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Abstract

Equational theories that contain axioms expressing associativity and commutativity (AC) of

certain operators are ubiquitous. Theorem proving methods in such theories rely on well-

founded orders that are compatible with the AC axioms. In this paper, we consider various

definitions of AC-compatible Knuth-Bendix orders. The orders of Steinbach and of Korovin

and Voronkov are revisited. The former is enhanced to a more powerful version, and we

modify the latter to amend its lack of monotonicity on non-ground terms. We further present

new complexity results. An extension reflecting the recent proposal of subterm coefficients in

standard Knuth-Bendix orders is also given. The various orders are compared on problems

in termination and completion.

KEYWORDS: Term rewriting, termination, associative-commutative theory, Knuth-Bendix

order

1 Introduction

Associative and commutative (AC) operators appear in many applications, e.g.

in automated reasoning with respect to algebraic structures such as commutative
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groups or rings. We are interested in proving termination of term rewrite systems

with AC symbols. AC termination is important when deciding validity in equational

theories with AC operators by means of completion.

Several termination methods for plain rewriting have been extended to deal with

AC symbols. Ben Cherifa and Lescanne (1987) presented a characterization of

polynomial interpretations that ensures compatibility with the AC axioms. There

have been numerous papers on extending the recursive path order (RPO) of

Dershowitz (1982) to deal with AC symbols, starting with the associative path order

of Bachmair and Plaisted (1985) and culminating in the fully syntactic AC-RPO of

Rubio (2002). Several authors (Giesl and Kapur 2001; Kusakari and Toyama 2001;

Marché and Urbain 2004; Alarcón et al. 2010) adapted the influential dependency

pair method of Arts and Giesl (2000) to AC rewriting.

We are aware of only two papers on AC extensions of the order (KBO) of Knuth

and Bendix (1970). In this paper, we revisit these orders and present yet another

AC-compatible KBO. Steinbach (1990) presented a first version, which comes with

the restriction that AC symbols are minimal in the precedence. By incorporating

ideas of Rubio (2002), Korovin and Voronkov (2003a) presented a version without

this restriction. Actually, they present two versions. One is defined on ground terms

and another one on arbitrary terms. For (automatically) proving AC termination of

rewrite systems, an AC-compatible order on arbitrary terms is required1. We show

that the second order of Korovin and Voronkov lacks the monotonicity property

which is required by the definition of simplification orders. Nevertheless, we prove

that the order is sound for proving termination by extending it to an AC-compatible

simplification order. We furthermore present a simpler variant of this latter order

which properly extends the order of Steinbach (1990). In particular, Steinbach’s

order is a correct AC-compatible simplification order, contrary to what is claimed

in Korovin and Voronkov (2003a). We also present new complexity results which

confirm that AC rewriting is much more involved than plain rewriting. Apart from

these theoretical contributions, we implemented the various AC-compatible KBOs

to compare them also experimentally.

The remainder of this paper is organized as follows. After recalling basic concepts

of rewriting modulo AC and orders, we revisit Steinbach’s order in Section 3.

Section 4 is devoted to the two orders of Korovin and Voronkov. We present a

first version of our AC-compatible KBO in Section 5, also giving the nontrivial

proof that it has the required properties. (The proofs in Korovin and Voronkov

(2003a) are limited to the order on ground terms.) In Section 6, we consider the

complexity of the membership and orientation decision problems for the various

orders. In Section 7, we compare AC-KBO with AC-RPO. In Section 8, our order is

strengthened with subterm coefficients. In order to show effectiveness of these orders

experimental data is provided in Section 9. The paper is concluded in Section 10.

1 Any AC-compatible reduction order �g on ground terms can trivially be extended to arbitrary terms
by defining s � t if and only if sσ �g tσ for all grounding substitutions σ. This is, however, only of
(mild) theoretical interest.
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This article is an updated and extended version of Yamada et al. (2014). Our earlier

results on complexity are extended by showing that the orientability problems for

different versions of AC-KBO are in NP. Moreover, we include a comparison with

AC-RPO, which we present in a slightly simplified manner compared to (Rubio

2002). Due to space limitations, some proofs can be found in the online appendix.

2 Preliminaries

We assume familiarity with rewriting and termination. Throughout this paper, we

deal with rewrite systems over a set V of variables and a finite signature F
together with a designated subset FAC of binary AC symbols. The congruence

relation induced by the equations f(x, y) ≈ f(y, x) and f(f(x, y), z) ≈ f(x, f(y, z))

for all f ∈ FAC is denoted by =AC. A term rewrite system (TRS for short) R
is AC terminating if the relation =AC · →R · =AC is well-founded. In this paper,

AC termination is established by AC-compatible simplification orders �, which are

strict orders (i.e., irreflexive and transitive relations) closed under contexts and

substitutions that have the subterm property f(t1, . . . , tn) � ti for all 1 � i � n and

satisfy =AC · � · =AC ⊆ �. A strict order � is AC-total if s � t, t � s or s =AC t, for

all ground terms s and t. A pair (�,�) consisting of a preorder � and a strict order

� is said to be an order pair if the compatibility condition � · � · � ⊆ � holds.

Definition 2.1

Let � be a strict order and � be a preorder on a set A. The lexicographic extensions

�lex and �lex are defined as follows:

• �x �lex �y if �x �lex
k �y for some 1 � k � n,

• �x �lex �y if �x �lex
k �y for some 1 � k < n.

Here �x = (x1, . . . , xn), �y = (y1, . . . , yn), and �x �lex
k �y denotes the following condition:

xi � yi for all i � k and either k < n and xk+1 � yk+1 or k = n. The multiset

extensions �mul and �mul are defined as follows:

• M �mul N if M �mul
k N for some 0 � k � min(m, n),

• M �mul N if M �mul
k N for some 0 � k � min(m − 1, n).

Here M �mul
k N if M and N consist of x1, . . . , xm and y1, . . . , yn, respectively such

that xj � yj for all j � k, and for every k < j � n there is some k < i � m with

xi � yj .

Note that these extended relations depend on both � and �. The following

result is folklore; a recent formalization of multiset extensions in Isabelle/HOL is

presented in Thiemann et al. (2012).

Theorem 2.2

If (�,�) is an order pair then (�lex,�lex) and (�mul,�mul) are order pairs. �
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3 Steinbach’s order

In this section, we recall the AC-compatible KBO >S of Steinbach (1990), which

reduces to the standard KBO if AC symbols are absent.2 The order >S depends on

a precedence and an admissible weight function. A precedence > is a strict order on

F. A weight function (w,w0) for a signature F consists of a mapping w : F → �
and a constant w0 > 0 such that w(c) � w0 for every constant c ∈ F. The weight of

a term t is recursively computed as follows:

w(t) =

{
w0 if t ∈ V
w(f) +

∑
1�i�n

w(ti) if t = f(t1, . . . , tn)

A weight function (w,w0) is admissible for > if every unary f with w(f) = 0 satisfies

f > g for all function symbols g different from f. Throughout this paper we assume

admissibility.

The top-flattening (Rubio 2002) of a term t with respect to an AC symbol f is the

multiset �f(t) defined inductively as follows:

�f(t) =

{
{t} if root(t) �= f

�f(t1) 	 �f(t2) if t = f(t1, t2)

Definition 3.1

Let > be a precedence and (w,w0) a weight function. The order >S is inductively

defined as follows: s >S t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or

w(s) = w(t) and one of the following alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
S (t1, . . . , tn),

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and �f(s) >
mul
S �f(t).

The relation =AC is used as preorder in >lex
S and >mul

S .

Cases 0–2 are the same as in the standard Knuth–Bendix order. In case 3 terms

rooted by the same AC symbol f are treated by comparing their top-flattenings in

the multiset extension of >S.

Example 3.2

Consider the signature F = {a, f ,+} with + ∈ FAC, precedence f > a > + and

admissible weight function (w,w0) with w(f) = w(+) = 0 and w0 = w(a) = 1. Let R1

be the following ground TRS:

f(a + a) → f(a) + f(a) (1) a + f(f(a)) → f(a) + f(a) (2)

For 1 � i � 2, let �i and ri be the left- and right-hand side of rule (i), Si = �+(�i)

and Ti = �+(ri). Both rules vacuously satisfy the variable condition. We have

2 The version in Steinbach (1990) is slightly more general, since non-AC function symbols can have
arbitrary status. To simplify the discussion, we do not consider status in this paper.
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w(�1) = 2 = w(r1) and f > +, so �1 >S r1 holds by case 1. We have w(�2) = 2 = w(r2),

S2 = {a, f(f(a))}, and T2 = {f(a), f(a)}. Since f(a) >S a holds by case 1, f(f(a)) >S f(a)

holds by case 2, and therefore �2 >S r2 by case 3.

Theorem 3.3 (Steinbach 1990 )

If every symbol in FAC is minimal with respect to > then >S is an AC-compatible

simplification order.3

In Section 5 we reprove4 Theorem 3.3 by showing that >S is a special case of our

new AC-compatible Knuth–Bendix order.

4 Korovin and Voronkov’s orders

In this section, we recall the orders of Korovin and Voronkov (2003a). The first one

is defined on ground terms. The difference with >S is that in case 3 of the definition

a further case analysis is performed based on terms in S and T whose root symbols

are not smaller than f in the precedence. Rather than recursively comparing these

terms with the order being defined, a lighter non-recursive version is used in which

the weights and root symbols are considered. This is formally defined below.

Given a multiset T of terms, a function symbol f, and a binary relation R on

function symbols, we define the following submultisets of T :

T�V = {x ∈ T | x ∈ V} T�R
f = {t ∈ T \ V | root(t) R f}

Definition 4.1

Let > be a precedence and (w,w0) a weight function.5 First we define the auxiliary

relations =kv and >kv on ground terms as follows:

• s =kv t if w(s) = w(t) and root(s) = root(t),

• s >kv t if either w(s) > w(t) or both w(s) = w(t) and root(s) > root(t).

The order >KV is inductively defined on ground terms as follows: s >KV t if either

w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f(s) and T = �f(t)

(a) S��
f >mul

kv T��
f , or

(b) S��
f =mul

kv T��
f and |S | > |T |, or

(c) S��
f =mul

kv T��
f , |S | = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV , whereas =kv is used in >mul
kv .

3 In Steinbach (1990) AC symbols are further required to have weight 0 because terms are flattened. Our
version of >S does not impose this restriction due to the use of top-flattening.

4 The counterexample in Korovin and Voronkov (2003a) against the monotonicity of >S is invalid as
the condition that AC symbols are minimal in the precedence is not satisfied.

5 Here we do not impose totality on precedences, cf. Korovin and Voronkov (2003a). See also
Example 5.11.
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Only in cases 2 and 3(c) the order >KV is used recursively. In case 3 terms rooted

by the same AC symbol f are compared by extracting from the top-flattenings S and

T the multisets S��
f and T��

f consisting of all terms rooted by a function symbol

not smaller than f in the precedence. If S��
f is larger than T��

f in the multiset

extension of >kv, we conclude in case 3(a). Otherwise, the multisets must be equal

(with respect to =mul
kv ). If S has more terms than T , we conclude in case 3(b). In the

final case 3(c), S and T have the same number of terms and we compare S and T

in the multiset extension of >KV.

Theorem 4.2 (Korovin and Voronkov 2003a)

The order >KV is an AC-compatible simplification order on ground terms. If > is

total then >KV is AC-total on ground terms.

The two orders >KV and >S are incomparable on ground TRSs.

Example 4.3

Consider again the ground TRS R1 of Example 3.2. To orient rule (1) with >KV,

the weight of the unary function symbol f must be 0 and admissibility demands

f > a and f > +. Hence rule (1) is handled by case 1 of the definition. For rule

(2), the multisets S = {a, f(f(a))} and T = {f(a), f(a)} are compared in case 3. We

have S��
+ = {f(f(a))} if + > a and S��

+ = S otherwise. In both cases, we have

T��
+ = T . Note that neither a >kv f(a) nor f(f(a)) >kv f(a) holds. Hence, case 3(a)

does not apply. But also cases 3(b) and 3(c) are not applicable as f(f(a)) =kv f(a) and

a �=kv f(a). Hence, independent of the choice of >, R1 cannot be proved terminating

by >KV. Conversely, the TRS R2 resulting from reversing rule (2) in R1 can be

proved terminating by >KV but not by >S.

Next we present the second order of Korovin and Voronkov (2003a), the extension

of >KV to non-ground terms. Since it coincides with >KV on ground terms, we use

the same notation for the order.

In case 3 of the following definition, also variables appearing in the top-flattenings

S and T are taken into account in the first multiset comparison. Given a relation R

on terms, we write S Rf T for

S��
f Rmul T��

f 	 T�V − S�V

Note that Rf depends on a precedence >. Whenever we use Rf , > is defined.

Definition 4.4

Let > be a precedence and (w,w0) a weight function. The orders =kv and >kv are

extended to non-ground terms as follows:

• s =kv t if |s|x = |t|x for all x ∈ V, w(s) = w(t) and root(s) = root(t),

• s >kv t if |s|x � |t|x for all x ∈ V and either w(s) > w(t) or both w(s) = w(t)

and root(s) > root(t).

Some tricky features of the relations =kv and >kv are illustrated below.
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Example 4.5

Let c be a constant and f a unary symbol. We have f(c) >kv c whenever admissibility

is assumed: If w(f) > 0 then w(f(c)) > w(c), and if w(f) = 0 then admissibility imposes

f > c. On the other hand, f(x) >kv x holds only if w(f) > 0, since f � x. Furthermore,

f(x) =kv x does not hold as f �= x.

Example 4.6

Let c be a constant with w(c) = w0, f a unary symbol, and g a non-AC binary

symbol. We do not have � = g(f(c), x) >kv g(c, f(c)) = r since w(�) = w(r) and

root(�) = root(r) = g. On the other hand, � =kv r also does not hold since the

condition “|s|x = |t|x for all x ∈ V ” is not satisfied.

Now the non-ground version of >KV is defined as follows.

Definition 4.7

Let > be a precedence and (w,w0) a weight function. The order >KV is inductively

defined as follows: s >KV t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or

w(s) = w(t) and one of the following alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f(s) and T = �f(t)

(a) S >
f
kv T , or

(b) S =f
kv T and |S | > |T |, or

(c) S =f
kv T , |S | = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Contrary to what is claimed in Korovin and Voronkov (2003a), the order >KV

of Definition 4.7 is not a simplification order because it lacks the monotonicity

property (i.e., >KV is not closed under contexts), as shown in the following examples.

Example 4.8

We continue Example 4.5 by adding an AC symbol +. We obviously have f(x) >KV x.

However, f(x) + y >KV x + y does not hold if w(f) = 0. Let

S = �+(s) = {f(x), y} T = �+(t) = {x, y}

We have S��
+ = {f(x)}, and T��

+ ∪ T�V − S�V = {x}. As shown in Example 4.5,

neither f(x) >kv x nor f(x) =kv x holds. Hence none of the cases 3(a,b,c) of

Definition 4.7 can be applied.

Note that the use of a unary function of weight 0 is not crucial. The following

example illustrates that the non-ground version of >KV need not be closed under

contexts, even if there is no unary symbol of weight zero.
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Example 4.9

We continue Example 4.6 by adding an AC symbol + with g > + > c. We have

� = g(f(c), x) >KV g(c, f(c)) = r

by case 2. However, s = � + c >KV r + c = t does not hold. Let

S = �+(s) = {�, c} T = �+(t) = {r, c}

We have S��
+ = {�}, T��

+ = {r}, and S�V = T�V = �. As shown in Example 4.6,

� >kv r does not hold. Hence case 3(a) in Definition 4.7 does not apply. But also

� =kv r does not hold, excluding 3(b) and 3(c).

These examples do not refute the soundness of >KV for proving AC termination;

note that e.g. in Example 4.8 also x + y >KV f(x) + y does not hold. We prove

soundness by extending >KV to >KV′ which has all desired properties.

Definition 4.10

The order >KV′ is obtained as in Definition 4.7 after replacing =f
kv by �f

kv′ in

cases 3(b) and 3(c), and using �kv′ as preorder in >mul
kv in case 3(a). Here the relation

�kv′ is defined as follows:

• s �kv′ t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or w(s) = w(t) and

either root(s) � root(t) or t ∈ V.

Note that �kv′ is a preorder that contains =AC.

Example 4.11

Consider again Example 4.8. We have f(x) �kv′ x due to the new possibility “t ∈ V ”.

We have f(x) + y >KV′ x+ y because now case 3(c) applies: S��
+ = {f(x)} �mul

kv′ {x} =

T��
+ 	 T�V − S�V, |S | = 2 = |T |, and S = {f(x), y} >mul

KV′ {x, y} = T because

f(x) >KV′ x. Analogously, we have � + c >KV′ r + c for Example 4.9.

The proof of the following result can be found in the online appendix.

Theorem 4.12

The order >KV′ is an AC-compatible simplification order.

Since the inclusion >KV ⊆ >KV′ obviously holds, it follows that >KV is a sound

method for establishing AC termination, despite the lack of monotonicity.

5 AC-KBO

In this section, we present another AC-compatible simplification order. In contrast

to >KV′ , our new order >ACKBO contains >S. Moreover, its definition is simpler than

>KV′ since we avoid the use of an auxiliary order in case 3. In the next section, we

show that >ACKBO is decidable in polynomial-time, whereas the membership decision

problem for >KV′ is NP-complete. Hence it will be used as the basis for the extension

discussed in Section 8.
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Definition 5.1

Let > be a precedence and (w,w0) a weight function. We define >ACKBO inductively

as follows: s >ACKBO t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or

w(s) = w(t) and one of the following alternatives holds:

0. s = fk(t) and t ∈ V for some k > 0,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
ACKBO (t1, . . . , tn),

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f(s) and T = �f(t)

(a) S >
f
ACKBO T , or

(b) S =f
AC T , and |S | > |T |, or

(c) S =f
AC T , |S | = |T |, and S�<

f >mul
ACKBO T�<f .

The relation =AC is used as preorder in >lex
ACKBO and >mul

ACKBO.

Note that, in contrast to >KV, in case 3(c) we compare the multisets S�<f and T�<f
rather than S and T in the multiset extension of >ACKBO.

Steinbach’s order is a special case of the order defined above.

Theorem 5.2

If every AC symbol has minimal precedence then >S = >ACKBO.

Proof

Suppose that every function symbol in FAC is minimal with respect to >. We show

that s >S t if and only if s >ACKBO t by induction on s. It is clearly sufficient

to consider case 3 in Definition 3.1 and cases 3(a,b,c) in Definition 5.1. So let

s = f(s1, s2) and t = f(t1, t2) such that w(s) = w(t) and f ∈ FAC. Let S = �f(s) and

T = �f(t).

• Let s >S t by case 3. We have S >mul
S T . Since S >mul

S T involves only

comparisons s′ >S t′ for subterms s′ of s, the induction hypothesis yields

S >mul
ACKBO T . Because f is minimal in >, S = S��

f 	S�V and T = T��
f 	T�V.

For no elements u ∈ S�V and v ∈ T��
f , u >ACKBO v or u =AC v holds. Hence

S >mul
ACKBO T implies S >

f
ACKBO T or both S =f

AC T and S�V � T�V. In the

former case s >ACKBO t is due to case 3(a) in Definition 5.1. In the latter case

we have |S | > |T | and s >ACKBO t follows by case 3(b).

• Let s >ACKBO t by applying one of the cases 3(a,b,c) in Definition 5.1.

— Suppose 3(a) applies. Then we have S >
f
ACKBO T . Since f is minimal in >,

S��
f = S−S�V and T��

f 	T�V = T . Hence S >mul
ACKBO (T−S�V)	S�V ⊇ T .

We obtain S >mul
S T from the induction hypothesis and thus case 3 in

Definition 3.1 applies.

— Suppose 3(b) applies. Analogous to the previous case, the inclusion S =mul
AC

(T − S�V) 	 S�V ⊇ T holds. Since |S | > |T |, S =mul
AC T is not possible.

Thus, (T − S�V) 	 S�V � T and hence S >mul
S T .

— If case 3(c) applies then S�<
f >mul

ACKBO T�<f . This is impossible since both

sides are empty as f is minimal in >. �
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>KV

>ACKBO

>S

1
•

2
•

3
•

1 Example 3.2 (and 4.3)

2 Example 4.3

3 Example 5.3

Fig. 1. Comparison.

The following example shows that >ACKBO is a proper extension of >S and

incomparable with >KV′ .

Example 5.3

Consider the TRS R3 consisting of the rules

f(x + y) → f(x) + y h(a, b) → h(b, a) h(g(a), a) → h(a, g(b))

g(x) + y → g(x + y) h(a, g(g(a))) → h(g(a), f(a)) h(g(a), b) → h(a, g(a))

f(a) + g(b) → f(b) + g(a)

over the signature {+, f , g, h, a, b} with + ∈ FAC. Consider the precedence

f > + > g > a > b > h

together with the admissible weight function (w,w0) with

w(+) = w(h) = 0 w(f) = w(a) = w(b) = w0 = 1 w(g) = 2

The interesting rule is f(a) + g(b) → f(b) + g(a). For S = �+(f(a) + g(b)) and T =

�+(f(b)+g(a)) the multisets S ′ = S��
+ = {f(a)} and T ′ = T��

+ 	T�V −S�V = {f(b)}
satisfy S ′ >mul

ACKBO T ′ as f(a) >ACKBO f(b), so that case 3(a) of Definition 5.1 applies.

All other rules are oriented from left to right by both >KV′ and >ACKBO, and they

enforce a precedence and weight function which are identical (or very similar) to

the one given above. Since >KV′ orients the rule f(a) + g(b) → f(b) + g(a) from

right to left, R3 cannot be compatible with >KV′ . It is easy to see that the rule

g(x) + y → g(x + y) requires + > g, and hence >S cannot be applied.

Figure 1 summarizes the relationships between the orders introduced so far. In

the following, we show that >ACKBO is an AC-compatible simplification order. As a

consequence, correctness of >S (i.e., Theorem 3.3) is concluded by Theorem 5.2.

In the online appendix we prove the following property.

Lemma 5.4

The pair (=AC, >ACKBO) is an order pair.

The subterm property is an easy consequence of transitivity and admissibility.
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Lemma 5.5

The order >ACKBO has the subterm property. �

Next we prove that >ACKBO is closed under contexts. The following lemma is an

auxiliary result needed for its proof. In order to reuse this lemma for the correctness

proof of >KV′ in the online appendix, we prove it in an abstract setting.

Lemma 5.6

Let (�,�) be an order pair and f ∈ FAC with f(u, v) � u, v for all terms u and v. If

s � t then {s} �mul �f(t) or {s} �mul �f(t). If s � t then {s} �mul �f(t).

Proof

Let �f(t) = {t1, . . . , tm}. If m = 1 then �f(t) = {t} and the lemma holds trivially.

Otherwise we get t � tj for all 1 � j � m by recursively applying the assumption.

Hence s � tj by the transitivity of � or the compatibility of � and �. We conclude

that {s} �mul �f(t). �

In the following proof of closure under contexts, admissibility is essential. This is

in contrast to the corresponding result for standard KBO.

Lemma 5.7

If (w,w0) is admissible for > then >ACKBO is closed under contexts.

Proof

Suppose s >ACKBO t. We consider the context h(�, u) with h ∈ FAC and u an

arbitrary term, and prove that s′ = h(s, u) >ACKBO h(t, u) = t′. Closure under contexts

of >ACKBO follows then by induction; contexts rooted by a non-AC symbol are

handled as in the proof for standard KBO.

If w(s) > w(t) then obviously w(s′) > w(t′). So we assume w(s) = w(t). Let

S = �h(s), T = �h(t), and U = �h(u). Note that �h(s
′) = S 	 U and �h(t

′) = T 	 U.

Because >mul
ACKBO is closed under multiset sum, it suffices to show that one of the

cases 3(a,b,c) of Definition 5.1 holds for S and T . Let f = root(s) and g = root(t).

We distinguish the following cases.

• Suppose f � h. We have S = S��
h = {s}, and from Lemmata 5.5 and 5.6 we

obtain S >mul
ACKBO T . Since T is a superset of T��

h 	 T�V − S�V, 3(a) applies.

• Suppose f = h > g. We have T��
h 	 T�V = �. If S��

h �= �, then 3(a) applies.

Otherwise, since AC symbols are binary and T = {t}, |S | � 2 > 1 = |T |.
Hence 3(b) applies.

• If f = g = h then s >ACKBO t must be derived by one of the cases 3(a,b,c) for

S and T .

• Suppose f, g < h. We have S��
h = T��

h 	 T�V = �, |S | = |T | = 1, and

S�<h = {s} >mul
ACKBO {t} = T�<h . Hence 3(c) holds.

Note that f � g since w(s) = w(t) and s >ACKBO t. Moreover, if t ∈ V then

s = fk(t) for some k > 0 with w(f) = 0, which entails f > h due to the admissibility

assumption. �
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Closure under substitutions is the trickiest part since by substituting AC-rooted

terms for variables that appear in the top-flattening of a term, the structure of

the term changes. In the proof, the multisets {t ∈ T | t /∈ V}, {tσ | t ∈ T }, and

{�f(t) | t ∈ T } are denoted by T�F, Tσ, and �f(T ), respectively.

Lemma 5.8

Let > be a precedence, f ∈ FAC, and (�,�) an order pair on terms such that �
and � are closed under substitutions and f(x, y) � x, y. Consider terms s and t such

that S = �f(s), T = �f(t), S
′ = �f(sσ), and T ′ = �f(tσ).

1. If S �f T then S ′ �f T ′.

2. If S �f T then S ′ �f T ′ or S ′ �f T ′. In the latter case |S | − |T | � |S ′| − |T ′| and

S ′�<f �mul T ′�<
f whenever S�<

f �mul T�<f .

Proof

Let v be an arbitrary term. By the assumption on � we have either {v} = �f(v) or

both {v} �mul �f(v) and 1 < |�f(v)|. Hence, for any set V of terms, either V = �f(V )

or both V �mul �f(V ) and |V | < |�f(V )|. Moreover, for V = �f(v), the following

equalities hold:

�f(vσ)��
f = V��

f σ 	 �f(V�Vσ)��
f �f(vσ)�V = �f(V�Vσ)�V

To prove the lemma, assume S Rf T for R ∈ {�,�}. We have S��
f Rmul T��

f 	 U

where U = (T −S)�V. Since multiset extensions preserve closure under substitutions,

S��
f σ Rmul T��

f σ 	 Uσ follows. Using the above (in)equalities, we obtain

S ′��
f = S��

f σ 	 �f(S�Vσ)��
f

Rmul T��
f σ 	 �f(S�Vσ)��

f 	 Uσ

O T��
f σ 	 �f(S�Vσ)��

f 	 �f(Uσ)

= T��
f σ 	 �f(S�Vσ)��

f 	 �f(Uσ)�V 	 �f(Uσ)��
f 	 �f(Uσ)�<

f

P T��
f σ 	 �f(T�Vσ)��

f 	 �f(Uσ)�V

= T��
f σ 	 �f(T�Vσ)��

f 	 �f(T�Vσ)�V − �f(S�Vσ)�V

= T ′��
f 	 T ′�V − S ′�V

Here O denotes = if Uσ = �f(Uσ) and �mul if |Uσ| < |�f(Uσ)|, while P denotes

= if Uσ�<f = � and � otherwise. Since (�mul,�mul) is an order pair with ⊇ ⊆ �mul

and � ⊆ �mul, we obtain S ′ Rf T ′.

It remains to show 2. If S ′ �f
T ′ then O and P are both = and thus Uσ = �f(Uσ)

and Uσ�<
f = �. Let X = S�V ∩ T�V. We have U = T�V − X.

• Since |W�Fσ| = |W�F| and |W | � |�f(W )| for an arbitrary set W of terms,

we have |S ′| � |S | − |X| + |�f(Xσ)|. From |Uσ| = |U| = |T�V| − |X| we obtain

|T ′| = |T�Fσ| + |�f(Uσ)| + |�f(Xσ)| = |T | − |X| + |�f(Xσ)|

Hence |S | − |T | � |S ′| − |T ′| as desired.

• Suppose S�<
f �mul T�<

f . From Uσ�<
f = � we infer T�Vσ�<

f ⊆ S�Vσ�<f .

Because S ′�<f = S�<f σ 	 S�Vσ�<
f and T ′�<

f = T�<f σ 	 T�Vσ�<f , closure under
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substitutions of �mul (which it inherits from � and �) yields the desired

S ′�<f �mul T ′�<f . �

Lemma 5.9

>ACKBO is closed under substitutions.

Proof

If s >ACKBO t is obtained by cases 0 or 1 in Definition 5.1, the proof for standard

KBO goes through. If 3(a) or 3(b) is used to obtain s >ACKBO t, according to

Lemma 5.8 one of these cases also applies to sσ >ACKBO tσ. The final case is 3(c).

So �f(s)�
<
f >mul

ACKBO �f(t)�
<
f . Suppose sσ >ACKBO tσ cannot be obtained by 3(a) or

3(b). Lemma 5.8(2) yields |�f(sσ)| = |�f(tσ)| and �f(sσ)�<f >mul
ACKBO �f(tσ)�<

f . Hence

case 3(c) is applicable to obtain sσ >ACKBO tσ. �

We arrive at the main theorem of this section.

Theorem 5.10

The order >ACKBO is an AC-compatible simplification order. �

Since we deal with finite non-variadic signatures, simplification orders are well-

founded. The following example shows that AC-KBO is not incremental, i.e.,

orientability is not necessarily preserved when the precedence is extended. This

is in contrast to the AC-RPO of Rubio (2002). However, this is not necessarily a

disadvantage; actually, the example shows that by allowing partial precedences more

TRSs can be proved to be AC terminating using AC-KBO.

Example 5.11

Consider the TRS R consisting of the rules

a ◦ (b • c) → b ◦ f(a • c) a • (b ◦ c) → b • f(a ◦ c)

over the signature F = {a, b, c, f , ◦, •} with ◦, • ∈ FAC. By taking the precedence

f > a, b, c, ◦, • and admissible weight function (w,w0) with

w(f) = w(◦) = w(•) = 0 w0 = w(a) = w(c) = 1 w(b) = 2

the resulting >ACKBO orients both rules from left to right. It is essential that ◦ and

• are incomparable in the precedence: We must have w(f) = 0, so f > a, b, c, ◦, • is

enforced by admissibility. If ◦ > • then the first rule can only be oriented from left

to right if a >ACKBO f(a • c) holds, which contradicts the subterm property. If • > ◦
then we use the second rule to obtain the impossible a >ACKBO f(a ◦ c). Similarly, R
is also orientable by >KV′ but we must adopt a non-total precedence.

The easy proof of the final theorem in this section can be found in the online

appendix.

Theorem 5.12

If > is total then >ACKBO is AC-total on ground terms.
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6 Complexity

In this section, we discuss complexity issues for the orders defined in the preceding

sections. We start with the membership problem: Given two terms s and t, a weight

function, and a precedence, does s > t hold? For plain KBO this problem is known

to be decidable in linear time (Löchner 2006). For >S, >KV, and >ACKBO, we show

the problem to be decidable in polynomial time, but we start with the unexpected

result that >KV′ membership is NP-complete. For NP-hardness we use the reduction

technique of Thiemann et al. (2012, Theorem 4.2).

Theorem 6.1

The decision problem for >KV′ is NP-complete.

Proof

We start with NP-hardness. It is sufficient to show NP-hardness of deciding S >mul
kv′

T , since we can easily construct terms s and t such that S >mul
kv′ T if and only if

s >KV′ t. To wit, for S = {s1, . . . , sn} and T = {t1, . . . , tm} we introduce an AC symbol

◦ and constants c and d such that ◦ > c, d and define

s = s1 ◦ · · · ◦ sn ◦ c t = t1 ◦ · · · ◦ tm ◦ d ◦ d

The weights of c and d should be chosen so that w(s) = w(t). If S >mul
kv′ T

then case 3(a) applies for s >KV′ t. Otherwise, S �mul
kv′ T implies n = m and thus

|�◦(s)| < |�◦(t)|. Hence neither case 3(b) nor 3(c) applies.

We reduce a non-empty SAT problem φ = {C1, . . . , Cm} in conjunctive normal form

(CNF) over propositional variables x1, . . . , xn to the decision problem Sφ >mul
kv′ Tφ.

The multisets Sφ and Tφ will consist of terms in T({a, f}, {x1, . . . , xn, y1, . . . , ym}),
where a is a constant with w(a) = w0 and f has arity m+ 1. For each 1 � j � m and

literal l, we define

sj(l) =

{
yj if l ∈ Cj

a otherwise

Moreover, for each 1 � i � n we define

t+i = f(xi, s1(xi), . . . , sm(xi)) t−i = f(xi, s1(¬xi), . . . , sm(¬xi))

and ti = f(xi, a, . . . , a). Note that w(t+i ) = w(t−i ) = w(ti) > w(yj) for all 1 � i � n and

1 � j � m. Finally, we define

Sφ = {t+1 , t
−
1 , . . . , t

+
n , t

−
n } Tφ = {t1, . . . , tn, y1, . . . , ym}

Note that for every 1 � i � n there is no s ∈ Sφ such that s >kv ti. Hence, Sφ >mul
kv′ Tφ

if and only if Sφ can be written as {s1, . . . , sn, s′
1, . . . , s

′
n} such that si �kv′ ti for all

1 � i � n, and for all 1 � j � m there exists an 1 � i � n such that s′
i >kv yj . It is

easy to see that the only candidates for si are t+i and t−i .

Now suppose Sφ >mul
kv′ Tφ with Sφ written as above. Consider the assignment α

defined as follows: α(xi) is true if and only if si = t−i . We claim that α satisfies every

Cj ∈ φ. We know that there exists 1 � i � n such that s′
i >kv yj and thus also

yj ∈ Var(s′
i). This is only possible if xi ∈ Cj (when s′

i = t+i ) or ¬xi ∈ Cj (when

s′
i = t−i ). Hence, by construction of α, α satisfies Cj .
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Conversely, suppose α satisfies φ. Let s′
i = t+i and si = t−i if α(xi) is true and

s′
i = t−i and si = t+i if α(xi) is false. We trivially have si �kv′ ti for all 1 � i � n.

Moreover, for each 1 � j � m, Cj contains a literal l = (¬)xi such that α(l) is true.

By construction, yj ∈ Var(s′
i) and thus s′

i >kv yj . Since φ is non-empty, m > 0 and

hence Sφ >mul
kv′ Tφ as desired.

To obtain NP-completeness we need to show membership in NP, which is easy;

one just guesses how the terms in the various multisets relate to each other in order

to satisfy the multiset comparisons in the definition of >KV′ . �

Next we show that the complexity of deciding >KV and >ACKBO for given weights

and precedence is decidable in polynomial time. Given a sequence S = s1, . . . , sn and

an index 1 � i � n, we denote by S[t]i the sequence obtained by replacing si with t

in S , and by S[ ]i the sequence obtained by removing si from S . Moreover, we write

{S} as a shorthand for the multiset {s1, . . . , sn}.

Lemma 6.2

Let (�,�) be an order pair such that ∼ := � \ � is symmetric. If s ∼ t then

M 	 {s} �mul N 	 {t} and M �mul N are equivalent.

Proof

We only show that M 	 {s} �mul N 	 {t} implies M �mul N, since the other

direction is trivial. So suppose M 	 {s} �mul
k N 	 {t}, where sequences S = s1, . . . , sm

and T = t1, . . . , tn satisfy the conditions for �mul
k in Definition 2.1. Because we have

{S} = M 	 {s} and {T } = N 	 {t}, there are indices i and j such that s = si and

t = tj . In order to establish M �mul N we distinguish four cases.

• If i, j � k then sj � tj = t ∼ s = si � ti and thus {S[sj]i[ ]j} �mul
k−1 {T [ ]j}.

• If i � k < j then there exists some l > k such that sl � tj = t ∼ s = si � ti.

Therefore, {S[ ]i} �mul
k−1 {T [ti]j[ ]i}.

• If j � k < i then sj � tj = t ∼ s = si and thus sj � tl for every l > k such that

si � tl . Hence {S[sj]i[ ]j} �mul
k−1 {T [ ]j}.

• The remaining case k < i, j is analogous to the previous case, and we obtain

{S[ ]i} �mul
k {T [ ]j}.

Because {S[sj]i[ ]j} = {S[ ]i} = M and {T [ti]j[ ]i} = {T [ ]j} = N hold, in all cases

M �mul N is concluded. �

Lemma 6.3

Let (�,�) be an order pair such that ∼ := � \ � is symmetric and the decision

problems for � and � are in P. Then the decision problem for �mul is in P.

Proof

Suppose we want to decide whether two multisets S and T satisfy S �mul T . We

first check if there exists a pair (s, t) ∈ S × T such that s ∼ t, which can be done by

testing s � t and s � t at most |S | × |T | times. If such a pair is found then according

to Lemma 6.2, the problem is reduced to S − {s} �mul T − {t}. Otherwise, we check

for each t ∈ T whether there exists s ∈ S such that s � t, which can be done by

testing s � t at most |S | × |T | times. �
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Using the above lemma, we obtain the following result by a straightforward

induction argument.

Corollary 6.4

The decision problems for >ACKBO, >KV, and >S belong to P. �

Next we address the complexity of the important orientability problem: Given a

TRS R, do there exist a weight function and a precedence such that the rules of R
are oriented from left to right with respect to the order under consideration? It is

well known (Korovin and Voronkov 2003b) that KBO orientability is decidable in

polynomial time. We show that >KV and >ACKBO orientability are NP-complete even

for ground TRSs. First, we show NP-hardness of >KV orientability by a reduction

from SAT.

Let φ = {C1, . . . , Cn} be a CNF SAT problem over propositional variables

p1, . . . , pm. We consider the signature Fφ consisting of an AC symbol +, constants c

and d1, . . . , dn, and unary function symbols p1, . . . , pm, a, b, and ej
i for all i ∈ {1, . . . , n}

and j ∈ {0, . . . , m}. We define a ground TRS Rφ on T(Fφ) such that >KV orients

Rφ if and only if φ is satisfiable. The TRS Rφ will contain the following base system

R0 that enforces certain constraints on the precedence and the weight function:

a(c + c) → a(c) + c b(c) + c → b(c + c) a(b(b(c))) → b(a(a(c)))

a(p1(c)) → b(p2(c)) · · · a(pm(c)) → b(a(c)) a(a(c)) → b(p1(c))

Lemma 6.5

The order >KV is compatible with R0 if and only if a > + > b and w(a) = w(b) =

w(pj) for all 1 � j � m. �

Consider the clause Ci of the form {p′
1, . . . , p

′
k,¬p′′

1 , . . . ,¬p′′
l }. Let U, U ′, V , and W

denote the following multisets:

U = {p′
1(b(di)), . . . , p

′
k(b(di))} V = {p′′

0(e
0,1
i ), . . . , p′′

l−1(e
l−1,l
i ), p′′

l (e
l,0
i )}

U ′ = {b(p′
1(di)), . . . , b(p′

k(di))} W = {p′′
0(e

0,0
i ), . . . , p′′

l (e
l,l
i )}

where we write p′′
0 for a and ej,k

i for ej
i (e

k
i (c)). The TRS Rφ is defined as the union

of R0 and {�i → ri | 1 � i � n} with

�i = b(b(c + c)) +
∑

U +
∑

V ri = b(c) + b(c) +
∑

U ′ +
∑

W

Note that the symbols di and e0
i , . . . , e

l
i are specific to the rule �i → ri.

Example 6.6

Consider a clause C1 = {x,¬y,¬z}. We have

�1 = b(b(c + c)) + x(b(di)) + a(e0
1(e

1
1(c))) + y(e1

1(e
2
1(c))) + z(e2

1(e
0
1(c)))

r1 = b(c) + b(c) + b(x(di)) + a(e0
1(e

0
1(c))) + y(e1

1(e
1
1(c))) + z(e2

1(e
2
1(c)))

Note that x, y, and z are unary function symbols. We have w(�1) = w(r1) for any

weight function w. Suppose a > + > b and w(a) = w(b) = w(x) = w(y) = w(z).

We consider a number of cases, depending on the order of x, y, z, and + in the

precedence. If x, y, z > + (i.e., x, y, and z are assigned true) then �1 >KV r1 can
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be satisfied by choosing w(d1) large enough such that w(x(b(d1))) > w(t) for all

t ∈ �+(r1)�
>
+, where

�+(�1)�
>
+ = {x(b(d1)), a(e0

1(e
1
1(c))), y(e

1
1(e

2
1(c))), z(e

2
1(e

0
1(c)))}

�+(r1)�
>
+ = { a(e0

1(e
0
1(c))), y(e

1
1(e

1
1(c))), z(e

2
1(e

2
1(c)))}

On the other hand, if y, z > + > x (i.e., x is falsified) then �1 >KV r1 is not satisfiable;

no matter how we assign weights to e0
1, e

1
1, and e2

1, a term in �+(r1) has the maximum

weight, where

�+(�1)�
>
+ = {a(e0

1(e
1
1(c))), y(e

1
1(e

2
1(c))), z(e

2
1(e

0
1(c)))}

�+(r1)�
>
+ = {a(e0

1(e
0
1(c))), y(e

1
1(e

1
1(c))), z(e

2
1(e

2
1(c)))}

However, if y > + > x, z (i.e., z is falsified) then �1 >KV r1 can be satisfied by

choosing w(e2
1) large enough, where

�+(�1)�
>
+ = {a(e0

1(e
1
1(c))), y(e

1
1(e

2
1(c)))}

�+(r1)�
>
+ = {a(e0

1(e
0
1(c))), y(e

1
1(e

1
1(c)))}

Similarly, if + > x, y, z then �1 >KV r1 can be satisfied by choosing w(e1
1) large

enough, where

�+(�1)�
>
+ = {a(e0

1(e
1
1(c)))}

�+(r1)�
>
+ = {a(e0

1(e
0
1(c)))}

Lemma 6.7

Let a > + > b. Then, Rφ ⊆ >KV for some (w,w0) if and only if for every i there is

some p such that p ∈ Ci with p � + or ¬p ∈ Ci with + > p.

Proof

For the “if” direction we reason as follows. Consider a (partial) weight function

w such that w(a) = w(b) = w(pj) for all 1 � j � m. We obtain R0 ⊆ >KV

from Lemma 6.5. Furthermore, consider Ci = {p′
1, . . . , p

′
k,¬p′′

1 , . . . ,¬p′′
l } and �i, ri,

U, V and W defined above. Let L = �+(�i) and R = �+(ri). We clearly have

L��
+ = U��

+ ∪ V��
+ and R��

+ = W��
+. It is easy to show that w(�i) = w(ri). We show

�i >KV ri by distinguishing two cases.

1. First suppose that p′
j � + for some 1 � j � k. We have p′

j(b(di)) ∈ U��
+. Extend

the weight function w such that

w(di) = 1 + 2 · max {w(e0
i ), . . . , w(el

i)}

Then p′
j(b(di)) >kv t for all terms t ∈ W and hence L��

+ >mul
kv R��

+. Therefore,

�i >KV ri by case 3(a).

2. Otherwise, U��
+ = � holds. By assumption + > p′′

j for some 1 � j � l. Consider

the smallest m such that + > p′′
m. Extend the weight function w such that

w(em
i ) = 1 + 2 · max {w(ej

i ) | j �= m}
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Then w(p′′
m−1(e

m−1,m
i )) > w(p′′

j (e
j,j
i )) for all j �= m. From p′′

m−1 > + we infer

p′′
m−1(e

m−1,m
i ) ∈ V��

+. (Note that p′′
m−1 = a > + if m = 1.) By definition of m,

p′′
m(em,m

i ) /∈ W��
+. It follows that L��

+ >mul
kv R��

+ and thus �i >KV ri by case 3(a).

Next we prove the “only if” direction. So suppose there exists a weight function

w such that Rφ ⊆ >KV. We obtain w(a) = w(b) = w(pj) for all 1 � j � m from

Lemma 6.5. It follows that w(�i) = w(ri) for every Ci ∈ φ. Suppose for a proof by

contradiction that there exists Ci ∈ φ such that + > p for all p ∈ Ci and p � +

whenever ¬p ∈ Ci. So L��
+ = V and R��

+ = W . Since |R| = |L| + 1, we must have

�i >KV ri by case 3(a) and thus V >kv W . Let s be a term in V of maximal weight.

We must have w(s) � w(t) for all terms t ∈ W . By construction of the terms in

V and W , this is only possible if all symbols ej
i have the same weight. It follows

that all terms in V and W have the same weight. Since |V | = |W | and for every

term s′ ∈ V there exists a unique term t′ ∈ W with root(s′) = root(t′), we conclude

V =kv W , which provides the desired contradiction. �

After these preliminaries we are ready to prove NP-hardness.

Theorem 6.8

The (ground) orientability problem for >KV is NP-hard.

Proof

It is sufficient to prove that a CNF formula φ = {C1, . . . , Cn} is satisfiable if and

only if the corresponding Rφ is orientable by >KV. Note that the size of Rφ is linear

in the size of φ. First suppose that φ is satisfiable. Let α be a satisfying assignment

for the atoms p1, . . . , pm. Define the precedence > as follows: a > + > b and pj > +

if α(pj) is true and + > pj if α(pj) is false. Then Rφ ⊆ >KV follows from Lemma 6.7.

Conversely, if Rφ is compatible with >KV then we define an assignment α for the

atoms in φ as follows: α(p) is true if p � + and α(p) is false if + > p. We claim that

α satisfies φ. Let Ci be a clause in φ. According to Lemma 6.7, p � + for one of the

atoms p in Ci or + > p for one of the negative literals ¬p in Ci. Hence α satisfies Ci

by definition. �

We can show NP-hardness of >ACKBO by adapting the above construction

accordingly, as shown in Appendix ??.

Theorem 6.9

The (ground) orientability problem for >ACKBO is NP-hard. �

The NP-hardness results of Theorems 6.8 and 6.9 can be strengthened to NP-

completeness. This is not entirely trivial because there are infinitely many different

weight functions to consider.

Lemma 6.10

The orientability problems for >ACKBO and >KV belong to NP.
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Proof (sketch)

We sketch the proof for >ACKBO. With minor modifications the result for >KV is

obtained.

For each rule � → r of a given TRS R we guess which choices are made in

the definition of >ACKBO when evaluating � >ACKBO r. In particular, we do not

guess the weight function, but rather the comparison (= or >) of the weights of

certain subterms of � and r. These comparisons are transformed into constraints

on the weight function by symbolically evaluating the weight expressions. We add

the constraints stemming from the definition of the weight function. The resulting

problem is a conjunction of linear constraints over unknowns (the weights of

the function symbols and w0) over the integers. It is well known (Schrijver 1986,

Section 10.3) that solving such a linear program over the rationals can be done in

polynomial time. If there is a solution we check the admissibility condition and well-

foundedness of the precedence. (If an integer valued weight function is desired, one

can simply multiply the weights by the least common multiple of their denominators.

This induces the same weight order on terms and does not affect the admissibility

condition.)

Since there are polynomially (in the size of the compared terms) many choices

in the definition of >ACKBO and each choice can be checked for correctness in

polynomial time, membership in NP follows. �

Corollary 6.11

The orientability problems for >ACKBO and >KV are NP-complete. �

The NP-hardness proofs of >KV and >ACKBO orientability given earlier do not

extend to >S since the latter requires that AC symbols are minimal in the precedence.

We conjecture that the orientability problem for >S belongs to P.

7 AC-RPO

In this section, we compare AC-KBO with AC-RPO (Rubio 2002). Since the latter is

incremental (Rubio 2002, Lemma 22), we restrict the discussion to total precedences.

Definition 7.1

Let > be a precedence and t = f(u, v) such that f ∈ FAC and �f(t) = {t1, . . . , tn}. We

write t 	f
emb u for all terms u such that �f(u) = {t1, . . . , ti−1, sj , ti+1, . . . , tn} for some

ti = g(s1, . . . , sm) with f > g and 1 � j � m.

Using previously introduced notations, AC-RPO can be defined as follows.

Definition 7.2

Let > be a precedence and let F\FAC = Fmul 	Flex. We define >ACRPO inductively

as follows: s >ACRPO t if one of the following conditions holds:

0. s = f(s1, . . . , sn) and si �ACRPO t for some 1 � i � n,

1. s = f(s1, . . . , sn), t = g(t1, . . . , tm), f > g, and s >ACRPO tj for all 1 � j � m,

2. s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, s >ACRPO tj for all 1 � j � n, and

either
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(a) f ∈ Flex and (s1, . . . , sn) >
lex
ACRPO (t1, . . . , tn), or

(b) f ∈ Fmul and {s1, . . . , sn} >mul
ACRPO {t1, . . . , tn},

3. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and s′ �ACRPO t for some s′ such that s 	f
emb s′,

4. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, s >ACRPO t′ for all t′ such that t 	f
emb t′, and

for S = �f(s) and T = �f(t)

(a) S >
f
ACRPO T ,

(b) S =f
AC T and |S | > |T |, or

(c) S =f
AC T , |S | = |T |, and S�<f >mul

ACRPO T�<f .

The relation =AC is used as preorder in >lex
ACRPO and >mul

ACRPO, and as equivalence

relation in �ACRPO.

Example 7.3

Consider the TRS R consisting of the rules

f(x) + g(x) → g(x) + (g(x) + g(x)) f(x) → g(x) + a

over the signature F = {f , g,+, a} with + ∈ FAC. Let R′ be the TRS obtained from

R by reverting the first rule. When using AC-RPO with precedence f > + > g > a,

both rules in R can be oriented from left to right. Since the second rule requires

f > + and f > g, termination of R′ cannot be shown with AC-RPO.

In contrast, AC-KBO cannot orient R due to the variable condition. But the

precedence g > + > f > a and admissible weight function (w,w0) with w(+) = 0,

w0 = w(g) = w(a) = 1 and w(f) = 3 allows the resulting >ACKBO to orient both rules

of R′.

Case 4 in Definition 7.2 differs from the original version in Rubio (2002) in that

we used notions introduced for AC-KBO. We now recall the original definition and

prove the two versions equivalent in Lemma 7.5.

Definition 7.4

For S = {s1, . . . , sn} let #(S) = #(s1) + · · · + #(sn) where #(si) = si for si ∈ V and

#(si) = 1 otherwise. Then #(S) > #(T ) (#(S) � #(T )) is defined via comparison of

linear polynomials over the positive integers.

Let > be a total precedence. The order >ACRPO′ is inductively defined as in

Definition 7.2, but with case 4 as follows:

4′. s = f(s1, s2), t = f(t1, t2), f ∈ FAC, s >ACRPO′ t′ for all t′ such that t 	f
emb t′,

S�>f 	 S�V �mul
ACRPO′ T�>f 	 T�V for S = �f(s) and T = �f(t), and

(a) S�>f >mul
ACRPO′ T�>f , or

(b) #(S) > #(T ), or

(c) #(S) � #(T ), and S >mul
ACRPO′ T .

The proof of the following correspondence can be found in the online appendix.
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Lemma 7.5

Let > be a total precedence. We have s >ACRPO t if and only if s >ACRPO′ t.

It is known that both orientability and membership are NP-hard for the multiset

path order (Krishnamoorthy and Narendran 1985). It is not hard to adapt these

proofs to the lexicographic path order (LPO), and NP-hardness for the case of RPO

is an easy consequence.

In contrast to AC-KBO, a straightforward application of the definition of AC-

RPO (in particular case 4 of Definition 7.2) may generate an exponential number

of subproblems, as illustrated by the following example.

Example 7.6

Consider the signature F = {f , g, h, ◦} with ◦ ∈ FAC and precedence f > ◦ > g > h.

Let t = x ◦ y and tn = tσn for the substitution σ = {x �→ g(x) ◦ h(y), y �→ h(y)}.
The size of tn is quadratic in n but the number of terms u that satisfy tn (	◦

emb)
+ u

is exponential in n. Now suppose one wants to decide whether f(x) ◦ f(y) >ACRPO tn
holds. Only case 4(a) is applicable but in order to conclude orientability, case 4(a)

needs to be applied recursively in order to verify f(x) ◦ f(x) >ACRPO u for the

exponentially many terms u such that tn (	◦
emb)

+ u.

8 Subterm coefficients

Subterm coefficients were introduced in Ludwig and Waldmann (2007) in order to

cope with rewrite rules like f(x) → g(x, x) which violate the variable condition. A

subterm coefficient function is a partial mapping sc : F × � → � such that for

a function symbol f of arity n we have sc(f, i) > 0 for all 1 � i � n. Given a

weight function (w,w0) and a subterm coefficient function sc, the weight of a term

is inductively defined as follows:

w(t) =

{
w0 if t ∈ V
w(f) +

∑
1�i�n

sc(f, i) · w(ti) if t = f(t1, . . . , tn)

The variable coefficient vc(x, t) of a variable x in a term t is inductively defined as

follows:

vc(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

1 if t = x

0 if t ∈ V \ {x}∑
1�i�n

sc(f, i) · vc(x, ti) if t = f(t1, . . . , tn)

Definition 8.1

The order >sc
ACKBO is obtained from Definition 5.1 by replacing the condition “ |s|x �

|t|x for all x ∈ V ” with “ vc(x, s) � vc(x, t) for all x ∈ V ” and using the modified

weight function introduced above.

In order to guarantee AC compatibility of >sc
ACKBO, the subterm coefficient function

sc has to assign the value 1 to arguments of AC symbols. This follows by considering
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the terms t◦(u◦v) and (t◦u)◦v for an AC symbol ◦ with sc(◦, 1) = m and sc(◦, 2) = n.

We have

w(t ◦ (u ◦ v)) = 2 · w(◦) + m · w(t) + mn · w(u) + n2 · w(v)

w((t ◦ u) ◦ v) = 2 · w(◦) + m2 · w(t) + mn · w(u) + n · w(v)

Since w(t ◦ (u ◦ v)) = w((t ◦ u) ◦ v) must hold for all possible terms t, u, and v, it

follows that m = m2 and n2 = n, implying m = n = 1.6 The proof of the following

theorem is very similar to the one of Theorem 5.10 and hence omitted.

Theorem 8.2

If sc(f, 1) = sc(f, 2) = 1 for every function symbol f ∈ FAC then >sc
ACKBO is an

AC-compatible simplification order. �

Subterm coefficients can be viewed as linear interpretations. Lankford (1979)

suggested to use polynomial interpretations for the weight function of KBO. A

general framework for the use of arbitrary well-founded algebras in connection with

KBO is described in Middeldorp and Zantema (1997). These developments can be

lifted to the AC setting with little effort.

Example 8.3

Consider the following TRS R with ◦ ∈ FAC:

f(0, x ◦ x) → x (1)

f(x, s(y)) → f(x ◦ y, 0) (2)

f(s(x), y) → f(x ◦ y, 0) (3)

f(x ◦ y, 0) → f(x, 0) ◦ f(y, 0) (4)

Termination of R was shown using AC dependency pairs in Kusakari (2000,

Example 4.2.30). Consider a precedence f > ◦ > s > 0, and weights and subterm

coefficients given by w0 = 1 and the following interpretation A, mapping function

symbols in F to linear polynomials over �:

sA(x) = x + 6 fA(x, y) = 4x + 4y + 5 x ◦A y = x + y + 3 0A = 1

It is easy to check that the first three rules result in a weight decrease. The left-

and right-hand side of rule (4) are both interpreted as 4x + 4y + 21, so both terms

have weight 29, but since f > ◦ we conclude termination of R from case 1 in

Definition 5.1 (8.1). Note that termination of R cannot be shown by AC-RPO or

any of the previously considered versions of AC-KBO.

9 Experiments

We ran experiments on a server equipped with eight dual-core AMD Opteron R©

processors 885 running at a clock rate of 2.6 GHz with 64 GB of main memory. The

different versions of AC-KBO considered in this paper as well as AC-RPO (Rubio

2002) were implemented on top of TTT2 using encodings in SAT/SMT. These

encodings resemble those for standard KBO (Zankl et al. 2009) and transfinite

6 This condition is also obtained by restricting Ben Cherifa and Lescanne (1987, Proposition 4) to linear
polynomials.
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Table 1. Experiments on 145 termination and 67 completion problems

orientability AC-DP completion

method yes time ∞ yes time ∞ yes time ∞

AC-KBO 32 1.7 0 66 463.1 3 25 2278.6 37

Steinbach 23 1.6 0 50 463.2 2 24 2235.4 36

Korovin & Voronkov 30 2.0 0 66 474.3 4 25 2279.4 37

KV′ 30 2.1 0 66 472.4 3 25 2279.6 37

subterm coefficients 37 47.1 0 68 464.7 2 28 1724.7 26

AC-RPO 63 2.8 0 79 501.5 4 28 1701.6 26

total 72 94 31

KBO (Winkler et al. 2012). The encoding of multiset extensions of order pairs are

based on Codish et al. (2012), but careful modifications were required to deal with

submultisets induced by the precedence.

For termination experiments, our test set comprises all AC problems in the

Termination Problem Data Base 9.0,7 all examples in this paper, some further

problems harvested from the literature, and constraint systems produced by the

completion tool mkbtt (Winkler 2013) (145 TRSs in total). The timeout was set to

60 seconds. The results are summarized in Table 1, where we list for each order

the number of successful termination proofs, the total time, and the number of

timeouts (column ∞). The ‘orientability’ column directly applies the order to orient

all the rules. Although AC-RPO succeeds on more input problems, termination of

9 TRSs could only be established by (variants of) AC-KBO. We found that our

definition of AC-KBO is about equally powerful as Korovin and Voronkov’s order,

but both are considerably more useful than Steinbach’s version. When it comes

to proving termination, we did not observe a difference between Definitions 4.7

and 4.10. Subterm coefficients clearly increase the success rate, although efficiency is

affected. In all settings partial precedences were allowed.

The “AC-DP” column applies the order in the AC-dependency pair framework of

Alarcón et al. (2010), in combination with argument filterings and usable rules. Here

AC symbols in dependency pairs are unmarked, as proposed in Marché and Urbain

(2004). In this setting the variants of AC-KBO become considerably more powerful

and competitive to AC-RPO, since argument filterings relax the variable condition,

as pointed out in Zankl et al. (2009).

For completion experiments, we ran the normalized completion tool mkbtt with

AC-RPO and the variants of AC-KBO for termination checks on 67 equational

systems collected from the literature. The overall timeout was set to 60 seconds,

the timeout for each termination check to 1.5 seconds. The “completion” column

in Table 1 summarizes our results, listing for each order the number of successful

completions, the total time, and the number of timeouts. It should be noted that the

7 http://termination-portal.org/wiki/TPDB
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Table 2. Complexity results (KV is the ground version of >KV)

problem KBO S AC-KBO KV KV′ AC-RPO

membership P P P P NP-complete NP-hard

orientability P ? NP-complete NP-complete NP-complete NP-hard

results do not change if the overall timeout is increased to 600 seconds. For several

of these input problems it is actually unknown whether an AC-convergent system

exists.

All experimental details, source code, and TTT2 binaries are available online.8

The following example can be completed using AC-KBO, whereas AC-RPO does

not succeed.

Example 9.1

Consider the following TRS R (Marché and Urbain 2004) for addition of binary

numbers:

# + 0 → # x0 + y0 → (x + y)0 x1 + y1 → (x + y + #1)0

x + # → x x0 + y1 → (x + y)1

Here + ∈ FAC, 0 and 1 are unary operators in postfix notation, and # denotes the

empty bit sequence. For example, #100 represents the number 4. This TRS is not

compatible with AC-RPO but AC termination can easily be shown by AC-KBO,

for instance with the weight function (w,w0) with w(+) = 0, w0 = w(0) = w(#) = 1,

and w(1) = 3. It can be completed into an AC-convergent TRS using AC-KBO.

10 Conclusion

We revisited the two variants of AC-compatible extensions of KBO. We extended

the first version >S introduced by Steinbach (1990) to a new version >ACKBO, and

presented a rigorous correctness proof. By this we conclude correctness of >S, which

had been put in doubt in Korovin and Voronkov (2003a). We also modified the

order >KV by Korovin and Voronkov to a new version >KV′ which is monotone

on non-ground terms, in contrast to >KV. We further presented several complexity

results regarding these variants (see Table 2). While a polynomial time algorithm

is known for the orientability problem of standard KBO (Korovin and Voronkov

2003b), the problem becomes NP-complete even for the ground version of >KV, as

well as for our >ACKBO. Somewhat unexpectedly, even deciding >KV′ is NP-complete

while deciding standard KBO is linear (Löchner 2006). In contrast, the membership

problem is polynomial-time decidable for our >ACKBO. Finally, we implemented these

variants of AC-compatible KBO as well as the AC-dependency pair framework of

8 http://cl-informatik.uibk.ac.at/software/ackbo
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Alarcón et al. (2010). We presented full experimental results both for termination

proving and normalized completion.
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to improve the presentation. René Thiemann suggested the proof of Lemma 6.10.

Supplementary material

To view supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068415000083.

References

Alarcón, B., Lucas, S. and Meseguer, J. 2010. A dependency pair framework for A ∨ C-

termination. In Proc. 8th International Workshop on Rewriting Logic and its Applications

(WRLA 2010), Lecture Notes in Computer Science, vol. 6381. Springer Berlin Heidelberg,

35–51.

Arts, T. and Giesl, J. 2000. Termination of term rewriting using dependency pairs. Theoretical

Computer Science 236, 1–2, 133–178.

Bachmair, L. and Plaisted, D. A. 1985. Termination orderings for associative-commutative

rewriting systems. Journal of Symbolic Computation 1, 329–349.

Ben Cherifa, A. and Lescanne, P. 1987. Termination of rewriting systems by polynomial

interpretations and its implementation. Science of Computer Programming 9, 2, 137–159.

Codish, M., Giesl, J., Schneider-Kamp, P. and Thiemann, R. 2012. SAT solving for

termination proofs with recursive path orders and dependency pairs. Journal of Automated

Reasoning 49, 1, 53–93.

Dershowitz, N. 1982. Orderings for term-rewriting systems. Theoretical Computer

Science 17, 3, 279–301.

Giesl, J. and Kapur, D. 2001. Dependency pairs for equational rewriting. In Proc. 12th

International Conference on Rewriting Techniques and Applications (RTA 2001), Lecture

Notes in Computer Science, vol. 2051. Springer Berlin Heidelberg, 93–108.

Knuth, D. and Bendix, P. 1970. Simple word problems in universal algebras. In Computational

Problems in Abstract Algebra, J. Leech, Ed. Pergamon Press, New York, 263–297.

Korovin, K. and Voronkov, A. 2003a. An AC-compatible Knuth-Bendix order. In Proc. 19th

International Conference on Automated Deduction (CADE 2003), Lecture Notes in Artificial

Intelligence, vol. 2741. Springer Berlin Heidelberg, 47–59.

Korovin, K. and Voronkov, A. 2003b. Orienting rewrite rules with the Knuth-Bendix order.

Information and Computation 183, 2, 165–186.

Krishnamoorthy, M. and Narendran, P. 1985. On recursive path ordering. Theoretical

Computer Science 40, 323–328.

Kusakari, K. 2000. AC-termination and dependency pairs of term rewriting systems. Ph.D.

thesis, JAIST, Nomi, Japan.

Kusakari, K. and Toyama, Y. 2001. On proving AC-termination by AC-dependency pairs.

IEICE Transactions on Information and Systems E84-D, 5, 439–447.

https://doi.org/10.1017/S1471068415000083 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068415000083


188 A. Yamada et al.

Lankford, D. 1979. On proving term rewrite systems are noetherian. Technical Report

MTP-3, Louisiana Technical University, Ruston, LA, USA.
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