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After a brief introduction and physical motivation, we show how the nonlinear
Schrödinger (NLS) equation can be derived from a general class of nonlinear
hyperbolic systems. Its purpose is to describe the behaviour of high-frequency
oscillating wave packets over a large time-scale that requires us to take into account
diffractive effects. We then show that the NLS approximation fails for short pulses
and propose some alternative models, including a modified Schrödinger equation with
improved frequency dispersion. It turns out that these models have better properties
and are quite accurate for short pulses. For ultrashort pulses, however, they must also
be abandoned for more complex approaches. We give the main steps for such an
analysis and explain one striking fact about ultrashort pulses: their dynamics in
dispersive media is linear.

1. Generalities

This paper is the result of the ‘first session of crash-courses in analysis and nonlinear
PDEs’ held at Heriott-Watt University in March 2009. The aim of this course was
to present various mathematical techniques used to describe different kinds of laser
pulses, from standard beams to ultrashort pulses. The material for this course comes
from the references quoted in the bulk of the text, in particular [1–4,9, 12–14,17].

1.1. Motivation

We are interested here in describing the behaviour of fast oscillating solutions to
semilinear hyperbolic systems. More precisely, we are concerned with the following
initial-value problem:

∂tU + A(∂)U +
1
ε
EU = εT (U ,U ,U), t � 0,

U |t=0 = U0
(

x,
k · x

ε

)
, x ∈ Rd,

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

where U is an Rn-valued function (n � 1) depending on the time variable t and
the space variable x ∈ Rd (d � 1),

U : (t, x) ∈ R × Rd → Rn;
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the operator A(∂) is defined as

A(∂) =
d∑

j=1

Aj∂j ,

where ∂j is the differentiation operator with respect to the jth spatial coordinate.
The following assumption is made on the matrices Aj and E.

Assumption 1.1. The matrices Aj (j = 1, . . . , d) are constant coefficient n × n,
real-valued symmetric matrices.

The matrix E is a constant coefficient n×n, real-valued skew symmetric matrix.

We also assume that the mapping

T : Rn × Rn × Rn → Rn

is trilinear. We still denote by T its trilinear extension to C3n, while its symmetriza-
tion is denoted by T S,

6T S(A, B, C) = T (A, B, C) + T (A, C, B) + T (B, A, C)
+ T (B, C, A) + T (C, A, B) + T (C, B, A);

for the sake of simplicity, we often write

T S(A) := T S(A, A, Ā). (1.2)

Finally, k ∈ Rd is the (spatial) wavenumber of the oscillations and ε � 1 is a
small parameter (the order of the wavelength of the oscillations).

Example 1.2. An important class of initial conditions for (1.1) are ‘wave packets’.
The initial condition is then a fast oscillation modulated by an envelope u0:

U0
(

x,
k · x

ε

)
= u0(x)ei(k·x)/ε + c.c.,

where here and later ‘c.c.’ denotes the complex conjugate.

Remark 1.3. The factor ‘ε’ in front of the nonlinearity in (1.1) is due to the size of
the initial conditions considered and to a rescaling. One could equivalently consider
a nonlinearity of size O(1) with initial conditions of size O(ε1/2).

1.2. Two important examples

The rationale of this work is the description of physical phenomena arising in
nonlinear optics. We give below two important examples that satisfy the above
assumptions. It is important to bear them in mind for all that follows.
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Example 1.4. The Maxwell–Lorentz equations in a dispersive medium can be writ-
ten

∂tB + curlE = 0,

∂tE − curlB +
1
ε
Q = 0,

∂tQ − 1
ε
(E − P ) = ε|P |2P,

∂tP − 1
ε
Q = 0,

where B and E are respectively the magnetic and electric fields, while P is the
polarization of the medium.

Example 1.5. A useful toy model for the study of Maxwell’s equation is the Klein–
Gordon system

∂tU +
(

0 ∇
∇T 0

)
+

1
ε

(
0 −v

vT 0

)
= ε|U |2

(
0 −v

vT 0

)
U ,

where v ∈ Rd \ {0} is a constant vector.

1.3. Diffractive optics

We are interested here in diffractive optics. For the sake of clarity, let us explain
here roughly what this means (see § 2 for full details). A quick look at the linear
part of (1.1) shows that one should have Eu = 0 in the limit ε → 0. This is
a matricial equation that gives us some information on the vectorial structure of
the solution: it leads to the polarization condition (see § 2.2.1). At the next order,
the dynamics should be described by the hyperbolic part of the equations; it is
therefore no surprise that a precise analysis shows that the solution roughly travels
along rays: this is geometric optics (see § 2.2.2).

Diffractive optics describe what happens when the solution is observed during
larger time-scale than the natural scale of geometrics. The failure of the approxima-
tion of geometric optics is then described by the Schrödinger equation (see § 2.2.3).
Note also that the scaling on the nonlinearity has been chosen in such a way that
nonlinear and diffractive effects occur at the same time.

1.4. Generalizations

A good reference for the physical modelling leading to systems of the form (1.1)
and variants in nonlinear optics is Donnat’s thesis [11]. (See also [5, 19].)

The analysis presented here (in particular in § 2) can often be generalized to
more general types of semilinearity (the well-known Maxwell–Bloch systems have
a quadratic nonlinearity, for instance) and even to quasilinear systems [13, 14, 17].
The case of larger solutions (or, equivalently, stronger nonlinearities in (1.1)) has
also been considered: see [7, 8] and in particular [15], where the important concept
of transparency is investigated.
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2. The nonlinear Schrödinger (NLS) approximation

We are interested here in the case where the initial condition to (1.1) is a wave
packet,

U0
(

x,
k · x

ε

)
= u0(x)ei(k·x)/ε + c.c. (2.1)

The derivation and justification of the NLS approximation presented below is
inspired by [13,14,17]. Among other references for this problem are [16,21].

2.1. Well-posedness of (1.1) over large times

The general goal of this section is to describe the behaviour of solutions to (1.1)
over large time-scales of order O(1/ε) when the initial condition is as in (2.1). The
first thing to check is naturally that such solutions do exist! This is granted by
theorem 2.1. This theorem gives additional important information on the solution,
namely that it can be described in terms of a profile U ,

U(t, x) = U

(
t, x,

k · x − ωt

ε

)
, (2.2)

with U(t, x, θ) periodic with respect to θ and for any ω ∈ R, provided that U solves
the profile equation

∂tU + A(∂)U +
i
ε
L(ωDθ,kDθ)U = εT (U, U, U),

U |t=0(x, θ) = u0(x)eiθ + c.c.

⎫⎬
⎭ (2.3)

Here, we used the notation

L(ωDθ,kDθ) = −ωDθ + A(k)Dθ +
E

i
, (2.4)

with Dθ = −i∂θ and A(k) =
∑d

j=1 Ajkj .

Theorem 2.1. Let assumption 1.1 be satisfied, and let s > d/2, u0 ∈ Hs(Rd)n and
U0 be as in (2.1). Let also ω ∈ R.

There exist T > 0 such that for all ε ∈ (0, 1) there is a unique solution U ∈
C([0, T/ε];Hs(Rd))n to (1.1). Moreover, one can write U in the form

U(t, x) = U

(
t, x,

k · x − ωt

ε

)
,

where U solves the profile equation (2.3).

Proof. Quite obviously, a solution U to (1.1) is given by (2.2) if (2.3) admits a
solution U ∈ C([0, T/ε];Hs,k)n (k � 1), where

Hs,k(Rd × T) =
{

f =
∑
n∈Z

fneinθ, |f |Hs,k < ∞
}

(2.5)

and with
|f |2Hs,k =

∑
n∈Z

(1 + n2)k|fn|2Hs .

That such a solution exists is proved in the following lemma.
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Lemma 2.2. Let U0 ∈ Hs,k(Rd ×T)n (s > d/2, k � 1). Then there exist T > 0 and
a unique solution U ∈ C([0, T/ε];Hs,k(Rd × T)) to the profile equation (2.3) with
initial condition U0.

Proof. Let us define S(t) as

S(t) = exp
(

− tA(∂) − i
ε
L(ωDθ, kDθ)

)
;

from assumption 1.1, this operator is unitary on all Hs,k(Rd × T). Since, moreover,
Hs,k(Rd × T) is a Banach algebra for s > d/2 and k � 1, one can construct a
(unique) solution to (2.3) by a standard iterative scheme

U l+1(t) = S(t)U0 + ε

∫ t

0
S(t − t′)T (Uk, Uk, Uk)(t′) dt′;

owing to the ε in front of the integral, the sequence converges to a solution on
[0, T/ε] for some T > 0 independent of ε.

To prove the uniqueness of the solution let U1,U2 ∈ C([0, T ];Hs(Rd)n) solve
(1.1) on [0, T/ε]. Then V := U1 − U2 solves

∂tV + A(∂)V +
1
ε
EV = R,

V |t=0 = 0,

with
R = 3εT S(U2,U2,V ) − 3εT S(U1,U1,V ) − εT (V ,V ,V ).

In particular, one has, for all 0 � t � T/ε,

(R(t),V (t)) � εC(|U1|L∞([0,T/ε]×Rd), |U2|L∞([0,T/ε]×Rd))|V (t)|22.

It is thus easy to deduce from an L2-energy estimate on the equation and Gronwall’s
lemma that V = 0.

2.2. Formal derivation of the nonlinear Schrödinger approximation

We want to construct an approximation Uapp to the solution U of (1.1) as ε → 0.
According to theorem 2.1, it is natural to look for Uapp in the form

Uapp(t, x) = Uapp

(
t, x,

k · x − ωt

ε

)
, (2.6)

where Uapp is an approximate solution to the profile equation (2.3).
We look for Uapp in the form

Uapp(t, x, θ) = (u0,1(εt, t, x)eiθ + c.c.)

+ ε(u1,1(εt, t, x)eiθ + c.c.) + ε2U2(εt, t, x, θ). (2.7)
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We use the BKW method to determine this approximate solution. More precisely,
plugging (2.7) into the profile equation (2.3) yields

∂tUapp + A(∂)Uapp +
i
ε
L(ωDθ, kDθ)Uapp − εT (Uapp, Uapp, Uapp)

= ε−1R−1 + ε0R0 + ε1R2 + ε2Rε; (2.8)

the method consists in choosing u0,1, u1,1 and U2 in order to cancel R−1, R0 and R1.

Remark 2.3. Note the introduction of the slow time variable τ = εt in u0,1, u1,1
and u2. Its purpose is to capture the secular evolution of the solution on large
time-scales of order O(1/ε).

2.2.1. Cancelling the terms of order O(ε−1): the dispersion relation and the
polarization condition

Quite obviously, the term R−1 that appears in (2.8) is given by

R−1 = iL(ω, k)u0,1eiθ + c.c.

and the equation R−1 = 0 is thus equivalent to

L(ω, k)u0,1 = 0. (2.9)

This equation has non-trivial solutions if and only if detL(ω, k) = 0. This leads us
to define a very important object, the characteristic variety.

Definition 2.4. The characteristic variety associated to (1.1) is the real algebraic
variety CL ⊂ Rd+1 defined as

CL = {(ω, k) ∈ R × Rd, det L(ω, k) = 0}.

If (ω, k) ∈ CL, then we say that ω and k satisfy the dispersion relation.

Example 2.5. The characteristic variety associated to the Maxwell equations of
example 1.4 is the union of seven sheets. Three of them are flat (namely, ω = 0 and
ω = ±

√
2) and four are curved sheets. Among these last four, two are smooth on

Rd and do not contain the origin, and the last two admit a single singularity at the
origin.

Example 2.6. For the Klein–Gordon equations of example 1.5, the characteristic
variety is given by the two smooth hypersurfaces ω = ±

√
k2 + v2. One therefore

expects the same dispersive behaviour as for the two smooth curved sheets that do
not contain the origin in the previous example.

We can then conclude that u0,1 is a non-trivial (i.e. non-zero) solution of (2.9) if
and only if

(ω, k) ∈ CL and u0,1 ∈ ker L(ω, k) \ {0}. (2.10)

The condition u0,1 ∈ ker L(ω, k)\{0} is called the polarization condition. Of course,
if we work with scalar equations rather than systems, this condition disappears.
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2.2.2. Cancelling the terms of order O(ε0): transport at the group velocity

One can compute that R0 in (2.8) is given by

R0 = (iL(ω, k)u1,1 + (∂t + A(∂))u0,1)eiθ + c.c.,

so that the equation R0 = 0 is equivalent to

L(ω, k)u1,1 = i(∂t + A(∂))u0,1. (2.11)

Recall that it follows directly from assumption 1.1 that L(ω, k) is a Hermitian
matrix. In particular, the orthogonal complement of its kernel is its range, and the
following notation makes sense.

Notation 2.7. For all (ω, k) ∈ R1+d, we write Π(ω, k), the orthogonal projection
onto kerL(ω, k), and, with slight abuse of notation, L(ω, k)−1, the partial inverse
of L(ω, k) defined and with values in the range of L(ω, k). We consequently set
L(ω, k)−1 to be identically zero on kerL(ω, k).

We can now state the following straightforward but useful lemma.

Lemma 2.8. Let (ω, k) ∈ R1+d and a, b ∈ Cn. Then the following two assertions
are equivalent:

(i) one has L(ω, k)a = b;

(ii) one has Π(ω, k)b = 0 and (Id−Π(ω, k))a = L(ω, k)−1b.

According to this lemma, (2.11) is equivalent to

Π(ω, k)(∂t + A(∂))u0,1 = 0,

(Id−Π(ω, k))u1,1 = iL(ω, k)−1(∂t + A(∂))u0,1.

Now, recalling that (2.10) yields Π(ω, k)u0,1 = u0,1, we can rewrite these two
equations as

Π(ω, k)(∂t + A(∂))Π(ω, k)u0,1 = 0,

(Id−Π(ω, k))u1,1 = iL(ω, k)−1A(∂)Π(ω, k)u0,1,

}
(2.12)

where we also used the fact that L(ω, k)−1Π(ω, k) = 0.
The first equation of (2.12) is at first sight a matricial evolution equation. The

fact that it is in fact scalar is a very important fact observed by Lax. In the present
form, it can be found in [12].

Lemma 2.9. Let (ω, k) be a smooth point of CL. Then one has

Π(ω, k)A(∂)Π(ω, k) = Π(ω, k)∇kω
¯

· ∇,

where ω
¯

(·) is a local parametrization of CL in a neighbourhood of (ω, k).

Proof. By definition of ω
¯
, we have, for k′ in a neighbourhood of k,

ω
¯
(k′)Π(ω

¯
(k′),k′) = Π(ω

¯
(k′),k′)

(
A(k′) +

E

i

)
.
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Differentiating this identity with respect to k′
j (j = 1, . . . , d), and writing Π instead

of Π(ω
¯
(k′),k′), we get

∂jω¯
(k′)Π + ω

¯
(k′)∂jΠ = (∂jΠ)

(
A(k′) +

E

i

)
+ ΠAj .

Multiplying this identity on the right and on the left by Π, and using the fact that
Π2 = Π, we get

∂jω¯
(k′)Π = ΠAjΠ,

and the result follows easily.

Remark 2.10. A geometric statement of lemma 2.9 is that the characteristic vari-
ety of the operator Π(ω, k)A(∂)Π(ω, k) is the tangent plane to CL at (ω, k). If
(ω, k) is a singular point of CL, then it can be shown [17] that the characteristic
variety of Π(ω, k)A(∂)Π(ω, k) is the tangent cone to CL at (ω, k).

Definition 2.11. The quantity ∇kω
¯

∈ Rd is called the group velocity and will be
denoted by cg(k).

By lemma 2.9, we can rewrite (2.12) as

(∂t + cg(k) · ∇)u0,1 = 0,

(Id−Π(ω, k))u1,1 = iL(ω, k)−1A(∂)Π(ω, k)u0,1.

}
(2.13)

The main information given by this step of the computation is that u0,1 is trans-
ported at the group velocity. This is the core of geometric optics, which states that
high-frequency waves propagate along rays. In diffractive optics, this behaviour is
somehow altered, as we show now.

2.2.3. Cancelling the terms of order O(ε1): diffractive and nonlinear effects

After some computations, one can check that the R2 term in (2.8) is given by

R2 = iL(ωDθ,kDθ)U2 + (∂t + A(∂))U1 + ∂τU0 − T (U0, U0, U0),

where we wrote Uj = uj,1eiθ + c.c. (j = 0, 1). One of the main differences from
the previous orders of expansion is that the nonlinearity occurs at this level. In
particular, the harmonics ±1 are not the only ones present in R2 and one needs to
include the harmonics ±3. Indeed, one has

T (U0, U0, U0) = (T (u0,1, u0,1, u0,1)e3iθ + c.c.) + (3T S(u0,1)eiθ + c.c.),

where T S(u0,1) is as defined in (1.2).
It follows that one can decompose R2 into

R2 = (r2,1eiθ + c.c.) + (r2,3e3iθ + c.c.),

and the equation R2 = 0 is equivalent to r2,1 = 0 and r2,3 = 0.
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First harmonic. The equation r2,1 = 0 can be written

L(ω, k)u2,1 = i(∂t + A(∂))u1,1 + i∂τu0,1 − 3iT S(u0,1).

Owing to lemma 2.8, this is equivalent to

Π(ω, k)(∂t + A(∂))u1,1 + ∂τu0,1 = 3Π(ω, k)T S(u0,1),

(Id−Π(ω, k))u2,1 = iL(ω, k)−1(∂t + A(∂))u1,1 − 3iL(ω, k)−1T S(u0,1),

where we have used the fact that Π(ω, k)u0,1 = u0,1 and L(ω, k)−1Π(ω, k) = 0.
Note that at this point only the component of u1,1 polarized along Id−Π(ω, k) has
been determined (by (2.13)). We are therefore free to set

Π(ω, k)u1,1 = 0,

and the above equations yield

∂τu0,1 + iΠ(ω, k)A(∂)L(ω, k)−1A(∂)Π(ω, k)u0,1 = 3Π(ω, k)T S(u0,1)

and

(Id−Π(ω, k))u2,1 = −L(ω, k)−1(∂t + A(∂))L(ω, k)−1A(∂)Π(ω, k)u0,1

− 3iL(ω, k)−1T S(u0,1).

The first of these equations gives the evolution of u0,1 according to the slow time
variable τ ; recall that the evolution with respect to the time variable t is the trans-
port at the group velocity found above. This new equation looks matricial, but, as
for the transport equation, an important simplification holds.

Lemma 2.12. Let (ω, k) be a smooth point of CL. Then one has

Π(ω, k)A(∂)L(ω, k)−1A(∂)Π(ω, k) = − 1
2ω
¯

′′(k)(∂, ∂),

where ω
¯

(·) is a local parametrization of CL in a neighbourhood of (ω, k).

Proof. The proof is in the same spirit as the proof of lemma 2.9. We refer the reader
to [13].

The slow evolution of u0,1 is thus described by the equation

∂τu0,1 − 1
2 iω

¯
′′(k)(∂, ∂)u0,1 = 3Π(ω, k)T S(u0,1). (2.14)

Third harmonic. The equation R2,3 = 0 can be written

L(3ω, 3k)u2,3 = −iT (u0,1, u0,1, u0,1). (2.15)

We now make the following assumption on CL, which is generically satisfied in
dispersive media.1

Assumption 2.13. The point (3ω, 3k) does not belong to CL.

Under this assumption, u2,3 is found in terms of u0,1 by inverting L(3ω, 3k)
in (2.15).

1The term ‘dispersive’ refers to the fact that the group velocity cg(k) depends on |k|.
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2.2.4. Summary

We have shown in the previous section that if one can find u0,1(τ, t, x) satisfying

Π(ω, k)u0,1 = u0,1,

(∂t + cg(k) · ∇)u0,1 = 0,

∂τu0,1 − 1
2 iω

¯
′′(k)(∂, ∂) = 3Π(ω, k)T S(u0,1),

u0,1|t=τ=0(x) = u0(x),

then it is possible to find u1,1 and U2 in terms of u0,1 in order to cancel R−1, R0
and R1 in (2.8).

This systems looks overdeterminated; however, it is possible to reduce it by writ-
ing

u0,1(τ, t, x) = u
¯
(τ, x − cg(k)t);

provided that Π(ω, k)u0 = u0, the above equations indeed simplify to

∂τu
¯

− 1
2 iω

¯
′′(k)(∂y, ∂y)u

¯
= 3Π(ω, k)T S(u

¯
),

u
¯
|τ=0(y) = u0(y),

}
(2.16)

where y = x − cg(k)t.
Since (2.16) is locally well posed in Hs(Rd) (s > d/2), we can now define the

nonlinear Schrödinger approximation UNLS to (1.1) by

UNLS(t, x) = uNLS(t, x)ei(k·x−ωt)/ε + c.c. (2.17)

with uNLS = u
¯
(εt, x − cg(k)t).

Remark 2.14. An equivalent way of defining uNLS is that it is the solution of the
initial-value problem

∂tuNLS + cg(k) · ∇uNLS − 1
2εiω

¯
′′(k)(∂, ∂)uNLS = 3εΠ(ω, k)T S(uNLS),

uNLS|t=0(y) = u0.

2.3. Rigorous justification of the NLS approximation

The formal derivation of the NLS approximation is justified by the following
theorem.

Theorem 2.15. Let assumptions 1.1 and 2.13 be satisfied. Let also s > d/2 and
u0 ∈ Hs+3(Rd)n be such that

∃ω ∈ R, (ω, k) ∈ CL and Π(ω, k)u0 = u0.

Let also u
¯

∈ C([0, T ];Hs+3(Rd)) (for some T > 0) be the unique solution to (2.16).
Then there exists ε0 > 0 such that for all 0 < ε < ε0, the unique solution U

of (1.1) provided by theorem 2.1 exists on [0, T/ε], and one has

|U(t, x) − UNLS(t, x)|L∞([0,T/ε]×Rd) � εC(T, |u0|Hs+3),

where UNLS is as in (2.17).
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Proof. As explained in § 2.2.4, if one knows u
¯

∈ C([0, T ];Hs+3(Rd))n, it is possible
to construct Uapp ∈ C([0, T/ε];Hs,1), solving (2.8) with R−1 = R0 = R1 = 0 and
(Rε)ε bounded in C([0, T/ε];Hs,1). The following lemma shows that the solution U
of the profile equation (2.3) provided by lemma 2.2 exists on the same time interval
[0, T/ε] (if ε0 is small enough) and remains close to Uapp.

Lemma 2.16. Let Uapp ∈ C([0, T/ε];Hs,1) solve the profile equation (2.3) up to a
residual ε2Rε with (Rε)ε bounded in C([0, T/ε];Hs,1), and assume, moreover, that

∃C1 > 0, |Uapp|t=0 − (u0(x)eiθ + c.c.)|Hs,1 � εC1.

Then there exists ε0 > 0 such that for all 0 < ε < ε0 there exists a unique solution
U ∈ C([0, T/ε];Hs,1(Rd × T)n) to (2.3). Moreover,

|U − Uapp|L∞([0,T/ε];Hs,1) � εC(T, C1, |Uapp|L∞([0,T/ε];Hs,1), |Rε|L∞([0,T/ε];Hs,1)).

Proof. We already know from the proof of theorem 2.1 that (2.3) admits a solution
in C([0, T ′/ε];Hs,1(Rd ×T)n) for some T ′ > 0 possibly smaller than T . We prove at
the same time that one can take T ′ = T for ε small enough and that the estimate
of the lemma holds.

It is sufficient to prove that V defined as

U = Uapp + εV

exists and is bounded (with respect to ε) in C([0, T/ε];Hs,1(Rd ×R)). The equation
satisfied by V is

∂tV + A(∂)V +
i
ε
L(ωDθ, kDθ)V

= −εRε + 3εT S(Uapp, Uapp, V ) + 3ε2T S(Uapp, V, V ) + ε3T S(V, V, V ). (2.18)

Since S(t) (as defined in the proof of lemma 2.2) is unitary on Hs,1(Rd × T), we
deduce the following estimate on V :

|V (t)|Hs,1 � ε(C1 + Mt) + εC(M)
∫ t

0
(1 + ε2|V (t′)|2Hs,1)|V (t′)|Hs,1 dt′,

where M is such that

|Rε|L∞([0,T/ε];Hs,1) � M and |Uapp|L∞([0,T/ε];Hs,1) � M.

Now, let M ′ = (C1 + MT ) exp(2TC(M)) and let us define T0 as

T0 = sup{T ′′ ∈ R, 0 < T ′′ � T ′, for all 0 � t � T ′′/ε, |V (t)|Hs,1 � M ′}.

We now show that T ′′ = T ′ if ε0 is small enough. By definition of T0 and the above
estimate on |V (t)|Hs,1 one has that, for all 0 � t � T0/ε,

|V (t)|Hs,1 � (C1 + MT0) + εC(M)
∫ t

0
(1 + ε2M ′2)|V (t′)|Hs,1 dt′.

By Gronwall’s lemma, we thus get

|V (t)|Hs,1 � (C1 + MT0) exp(T0C(M)(1 + ε2M ′2));
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clearly, if ε is small enough, the right-hand side is smaller than M ′ and we deduce
that T0 = T ′. It is also easy to deduce that one can take T ′ = T , since if T ′/ε were
the maximal existence time for V , one would have limt→T ′/ε |V (t)|Hs,1 = ∞, which
is excluded by the above bound.

With Uapp as constructed in the previous sections, the estimate of the lemma
yields

|U − Uapp|L∞([0,T/ε];Hs,1) � εC(T, |u0|Hs+3). (2.19)

Moreover, one has

|U − UNLS|L∞([0,T/ε]×Rd)

� |U(t, x, θ) − (u
¯
(εt, x − cg(k)t)eiθ + c.c.)|L∞([0,T/ε]×Rd×T);

from the continuous embedding L∞([0, T/ε];Hs,1) ⊂ L∞([0, T/ε] × Rd × T), one
deduces

|U − UNLS|L∞([0,T/ε]×Rd) � |U − Uapp|L∞([0,T/ε];Hs,1)

+ |Uapp − (u
¯
(εt, x − cg(k)t)eiθ + c.c.)|L∞([0,T/ε];Hs,1),

and the result is thus a consequence of (2.19) and the explicit expressions found for
u1,1 and U2 in the previous sections.

3. Short pulse approximations

We have seen in theorem 2.15 that the NLS approximation is accurate for initial
data of the form (2.1). It is important to note that the wavelength of the envelope
u0 is O(1) in (2.1). We are interested in this section in investigating what happens
for short pulses, i.e. when the wavelength of the amplitude is of order β � 1. We
follow here the approach of [9, 10].

3.1. Shortcomings of the NLS approximation

3.1.1. Dispersive properties

The information on the dispersive properties of (1.1) is given by CL. More pre-
cisely, in order for a plane wave

Aei(k′·x−ω′t)ei(k·x−ωt)/ε, A ∈ Cn,

to be a solution to the linear part of (1.1) it is necessary that

(ω + εω′,k + εk′) ∈ CL.

If ω1 is a local parametrization of CL in a neighbourhood of (ω, k) (so that ω1(k) =
ω), then this condition can be rewritten as

ω′ =
ω1(k + εk′) − ω

ε
. (3.1)
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Let us now investigate the dispersive properties of the NLS approximation. Note
that a plane wave of the above form corresponds to (the linear part of) the approx-
imation (2.16), (2.17) if u = ei(k′·x−ω′t) solves

∂tu + cg(k) · ∇u − 1
2 iεω′′

1 (k)(∂, ∂)u = 0,

that is, if
ω′ = cg(k) · k′ + 1

2εω′′
1 (k)(k′,k′). (3.2)

Clearly, (3.2) is the second-order approximation of (3.1) at (ω, k) and thus pro-
vides a very good approximation for plane waves localized (in frequency) near (ω, k).
Since any solution can be seen as a sum of plane waves, this means that the dis-
persive properties of the Schrödinger approximation will be good for initial data of
the form

U |t=0(x) = u0(x)ei(k·x)/ε + c.c., Π1(k)u0 = u0

if the spectrum of u0 (the support of its Fourier transform) is of size O(1) (with
respect to ε). More generally, if this spectrum is of size O(1/β), then frequencies in
a neighbourhood of size O(ε/β) of (ω, k) in CL are involved and (3.2) may fail to
be a good approximation to (3.1) if β is small (indeed, (3.2) is quadratic for large
k′, while (3.1) is at most linear). The conclusion of this discussion is the following.

(C1) The dispersive properties of the Schrödinger approximation are bad if the
spectrum of the envelope is large.

3.1.2. The slowly varying envelope approximation

One of the implicit assumptions made in order to derive the NLS approximation
is that the solution can be described as a fast oscillation modulated by an envelope
uenv(t, x),

U(t, x) ∼ uenv(t, x)ei(k·x−ωt)/ε;

this envelope is then approximated through the NLS equation (namely, uenv(t, x) ∼
uNLS(t, x), with uNLS as in (2.17)). This assumption is called slowly varying envelope
approximation (SVEA) or envelope approximation.

Without entering into too much detail at this point of the discussion, it seems
likely that the following holds.

(C2) The SVEA is valid, provided that the envelope does not vary too much at the
scale of the wavelength (equal to ε here).

3.1.3. Short pulses

We are interested here in one particular case where the two drawbacks of the NLS
approximation described in §§ 3.1.1 and 3.1.2 can be met, namely, short pulses. More
precisely, let us consider the case of initial data for (1.1) for the form

U |t=0 = u0
(β)(x)ei(k·x)/ε + c.c. with u0

(β)(x) = u0
(

x

β

)
, (3.3)

for some β ∈ (0, 1]. Clearly, when β → 0, the typical width of the support of
the envelope u0

(α) gets smaller, and this is why we call the initial conditions, such
as (3.3), ‘short pulses’ (see figure 1).

https://doi.org/10.1017/S030821050900002X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050900002X


266 D. Lannes

0.2

−0.2

−0.4

−0.6

−0.8

−1.0

0.4

0.6

0.8

1.0

0

0.2

−0.2

−0.4

−0.6

−0.8

−1.0

0.4

0.6

0.8

1.0

0

2 3 4 5 6 7 8 4.0 4.4 4.8 5.2 5.6 5.8

(a) (b)

Figure 1. Initial condition u0
(β)(x)ei(k·x)/ε + c.c. with a Gaussian u0,

ε = 0.01, for (a) β = 1 and (b) β = 0.1.
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Figure 2. Short pulses: (a) the exact solution at time t = 50; (b) the difference
between the exact solution and the NLS approximation with ε = 0.01, β = 0.075.

One may easily check that u0
(β) has spectrum of typical size O(1/β) and that its

variation at the scale of the wavelength ε is O(ε/β). For small values of β, the con-
ditions (C1) and (C2) are enforced and one cannot expect the NLS approximation
to provide good results.

This intuition is confirmed by numerical computations; figure 2 shows an error
of the order of 100% for the NLS approximation (the computations are made for
the Klein–Gordon model of example 1.5).

3.2. Functional setting

Sobolev spaces are obviously not a good space to work with when studying short
pulses. Indeed, if the initial condition for (1.1) is a short pulse with initial envelope
u0

(β) as in (3.3), then

|u0,β |Hs ∼ 1
βs−d/2

and thus grows to ∞ as β → 0 when s > d/2. The constant C(T, |U0|Hs+3) in the
estimate given by theorem 2.15 then becomes infinite, making it useless.

A better functional setting to study short pulses as in (3.3) is the Wiener algebra.
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Definition 3.1. The Wiener algebra W (Rd) is defined as

W (Rd) = {f ∈ S ′(Rd), f̂ ∈ L1(Rd)},

and is endowed with the norm |f |W = |f̂ |L1 .
More generally, W k(Rd) (k ∈ N) is the set of all f ∈ W (Rd) such that ∂αf ∈

W (Rd) for all α ∈ Nd, |α| � k.

The following proposition gathers the properties of W (Rd) we shall need here.

Proposition 3.2. The space (W (Rd), | · |W ) is a Banach algebra and is contin-
uously embedded in L∞(Rd). Moreover, for all λ > 0 and f ∈ W (Rd), one has
|f(·/λ)|W = |f |W .

Remark 3.3. From the last statement of the proposition, one has |u0
(β)|W = |u0|W

if u0
(β) is as in (3.3). In particular, this quantity remains bounded as β → 0.

Remark 3.4. Since we replace the spaces Hs(Rd) (s > d/2) by W (Rd), it is natural
to replace the spaces Hs,k(Rd × T) (k � 1) defined in (2.5) by a Wiener algebra
W (Rd × T):

W (Rd × T) =
{

f =
∑
n∈Z

fneiθ, |f |W (Rd×T) < ∞
}

,

with |f |W (Rd×T) =
∑

n∈Z
|fn|W . Proposition 3.2 can easily be adapted to W (Rd×T).

Using the properties of Wiener algebras given in proposition 3.2, it is possible
to follow the same approach as in § 2, but replacing Hs+k(Rd) (s > d/2, k ∈ N)
Sobolev spaces by W k(Rd). The estimate of theorem 2.15 would then be replaced
by

|U(t, x) − UNLS(t, x)|L∞([0,T/ε]×Rd) � εC(T, |U0|W 3).

For short pulses as in (3.3), one has |U0
(β)|W 3 = O(β−3) and this estimate is not

more useful than the one given in theorem 2.15. This means that the whole approach
developed in § 2 must be abandoned and a better adapted one developed. This is
the goal of this section.

3.3. Validity of the SVEA

We recall that the SVEA consists in describing a fast oscillating wave packet by
its envelope,

U(t, x) ∼ uenv(t, x)ei(k·x−ωt)/ε + c.c. (3.4)

Since we know that the exact solution U to (1.1) can always be represented through
(2.2) by a profile U solving the profile equation (2.3), the SVEA can be restated as

U(t, x, θ) ∼ uenv(t, x)eiθ + c.c.;

in other words, the SVEA only takes into account the harmonics ±1 of the solution.
Physicists use a practical rule to assess the validity of this SVEA; it can be stated

with our formalism as
|∇u0|∞ � 1

ε
(3.5)

(which is of course a quantitative version of the condition (C2) stated in § 3.1.2).
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In the next subsection, we investigate the validity of the SVEA (3.4), and compare
it to the ‘practical rule’ (3.5).

3.3.1. Formal derivation of the envelope equation

We try here to find an equation that uenv must solve if the SVEA (3.4) is valid.
As stated above, the SVEA is equivalent to

U(t, x, θ) ∼ uenv(t, x)eiθ + c.c.;

plugging this approximation into the profile equation (2.3) and keeping only the
first harmonic in the Fourier expansion easily yields

∂tuenv + A(∂)uenv +
i
ε
L(ω, k)uenv = 3εT S(uenv).

Defining D = −i∂, we observe that

A(∂) +
i
ε
L(ω, k) = A(∂) +

i
ε
(−ω Id +A(k))

=
i
ε
(−ω Id +A(k + εD))

:=
i
ε
L(ω, k + εD),

where the notation in the latter is of course consistent with (2.4).
As a consequence of these computations, we say that U satisfies the SVEA if

(3.4) holds, with uenv the solution of the envelope equation

∂tuenv +
i
ε
L(ω, k + εD)uenv = 3εT S(uenv),

uenv|t=0 = u0.

⎫⎬
⎭ (3.6)

3.3.2. Rigorous justification of the SVEA

The main result of this section is theorem 3.8. It gives a rigorous justification of
the SVEA (3.4), (3.5). The other approximations considered here (full dispersion
model, improved Schrödinger, etc.) are quite easy consequences of the result.

Compared with § 2, some additional assumptions on CL are needed. This is made
necessary by the fact that short pulses have a wider spectrum than standard pulses.
Fortunately, these additional assumptions are satisfied for the applications.

Assumption 3.5. The characteristic variety CL and the frequency/wavenumber
couple (ω, k) satisfy the following.

• There exist m functions ωj ∈ C∞(Rd \ {0}) (j = 1, . . . , m) such that

CL \ {0} =
m⋃

j=1

{(ωj(k′),k′), k′ ∈ Rd \ {0}};

up to a renumbering, we assume that (ω, k) = (ω1(k),k).
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• There exists a constant c0 > 0 such that

inf
k′∈Rd

|ω − ωj(k′)| � c0, j = 2, . . . , m.

Example 3.6. This assumption is satisfied by the Maxwell and Klein–Gordon
equations of examples 1.4 and 1.5 (see also examples 2.5 and 2.6).

Notation 3.7. We denote by Πj(k) (j = 1, . . . , m) the eigenprojectors of the
eigenvalues ωj(k) of A(k) + E/i; in particular, we have

A(k) +
E

i
=

m∑
j=1

ωj(k)Πj(k).

Theorem 3.8. Let assumptions 1.1, 2.13 and 3.5 be satisfied and let u0 ∈ W 1(Rd)n

be such that Π1(k)u0 = u0. Then we have the following.

(i) There exist T > 0 and a unique solution uenv ∈ C([0, T/ε];W 1(Rd)n) to (3.6).

(ii) There exist ε0 > 0 such that for all 0 < ε < ε0, the solution U to (1.1)
provided by theorem 2.1 exists on [0, T/ε] and

|U − USVEA|L∞([0,T/ε]×Rd) � εC(T, |U0|W )(1 + |∇U0|W ),

where USVEA(t, x) = uenv(t, x)ei(k·x−ωt)/ε + c.c.

Remark 3.9. If we look at a family of initial conditions (u0
(β))β bounded in W (Rd),

which is of course the case for short pulses like (3.3), one deduces that

the SVEA is valid if |∇u0
(β)|W � 1

ε
,

and theorem 3.8 thus provides a rigorous basis for the ‘practical rule’ (3.5). When
working with short pulses with initial condition (3.3), it is easy to check that this
condition reads simply ε � β.

Remark 3.10. Working in the more classical framework of Sobolev spaces, one
could establish an error estimate similar to that given by the theorem, but with
Hs-norms (s > d/2) instead of W -norms in the right-hand side of the estimates.
For short pulses with initial data as in (3.3), the control would therefore be of the
form

εC

(
T,

1
βs−d/2

)
1

βs−d/2+1 ,

which is obviously useless when β → 0.

Proof of theorem 3.8. (i) This is established by a fixed point argument as in theo-
rem 2.1, thanks to the algebra properties of W (Rd) (see proposition 3.2). The proof
also yields the bound

sup
0�t�T/ε

|uenv(t)|W � C(T, |u0|W ). (3.7)
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Differentiating the equation, one also gets

sup
0�t�T/ε

|∇uenv(t)|W � C(T, |u0|W )|∇u0|W . (3.8)

(ii) Let us decompose uenv as

uenv = u1 + uII, with uII =
m∑

j=2

uj ,

and where uj = Πj(k + εD)uenv (see notation 3.7).
The proof is divided into four steps.

Step 1. One has

sup
0�t�T/ε

|∂tu1(t)|W � C(T, |u0|W )(1 + |∇u0|W ).

In order to prove this inequality, let us apply the operator Π1(k + εD) to (3.6).
One then gets

∂tu1 +
i
ε
(ω1(k + εD) − ω)u1 = 3εΠ1(k + εD)T S(uenv).

Since, by assumption, ω = ω1(k), one easily gets

|ω1(k + εD) − ω|W � ε|∇ω1|L∞ |∇u1|W
(note that one may infer |∇ω1|L∞ < ∞ from the observation that, for all k 
= 0,
∂jω1(k)Π1(k) = Π1(k)AjΠ1(k), as seen in the proof of lemma 2.9); (3.7) and (3.8)
can then be used to give the desired bound on ∂tu1.

Step 2. We now want to prove that uII remains of size O(ε):

sup
t∈[0,T/ε]

|uII(t)|W � εC(T, |u0|W )(1 + |∇u0|W ).

Multiplying (3.6) by Πj(k + εD) (j � 2) gives

∂tuj +
i
ε
(ωj(k + εD) − ω)uj

= 3εΠj(k + εD)T S(u)

= 3εΠj(k + εD)T S(u1) + 3εΠj(k + εD)(T S(uenv) − T S(u1)).

With

Sj(t) = exp
(

− i
t

ε
(ωj(k + εD) − ω)

)
,

one therefore gets

uj(t) = Sj(t)u0
j + 3ε

∫ t

0
Sj(t − t′)Πj(k + εD)T S(u1) dt′

+ 3ε

∫ t

0
Sj(t − t′)Πj(k + εD)(T S(uenv) − T S(u1)) dt′. (3.9)

We now bound the W -norm of the three terms on the right-hand side of (3.9).
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• Estimate of Sj(t)u0
j . Since Sj(t) is unitary on W (Rd)n, one has

|Sj(t)u0
j |W = |u0

j |W = |Πj(k + εD)u0|W .

Since, moreover, one can write

Πj(k + εD)u0 = (Πj(k + εD) − Πj(k))u0 + Πj(k)u0,

it follows from the orthogonality of the projectors Πj (j = 1, . . . , m) that

Πj(k + εD)u0 = (Πj(k + εD) − Πj(k))u0.

Since the derivatives of Πj(·) are in general not bounded near the origin, we
cannot control the right-hand side by a Taylor expansion and we thus write

Πj(k + εD)u0 = (Πj(k + εD) − Πj(k))1{ε|D|�|k|/2}u
0

+ (Πj(k + εD) − Πj(k))1{ε|D|�|k|/2}u
0,

where 1{ε|ξ|�|k|/2} = 1 if ε|ξ| � |k|/2 and 0 otherwise.

Using the fact that Πj(·) is C∞ on the ball of centre k and radius |k|/2,
we can bound the first term of the right-hand side in W (Rd)n-norm by
εconst.|∇u0|W ; one can also check that a similar estimate holds for the second
term of the left-hand side since one has 1 � 2|ξ|ε/|k| for all ε|ξ| � |k|/2. We
can thus conclude that

|Sj(t)u0
j |W � εconst.|∇u0|W . (3.10)

• Estimate of

A := ε

∫ t

0
Sj(t − t′)Πj(k + εD)T S(u1) dt′.

Taking the Fourier transform of this term and integrating by parts yields

ε

∫ t

0
exp

(
− i

t − t′

ε
(ωj(k + εξ) − ω)

)
Πj(k + εξ)T̂ S(u1) dt′

= −iε
∫ t

0

1
ωj(k + εξ) − ω

× ε exp
(

− i
t − t′

ε
(ωj(k + εξ) − ω)

)
Πj(k + εξ)∂tT̂ S(u1) dt′

+ iε
[

1
ωj(k + εξ) − ω

× ε exp
(

− i
t − t′

ε
(ωj(k + εξ) − ω)

)
Πj(k + εξ)T̂ S(u1)

]t

0
.

One deduces therefore, using assumption 3.5, that

sup
t∈[0,T/ε]

|A(t)|W

� const.
εT

c0
sup

[0,T/ε]
|u1|2W sup

[0,T/ε]
|∂tu1|W + const.

ε2

c0
sup

[0,T/ε]
|u1|3W ,
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so that, owing to (3.7), (3.8) and step 1,

sup
t∈[0,T/ε]

|A(t)|W � εC(T, |u0|W )(1 + |∇u0|W ). (3.11)

• Estimate of

B := ε

∫ t

0
Sj(t − t′)Πj(k + εD)(T S(uenv) − T S(u1)) dt′.

First recall that, owing to the trilinearity of T , one has, for all t ∈ [0, T/ε],

|T S(uenv)(t) − T S(u1)(t)|W � const. sup
[0,T/ε]

|uenv|2W |uII(t)|W ;

using (3.7) and (3.8), we therefore obtain

sup
t∈[0,T/ε]

|B(t)|W � εC(T, |u0|W )
∫ t

0
|uII(t′)|W dt′. (3.12)

It is now a direct consequence of (3.9)j (j = 2, . . . , m) and (3.10)–(3.12) that, for
all t ∈ [0, T/ε],

|uII(t)|W � εC(T, |u0|W )(1 + |∇u0|W ) + εC(T, |u0|W )
∫ t

0
|uII(t′)|W dt′,

and the result therefore follows from Gronwall’s lemma.

Step 3. We construct here a solution U ∈ W (Rd × T) to (2.3) as a perturbation
of Uapp = uenveiθ + c.c.:

U(t, x, θ) = Uapp(t, x, θ) + εV (t, x, θ).

We want to prove that it is possible to find such a V on the time interval [0, T/ε]
and that V remains bounded (with respect to ε) in C([0, T/ε];W (Rd × T)n). The
equation that V must solve is

∂tV +
i
ε
L(ωDθ,kDθ + εD)V

= T (uenv, uenv, uenv)e3iθ + c.c.
+ (T (Uapp + εV, Uapp + εV , Uapp + εV ) − T (Uapp, Uapp, Uapp)).

Owing to assumption 2.13, we can look for V in the form

V (t, x, θ) = V0(t, x, θ) + εv1(t, x)e3iθ + c.c.,

with v1 = −iL(3ω, 3k)−1T (u1, u1, u1); the resulting equation on V0 is

∂tV0 +
i
ε
L(ωDθ,kDθ + εD)V0 = I1 + I2 + I3, (3.13)

with

I1 = (T (uenv, uenv, uenv) − T (u1, u1, u1))e3iθ + c.c.,

I2 = −ε(∂t + A(∂))v1e3iθ + c.c.,

I3 = (T (Uapp + εV, Uapp + εV , Uapp + εV ) − T (Uapp, Uapp, Uapp)).
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Let us now bound Ij (j = 1, 2, 3) in W (Rd × T; Cn) and for all t ∈ [0, T/ε].

• From (3.7), (3.8) and step 2, one gets

|I1(t)|W (Rd×T) � εC(T, |u0|W )(1 + |∇u0|W ). (3.14)

• From the definition of v1, (3.7), (3.8) and step 1, one has directly

|I2(t)|W (Rd×T) � εC(T, |u0|W )(1 + |∇u0|W ). (3.15)

• From the trilinearity of T , one similarly obtains

|I3(t)|W (Rd×T) � εC(T, |u0|W )(1 + |V0(t)|W + ε2|V0(t)|3W ). (3.16)

Since the semigroup

S(t) = exp
(

− i
t

ε
L(ωDθ,kDθ + εD)

)

is unitary on W (Rd × T), the estimates (3.14)–(3.16) allow one to conclude the
existence of a solution V0 ∈ C([0, T/ε];W (Rd × T)n) to (3.13) using a fixed-point
formulation (the fact that the existence time can be taken equal to T for ε0 small
enough is obtained as in lemma 2.16). After a Gronwall argument, one also gets

sup
0�t�T/ε

|V0(t)|W � C(T, |u0|W )(1 + |∇u0|W ). (3.17)

Step 4 (completion of the proof). Since U(t) − Uapp(t) = εV (t), it follows from
the above that

sup
t∈[0,T/ε]

|U(t) − Uapp(t)|W (Rd×T) � εC(T, |u0|W )(1 + |∇u0|W ),

and the theorem follows therefore from the observation that

|U − USVEA|L∞([0,T/ε]×Rd) � sup
t∈[0,T/ε]

|U(t) − Uapp(t)|W (Rd×T).

3.4. The full dispersion model

The full dispersion model consists in approximating the exact solution to (1.1)
by UFD defined as

UFD(t, x) = uFD(t, x)ei(k·x−ωt)/ε + c.c., (3.18)

where the (ε-dependent) profile uFD solves the full dispersion scalar equation

∂tuFD +
i
ε
(ω1(k + εD) − ω)uFD = 3επ1(k)T S(uFD),

uFD|t=0(x) = u0(x)

⎫⎬
⎭ (3.19)

with ω1(·) as in assumption 3.5.
The following corollary shows that the full dispersion scalar equation yields an

approximation of the same precision as the envelope equation for times t ∈ [0, T/ε].
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Corollary 3.11 (full dispersion model). Under the assumptions of theorem 3.8,
there exists a unique solution uFD ∈ C([0, T/ε];W (Rd)n) to (3.19) for some T > 0
and all 0 < ε < ε0.

If ε0 is small enough, then the solution U to (1.1) exists on [0, T/ε] and

|U − UFD|L∞([0,T/ε]×Rd) � εC(T, |u0|W )(1 + |∇u0|W ),

where UFD is as defined in (3.18).

Remark 3.12. The quantity uFD remains Cn-valued, but we call (3.19) a scalar
approximation because the operator i(ω1(k + εD)−ω)/ε is scalar, which is not the
case for iL(ω, k+εD)/ε in the envelope equation (3.6). The interest of the FD model
is that i(ω1(k + εD) − ω)u/ε remains bounded for spectrally localized functions u,
while iL(ω, k+εD)u/ε is of order O(1/ε). The fast oscillations of the non-polarized
modes must therefore be taken into account with the envelope approximation, and
the discretization step must therefore be much smaller in numerical computations
than for the FD model.

Remark 3.13. Performing the same analysis as in remark 3.9, one can check that
the ‘practical rule’ also applies for the FD model.

Proof. We omit the existence/uniqueness part of the corollary, since it is obtained
with the same tools as for theorem 3.8 (in particular, taking a smaller ε0 if neces-
sary), the existence time of the envelope equation is larger than the existence time
for (3.19) and we thus focus on the error estimate.

Denoting, as in the proof of theorem 3.8, u1 = π1(k + εD)uenv, where uenv is
the solution of the envelope equation, from step 2 of the proof of theorem 3.8 one
obtains

sup
t∈[0,T/ε]

|uenv(t) − u1(t)|W � εC(T, |u0|W )(1 + |∇u0|W ),

so that it suffices to control |u1(t) − uFD(t)|W to prove corollary 3.11. Applying
Π1(k + εD) to (3.6), one gets

∂tu1 +
i
ε
(ω1(k + εD) − ω)u1 = 3εΠ1(k + εD)T S(uenv),

so that the difference v = u1 − uFD solves

∂tv +
i
ε
(ω1(k + εD) − ω)v = 3εΠ1(k + εD)T S(uenv) − εΠ1(k)T S(uFD),

v|t=0(x) = Π1(k + εD)u0 − u0.

⎫⎬
⎭ (3.20)

Recall now that

Π1(k + εD)T S(uenv) − Π1(k)T S(uFD)

= (Π1(k + εD) − Π1(k))T S(uenv)

+ Π1(k)(T S(uenv) − T S(u1)) + Π1(k)(T S(u1) − T S(uFD)). (3.21)

Since |(Π1(k + εD) − Π1(k))T S(uenv)|W � εconst.|∇T S(uenv)|W (see the proof
of (3.10)), one can use (3.7) and (3.8) to bound the first component of the right-
hand side of (3.21) from above by εC(T, |u0|W )|∇u0|W . The second component
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of (3.21) can be estimated exactly like the term I1 in (3.14), while the last one is
bounded from above in W (Rd) by C(|u1|W , |uFD|W )|v|W . Since, moreover, |u1|W
is controlled by (3.7), (3.8) and a similar estimate also obviously holds for |uFD|W ,
one may deduce that, for all 0 � t � T/ε,

|T S(uenv(t)) − T S(uFD(t))|W � εC(T, |u0|W )(1 + |∇u0|W ) + C(T, |u0|W )|v(t)|W .

This inequality, together with an energy estimate for (3.20) and a Gronwall argu-
ment, shows that

sup
t∈[0,T/ε]

|v(t)|W � εC(T, |u0|W )(1 + |∇u0|W ),

where we also used the estimate |Π1(k + εD)u0 − u0|W � εconst.(1 + |∇u0|W )
(which is proved with the same arguments as (3.10)).

3.5. The nonlinear Schrödinger equation

As seen in § 2 (see remark 2.14), the exact solution to (1.1) is approximated by
UNLS defined as

UNLS(t, x) = uNLS(t, x)ei(k·x−ωt)/ε + c.c., (3.22)

where the (ε-dependent) profile U(2) solves the nonlinear Schrödinger equation

∂tuNLS + cg(k) · ∇uNLS − 1
2εiω

¯
′′(k)(∂, ∂)uNLS

= 3εΠ1(k)T S(uNLS, uNLS, ūNLS),

uNLS|t=0(y) = u0.

⎫⎪⎬
⎪⎭ (3.23)

One can deduce from theorem 3.8 the following refinement of theorem 2.15.

Corollary 3.14 (Schrödinger approximation). Under the assumptions of theorem
3.8, there exists a unique solution uNLS ∈ C([0, T/ε); W (Rd)n) to (3.23), for some
T > 0 and all 0 < ε < ε0.

If, moreover, u0 ∈ W 3(Rd)n and ε0 is small enough, then the solution U to (1.1)
exists on [0, T/ε] and

|U − UNLS|L∞([0,T/ε]×Rd) � εC(T, |u0|W )(1 + |∇u0|W + |cNLS|∞|u0|W 3),

where UNLS is as defined in (3.22) and

cNLS(ξ) :=
ω1(k + εξ) − (ω + εcg(k) · ξ + ε2 1

2ω′′
1 (ξ, ξ))

ε3(1 + |ξ|3) .

Remark 3.15.

(i) A third-order Taylor expansion of ω1(k + εξ) at ξ = 0 shows that |cNLS|∞ is
finite and can be bounded from above independently from ε.

(ii) The component |cNLS|∞|u0|W 3 of the error estimate does not appear for the
full dispersion model. It is due to the approximation of the non-local operator
i(ω1(k + εD) − ω)/ε (left-hand side of (3.19)) by the differential operator
cg(k) · ∇ − 1

2εiω′′
1 (k)(∂, ∂) (left-hand side of (3.23)). This error term is thus a

linear effect.
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(iii) This additional term is responsible for the bad behaviour of the Schrödinger
equation when modelling short pulses. For instance, for initial data like (3.3),
the precision of the Schrödinger approximation is of order

O

(
ε

(
1
β

+
|cNLS|∞

β3

))
when β � 1.

In order for the Schrödinger approximation to keep the same order of precision
as the full dispersion model, one needs therefore to have

|cNLS|∞
β3 � 1

β
,

which requires that β2 � |cNLS|∞. This condition is far much restrictive than
the practical rule β � ε.

(iv) The advantage of the formulation (2.16) of the NLS approximation over (3.23)
is that it is independent of ε. However, (3.23) is interesting because it admits
useful generalizations for short pulses, as shown in the next section.

Proof. As in the proof of corollary 3.11, we focus on the error estimate and omit
the existence/uniqueness part of the proof.

The difference v = uFD −uNLS of the solution of the full dispersion and Schrödin-
ger equations solves the initial-value problem

∂tv +
i
ε
(ω1(k + εD) − ω)v = 3εΠ1(k)(T S(uFD) − T s(uNLS)) − ε2R2(D)uNLS,

v|t=0(x) = 0,

⎫⎬
⎭

(3.24)
where, for all ξ ∈ Rd,

R2(ξ) =
1
ε3 (iω1(k + εξ) − iω − iεcg(k) · ξ − ε2 1

2 iω′′
1 (ξ, ξ)).

Note now that one has, for all 0 � t � τ/ε,

|R2(D)uNLS(t)|W � |cNLS|∞|uNLS(t)|W 3 ,

with cNLS(·) as in the statement of the corollary; differentiating the Schrödinger
equation (3.23) and estimating the W -norm of the solution, one also easily obtains

sup
t∈[0,T/ε]

|uNLS(t)|W 3 � C(T, |u0|W )(1 + |u0|W 3).

Since the first term of the right-hand side of (3.24) can be bounded as in (3.14),
one obtains from Gronwall’s lemma applied to (3.24) that

sup
t∈[0,T/ε]

|v(t)|W � C(T, |u0|W )(1 + |cNLS|∞|u0|W 3),

which, together with corollary 3.11, yields the result.
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3.6. The nonlinear Schrödinger equation with improved dispersion
relation

We derive here new approximations based on a family of modified Schrödinger
equations, whose dispersive properties are closer to the exact model. Such an
approximation Uimp is defined as

Uimp(t, x) = uimp(t, x)ei(k·x−ωt)/ε + c.c., (3.25)

where uimp solves the nonlinear Schrödinger equation with improved dispersion rela-
tion:

(1 − iεb · ∇ − ε2∇ · B∇)∂tuimp + cg(k) · ∇uimp

− 1
2εi(ω′′

1 (k)(∂, ∂) + 2∇ · (cg(k) ⊗ b)∇)uimp + ε2C(∇)uimp

= 3εΠ1(k)T S(uimp),

uimp|t=0(x) = u0(x),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.26)
where b ∈ Cd, B ∈ Md×d(R) and C : Cd × Cd × Cd → C is a trilinear mapping.
We assume, moreover, that

B is symmetric positive, b ∈ range(B) and 4 − b · (B−1b) > 0 (3.27)

(note that even though B−1b is not unique when B is not definite, the scalar
b · (B−1b) is uniquely defined). One then has the following result.

Corollary 3.16 (improved Schrödinger approximation). Under the assumptions
of theorem 3.8, there exists a unique solution uimp ∈ C([0, T/ε); W (Rd)n) to (3.26),
for some T > 0 and all 0 < ε < ε0.

If, moreover, u0 ∈ W 3(Rd)n and ε0 is small enough, then the solution U to (1.1)
exists on [0, T/ε] and

|U − Uimp|L∞([0,T/ε]×Rd) � εC(T, |u0|W )(1 + |∇u0|W + |cimp|∞|u0|W 3),

where Uimp is as defined in (3.25) and

cimp(ξ)

:=
(

ω1(k + εξ) −
(

ω + ε
cg(k) · ξ + 1

2ε(ω′′
1 (ξ, ξ) + 2(cg(k) · ξ)(b · ξ)) − ε2C(ξ)
1 + εb · ξ + ε2ξ · Bξ

))

× 1
ε3(1 + |ξ|3) .

Remark 3.17.

(i) As for the Schrödinger equation, one can check by a simple Taylor expansion
that |cimp|∞ is finite and uniformly bounded with respect to ε.

(ii) Taking b = 0, B = 0 and C = 0 (this choice satisfies (3.27)), one recovers the
usual Schrödinger equation (3.23).
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Figure 3. cimp(ξ)/cNLS(ξ) for ε = 0.01 with the coefficients (3.28).

(iii) The interest of (3.26) with respect to (3.23) is that one can choose b, B and
C such that cimp � cNLS, thus improving considerably the accuracy of the
approximation. In the one-dimensional case d = 1, it is possible to choose b,
B and C in such a way that the dispersion relation for (3.26) is the [3, 2]-Padé
expansion of the dispersion relation of (3.19). For the case of the Klein–Gordon
system of example 1.5, this leads to

b =
2k

v2 + k2 , B =
v2 + 4k2

4(v2 + k2)2
, C =

k(3v2 + 4k2)
4(v2 + k2)5/2 ; (3.28)

we illustrate in figure 3 how much one gains by working with (3.26) instead
of (3.23) for the Klein–Gordon system of example 1.5 with v = k = 1.

(iv) The same analysis as in remark 3.15(iii) shows that the approximation pro-
vided by (3.26) is of the same order as the envelope approximation if β2 �
|cimp|∞. Since |cimp|∞ � |cNLS|∞, this condition is much weaker than the cor-
responding one for the usual Schrödinger model. In some particular cases, this
condition can even be weaker than the ‘practical rule’ ε � β and the range
of validity of the model will be determined by the latter.

Proof. Choosing ξ0 ∈ −1
2B−1b, one can check that

1 + b · ξ + ξ · Bξ = 1 − 1
4b · (B−1b) + (ξ − ξ0) · B(ξ − ξ0),

so that it follows from assumption (3.27) that 1 + b · ξ + ξ · Bξ > 0 (uniformly with
respect to ξ ∈ Rd). The operator 1 − εib − ε2∇ · B∇ is therefore invertible, and
its inverse is the Fourier multiplier (1 + εb · D + ε2D · BD)−1. Equation (3.26) can
therefore be rewritten as

∂tuimp + i
cg(k) · D + 1

2ε(ω′′
1 (D, D) + (cg(k) · D)(D · b)) − ε2C(D)
(1 + εb · D + ε2D · BD)

uimp

= 3(1 + εb · D + ε2D · BD)−1π1(k)T S(uimp).
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Figure 4. Short pulses: the errors E(j)(ε, β) for β = 0.1 and ε ∈ [0.001, 0.1]; j = 1
corresponds to FD, j = 2 to Schrödinger and j = 3 to the improved Schrödinger.

Since (1 + εb · D + ε2D · BD)−1 is regularizing (of order −2) and acts on W (Rd)
uniformly with respect to ε > 0, the proof of the result follows exactly the same
lines as the proof of corollary 3.16 and we thus omit it.

3.7. Numerical validation

We have already seen in § 3.1.3 (see figure 2) that the NLS approximation is
completely inaccurate for short pulses. It is interesting to check numerically the
validity of the models introduced in this section (we refer the reader to [9] for more
detailed examples).

Figure 4 shows that for short pulses like (3.3) the full dispersion provides, as
expected, a good approximation up to a ratio ε/β ∼ 0.25. It also shows that,
up the same ratio, the improved Schrödinger model provides an approximation of
similar accuracy.

At this point of the discussion, we can draw the following conclusions:

• the NLS approximation is not accurate for short pulses like (3.3) when β is
small.

• the full dispersion and improved Schrödinger models furnish good approxi-
mations for short pulses, provided that the ratio ε/β is small enough.

The FD and improved NLS models are better than NLS for short pulses because
they successfully solve the first shortcoming of the NLS approximation (bad disper-
sive behaviour; see § 3.1.1). However, they do not address the second shortcoming,
namely, the validity of the SVEA (see § 3.1.2) and this is why they fail when the
ratio ε/β is not small enough (in accordance with the ‘practical rule’ (3.5)).

Pulses for which ε/β is not small are called ultrashort pulses; they require a
completely different analysis, as sketched in the next section.
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Figure 5. Initial condition u0
(β)(x)ei(k·x)/ε + c.c. with

a Gaussian u0, ε = 0.01, and for β = 0.02.

4. Ultrashort pulses

As explained in § 3.7, ultrashort pulses are so short that the SVEA must be aban-
doned. For short pulses of the form (3.3), this means that β ∼ ε (see figure 5).

The goal of this section is to propose an approach to describe the behaviour
of such pulses in dispersive media. We refer the reader to [4] for more details and
focus here on their qualitative behaviour. In particular, we show that their dynamics
becomes linear, which is a striking difference with respect to the standard pulses
studied in § 2.

Notation 4.1. For the sake of simplicity, we assume throughout this section that
CL is symmetric around the axis (0ω). It follows that the group velocity cg(k) is
always collinear to k. By abuse of notation, we also write CL for the intersection of
CL with the plane containing both (0ω) and k.

4.1. Modelling ultrashort pulses: different approaches

Alterman and Rauch [1–3] modelled ultrashort pulses in non-dispersive media
(E = 0 in (1.1)) by replacing the fast oscillating term in the initial condition by a
fast decaying one; more precisely, they considered the initial condition for (1.1),

U |t=0 = U0
(

x,
k · x

ε

)
, (4.1)

such that U0(x, z̃) → 0 as |z̃| → ∞, and consequently replaced the representation
formula (2.2) by

u(t, x) ∼ U

(
t, x,

k · x − ω(k)t
ε

)
, (4.2)

with U(t, x, z̃) → 0 as z̃ → ∞. The Schrödinger equation (3.23) is then replaced by

∂t∂z̃U + (cg(k) · ∇)∂z̃U + 1
2εR(∂, ∂)U = ε∂z̃F̃ (U), U |t=0 = U0; (4.3)
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this approximation (rigorously justified) uses the fact that the group velocity cg(k)
does not depend on |k| and is therefore only valid in non-dispersive media (E = 0
in (1.1)). Alterman and Rauch’s approach has been generalized in [6,20] by taking
into account the particularities of the optical susceptibility of some cubic nonlin-
ear and weakly dispersive media such as silica, and finally obtaining a quasilinear
variant of (4.3), which is rigorously justified in the linear case.

In order to model the propagation of ultrashort pulses in dispersive media, we
use here the approach developed in [4] and based on the functional tools introduced
in [18]. Another approach was developed in [22] by Texier; in studying the propa-
gation of short waves (which can be seen as one-dimensional ultrashort pulses with
transverse perturbations) by dispersive quasilinear hyperbolic systems, he derived
an equation which echoes the Alterman–Rauch equation.

4.2. Functional setting

We have quite often used the representation (2.2) for the exact solution U to (1.1),

U(t, x) = U

(
t, x,

k · x − ωt

ε

)
,

where U solves the profile equation (2.3). It is worth noting that a more general
representation formula is

U(t, x) = U
(

t, x,− t

ε
,
z

ε

)
,

where (0z) stands for the direction of k.
If V (t, x) is a wave packet

V (t, x) = v(t, x)ei(k·x−ωt)/ε + c.c.,

with v ∈ C(R; Hs(Rd)), then, using such a representation, one has

V (t, x) = V
(

t, x,− t

ε
,
z

ε

)
,

with V(t, x, t̃, z̃) = v(t, x)eikz̃+ωt̃ + c.c.,where k = |k|. In particular, taking the
Fourier transform with respect to (t̃, z̃) yields

Ft̃,z̃V(t, x, ·, ·) = v(t, x)δ(ω,k) + v(t, x)δ−(ω,k),

where δ±(ω,k) is the Dirac measure in R1+1 located at ±(ω, k). In particular, Ft̃,z̃V
is continuous with respect to t, and with values in the space of bounded variation
and Hs(Rd)-valued Borel measures on R1+1.

This motivates the following definition.

Definition 4.2.

(i) For all s ∈ R, we define Es as

Es = F−1
τ̃ ,ζ̃

[
BV(R1+1

τ̃ ,ζ̃
; Hs(Rd))

]
,

where BV(R1+1; Hs(Rd)) denotes the set of bounded variation Hs(Rd)-valued
Borel measures on R1+1.
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(ii) If V ∈ Es, we call spectrum of V and denote by SpV the support of the
measure Ft̃,z̃V .
For all T > 0, we write Es

T = C([0, T ];Es), endowed with its canonical norm.

Example 4.3. The above discussion shows that the initial condition considered
in (2.1) can be represented as

u0(x)ei(k·x)/ε + c.c. = U0
(

x, 0,
z

ε

)
,

where k = kez and U0(x, t̃, z̃) = u0(x)δ(ω,k) + u0(x)δ−(ω,k), which belongs to Es.

Example 4.4. The new functional setting presented here allows one to work with
oscillations having a continuous (rather than discrete) spectrum. More precisely,
if M ⊂ Rd+1 is a submanifold with associated Lebesgue measure σ, then for all
α ∈ L1(M; Hs(Rd)) one can define

V (x, t̃, z̃) =
∫

M
ei(t̃,z̃)·(ω,k)α(ω, k)(x)σ(dω, dk).

Then one has V ∈ Es and SpV ⊂ M.

Example 4.5. One can also check that the ansatz (4.2) used by Alterman and
Rauch to model ultrashort pulses is a particular case of oscillation with continuous
spectrum, as considered in example 4.4.

4.3. Generalizing (1.1) and (2.3) for ultrashort pulses

In order to model ultrashort pulses, we generalize the class of initial conditions
considered in the previous sections as follows:

U |t=0 = U0
(

x, 0,
z

ε

)
with U0 ∈ Es. (4.4)

As shown in example 4.3, this contains the class of initial conditions considered so
far. The representation formulae (2.2), (2.3) can also be generalized into

U(t, x) = U
(

t, x,− t

ε
,
z

ε

)
, (4.5)

with
∂tU + A(∂)U +

i
ε
L(Dt̃, Dz̃)U = εT (U, U, U),

U |t=0(x, θ) = U0
(

x, 0,
z

ε

)
;

⎫⎪⎪⎬
⎪⎪⎭ (4.6)

this is a consequence of the following theorem.

Theorem 4.6. Let assumption 1.1 be satisfied, and let s > d/2, U0 ∈ Es.
There exists T > 0 and a unique solution U ∈ C([0, T/ε];Es) to (1.1) with initial

condition (4.4). Moreover, one can write U in the form

U(t, x) = U
(

t, x,− t

ε
,
z

ε

)
,

where U solves (4.6).
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Proof. The proof is essentially an adaptation of the proof of theorem 2.1 to the
present functional setting [4, 18].

4.4. Diffractive optics for ultrashort pulses

We follow the same strategy as for the derivation of the standard NLS approxi-
mation for wave packets (see § 2.2). We thus look for an approximation Uapp to the
solution U of (1.1) in the form

Uapp(t, x) = Uapp

(
t, x,− t

ε
,
z

ε

)
, (4.7)

where Uapp is an approximate solution to the profile equation (4.6).
We look for Uapp in the form

Uapp(t, x, t̃, z̃) = U0(εt, t, x, t̃, z̃) + εU1(εt, t, x, t̃, z̃) + ε2U2(εt, t, x, t̃, z̃). (4.8)

The same BKW method is then used to determine the Uj (j = 0, 1, 2) as in § 2.2. The
three qualitative steps corresponding to the cancellation of the three leading terms
also appear in the present case. Referring the reader to [4] for full details, we choose
to insist on the new phenomena observed here due to the peculiar characteristics
of ultrashort pulses.

4.4.1. Cancelling the terms of order O(ε−1): the dispersion relation and the
polarization condition

When standard wave packets were under investigation in § 2.2, this step reduced
to the matricial equation (2.9) on the coefficient of the first harmonic. Since there is
no such thing as harmonics for ultrashort pulses, this condition becomes frequency
dependent (or pseudodifferential), namely,

L(Dt̃, Dz̃)U0 = 0. (4.9)

Consequently, the dispersion relation and polarization condition (2.10) become

SpU0 ⊂ CL and Π(Dt̃, Dz̃)U0 = U0 (4.10)

(that is, the spectrum of U0 is included in CL and the polarization condition becomes
frequency dependent).

Remark 4.7. As shown in example 4.3, the functional framework used here con-
tains the standard framework of § 2. Consequently, one may easily check that (4.10)
degenerates in (2.10) if U0 is a standard oscillation.

4.4.2. Cancelling the terms of order O(ε0): transport at the group velocity

Forgetting about the technical details, let us focus on the qualitative information
found at this step: U0 must satisfy a frequency dependent transport equation in the
(t, x) variables. For each given frequency (with respect to the (t̃, z̃) variables), the
analysis is the same as in § 2.2.2. Since the group velocity depends on the frequency
and that the spectrum of ultrashort pulses is not concentrated around (ω, k) it is
not a surprise that the transport equation now becomes non-local with respect to
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(t̃, z̃). If the spectrum of U0 is supported on a smooth (part of a) characteristic
sheet of CL, this equation reads

(∂t + cg(Dz̃)∂z)U0 = 0. (4.11)

Remark 4.8. In the non-dispersive case, cg(Dz̃) is a constant and (4.11) is a stan-
dard transport equation.

4.4.3. Cancelling the terms of order O(ε1): diffractive and nonlinear effects

For the same reasons as for the transport equation, the Schrödinger equation
found at this step is non-local with respect to the (t̃, z̃) variables. If the spectrum
of U0 is supported on a smooth (part of a) characteristic sheet of CL, this equation
reads

∂τU0 − 1
2 iω

¯
′′(Dz̃)(∂, ∂)U0 = Π(Dt̃, Dz̃)T s(Π(Dt̃, Dz̃)U0). (4.12)

4.5. Why the nonlinearities disappear for ultrashort pulses in
dispersive media

The most striking fact regarding the behaviour of ultrashort pulses in dispersive
media is that their dynamics is linear. Indeed, the right-hand-side of (4.12) vanishes!

Proposition 4.9. Let s > d/2 and U0 ∈ Es be such that Ft̃,z̃U0 has no atom
located on CL. Assume, moreover, that CL is nowhere flat. Then

Π(Dt̃, Dz̃)T s(Π(Dt̃, Dz̃)U0) = 0.

Proof. Let us prove that

Π(Dt̃, Dz̃)T (Π(Dt̃, Dz̃)U0, Π(Dt̃, Dz̃)U0, Π(Dt̃, Dz̃)U0) = 0.

For the other components of T s(Π(Dt̃, Dz̃)U0), the proof is exactly the same.
Let us denote µ = Ft̃,z̃(Π(Dt̃, Dz̃)U0) and by v(µ) its total variation. From the

Radon–Nykodỳm property, one has, for all Borel sets E ⊂ R2,

µ(E) =
∫

E

rµ(ξ)v(µ)(dξ),

where rµ is an Hs-valued integrable function such that |rµ(ξ)|Hs = 1 for v(µ)
almost every ξ. Let us now denote by ν the measure

Ft̃,z̃(Π(Dt̃, Dz̃)T (Π(Dt̃, Dz̃)U0, Π(Dt̃, Dz̃)U0, Π(Dt̃, Dz̃)U0));

the result will be proved if we can show that v(ν)(R2) = 0.
By definition of the total variation, one has

v(ν)(R2) =
∫

R2

∫
R2

∫
R2

|Π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))|Hs

× v(µ)(dξ1)v(µ)(dξ2)v(µ)(dξ3).
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Since SpΠU0 ⊂ CL, we deduce that rµ(ξ) = 0 v(µ)-almost surely if ξ 
∈ CL. We
thus have

v(ν)(R2) =
∫

CL

∫
CL

[ ∫
CL

|Π(ξ1 + ξ2 + ξ3)F (rµ(ξ1), rµ(ξ2), rµ(ξ3))|Hsv(µ)(dξ3)
]

× v(µ)(dξ1)v(µ)(dξ2).

Now, if ξ1 + ξ2 
= 0, then {ξ ∈ CL : ξ1 + ξ2 + ξ3 ∈ CL} is discrete (this is where the
assumption that CL is nowhere flat is important). It is therefore of v(µ) measure
equal to 0 since we assumed that v(µ) does not have atoms located on CL. It is
then easy to deduce that v(ν)(R2) = 0, which concludes the proof.

Remark 4.10. In the non-dispersive case, CL (understood in the sense of nota-
tion 4.1) is flat and the above proposition cannot apply. This is why the model
equation (4.3) derived by Alterman and Rauch [1–3] for ultrashort pulses in non-
dispersive media is nonlinear. One could of course re-derive it with the approach
presented here. Note also that, for some weakly dispersive models that are somehow
intermediate between the non-dispersive framework of Alterman and Rauch and the
dispersive models considered here, nonlinearities must be taken into account [4, § 5].
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