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Retraction of large liquid strips
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We study the behaviour of elongated puddles deposited on non-wetting substrates.
Such liquid strips retract and adopt circular shapes after a few oscillations. Their
thickness and horizontal surface area remain constant during this reorganization, so
that the energy of the system is only lowered by minimizing the length of the contour
(and the corresponding surface energy); despite the large scale of the experiments
(several centimetres), motion is driven by surface tension. We focus on the retraction
stage, and show that its velocity results from a balance between the capillary driving
force and inertia, due to the frictionless motion on non-wetting substrates. As a
consequence, the retraction velocity has a special Taylor–Culick structure, where the
puddle width replaces the usual thickness.

Key words: capillary flows, drops and bubbles, interfacial flows (free surface)

1. Introduction

Liquid interfaces carry surface energy, a well-known consequence of the cohesion
of fluids. Hence, a liquid volume tends to minimize its surface area, which results
in spheres in the absence of gravity: droplets in clouds and bubbles in champagne
are all spherical. Plateau (Plateau 1873; Lord Rayleigh 1892; Eggers 1997) showed
that stretching this shape generates a force bringing the system back to its optimum
state, as we can see when elongating a spring (von Segner 1751; Maxwell 1898).
Indeed, the surface tension γ of a liquid can be viewed as the stiffness of a spring
(with which it shares dimensions, namely N m−1), and the corresponding force is
expressed by multiplying γ by an appropriate length scale. We propose here to
conduct Plateau-type experiments with liquids lying on solids, and consider for this
purpose non-wetting materials for which the solid/liquid contact is minimized, so
that phenomena can be studied without pinning (which could maintain metastable
deformations) and with limited friction (approaching the frictionless motion of liquids
surrounded by air only).
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We consider puddles, that is, large amounts of liquid flattened by gravity, for
which we do not expect surface tension to play the role it has at smaller scales. We
investigate what happens when a puddle is stretched so as to form a liquid strip, and
whether/how it retracts as a Plateau drop and a rubber band do if elongated (Vermorel,
Vandenberghe & Villermaux 2007). We discuss the force driving it to a less energetic
state, and the dynamics of the process. These experiments can be compared with
the retraction after bursting of thin liquid sheets, either inviscid (Taylor 1959; Culick
1960) or viscous (Debrégeas, Martin & Brochard-Wyart 1995; Debrégeas, de Gennes
& Brochard-Wyart 1998), studies recently developed by Brenner & Gueyffier (1999),
Sünderhauf, Raszillier & Durst (2002) and Savva & Bush (2009). However, thin
films retract because of a direct action of surface tension that tends to make these
films eventually thicker and more globular (Taylor 1959; Culick 1960; Debrégeas
et al. 1995), while puddles, when retracting, should keep a constant thickness due to
gravity, which impacts both the driving force and the associated dynamics.

2. Observations

Water is deposited on superhydrophobic materials consisting of polished brass
coated by a thin layer of hydrophobic colloids (Glaco Mirror Coat Zero). Distilled
water meets these substrates with an advancing angle of θA≈ 171± 2◦ and a receding
angle of θR ≈ 165 ± 2◦. These high values and the corresponding low hysteresis
1θ = θA − θR ≈ 6◦ characterize a superhydrophobic Cassie state: liquid only contacts
the tops of the hydrophobic colloids, which minimizes the pinning of contact lines and
viscous dissipation (Gogte et al. 2005; Olin et al. 2013; Dupeux et al. 2014). In such
a state, the height H of a puddle becomes nearly independent of the contact angle
and it tends towards twice the capillary length 2a = 2(γ /ρg)1/2 (i.e. approximately
5 mm for water), where ρ is the liquid density and g is the acceleration of gravity
(de Gennes, Brochard-Wyart & Quéré 2004).

After depositing 1–10 ml of water (or water/glycerol mixture) on the substrate,
the resulting circular puddle is elongated using two copper bars of rectangular
cross-section. These bars, which are cleaned with acetone and ethanol, are decorated
with silver bumps by an immersion of 20 s in a 0.01 M solution of AgNO3, following
the procedure by Larmour, Bell & Saunders (2007). The resulting rough surface is
highly hydrophilic, allowing the bars to stick to water and to elongate the puddles.
We keep the holders at a given distance, and use a micropump and a needle to
decrease/increase the volume of liquid, until the main contact lines become aligned
along the axial direction of the elongated puddle. By changing the size and distance
of the two holders, we obtain strips of initial width W0 and length L0, as defined and
shown in figure 1. At large W0, the water is very sensitive to gravity, so that tiny
perturbations make it slide away from the substrate, whose horizontality is adjusted
with micrometric screws below the flat substrate. Conversely, thin cylinders of small
W0 cannot be captured, because the high value of the Laplace pressure allows them
to escape from the holders. In summary, W0 is varied between 7.5 and 30 mm, with
a corresponding aspect ratio r= L0/W0 typically between 5 and 10.

After elongating a puddle, the holders are rapidly removed and the free strip is
observed either from the top or from the side using a high-speed video camera
(Phantom V7) at 1000 f.p.s. The experiments are all carried out at room temperature.
We show in figure 1 the evolution of a strip of volume Ω = 5.7 ml and initial aspect
ratio r = L0/W0 ≈ 5. Once the holders are removed (which defines t = 0), both ends
retract and the liquid adopts a dumbbell shape (t ≈ 0.11 s). The converging flow
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(a) (b) (c) (d )

(e) ( f ) (g)

FIGURE 1. Top view of the relaxation of an elongated puddle of water of volume Ω =
5.7 ml deposited on a superhydrophobic material. The initial width and length of the
liquid strip are W0= 15 mm and L0= 70 mm respectively. We focus in this paper on the
initial retraction stage (t< 0.2 s): (a) t= 0, (b) 0.11 s, (c) 0.24 s, (d) 0.39 s, (e) 0.87 s,
(f ) 1.34 s, (g) 1.94 s. The scale bar shows 20 mm.

produces a rebound along the perpendicular axis (0.24–0.39 s), and oscillations are
observed (with a typical period τ ≈ 0.4 s) until equilibrium is reached (t≈ 2 s). The
final puddle of perimeter Cf is circular, which suggests that surface tension drives
the collapse. The oscillations also suggest that the dynamics results from a balance
between surface tension and inertia. Denoting L as a characteristic distance, this
balance can be written as ρΩL/τ 2 ∼ γL, from which we obtain τ ∼ (ρΩ/γ )1/2, i.e.
0.3 s for the parameters used in figure 1, indeed close to the period observed for the
oscillations.

3. Retraction of the strip

We focus in this paper on the first stage of evolution (typically between t= 0 and
t=0.2 s in figure 1), prior to the first oscillation. In this stage, the strip collapses with
a well-defined shape, as seen in figure 2(a), where we report top and side views of the
retraction and the corresponding contours for L0/W0≈5.6 and W0/a=7.7. As the strip
shrinks, two rounded regions appear at the ends and grow, while W0 remains constant
in the central part. Waves at the surface superimpose on the global motion, and the
sequence lasts until the circular regions merge. The retraction is symmetric, and we
denote U as its typical velocity, as defined in figure 2(a). Side views at the same stage
for similar parameters (L0/W0 ≈ 5.6 and W0/a = 7.8) show that the mean thickness
remains constant during retraction, keeping the value H≈ 2a of static puddles on non-
wetting substrates. We can extract from the contours different characteristic distances
such as the length L of the central part or the typical radius R of the rounded regions.
We deduce from the experiments in figure 2(a) the temporal variations of the length L
of the central part, of the total length L+ 4R and of the average characteristic length
L+2R. As seen in figure 2(b), these distances vary roughly as linear functions of time.
A typical retraction velocity is deduced from the average curve L(t)+ 2R(t). We find
2U = 14.1± 0.5 cm s−1, where the factor 2 comes from the symmetric retraction of
the strip, whose ends both shrink at a velocity U, as defined in figure 2(a).

We display in figure 2(c) how the geometrical characteristics of the retracting strip
vary as X increases. Once extracted from the contours and side views, both the surface
area A and the height hc of the gravity centre of the puddle are observed to change by
less than 5 % during the retraction stage. The liquid strip keeps a constant thickness

778 R6-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.432


C. Lv, C. Clanet and D. Quéré

7
6
5
4
3
2

65432 65432

1

8
9

10
11
12

0

5

4

3

2

1

0

50 100 150 200 250 300 350

10

15

20

25

5

0 16

18

20

22

24

26

28

U

R

X L

20 mm
20 mm

D
is

ta
nc

es
 (

cm
)

t (ms)

C
 (

cm
)

X (cm) X (cm)

(a)

(b)

(c)

FIGURE 2. (a) Retraction of a water strip seen from the top and from the side. The
puddles have an initial width of W0 = 21 mm and an initial length of L0 = 110 mm or
114 mm. The time interval between snapshots is 0.08 s. (b) We extract from the contours
the total length of the puddle L+ 4R (squares), the distance between end centres L+ 2R
(diamonds) and the length L of the central part (circles), all plotted as a function of time.
The solid and hollow symbols correspond to top and side views. (c) Variations of the
geometrical characteristics of the strip as it retracts. The surface area A of the liquid (seen
from the top) and the height hc of the centre of gravity (deduced from side views) both
vary by less than 5 %. In contrast, the perimeter C of the puddle (measured from top
views) decreases by 22 % during retraction.
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FIGURE 3. (a) Typical retraction velocity U as a function of the initial length L0 of the
strip for two widths W0. (b) Velocity U as a function of the strip width W0 for water
(blue data) and for a mixture of water and glycerol two times more viscous (red data).

H ≈ 2a, as already noted in figure 2(a). Hence, its projected surface area A (the
one visible in the top views) must indeed remain constant, a consequence of volume
conservation Ω ≈AH≈ 2Aa. We deduce that both the potential energy and the surface
energy associated with the top and bottom interfaces hardly change during retraction.
In sharp contrast to these facts, the puddle perimeter C strongly decreases during
the retraction stage. We observe in figure 2(c) a decrease from its initial value C0

by approximately 22 %, a significant amount of the total reduction of the perimeter
(Cf −C0)/C0, of the order of 35 % in figure 1. The ratio Cf /C0 between the final and
initial perimeters is expected to be (πr)1/2/(r+ 1), that is, a quantity of 66 % for an
aspect ratio of r = 5. For 10 experiments with r between 4.5 and 6, we measure an
average ratio Cf /C0 of 68 %, in excellent agreement with the expectations. We also
checked for the same experiments that the final surface area of the puddle remains
that of the initial strip (variation less than 5 %).

We measured the mean speed of retraction of strips of various initial lengths L0

and widths W0, using as the liquid water and a mixture of water and glycerol two
times more viscous. For each strip, we determined the characteristic retraction speed
U defined in figure 2(a), that is, half the slope of the curve L(t)+ 2R(t) in figure 2(b).
The results are displayed in figure 3, where each data point corresponds to an average
of five measurements. Figure 3(a) shows that the speed U is independent of the initial
length L0 of the liquid strip (varied by a factor of 3). Data plotted for two initial
widths W0 suggest that wider strips retract more slowly.

The speed U is plotted for two liquid viscosities (that of water, and two times
larger) in figure 3(b), as a function of the puddle width W0. Decreasing the width by a
factor of approximately 4 leads to an increase of the retraction speed by a factor of the
order of 2. The dynamics is found to be the same for both liquids, which confirms
an inertial origin for the resistance to motion. When using a mixture of water and
glycerol 10 times more viscous than water, the speed U is approximately 25 % smaller,
showing the appearance of (weak) viscous corrections at such viscosities.
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FIGURE 4. (a) The end of a retracting strip is sketched as a circular disk of radius
R whose centre moves at velocity U, and connected to a static part of width W0. The
sketch represents the puddle at two successive moments, corresponding to a retraction by
a distance dX of half the strip. (b) Numerical cross-section of a non-wetting strip of width
W0 = 8a, where we stress in red the curved boundary close to the edges. Here, z is the
vertical coordinate and a is the capillary length.

4. Model and discussion

The cause of retraction appears to be different from what happens for the usual
retraction (or bursting) of thin liquid films, for which the planar surface area decreases
and the thickness eventually increases. Here, these quantities are constant, and only
the perimeter is found to decrease along the motion (figure 2c), suggesting that the
retraction is driven by the strip sides. Our system is sketched in figure 4(a), where
each part of the retracting strip seen from the top is assumed to be the juxtaposition
of a disk of radius R with a central ribbon of constant width W0 and (decreasing)
length L. As soon as retraction starts, we have 2R>W0, as observed in figure 2(a). We
also display in figure 4(b) a numerical cross-section of a non-wetting strip of width
W0 = 8a (chosen to correspond to figure 2a), whose thickness H is found to be very
close to its asymptotic value 2a.

Since the puddle thickness is proportional to the capillary length a, its perimeter C
holds a surface energy E scaling as γ aC, which is minimum when C(X) is minimum,
that is, for a circular shape. The force F deriving from this energy drives retraction
and it scales as γ a. Although the puddle shape is dictated by gravity, retraction is
driven by surface tension and F appears to be a strong function of γ (varying as γ 3/2),
since a higher γ generates a thicker film, whose edges hold more surface energy.

As observed in figure 3(b), the origin of the force opposing capillary action is
not viscous: we deal with non-wetting substrates, hence minimizing the contributions
of line friction (viscous force associated with the motion of contact lines) and bulk
friction (the puddles are millimetre thick and made of water). The typical velocities
are approximately 10 cm s−1 and the strips are centimetric, which yields Reynolds
numbers during retraction of the order of 103 for water; inertia is the main source
of resistance to motion. The mass flux dM/dt of water feeding each end scales as
ρaW0U, so that Newton’s law d(MU)/dt= F has a very simple solution of constant
velocity, scaling as

U ∼
(

γ

ρW0

)1/2

. (4.1)

Equation (4.1) captures most observations. Retraction indeed takes place at a roughly
constant velocity (figure 2a,b). This velocity is independent of the strip length L0,
and it decreases with its width W0 (figure 3). The straight line of slope −1/2 in
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the logarithmic plot of figure 3(b) agrees fairly well with the data. In addition, the
value of the velocity predicted by (4.1) for water and centimetric width is of the
order of 10 cm s−1, as observed experimentally. More generally, (4.1) is a kind of
Taylor–Culick equation (Taylor 1959; Culick 1960): a (soap) film of thickness h also
retracts at constant velocity, a consequence of similar balance between inertia and
surface tension. However, a Culick–Taylor velocity scales as (γ /ρh)1/2, a quantity
sensitive to the film thickness, which is not found in (4.1). As the strip retraction is
driven by a minimization of their perimeter, the film thickness enters in both resisting
and driving forces, which explains how the retraction speed can be independent of the
thickness a. Yet a distance is needed to construct an inertia–capillary speed, and this
distance is found in (4.1) to be the strip width W0, a large quantity compared with
the thickness, which explains why the strip retraction is significantly slower than that
of films.

Beyond scaling laws, it is not easy to build a fully quantitative model, mainly
because an analytical solution only exists in the asymptotic regime of very long
strips – an experiment difficult to perform. In such an ideal case, the retracting ends
swallow four lateral edges, so that we expect dC/dX≈−4. A first approximation for
the edge cross-section consists of describing it by a hemicircular meniscus of radius
a, which implies that each edge carries an energy per unit length of πγ a. This can be
refined, and we can numerically calculate the extra-surface area corresponding to each
edge by imposing a cutoff distance a from the edge (red part in figure 4b). Then we
find 2.9γ a, close to the previous value, which we adopt. Deriving the corresponding
surface energy of edges E(X)≈ γπaC(X), we find a force F =−(1/2) dE/dX acting
on each edge F≈2πγ a. Introducing the (varying) mass M of a circular end, Newton’s
law can be written as

d
dt
(MU)= 2πγ a. (4.2)

We have dM/dt= 2ρaW0U, so that (4.2) has a solution of constant velocity:

U =
(

πγ

ρW0

)1/2

, (4.3)

which obeys the scaling of (4.1).
In our experiments, we are not yet in this asymptotic regime, which complicates

a quantitative analysis, the main question being to determine how the strip perimeter
decreases as it retracts. However, we have an experimental answer to this question, as
seen in figure 2(c): the variation of C(X) starts with a short plateau and then gradually
bends down, without reaching the slope −4 discussed above. Considering an average
slope across the data in figure 2(c) of −1.5, the effective force driving the motion in
this regime is approximately two times smaller than discussed above. The origin of
this reduction can be understood. As half of the puddle retracts by a distance dX at
constant thickness H= 2a, as sketched in figure 4(a), conservation of volume imposes
(for R larger than W0)

W0 dX ≈ 2πR dR. (4.4)

During this motion, the perimeter of the puddle decreases by a quantity dC:

dC≈−4 dX + 4π

(
∂R
∂X

)
dX ≈−4(1−W0/2R) dX. (4.5)
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The function 1−W0/2R(X) varies slowly and its mean value in our experiment is 0.35,
significantly smaller than 1, which implies from (4.5) a decrease of perimeter dC/dX
of approximately −1.4, close to the measured value. Hence, the effective force driving
the motion of one end, F≈−γπa<dC(X)/dX>/2, is smaller than 2γπa, its value at
large time. Balancing this mean force with inertia yields a velocity scaling as in (4.1),
with a numerical coefficient of 1.1, slightly smaller than expected from (4.3), and in
fair agreement with the numerical coefficient in the fit of figure 3(b), which is 1.3.

These considerations also help us to understand why the velocity V at which the
whole puddle retracts (the slope of the square data in figure 2b) differs from U. As
motion takes place, the circular ends grow at a rate Ṙ= dR/dt, which imposes V =
U − Ṙ. The rate Ṙ can be deduced from (4.4), which yields Ṙ =W0U/2πR, that is,
U/π close to the beginning of the motion (R ≈ W0/2). In this limit, U and V are
quite different, since we have V ≈U(1− 1/π)≈ 0.7U, in fair agreement with the ratio
∼0.75 observed between the slopes in figure 2(b). For a strip of very large aspect ratio,
we expect both velocities to become similar, a regime not reached in our experiments
where L0/W0 remains smaller than 10.

5. Conclusion

A water strip on a slippery horizontal substrate was found to retract under the
action of the surface energy associated with its edges. The mechanism of retraction is
different from the usual ones reported in the context of thin films, where dewetting or
bursting leads to a thickening of the film. We could see our experiment viewed from
the top as a (huge) magnification of thin-film retraction seen from the side, where
the strip width plays the role of the film thickness. In both cases, a rim forms and
progresses, and its inertia limits its speed so that a Culick expression is found. For thin
films, however, the contribution of the surface energy of the rim is neglected, while
it was found here to lower the force driving retraction. On more common substrates
(partial wetting situation), the puddles will be thinner, and the friction opposing the
action of surface tension (if the puddles are distorted) should have a viscous origin,
either within the bulk of the liquid or close to the contact lines, depending on the
puddle size and the contact angle. Hence, we would obtain different dynamics in this
case, or even no dynamics at all if pinning becomes dominant, allowing the puddle
to remain in metastable distorted states. Extension of our results to such situations of
partial wetting remains to be studied.
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