the specific impulse of thrusters.

3.0 Optimisation model
In alignment with the on-orbit service strategy outlined in the previous section, the multi-objective
on-orbit service problem can be framed as a TRCTSP, which falls under the category of NP-hard combi-
natorial optimisation problems. The coloured travelling salesman problem (CTSP) is defined as follows:
each salesman and city is associated with one or more colours, and a city can be visited only once by a
salesman of the same colour. The primary objective is to determine the shortest Hamiltonian loop for all
salesmen while strictly adhering to the colour constraints. In this analogy, colour represents the type of
on-orbit service being performed, salesman signifies the servicing satellite, and city denotes the target
being serviced. This section focuses on defining the design variables, outlining the objective function
and specifying the constraint conditions.

3.1 Design variables
As previously mentioned, the completed on-orbit service operation comprises m independent service
sub-missions, each corresponding to a target sequence Si, where i represents the serial number of
the sub-mission and also the serial number of the corresponding servicing satellite. Each sequence Si

encompasses two pieces of information, comprising the transfer sequence
Strans

i = [
strans

i,1 , strans
i,2 , · · · , strans

i,p , · · · , strans
i,Pi

]
and the time sequence

Stime
i = [

tparking
i , tlambert

i,1 , · · · , tlambert
i,Pi

, tservice
i,1,k , · · · , tservice

i,Pi ,k
, tlambert

i,back

]
.

where strans
i,p signifies the serial number of the target for servicing satellite i in the pth sub-mission.

The explanations for all other variables have been provided in the preceding section. Consequently,
the optimisation variables for the multi-objective on-orbit service problem can be expressed as:

S =
m∑

i=1

Si =
m∑

i=1

{
Strans

i , Stime
i

}
. (8)

3.2 Constraint conditions
The transfer sequence Strans

i is insufficient for detailing the constraints on transfer paths in the TRCTSP
model. Consequently, we employ the binary variable ai

q,w ∈ {0, 1} to elucidate the transfer path of the
ith servicing satellite and provide the associated constraints. In this context, q, w ∈ {0, 1, 2, . . . , n},
where {0} denotes the space station, and {1, 2, . . . , n} denote the serial numbers of the targets.ai

q,w = 1
if the ith servicing satellite possesses a direct manoeuvering path between target q and target w; and
otherwise, ai

q,w = 0. As an illustrative example to elucidate this concept, let’s consider the transfer
sequence of the 1st servicing satellite Strans

1 = [2, 1, 5]. In this case, we have: a1
0,2 = 1, a1

2,1 = 1, a1
1,5 = 1,

a1
5,0 = 1, and all other relevant binary variables are 0. For the sake of simplicity in our description, we

denote {1, 2, · · · , n} as 〈n〉. The multi-objective on-orbit service problem is governed by the following
constraint conditions:

(a) All servicing satellites are required to embark from and return to the space station.
n∑

w=1

ai
0,w = 1, ∀i ∈ 〈m〉, ∀w ∈ 〈n〉 (9)
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n∑
q=1

ai
q,0 = 1, ∀i ∈ 〈m〉, ∀q ∈ 〈n〉 (10)

Allow the service capacity set of the satellite and the service requirement set of the target to be
denoted as csatellite

i and ctarget
q , respectively, with csatellite

i , ctarget
q ∈ {1, 2, 3, 4}. In accordance with the problem

scenario outlined in Section 2, each target has a solitary requirement, while each satellite can possess
either one or two service capabilities. If ctarget

q ∈ csatellite
i , it signifies that servicing satellite i possesses the

capability to service target q. Subsequently, we can derive the serial number set of targets accessible by
the ith satellite as Vi =

{
q:ctarget

q ∈ csatellite
i , q ∈ 1, 2, · · · , n

}
.

(b) Servicing satellite i cannot access targets for which it lacks the capability to provide service:
n∑

q=1

n∑
w=1

ai
q,w = 0, ∀i ∈ 〈m〉, ∀q ∈ 〈n〉\Vi, ∀w ∈ 〈n〉 (11)

n∑
q=1

n∑
w=1

ai
q,w = 0, ∀i ∈ m, ∀q ∈ n, ∀w ∈ n\Vi. (12)

(c) Each target must be accessed once and only once:
n∑

q=1

m∑
i=1

ai
q,w = 1, ∀i ∈ 〈m〉, ∀q ∈ 〈n〉, ∀w ∈ 〈n〉, q 	= w (13)

n∑
=1

m∑
i=1

ai
q,w = 1, ∀i ∈ 〈m〉, ∀q ∈ 〈n〉, ∀w ∈ 〈n〉, q 	= w (14)

n∑
q=1

ai
qw =

n∑
l=1

ai
wl, q 	= w 	= l, ∀w, q, l ∈ 〈n〉, ∀i ∈ 〈m〉 (15)

(d) The incorporation of subloops in the transfer path of servicing satellite manoeuvers is strictly
forbidden:

ui
q − ui

w + n × ai
q,w ≤ n − 1, ∀q, w ∈ n, q 	= w, ∀i ∈ m, (16)

where ui
q represents the count of targets serviced by satellite i from the station to target q.

(e) Considering the restrictions on the fuel capacity of each servicing satellite, the total fuel
consumption during manoeuvers will not surpass a maximum value δmi,max:

δmi,back +
Pi∑

p=1

δmi,p ≤ δmi,max, (17)

(f) The parking time, manoeuver time, and on-orbit service time for each servicing spacecraft are
restricted:

tfinal
min ≤ tmax ≤ tfinal

max

tlambert
i,min ≤ tlambert

i,p ≤ tlambert
i,max

tlambert
i,min ≤ tlambert

i,back ≤ tlambert
i,max

tparking
i,min ≤ tparking

i ≤ tparking
i,max

tservice
i,p,k,min ≤ tservice

i,p,k ≤ tservice
i,p,k,max

(18)
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where tfinal
min , tfinal

max , tlambert
i,min , tlambert

i,max , trking
i,min , tparking

i,max , tservice
i,p,k,min, and tservice

i,p,k,max are known constants. If tservice
i,p,k exceeds

tservice
i,p,k,min, it indicates that the ith satellite will park in the target orbit upon accomplishing its ith service
target sub-mission, with a parking duration of tservice

i,p,k − tservice
i,p,k,min.

3.3 The cost function
This multi-objective optimisation function is normalised prior to summation. The total cost C of the
campaign is defined as:

C = κ
tmax − tfinal

min

tfinal
max − tfinal

min

+ (1 − κ)

m∑
i=1

(
δmi,back +

Pi∑
p=1

δmi,p

)

mδmi,max

+ εnviolate (19)

where tmax = max
(
tend
1,P1

, tend
2,P2

, · · · , tend
i,Pi

, · · · , tend
m,Pm

)
represents the duration required to accomplish the

entire task, κ denotes the weight parameter, ε is the penalty coefficient, and nviolate represents the number
of targets in the planned path that violate the reachability variances restriction. The penalty coefficient
ε should take a value much larger than the normalised multi-objective function to ensure that the rele-
vant constraints are achieved. δmmin is the minimum mass consumption of the task estimated by advance
computation. Our optimisation objective encompasses two facets: minimissing mission completion time
and reducing fuel consumption for servicing satellite manoeuvers. Unfortunately, these objectives are
inherently in conflict; shorter mission completion times typically result in higher fuel consumption,
necessitating a trade-off between the two. The weighting parameter κ captures this trade-off, where a
higher value of κ indicates a greater emphasis on swift mission completion at the cost of increased fuel
consumption. We will discuss the effect of the value of the weighting parameter κ on the experimental
results in the subsequent section.

Remark 1. This study introduces a pioneering approach that integrates the constraints of variances in
target accessibility for optimising the scheduling of on-orbit services, conceptualising it as TRCTSP. To
our knowledge, this original concept has not been previously proposed. TRCTSP distinguishes itself from
CTSP [22] through the incorporation of a time-bounded and time-dependent cost function. Condition
a defines the mathematical expression of the constraint on variances in target accessibility. Failure to
satisfy this constraint incurs a significant total cost (19), due to the penalty term εnviolate.

Remark 2. Indeed, the constraint of variances in target accessibility demands a higher level of opti-
misation expertise from the meta-heuristic algorithm compared to the time window restriction and fuel
constraint [9, 10, 15, 17]. Moreover, the optimisation challenge is further intensified by the temporal
optimisation sequence Stime

i . Traditional meta-heuristic algorithms such as GA, PSO, FA, etc., often fall
short in producing optimal outcomes or even feasible solutions that comply with the constraints, espe-
cially as the number of serviced satellites increases. This shortcoming will be highlighted in subsequent
experiments. Consequently, there is an urgent need to refine conventional meta-heuristic algorithms and
enhance their optimisation capabilities to meet the model-solving requirements outlined in this study.
In this context, FA will undergo refinement, as elaborated in the following section.

4.0 Algorithm design
In this section, we will employ EFA to address the multi-objective on-orbit servicing problem delineated
in the preceding section. The traditional firefly algorithm draws inspiration from the collective behaviour
of fireflies during their aggregation and can be formulated as follows [4]:

(1) The light intensity of the ith firefly, represented by the solution si, is inversely proportional to the
value of the cost function C.

(2) The attractiveness βij between firefly i and firefly j is mathematically defined as follows:
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βij = β0e−γ r2
ij (20)

where β0 represents the attractiveness when rij = 0, e denotes Euler’s number, and γ signifies the light
absorption coefficient. The Euclidean distance between two fireflies si and sj, denoted as rij, is expressed
as:

rij =
∥∥si − sj

∥∥=
√√√√ N∑

d=1

(
si,d − sj,d

)2 (21)

where N characterises the dimensionality of the optimisation problem.

(3) The ith firefly shifts towards another more attractive jth firefly, and si is updated as follows:

sk
i = sk−1

i + βij ·
(
sk−1

j − sk−1
i

)+ αεi (22)

where k represents the iteration number of the algorithm, α stands for the step factor, and εi is an
N-dimensional random number following either a uniform or Gaussian distribution. Scholars have
primarily adopted a dynamic step-size strategy to enhance the stochastic aspect of the algorithm. In
mathematical terms, this is represented as:

αk+1 = ᾱαk (23)

where ᾱ represents the dynamic step coefficient. With this adjustment, (22] transforms as follows:

sk
i = sk−1

i + βij ·
(
sk−1

j − sk−1
i

)+ αkεi (24)

The multi-objective on-orbit servicing problem poses a formidable optimisation challenge with a
multitude of local optimal solutions. The inherent complexity can result in the firefly algorithm experi-
encing premature convergence, characterised by a swift decline in population diversity, thereby impeding
the optimisation process. Moreover, the pronounced attraction of the population to local optima may
induce continuous oscillations, hindering the algorithm from achieving convergence. In response to
these challenges, this study introduces PSMS and DES meticulously designed to augment algorithmic
performance.

4.1 Positional substitution mutation strategy
During the update process of firefly individuals, we introduce PSMS. Let the solution of firefly individual
i after the kth iteration be denoted as sk

i . We randomly select two elements within sk
i and exchange their

positions, resulting in s̄k
i . Subsequently, the values of the consumption functions, denoted as C

(
sk

i

)
and

C
(
s̄k

i

)
, are calculated. If C

(
s̄k

i

)
< C

(
sk

i

)
, we replace the solution sk

i with s̄k
i . This positional substitution

operation is repeated Ns times.
On one hand, given that this operation occurs subsequent to individual position updates and is

nested within the population update process, the value of Ns must not be overly large. Excessive values
would augment the computational intricacy of the algorithm, consequently diminishing its convergence
speed. On the other hand, if the frequency of these operations is too scant, the alterations in individ-
ual positions will be negligible, rendering the escape from local optima unattainable and impairing the
precision of the optimisation search. Therefore, it is recommended that Ns be confined within the range
2 ≤ Ns ≤ 5.

4.2 Differential evolution strategy
To maximise the utilisation of population-wide optimal information and enhance the performance of
the algorithm, DES is incorporated into the population updating process. After k iterations, the best
solution sk

best within the firefly population is recorded. Subsequently, two solutions of fireflies, sk
i and sk

j ,
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Algorithm 1: The enhanced firefly algorithm
1 Initialize MP,MI , α, β0, and γ;
2 Initialize the firefly population and get s0

1, · · · , s0
MP

;

3 Calculate C(s0
1), · · · ,C(s0

MP
) ;

4 while k ≤ MI do
5 αk ← ααk−1;
6 for i← 1 to MP do
7 for j← 1 to MP do
8 if C(sk−1

i ) > C(sk−1
j ) then

9 βi j ← β0e−γ‖si−s j‖2 ;
10 sk

i ← sk−1
i + βi j · sk−1

j − sk−1
i + αkεi;

11 end
12 end
13 sk

i ← SubstitutionMutation sk
i ;

14 end
15 sk

best ← DifferentialEvolution sk
1, · · · , sk

MP
;

16 end
17 return sMI

best

are randomly selected from the population to compute s̄k
best using the following formula:

s̄k
best = sk

best + η
(
sk

i − sk
j

)
(25)

In this equation, η is a variable following a normal distribution. Subsequently, the values of the con-
sumption functions, denoted as C

(
sk

best

)
and C

(
s̄k

best

)
, are calculated. If C

(
s̄k

best

)
< C

(
sk

best

)
, we replace

the solution sk
best with s̄k

best. The differential evolution operation is repeated Nd times.
As there is no circular nesting in this operation, Nd can be chosen to be a relatively larger value,

enabling the utilisation of historical optimal information to guide the search process and enhance the
algorithm’s convergence accuracy. Taking cues from the differential evolution algorithm, the value of
Nd can be set equal to the population size, denoted as MP.

The pseudo-code of EFA is depicted in Algorithm 1. DES is outlined in Algorithm 2, and PSMS is
detailed in Algorithm 3. Here, the function RandomNaturalNumber (MP) denotes the generation of
random natural numbers that are less than or equal to MP.

Remark 3. Inspired by the methodology introduced in LNS [17], we introduce PSMS as an enhancement
to FA. However, PSMS, as proposed in this study, offers two distinct advantages over LNS: (a) While
LNS executes at the conclusion of each iteration of the algorithm, PSMS operates during each update
of the population individuals within the algorithm. Specifically, for each optimisation instance, LNS
executes MI times, whereas PSMS executes MIMP times. This discrepancy implies that the extensive
exploration capacity of PSMS far exceeds that of LNS. (b) In contrast to the intricate destruction and
repair operations featured in LNS, PSMS employs a simpler and more efficacious positional substitution
operation. This operation is equally adept at enhancing local search capabilities. Additionally, PSMS
incorporates an acceptance criterion akin to a hill-climber for new solutions, wherein solutions are
updated only when superior results are achieved, thereby averting the generation of detrimental new
solutions. This enhancement effectively amplifies the algorithm’s capacity for extensive exploration and
facilitates the generation of solutions that adhere to imposed constraints.

Remark 4. DES draws inspiration from the principles of the differential evolution algorithm (DEA)
outlined in [23], operating at the conclusion of each iteration of EFA. Given that DES aims to augment
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Algorithm 2: Function of DifferentialEvolution
({

sk
1, · · · , sk

N

})
Input: sk

1, · · · , sk
N

1 Initialize η;
2 Initialize sk

best = sk
1;

3 for i← 1 to MP do
4 if C(sk

best) > C(sk
i ) then

5 sk
best ← sk

i ;
6 end
7 end
8 i = RadomNaturalNumber(MP);
9 j = RadomNaturalNumber(MP);

10 for q← 1 to Nd do
11 sk

best ← sk
best + η(s

k
i − sk

j);
12 if C(sk

best) > C(sk
best) then

13 sk
best ← sk

best;
14 end
15 end
16 return sk

best

Algorithm 3: Function of SubstitutionMutation
(
sk

i

)
Input: sk

i
1 for p← 1 to Ns do
2 q = RadomNaturalNumber(N);
3 w = RadomNaturalNumber(N);
4 sk

i ← sk
i ;

5 sk
i,q ← sk

i,w;
6 sk

i,w ← sk
i,q;

7 if C(sk
i ) > C(sk

i ) then
8 sk

i ← sk
i ;

9 end
10 end
11 return sk

i

FA’s search prowess and escape local optima, it incorporates an acceptance criterion akin to a hill-
climber for new solutions, a feature not present in DEA. Consequently, the algorithm’s local search
capability is effectively bolstered.

5.0 Experiments and results
In this section, we will conduct three scenarios with a total of nine cases of experiments.

5.1 Experimental settings
Each servicing satellite has a total mass of 1,000 kg and carries 500 kg of chemical fuel, with the thruster
parameter g0Isp set at 3,000 m/s [9]. The initial solutions are generated randomly, and the parameter
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Table 1. Parameter settings

Parameter Value Parameter Value
Weight parameter κ 0.05 population size MP 100
Maximum iteration MI 200 initial attractiveness β0 2
Light absorption coefficient γ 1 initial step factor α 0.5
Dynamic step coefficient ᾱ 0.98 maximum fuel consumption δmi,max 500 kg
Minimal transfer time tlambert

i,min 6h maximum transfer time tlambert
i,max 40 h

Minimal parking time tparking
i,min 6h maximum parking time tparking

i,max 40 h
Minimal service time tservice

i,p,k,min 6h maximum service time tservice
i,p,k,max 40 h

Minimal total timetfinal
min 48h maximum total timetfinal

max 480 h
Penalty coefficient ε 2

Table 2. Servicing capabilities of servicing satellites

ID Case 1 Case 2 Case 3
1 [c]refueling/inspection [c]maintenance/inspection [c]debris removal/inspection
2 [c]refueling/inspection [c]maintenance/inspection [c]debris removal/inspection
3 [c]refueling/inspection [c]maintenance/inspection [c]debris removal/inspection
4 – inspection inspection
5 – – inspection
6 – – inspection

settings used during the simulation are detailed in Table 1. The experimental setup includes an Intel(R)
Core(TM) i7-13700 CPU.

In scenario 1, the space station, all servicing satellites, and all targets are operating in geo-
stationary Earth orbit (GEO). Drawing inspiration from the GEO orbital element settings in the
literature [17, 24], the corresponding orbital elements are randomly generated within the follow-
ing ranges: a ∈ [42, 164, 42, 166] km, e ∈ [0, 0.0004], � ∈ [0, 360]◦, i ∈ [0, 0.05]◦, ω ∈ [0, 360]◦, θ ∈
[0, 360]◦. Experiments will be conducted under scenario 1 with three cases: 3 satellites serving 8 targets,
4 satellites serving 15 targets, and 6 satellites serving 20 targets. Table 2 outlines the service capabilities
of the servicing satellites in these three cases, where ID represents the number of the servicing satellite.
The initial orbital parameters for the three cases in scenario 1, along with the specific on-orbit service
requirements, are presented in Tables 7, 10 and 11 in the Appendix, where ID denotes the number of
each target, and ID 0 represents the space station.

In scenario 2, the space station, all servicing satellites, all targets are operating on randomly gen-
erated orbits. The corresponding orbital elements are randomly generated in the following range:
a ∈ [6, 800, 42, 000] km, e ∈ [0, 0.2], � ∈ [0, 360]◦, i ∈ [0, 180]◦, ω ∈ [0, 360]◦, θ ∈ [0, 360]◦. We will
conduct experiments under scenario 2 with 3 satellites serving 8 targets, 4 satellites serving 15 targets,
and 6 satellites serving 20 targets, for a total of three cases. Table 2 outlines the service capabilities
of the servicing satellites in three cases under scenario 2, where ID is the number of the serving satel-
lite. The initial orbital parameters for the three cases under scenario 2 and the specific on-orbit service
requirements are presented in Tables 8, 12 and 13 in the Appendix, where ID is the number of each
target and ID 0 represents the space station.

In scenario 3, the space station, all servicing satellites, all targets are operating on low Earth
orbits. The corresponding orbital elements are randomly generated in the following range: a ∈
[7, 380, 7, 400] km, e ∈ [0, 0.0004], � ∈ [99, 101]◦, i ∈ [81, 82]◦, ω ∈ [0, 0]◦, θ ∈ [0, 360]◦ [14]. We will
conduct experiments under scenario 3 with 3 satellites serving 8 targets, 4 satellites serving 15 targets,
and 6 satellites serving 20 targets, for a total of three cases. Table 2 outlines the service capabilities
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of the servicing satellites in three cases under scenario 3, where ID is the number of the serving satel-
lite. The initial orbital parameters for the three cases under scenario 3 and the specific on-orbit service
requirements are presented in Tables 9, 14 and 15 in the Appendix, where ID is the number of each
target and ID 0 represents the space station.

5.2 Optimisation results
Tables 16, 17 and 18 give the optimisation results for the three cases of scenario 1, including transfer
sequence, time of arrival, time of departure, velocity change and total fuel mass consumption.

Here, we will use the information of servicing satellite 1 from the optimisation results under case 1,
scenario 1, as an example to elucidate the significance of the optimisation outcome.

Transfer sequence 0-7-4-1-0 indicates that servicing satellite 1 departs from the space station,
sequentially provides on-orbit services to targets 7, 4 and 1, and ultimately returns to the space station.

Time of arrival refers to the moment when servicing satellite 1 reaches the target corresponding to the
transfer sequence mentioned above. Specifically, servicing satellite 1 is stationed at the initial moment of
0. The subsequent arrival times at targets 7, 4 and 1 are 47.97, 86.37 and 127.96 h, respectively. Finally,
the satellite returns to the station at 166.16 h.

Time of departure denotes the moment when servicing satellite 1 departs from the target correspond-
ing to the transfer sequence mentioned above. Specifically, satellite 1 left the space station at 22.47 h
and departed from targets 7, 4 and 1 at 63.97, 106.66 and 143.96 h, respectively.

It is noteworthy that the time of arrival and time of departure can be used to calculate both the duration
required for each orbital transfer and the time spent on each on-orbit service. For instance, the time spent
servicing target 7 by satellite 1 is determined by subtracting the time of arrival at target 7 from the time
of departure from target 7, yielding 16 h. The time required for the orbital transfer from the station to
target 7 is calculated by subtracting the time of departure from the station from the time of arrival at
target 7, resulting in 25 h.

Additionally, we provide the velocity change required for each orbital transfer based on Lambert’s
theory. For example, the velocity change required to maneuver from the station to target 7 is 178.04 m/s.
Finally, the table details the fuel consumption of each servicing satellite upon completing its mission.

Tables 19, 20 and 21 present the optimisation results for the three cases in scenario 2. Tables 22, 23
and 24 present the optimisation results for the three cases in scenario 3. These results are displayed in
the same manner as those for scenario 1.

It should be noted that scenario 2 is purely a mathematical simulation and does not account
for practical engineering applications. When parameterising the target initial orbits for scenario 2,
we did not reference values from commonly used orbits. The purpose of this setup is twofold: to
verify the validity and superiority of the proposed algorithm from another perspective, and to lay
the theoretical groundwork for potential spatial applications. The results indicate that the velocity
change required for orbital transfer is substantial under the scenario 2 settings. Conventional chemi-
cal fuels would be insufficient to meet such demands. Therefore, in scenario 2, we assume that the
servicing satellite is equipped with high-power ion thrusters, offering a specific impulse of up to
70,000 m/s [25].

5.3 Superiority experimental results
In this subsection, we conduct a comparative analysis between GA [3], LNS-GA [17], PSO [5], T-
PSO [21] and FA [4] as benchmark algorithms against EFA. Each algorithm undergoes execution on 10
randomly generated instances to comprehensively assess their optimisation capabilities. The rules for
generating orbital elements for each instance are the same as for scenario 1 and scenario 2. Detailed
parameters for the compared GA, and PSO algorithms are provided in Table 3, while parameters for the
compared LNS-GA and T-PSO algorithms are elucidated in Table 4.
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Table 3. The parameters of the compared GA, PSO

GA PSO
Population size 200 Population size 300
Maximum iteration 1,000 Maximum iteration 500
Crossover probability 0.6 Inertia weight 0.8
Mutation probability 0.01 Maximum velocity 1

Individual learning factor 1.5
Group learning factor 1.5

Table 4. The parameters of the compared LNG-GA, T-PSO

LNS-GA T-PSO
Population size 200 Population size 300
Maximum iteration 1,000 Maximum iteration 200
Crossover probability 0.6 Inertia weight 0.8
Mutation probability 0.01 Maximum velocity 1
Proportion of elite chromosomes in LNS 5% Individual learning factor 1.5
Maximum iteration of LNS 10 Group learning factor 1.5
Percentage of LNS individuals removed 30% Number of repository 100

Number of grid size 20

Table 5. Average cost for different algorithms

EFA FA PSO T-PSO GA LNS-GA
Case 1 scenario 1 0.5245 0.5326 0.5473 0.5308 0.6293 0.5259
Case 2 scenario 1 0.5625 0.6029 0.5946 0.5861 0.7822 0.5827
Case 3 scenario 1 0.5852 0.7392 – – 0.7459 0.6895
Case 1 scenario 2 0.6953 0.7189 0.7294 0.7031 0.7246 0.7003
Case 2 scenario 2 0.7170 0.7725 0.7630 0.7593 0.8039 0.7493
Case 3 scenario 2 0.7189 0.8493 – – 0.8991 0.7982
Case 1 scenario 3 0.6383 0.7138 0.7091 0.6937 0.7497 0.6628
Case 2 scenario 3 0.6412 0.7331 0.7207 0.7238 0.7737 0.6901
Case 3 scenario 3 0.6609 0.7422 – – 0.7966 0.7168

Table 5 presents a comparison of the average cost achieved by various algorithms. In case 1, marked
by lower problem complexity, the differences in solutions generated by the three algorithms are subtle.
However, in case 3, characterised by higher problem complexity, the EFA proposed herein demonstrates
a significantly superior solution quality compared to the other algorithms. Additionally, the average
number of iterations failing to meet the constraints provides further insight into the algorithms’ ability
to explore a broad solution space, as shown in Table 6. Notably, both PSO and TPSO fail to produce
solutions that adhere to the constraints in case 3. The reasons for this outcome will be elaborated upon
in the following subsection.

5.4 Hyperparametric sensitivity experiments
In this subsection, we will analyse the effects of the weight parameter κ and the penalty coefficient ε on
the optimisation results, using case 1 of scenario 1 as an example.

We conducted experiments by varying the weight parameter κ from 0 to 0.5 in intervals of 0.05. To
mitigate the impact of random factors, each experiment was repeated 10 times. The experimental results
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Table 6. Average number of the iterations unsatisfying the constraints for different
algorithms

EFA FA PSO T-PSO GA LNS-GA
Case 1 scenario 1 1.1 1.3 4.0 3.6 1.2 1.1
Case 2 scenario 1 1.2 1.4 19.6 17.3 13.2 11.6
Case 3 scenario 1 3.3 6.1 496.7 495.2 31.6 29.8
Case 1 scenario 2 0.9 1.2 4.1 3.3 1.1 0.9
Case 2 scenario 2 1.0 1.4 19.5 16.8 13.4 11.5
Case 3 scenario 2 3.6 5.8 497.2 494.1 33.9 31.5
Case 1 scenario 3 0.9 1.2 4.2 3.5 1.1 0.9
Case 2 scenario 3 0.9 1.4 18.7 17.1 13.5 12.4
Case 3 scenario 3 3.3 5.6 493.4 496.1 32.7 30.4
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Figure 2. Optimisation results under different weight parameters κ .

are depicted in Fig. 2, where the dashed curves represent the results of the 10 individual experiments,
and the red curve represents the average value across these experiments. As observed, an increase in
the weight parameter κ indicates that the optimisation algorithm is more inclined to select routes that
minimise time at the expense of higher fuel consumption.

For a single orbital transfer, it is possible to achieve a more time-efficient and fuel-efficient re-orbiting
based on Lambert’s theory. However, as Fig. 2 illustrates, increasing κ does not necessarily reduce
mission time while increasing fuel consumption. Nonetheless, from a broader perspective, by analysing
the average data from multiple experiments, we can draw some conclusions. If the priority is to conserve
fuel while accepting longer mission durations, κ should be decreased. Conversely, if a shorter mission
time is preferred, even at the cost of higher fuel consumption, κ should be increased.

We conducted experiments by varying the penalty coefficient ε from 0.2 to 2 in intervals of 0.2. To
mitigate the effects of random factors, each experiment was repeated 10 times. The experimental results
are displayed in Fig. 3, where the dashed curves represent the results of the 10 individual experiments,
and the red curve represents the average value across these experiments. When ε is set to 0.2 and 0.4,
the algorithm fails to produce optimisation results that meet the constraints. As ε gradually increases,
the optimization algorithm becomes more inclined to generate results that satisfy the constraints. Once
ε reaches a certain threshold, the algorithm consistently produces results that almost always satisfy the
constraints. Therefore, we recommend choosing a larger value for ε. Given that the objective function
is normalised, we have set ε = 2 in this study.

5.5 Discussion of results
Based on the experimental outcomes presented in the preceding subsection, it is clear that in cases with
fewer optimisation variables — indicating a reduced number of service satellites — and lower complex-
ity, the differences among the algorithms are minimal. Conversely, in cases of increased complexity, the
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Figure 3. Optimisation results under different penalty coefficients ε.

proposed EFA demonstrates notably superior performance. Below, we provide a detailed analysis of the
results for each algorithm.

The particles in PSO possess both velocity and position attributes, granting PSO robust local search
capabilities. Consequently, PSO and T-PSO perform well in scenario 1, which is characterised by low
model complexity. However, PSO lacks the stochastic elements found in GA, such as mutation and
crossover operations, as well as the stochastic term αεi in FA’s update mechanism. This absence limits
PSO’s ability to explore large solution spaces thoroughly. As a result, PSO and T-PSO struggle to gen-
erate solutions that adhere to constraints in scenario 3, which is of high complexity. Notably, T-PSO,
optimised solely with hyper-parameters, does not significantly enhance PSO’s exploration or local search
capabilities, leading to only a modest improvement over PSO.

GA exhibits a strong capacity for exploring expansive solution spaces due to its use of crossover
and mutation operations. However, GA is known for its limited local search capabilities and tendency
towards premature convergence [26]. Although LNS-GA was introduced by [17] to improve GA’s local
search performance, this enhancement does not fully address GA’s limitations. Consequently, both GA
and LNS-GA underperform relative to FA. Nevertheless, GA’s ability to explore vast solution spaces
allows it to find solutions that conform to constraints even in scenario 3, characterised by the highest
complexity — unlike PSO, where exploration efforts are insufficient.

In contrast to PSO and GA, FA achieves a better balance between extensive exploration and local
search capabilities. The incorporation of PSMS enhances FA’s ability to explore large solution spaces,
while DES improves its local search performance, effectively addressing the challenges posed by
TRCTSP. Notably, in scenario 3, the EFA demonstrates markedly superior performance compared to
other meta-heuristics. We believe that EFA will continue to outperform other algorithms in cases with
elevated complexity.

6.0 Conclusion
This article explores the complexities of optimal scheduling for many-to-many on-orbit services,
incorporating detailed considerations of variations in target accessibility. In addressing the inherently
challenging multi-objective optimal scheduling problem, a paradigm within the NP-hard realm of com-
binatorial optimisation, we introduce the EFA. The simulation results across various scenarios decisively
demonstrate the efficacy and superiority of the proposed algorithm. Future research will focus on refin-
ing and advancing intelligent algorithms to tackle the real-time optimal scheduling challenges inherent
to on-orbit services.
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Appendix
A.1 Initial states of targets in the experiments

Table 7. Initial states of targets for case 1 under scenario 1

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 42,164.0 0.0000 1.7058 0.0005 3.7037 2.3942 –
1 42,164.0 0.0003 3.2898 0.0003 3.5455 0.9424 refueling
2 42,164.8 0.0002 0.7524 0.0003 0.5940 4.7981 maintenance
3 42,164.9 0.0004 0.6567 0.0008 5.2180 3.9838 debris removal
4 42,165.0 0.0002 0.1495 0.0007 2.7429 4.3405 inspection
5 42,165.6 0.0000 0.2207 0.0002 5.8959 3.7696 inspection
6 42,165.4 0.0000 3.5175 0.0008 4.3624 0.2257 inspection
7 42,165.7 0.0001 0.4006 0.0006 3.1557 3.6618 inspection
8 42,164.2 0.0001 0.6512 0.0007 1.8542 3.9623 inspection

Table 8. Initial states of targets for case 1 under scenario 2

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 16,135.4 0.0894 0.5257 2.0007 4.6034 1.1702 –
1 25,076.6 0.1566 4.9237 0.3947 3.0758 5.7967 refueling
2 39,312.1 0.0637 1.0540 2.9154 4.5576 6.1763 maintenance
3 23,741.7 0.1056 1.9343 1.7716 1.6739 4.1415 debris removal
4 24,887.3 0.0808 5.3589 0.0084 2.8596 3.6299 inspection
5 17,896.7 0.0106 1.4860 3.1178 0.1810 2.4507 inspection
6 18,001.7 0.1264 2.1591 2.3055 2.0869 3.7917 inspection
7 23,624.2 0.1200 0.5668 2.9625 1.5340 2.5593 inspection
8 11,738.0 0.0427 2.8913 0.6473 3.2807 0.3367 inspection

Table 9. Initial states of targets for case 1 under scenario 3

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 7,384.7 0.0000 1.7464 1.4181 0.0000 2.5536 –
1 7,391.1 0.0003 1.7338 1.4195 0.0000 2.8414 refueling
2 7,392.6 0.0003 1.7339 1.4299 0.0000 0.4483 maintenance
3 7,391.9 0.0003 1.7538 1.4219 0.0000 2.5916 debris removal
4 7,392.4 0.0004 1.7410 1.4218 0.0000 5.7121 inspection
5 7,399.0 0.0002 1.7540 1.4296 0.0000 1.9326 inspection
6 7,393.9 0.0000 1.7404 1.4144 0.0000 1.3444 inspection
7 7,396.5 0.0003 1.7489 1.4167 0.0000 2.5081 inspection
8 7,388.6 0.0003 1.7316 1.4194 0.0000 3.3447 inspection
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Table 10. Initial states of targets for case 2 under scenario 1

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 42,164.0 0.0000 2.0787 0.0006 2.8590 5.6994 –
1 42,164.3 0.0001 1.5570 0.0002 3.0678 3.7583 refueling
2 42,165.4 0.0000 0.9676 0.0007 3.9923 2.3108 maintenance
3 42,165.8 0.0003 1.3160 0.0001 0.6807 3.6536 debris removal
4 42,164.5 0.0004 1.7927 0.0004 4.1930 4.4842 inspection
5 42,164.4 0.0001 3.1010 0.0007 2.4538 5.1072 inspection
6 42,164.0 0.0000 2.5755 0.0008 3.7668 2.9707 inspection
7 42,164.2 0.0002 4.8201 0.0000 4.9949 5.4380 inspection
8 42,164.4 0.0001 3.7595 0.0005 5.6134 4.8034 inspection
9 42,164.9 0.0003 2.2350 0.0004 5.0645 3.5919 inspection
10 42,165.5 0.0001 0.0242 0.0006 1.5905 6.0879 inspection
11 42,165.6 0.0002 5.1638 0.0008 1.3862 0.2744 refueling
12 42,165.0 0.0000 4.8333 0.0007 5.3075 5.3121 maintenance
13 42,165.0 0.0001 2.8778 0.0004 0.6897 5.8202 debris removal
14 42,164.5 0.0001 2.8737 0.0005 3.5417 1.4580 inspection
16 42,164.0 0.0002 4.5925 0.0008 5.8385 1.2789 inspection

Table 11. Initial states of targets for case 3 under scenario 1

ID a [km] e � [rad] [rad] ω [rad] θ [rad] required service
0 42,164.0 0.0000 5.2907 0.0000 0.6038 6.0505 –
1 42,165.2 0.0001 5.6384 0.0005 0.2003 5.1996 refueling
2 42,164.6 0.0001 2.8147 0.0006 0.1068 3.8796 maintenance
3 42,164.1 0.0002 1.3625 0.0008 0.5010 2.0426 debris removal
4 42,165.2 0.0000 1.9892 0.0005 3.6017 6.0685 inspection
5 42,165.0 0.0001 5.6697 0.0004 1.0207 0.0258 inspection
6 42,164.7 0.0003 1.7578 0.0004 6.1647 5.8373 inspection
7 42,165.2 0.0004 5.0752 0.0008 4.6879 1.3635 inspection
8 42,164.6 0.0003 6.1512 0.0001 0.0663 5.6538 inspection
9 42,165.5 0.0004 1.8632 0.0002 2.4215 3.9798 inspection
10 42,165.0 0.0002 4.9116 0.0008 2.0708 3.9930 inspection
11 42,164.9 0.0001 3.0714 0.0001 1.1874 2.2029 refueling
12 42,164.6 0.0004 4.7874 0.0006 3.0441 0.8490 maintenance
13 42,164.4 0.0003 3.4757 0.0002 4.6555 1.5517 debris removal
14 42,164.3 0.0000 0.3318 0.0003 3.9019 4.3703 inspection
15 42,164.3 0.0003 5.9307 0.0005 0.6161 5.3227 inspection
16 42,164.7 0.0002 3.4963 0.0001 5.5216 4.6049 inspection
17 42,165.7 0.0001 0.0978 0.0004 0.0654 4.8759 inspection
18 42,164.4 0.0001 0.8480 0.0006 6.0143 1.7793 inspection
19 42,164.4 0.0002 5.8500 0.0005 2.5926 5.7597 inspection
20 42,165.3 0.0004 4.3205 0.0008 1.4077 3.1285 inspection
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Table 12. Initial states of targets for case 2 under scenario 2

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 32,349.0 0.0800 4.4186 1.6426 2.1298 2.5422 –
1 16,528.0 0.1272 3.3809 3.1268 1.4633 0.9744 refueling
2 21,743.4 0.1831 2.0564 0.0945 4.8581 1.1613 maintenance
3 24,962.2 0.1162 2.9842 1.9939 0.3311 4.4228 debris removal
4 37,326.0 0.0781 0.7776 1.4795 2.5047 0.9258 inspection
5 19,597.9 0.0666 5.1364 2.5469 0.6775 0.5338 inspection
6 40,226.6 0.1096 4.9026 0.6090 1.5037 2.1889 inspection
7 29,690.0 0.1113 6.2369 3.0312 3.8077 2.6829 inspection
8 17,323.6 0.0343 5.6955 1.3287 5.8520 4.9637 inspection
9 39,820.5 0.1246 0.1465 3.1308 1.6712 0.353 inspection
10 41,232.6 0.0665 4.3681 0.4918 4.3699 4.6217 inspection
11 28,305.3 0.1327 5.6321 2.9972 4.3882 4.1173 refueling
12 26,297.1 0.1273 3.9983 1.4328 4.8198 1.7731 maintenance
13 30,824.1 0.1271 6.0958 2.5749 4.4030 5.4935 debris removal
14 15,621.8 0.1613 1.7257 1.1296 6.1768 5.4371 inspection
15 25,603.0 0.0163 3.6410 1.8565 3.9882 1.0988 inspection

Table 13. Initial states of targets for case 3 under scenario 2

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
1 35,575.5 0.0792 0.3542 0.0254 2.6057 2.2282 –
2 41,509.5 0.1914 4.4379 1.9455 5.1448 1.6144 refueling
3 29,541.2 0.1293 3.5779 1.3323 6.1324 4.9055 maintenance
4 26,203.0 0.0604 5.1818 1.1609 0.7539 5.6288 debris removal
5 17,788.1 0.0414 4.3486 0.3152 1.0793 5.4373 inspection
6 13,507.7 0.0769 0.7773 0.7281 1.7491 3.8874 inspection
7 16,472.1 0.1795 4.9559 0.3466 0.7818 0.1792 inspection
8 17,726.8 0.0796 5.4837 2.5575 0.5911 1.6282 inspection
9 16,607.2 0.0173 5.3244 0.1680 4.6359 4.5053 inspection
10 12,706.3 0.1650 2.7365 1.6766 1.7691 1.6036 inspection
11 12,639.8 0.1431 5.0481 2.7222 3.2868 3.0098 inspection
12 13,474.9 0.1274 1.5462 0.5920 0.8853 5.7875 refueling
13 26,188.6 0.1590 1.9355 1.9821 3.4268 4.7601 maintenance
14 39,302.4 0.0993 3.8420 1.2998 5.7027 2.1747 debris removal
15 36,351.1 0.1648 1.3511 2.4524 4.6223 3.5101 inspection
16 36,974.1 0.0188 5.7283 1.9600 4.4744 2.366 inspection
17 20,866.0 0.0986 0.3563 2.9771 4.7818 1.2463 inspection
18 19,979.1 0.0032 5.9669 2.7641 2.4774 5.6024 inspection
19 22,573.8 0.0150 5.2209 2.7656 1.4891 4.0333 inspection
20 33,393.0 0.0939 5.7515 0.0863 0.9627 2.6612 inspection
21 9,197.20 0.0833 2.6816 2.1972 4.4693 2.3044 inspection
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Table 14. Initial states of targets for case 2 under scenario 3

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 7,388.5 0.0000 1.7469 1.4241 0.0000 4.2119 –
1 7,391.2 0.0001 1.7502 1.4248 0.0000 2.7974 refueling
2 7,389.1 0.0003 1.7404 1.4288 0.0000 2.7254 maintenance
3 7,388.4 0.0003 1.7542 1.4166 0.0000 4.4086 debris removal
4 7,387.5 0.0003 1.7582 1.4269 0.0000 4.2240 inspection
5 7,392.6 0.0002 1.7586 1.4200 0.0000 2.9425 inspection
6 7,385.0 0.0001 1.7548 1.4256 0.0000 5.8146 inspection
7 7,391.5 0.0003 1.7397 1.4171 0.0000 4.0104 inspection
8 7,399.2 0.0001 1.7598 1.4156 0.0000 0.2401 inspection
9 7,394.4 0.0001 1.7311 1.4297 0.0000 0.1304 inspection
10 7,387.0 0.0000 1.7620 1.4163 0.0000 4.6993 inspection
11 7,396.7 0.0004 1.7346 1.4142 0.0000 3.8831 refueling
12 7,380.8 0.0002 1.7417 1.4191 0.0000 5.1202 maintenance
13 7,392.5 0.0001 1.7449 1.4287 0.0000 1.8991 debris removal
14 7,398.4 0.0000 1.7595 1.4204 0.0000 2.5560 inspection
15 7,388.7 0.0000 1.7453 1.4280 0.0000 4.5640 inspection

Table 15. Initial states of targets for case 3 under scenario 3

ID a [km] e � [rad] i [rad] ω [rad] θ [rad] required service
0 7,389.4 0.0000 1.7378 1.4170 0.0000 0.2817 –
1 7,394.3 0.0002 1.758 1.4183 0.0000 5.3328 refueling
2 7,389.7 0.0001 1.7474 1.4252 0.0000 2.1603 maintenance
3 7,393.2 0.0002 1.7409 1.4264 0.0000 5.9693 debris removal
4 7,380.4 0.0001 1.7342 1.4287 0.0000 5.1246 inspection
5 7,399.3 0.0001 1.7326 1.4191 0.0000 0.5256 inspection
6 7,383.4 0.0003 1.7381 1.4247 0.0000 4.9442 inspection
7 7,382.5 0.0001 1.7568 1.4248 0.0000 2.2955 inspection
8 7,394.1 0.0002 1.7432 1.4250 0.0000 2.2540 inspection
9 7,385.4 0.0004 1.7354 1.4184 0.0000 5.2520 inspection
10 7,397.8 0.0004 1.7475 1.4236 0.0000 4.6847 inspection
11 7,388.9 0.0002 1.7453 1.4218 0.0000 0.7531 refueling
12 7,395.1 0.0001 1.7490 1.4183 0.0000 5.2362 maintenance
13 7,394.6 0.0002 1.7365 1.4187 0.0000 6.0598 debris removal
14 7,398.4 0.0002 1.7356 1.4176 0.0000 2.0813 inspection
15 7,395.6 0.0001 1.7413 1.4167 0.0000 3.3283 inspection
16 7,385.9 0.0002 1.7494 1.4273 0.0000 2.2089 inspection
17 7,388.8 0.0003 1.7473 1.4160 0.0000 0.8351 inspection
18 7,392.9 0.0003 1.7517 1.4311 0.0000 0.7725 inspection
19 7,395.4 0.0002 1.7535 1.4150 0.0000 0.5326 inspection
20 7,394.9 0.0003 1.7590 1.4260 0.0000 2.6404 inspection
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A.2 Optimisation results

Table 16. Optimal solution for case 1 under scenario 1

Servicing satellite 1
Transfer sequence 0 7 4 1 0
Time of arrival (h) 0 47.97 86.37 127.96 166.16
Time of departure (h) 22.47 63.97 106.66 143.96 –
Velocity change (m/s) – 178.04 5.58 196.76 10.18
Fuel consumption (kg) 122.07

Servicing satellite 2
Transfer sequence 0 2 8 0
Time of arrival (h) 0 62.25 100.67 147.38
Time of departure (h) 32.35 78.57 128.88 –
Velocity change (m/s) – 431.08 112.74 554.80
Fuel consumption (kg) 306.64

Servicing satellite 3
Transfer sequence 0 6 3 5 0
Time of arrival (h) 0 51.08 83.98 122.01 169.71
Time of departure (h) 29.28 67.08 100.51 138.01 –
Velocity change (m/s) – 29.28 67.08 100.5 138.01
Fuel consumption (kg) 378.83

Table 17. Optimal solution for case 2 under scenario 1

Servicing satellite 1
Transfer sequence 0 4 6 7 1 11 0
Time of arrival (h) 0 54.80 100.35 160.53 226.43 294.35 367.15
Time of departure (h) 31.00 72.45 136.23 200.53 264.85 334.35 –
Velocity change (m/s) – 54.46 321.36 110.30 175.44 411.20 587.84
Fuel consumption (kg) 425.09

Servicing satellite 2
Transfer sequence 0 12 2 5 0
Time of arrival (h) 0 46.59 114.98 181.92 228.95
Time of departure (h) 17.59 84.38 147.42 207.65 –
Velocity change (m/s) – 392.88 483.69 656.85 10.69
Fuel consumption (kg) 402.32

Servicing satellite 3
Transfer sequence 0 13 8 14 10 3 15 0
Time of arrival (h) 0 57.55 107.35 155.71 218.71 279.02 324.82 391.65
Time of departure (h) 29.25 77.95 132.61 195.21 247.52 301.22 364.35 –
Velocity change (m/s) – 342.32 394.78 7.09 57.94 507.94 73.11 305.24
Fuel consumption (kg) 430.39
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Table 17. (Continued)

Servicing satellite 4
Transfer sequence 0 9 0
Time of arrival (h) 0 44.13 106.84
Time of departure (h) 21.93 82.64 –
Velocity change (m/s) – 88.17 81.06
Fuel consumption (kg) 54.84

Table 18. Optimal solution for case 3 under scenario 1

Servicing satellite 1
Transfer sequence 0 11 16 1 7 8 0
Time of arrival (h) 0 37.75 96.15 162.76 201.66 239.37 278.49
Time of departure (h) 17.15 75.85 129.26 178.76 218.77 255.89 –
Velocity change (m/s) – 298.59 333.14 603.38 29.69 278.28 25.94
Fuel consumption (kg) 407.27

Servicing satellite 2
Transfer sequence 0 20 12 18 14 6 2 0
Time of arrival (h) 0 62.85 112.05 162.66 207.76 262.21 324.90 382.66
Time of departure (h) 27.45 87.85 140.06 185.06 234.41 298.90 354.66 –
Velocity change (m/s) – 684.13 56.17 14.12 13.39 314.5 200.83 315.33
Fuel consumption (kg) 413.06

Servicing satellite 3
Transfer sequence 0 13 3 10 4 0
Time of arrival (h) 0 58.55 119.78 157.35 205.64 246.46
Time of departure (h) 26.25 98.18 136.95 185.04 224.16 –
Velocity change (m/s) – 546.18 180.71 295.66 254.22 99.61
Fuel consumption (kg) 367.95

Servicing satellite 4
Transfer sequence 0 15 0
Time of arrival (h) 0 49.63 96.44
Time of departure (h) 26.53 73.84 –
Velocity change (m/s) – 25.65 25.99
Fuel consumption (kg) 17.06

Servicing satellite 5
Transfer sequence 0 9 19 5 0
Time of arrival (h) 0 64.03 127.79 176.56 230.14
Time of departure (h) 26.33 103.39 148.36 202.54 –
Velocity change (m/s) – 766.85 109.85 330.91 295.4
Fuel consumption (kg) 394.08

Servicing satellite 6
Transfer sequence 0 17 0
Time of arrival (h) 0 57.82 107.85
Time of departure (h) 32.02 86.65 –
Velocity change (m/s) – 186.3 226.42
Fuel consumption (kg) 128.53
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Table 19. Optimal solution for case 1 under scenario 2

Servicing satellite 1
Transfer sequence 0 5 1 0
Time of arrival (h) 0 24.26 59.54 95.16
Time of departure (h) 14.16 53.54 85.36 –
Velocity change (m/s) – 11,092.96 10,984.6 10,861.39
Fuel consumption (kg) 375.35

Servicing satellite 2
Transfer sequence 0 2 8 4 0
Time of arrival (h) 0 19.00 40.12 69.64 102.76
Time of departure (h) 6.00 33.22 61.64 92.76 –
Velocity change (m/s) – 6,995.89 6,444.35 6,205.07 10,262.04
Fuel consumption (kg) 347.7

Servicing satellite 3
Transfer sequence 0 7 3 6 0
Time of arrival (h) 0 25.23 39.63 56.85 81.52
Time of departure (h) 18.53 31.23 50.15 70.62 –
Velocity change (m/s) – 9,509.72 6,542.47 5,511.77 10,343.43
Fuel consumption (kg) 366.07

Table 20. Optimal solution for case 2 under scenario 2

Servicing satellite 1
Transfer sequence 0 1 4 11 0
Time of arrival (h) 0 38.32 63.9 104.15 161.34
Time of departure (h) 30.42 54.10 84.55 140.74 –
Velocity change (m/s) – 8,425.28 10,701.47 6,070.85 7,040.24
Fuel consumption (kg) 369.06

Servicing satellite 2
Transfer sequence 0 5 8 2 12 0
Time of arrival (h) 0 41.17 72.70 107.35 119.95 152.87
Time of departure (h) 34.07 63.40 101.35 113.95 146.47 –
Velocity change (m/s) – 5,456.75 8,719.15 5,818.38 7,713.32 2,986.1
Fuel consumption (kg) 354.98

Servicing satellite 3
Transfer sequence 0 13 14 3 0
Time of arrival (h) 0 32.07 63.92 85.07 128.69
Time of departure (h) 20.77 56.62 74.97 110.99 –
Velocity change (m/s) – 7,137.76 8,966.72 8,660.46 6,487.38
Fuel consumption (kg) 360.11

Servicing satellite 4
Transfer sequence 0 7 9 10 6 15 0
Time of arrival (h) 0 31.24 51.84 67.64 104.01 136.82 169.17
Time of departure (h) 24.94 37.24 57.84 93.81 130.02 154.37 –
Velocity change (m/s) – 6,874.56 9,831.94 6,318.16 2,216.61 6,346.57 3,905.85
Fuel consumption (kg) 397.73
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Table 21. Optimal solution for case 3 under scenario 2

Servicing satellite 1
Transfer sequence 0 11 1 7 19 0
Time of arrival (h) 0 37.44 60.42 86.91 121.16 148.66
Time of departure (h) 28.44 53.22 80.01 113.66 127.96 –
Velocity change (m/s) – 4,861.11 6,354.46 7,817.83 11,004.69 1,455.12
Fuel consumption (kg) 362.31

Servicing satellite 2
Transfer sequence 0 12 9 20 2 0
Time of arrival (h) 0 32.65 86.15 106.98 127.38 172.08
Time of departure (h) 26.65 72.65 94.58 112.98 157.28 –
Velocity change (m/s) – 7,514.49 10,560.13 11,020.25 10,631.24 5,140.64
Fuel consumption (kg) 473.21

Servicing satellite 3
Transfer sequence 0 13 3 5 8 0
Time of arrival (h) 0 46.66 77.92 95.52 117.15 155.27
Time of departure (h) 25.06 66.72 86.72 109.55 148.77 –
Velocity change (m/s) – 4,613.19 4,410.92 7,511.27 5,444.49 3,059.29
Fuel consumption (kg) 300.72

Servicing satellite 4
Transfer sequence 0 16 18 0
Time of arrival (h) 0 22.30 45.97 86.05
Time of departure (h) 16.3 33.77 76.75 –
Velocity change (m/s) – 10,281.83 12,652.83 9,739.67
Fuel consumption (kg) 372.98

Servicing satellite 5
Transfer sequence 0 17 14 0
Time of arrival (h) 0 36.71 97.21 137.35
Time of departure (h) 28.91 76.71 127.25 –
Velocity change (m/s) – 10,107.8 11,147.5 6,330.91
Fuel consumption (kg) 325.71

Servicing satellite 6
Transfer sequence 0 6 4 15 10 0
Time of arrival (h) 0 51.10 65.51 96.87 133.16 174.97
Time of departure (h) 40.00 58.61 90.77 127.16 165.47 –
Velocity change (m/s) – 4,323.86 2,632.99 6,961.52 9,636.04 11,393.2
Fuel consumption (kg) 393.02
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Table 22. Optimal solution for case 1 under scenario 3

Servicing satellite 1
Transfer sequence 0 1 8 4 0
Time of arrival (h) 0 11.88 25.12 37.28 48.36
Time of departure (h) 6.78 20.02 30.98 42.36 –
Velocity change (m/s) – 440.82 422.66 484.97 472.00
Fuel consumption (kg) 454.92

Servicing satellite 2
Transfer sequence 0 2 6 0
Time of arrival (h) 0 12.66 26.79 38.43
Time of departure (h) 6.86 21.79 31.93 –
Velocity change (m/s) – 465.55 420.80 504.47
Fuel consumption (kg) 370.99

Servicing satellite 3
Transfer sequence 0 5 3 7 0
Time of arrival (h) 0 13.73 25.28 39.99 54.63
Time of departure (h) 8.33 20.28 34.69 49.53 –
Velocity change (m/s) – 447.12 428.10 431.75 426.64
Fuel consumption (kg) 438.91

Table 23. Optimal solution for case 2 under scenario 3

Servicing satellite 1
Transfer sequence 0 11 15 1 8 0
Time of arrival (h) 0 14.98 26.06 40.90 55.16 68.66
Time of departure (h) 9.68 21.06 35.20 49.16 62.96 –
Velocity change (m/s) – 355.59 336.66 368.50 375.58 367.99
Fuel consumption (kg) 451.98

Servicing satellite 2
Transfer sequence 0 2 5 12 9 0
Time of arrival (h) 0 15.60 28.67 40.20 51.62 67.32
Time of departure (h) 10.00 23.47 33.90 46.62 61.62 –
Velocity change (m/s) – 365.88 348.08 377.43 336.90 382.68
Fuel consumption (kg) 453.19

Servicing satellite 3
Transfer sequence 0 3 13 14 0
Time of arrival (h) 0 11.72 27.14 39.33 52.96
Time of departure (h) 6.52 21.24 34.23 46.56 –
Velocity change (m/s) – 339.98 380.64 348.07 385.76
Fuel consumption (kg) 384.19

Servicing satellite 4
Transfer sequence 0 7 6 4 10 0
Time of arrival (h) 0 12.36 28.76 43.75 54.75 69.50
Time of departure (h) 7.06 22.36 38.05 49.65 64.10 –
Velocity change (m/s) – 348.88 397.81 359.76 337.53 368.69
Fuel consumption (kg) 453.50
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Table 24. Optimal solution for case 3 under scenario 3

Servicing satellite 1
Transfer sequence 0 1 9 11 18 0
Time of arrival (h) 0 15.60 29.63 43.25 54.71 65.29
Time of departure (h) 10.00 24.43 36.75 49.51 59.99 –
Velocity change (m/s) – 355.61 344.67 385.97 361.14 363.35
Fuel consumption (kg) 453.15

Servicing satellite 2
Transfer sequence 0 10 2 12 15 0
Time of arrival (h) 0 11.31 25.96 42.06 57.57 71.91
Time of departure (h) 5.51 20.06 35.96 51.87 65.91 –
Velocity change (m/s) – 367.24 365.99 389.73 378.21 370.61
Fuel consumption (kg) 464.17

Servicing satellite 3
Transfer sequence 0 13 14 3 0
Time of arrival (h) 0 10.68 22.92 35.47 48.57
Time of departure (h) 5.28 16.62 29.67 43.57 –
Velocity change (m/s) – 349.76 391.90 380.10 345.11
Fuel consumption (kg) 386.73

Servicing satellite 4
Transfer sequence 0 4 7 20 0
Time of arrival (h) 0 14.24 27.10 39.67 50.92
Time of departure (h) 8.64 21.10 34.47 45.12 –
Velocity change (m/s) – 357.77 378.53 347.56 381.47
Fuel consumption (kg) 386.42

Servicing satellite 5
Transfer sequence 0 5 8 16 0
Time of arrival (h) 0 14.29 28.63 42.79 55.50
Time of departure (h) 9.09 22.13 37.59 49.70 –
Velocity change (m/s) – 345.08 380.31 346.75 364.61
Fuel consumption (kg) 380.55

Servicing satellite 6
Transfer sequence 0 19 17 6 0
Time of arrival (h) 0 14.83 28.32 43.55 56.89
Time of departure (h) 9.73 23.22 37.85 50.29 –
Velocity change (m/s) – 362.67 340.88 385.87 385.32
Fuel consumption (kg) 388.34
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A.3 Orbital element vector of an target after time �t

Given a target state x (t0) at t0 and a time interval 	t, we can calculate x (t0 + 	t) using the following
procedure [27]. Given the known true anomaly θ (t0) at the moment t0 and the equation tan E

2
=
√

1−e
1+e

tan θ

2
,

we can derive the eccentric anomaly E (t0) as follows:

E (t0) = 2tan−1

(√
1 − e

1 + e
tan

θ (t0)

2

)
(A1)

Following Kepler’s equation, we can express the mean anomaly at the moment t0 as

Me (t0) = E (t0) − esinE (t0) (A2)

The period of an elliptical or circular orbit can be represented as

T = 2π√
μ

a3/2 (A3)

where μ = 398, 600 km3/s2 represents the gravitational parameter for earth, and a signifies either the
semimajor axis of an elliptical orbit or the radius of a circular orbit. Therefore, the mean anomaly at
t0 + 	t can be expressed as

Me (t0 + 	t) = Me (t0) + 	t
2π√

μ
a3/2 (A4)

Given Me (t0 + 	t), and relying on the equality Me = E − esinE, we can employ an iterative method
to solve for E (t0 + 	t). Ultimately, we can determine θ (t0 + 	t) from equation tan E

2
=
√

1−e
1+e

tan θ

2
as

follows:

θ (t0 + 	t) = 2tan−1

(√
1 + e

1 − e
tan

E (t0 + 	t)

2

)
(A5)

The equation above necessitates that no manoeuvers take place within the Keplerian orbit, ensur-
ing that no orbital elements other than the true anomaly undergo changes. We denote the functional
relationship between x (t0) and x (t0 + 	t) as

x (t0 + 	t) = G (x (t0) , 	t) (A6)

A.4 Lambert-based manoeuver
Provided with the initial position vector r1, final position vector r2, and the transfer time 	t of the transfer
orbit, the necessary velocity changes for the two manoeuvers can be computed using the following
procedure [27].

With knowledge of r1 and r2, the change in the true anomaly 	θ formed by the initial and final
position vectors on the transfer orbit satisfies cos	θ = r1·r2

r1r2
, where r1 and r2 represent the magnitudes

of r1 and r2, respectively. Two scenarios must be taken into account: prograde trajectories (0◦ < i < 90◦)
and retrograde trajectories (90◦ < i < 180◦), where i denotes the inclination of the transfer orbit. Hence,
the solution for 	θ can be formulated as

	θ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cos−1
(

r1·r2
r1r2

)
if sin 	θ cos i ≥ 0 prograde

360◦ − cos−1
(

r1·r2
r1r2

)
if sin 	θ cos i < 0 prograde

cos−1
(

r1·r2
r1r2

)
if sin 	θ cos i < 0 retrograde

360◦ − cos−1
(

r1·r2
r1r2

)
if sin 	θ cos i ≥ 0 retrograde

(A7)
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By defining the velocity vectors at the initial and final positions on the transfer orbit as v1 and v2,
respectively, the following relationship holds:

r2 = f r1 + gv1

v2 = ḟ r1 + ġv1 (A8)

where Lagrange coefficients f , g and their derivatives ḟ , ġ are given by

f = 1 − χ2

r1
C (z)

g = 	t − 1√
μ
χ 3S (z)

ḟ = √
μ

r1r2
χ (zS (z) − 1)

ġ = 1 − χ2

r2
C (z)

(A9)

In the equations above, z is represented as z = αχ 2, where α and χ denote the reciprocal of the
semimajor axis and the universal anomaly of the transfer orbit, respectively. The Stumpff function S (z)
and C (z) are defined as

S (z) =

⎧⎪⎨
⎪⎩

√
z−sin

√
z

(
√

z)3 (z > 0)
sinh

√−z−√−z

(
√

z)3 (z < 0)
1
6
(z = 0)

, C (z) =

⎧⎪⎨
⎪⎩

1−cos
√

z

z
(z > 0)

cosh
√−z−1
−z

(z < 0)
1
2
(z = 0)

(A10)

To determine v1 and v2, it is essential to calculate the unknown variables z and χ in (A9). This have
been previously solved in the Ref. [27] using analytical relationships related to orbital mechanics and
recursive methods. Their derivation will not be reiterated here. Given r1, r2, and 	t, Lambert’s theorem
is applied to determine v1 and v2. This functional relationship is expressed as:

v1 =L1 (r1, r2, 	t) , v2 =L2 (r1, r2, 	t) (A11)

Cite this article: Zhang J., Xia H. and Li L. Optimal scheduling for many-to-many on-orbit service manoeuvers considering
variances in target accessibility. The Aeronautical Journal, https://doi.org/10.1017/aer.2024.142

https://doi.org/10.1017/aer.2024.142 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2024.142
https://doi.org/10.1017/aer.2024.142

	Nomenclature
	Abbreviations
	Introduction
	Problem scenario and on-orbit service strategy
	Time relationship
	Orbital element vector of a target after time
	Lambert-based manoeuver

	Optimisation model
	Design variables
	Constraint conditions
	The cost function

	Algorithm design
	Positional substitution mutation strategy
	Differential evolution strategy

	Experiments and results
	Experimental settings
	Optimisation results
	Superiority experimental results
	Hyperparametric sensitivity experiments
	Discussion of results

	Conclusion
	
	Initial states of targets in the experiments
	Optimisation results
	Orbital element vector of an target after time
	Lambert-based manoeuver


