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The diffusive sheet method for scalar mixing
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The diffusive strip method (DSM) is a near-exact numerical method for mixing
computations initially developed in two dimensions (Meunier & Villermaux, J. Fluid
Mech., vol. 662, 2010, pp. 134–172). The method, which consists of following
stretched material lines to compute the resulting scalar field a posteriori, is extended
here to three-dimensional flows. We describe the procedure and its three-dimensional
peculiarity, which relies on the Lagrangian advection of a triangulated surface from
which the stretching rate is extracted to infer the scalar field. The method is first
validated at moderate Péclet number against a classical pseudospectral method solving
the advection–diffusion equation for a Batchelor vortex, and then applied to a simple
Taylor–Couette experimental configuration with non-rotating boundary conditions
at the top-end disk, bottom-end disk and outer cylinder. This motion, producing
an elaborate although controlled steady three-dimensional flow, relies on Ekman
pumping arising from the rotation of the inner cylinder. A recurrent two-cell structure
is separated by the horizontal mid-plane and formed by stream tubes shaped as
nested tori under laminar flow conditions. A scalar blob in the flow experiences a
Lagrangian oscillating dynamics undergoing stretchings and compressions, driving the
mixing process. The DSM enables the calculation of the blob elongation and scalar
concentration distributions through a single variable computation along the advected
blob surface, capturing the rich evolution observed in the experiments. Interestingly,
the mixing process in this axisymmetric and steady three-dimensional flow leads to
a linear growth of surfaces in time similar to the one obtained in a two-dimensional
shear. The potentialities, limits and extension of the method to more general flows
are finally discussed.

Key words: mixing

1. Introduction
Although we recognize that ‘to predict is not to explain’ (Thom 1993), it is a fact

that the fluid mechanics community has, since Richardson (1922), expressed the need
to recreate natural phenomena by artificial means using automatic calculations, and
this for numerous design and forecasting applications. Conversely, having at one’s
disposal the state of all of the variables in a flow at every instant of time is precious
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FIGURE 1. (Colour online) Diffusion of a square blob of scalar of side π/2 advected by
a Batchelor vortex simulated (a) by DNS and (b) by the diffusive sheet method (DSM).
Snapshots are taken at t= 0, t= 8, t= 24 and t= 40. The global Péclet number Pe based
on the box size and the maximum velocity is equal to 188 400. The local Péclet number
Pe0 based on the initial thickness s0= 0.05 and the shear rate is equal to 12. In the DNS,
the volume rendering uses an opacity filter evolving with time in order to emphasize the
relevant concentration values. The inset in the rightmost panel shows the details of the
concentration field on a horizontal cut along with the collocation points. In the DSM, the
colour level represents the local concentration at the centre plane of the sheet.

information currently out of reach of most experimental investigations which, when
cleverly exploited, may contribute to a refined understanding of the simulated system.

Scalar mixing, that is the homogenization of stirred fluid mixtures, is both
a paradigm for irreversible phenomena and a necessary step in many natural
or man-made operations. Its simulation, or modelling, is a subject of constant
improvement. Some methods mimic nature closely by computing the position of
a large collection of particles advected by the flow, each affected by a random noise,
the manifestation of molecular diffusion (Öttinger 1996; Pope 2000). A smooth
macroscopic concentration field is obtained by local averaging on a coarsened grid,
thus requiring a gigantic number of individual particles to prevent spurious statistical
fluctuations when defining a local concentration.

Another very popular method consists of computing the evolution of the concentra-
tion field itself through direct numerical simulation (DNS) of the Navier–Stokes
(for the stirring field) and Fourier (for the scalar) equations, with the appropriate
space and time-step resolution (Moin & Mahesh 1998). An example is shown in
figure 1(a), where an initial blob of scalar rolls up around a Batchelor vortex. For
such a calculation, the maximal admissible mesh size must be chosen such that the
finest concentration gradients should be resolved. This is a stringent requirement
in the weakly diffusive limit: in a simple flow mixing a substance with diffusivity
D, stirred at scale L by a velocity U, the width of the concentration gradient, also
known as the Batchelor scale, is L/

√
Pe, where the Péclet number Pe = UL/D can

be arbitrarily large. It is thus not sufficient to appropriately resolve the flow internal
boundary layer L/

√
Re, with Re = UL/ν the Reynolds number of the carrying

fluid with viscosity ν, when the Schmidt number Sc = ν/D is larger than unity
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FIGURE 2. (Colour online) Comparison of the total numerical cost between a classical
pseudospectral DNS and the new DSM. The advection of a passive scalar by a Batchelor
vortex is considered (see § 2.3 for details). The numerical cost is independent of the
Péclet number for the DSM whereas it scales approximately as Pe2 for the DNS (the
corresponding spatial resolution is indicated next to each point for reference).

(Yeung, Donzis & Sreenivasan 2005; Schwertfirm & Manhart 2007). In random
turbulent flows, the concentration gradient presents a broad dispersion around the
mean mentioned above (Schumacher, Sreenivasan & Yeung 2005), incorporating in
particular gradients sharper than the mean, so that a simulation should, in principle,
resolve the finest gradient of the concentration field to be faithful. The constraint of
having to solve accurately for the Batchelor scale indicates that the number of points
in each direction must increase as N ∼ Pe1/2. The total numerical cost of a DNS is
thus proportional to N3 (in three dimensions) and to a factor N due to the decrease of
the time step necessary for numerical stability. This scaling, indeed observed for the
DNS calculation of a Batchelor vortex flow, as shown in figure 2, indicates that the
numerical cost of a DNS scales approximately like Pe2, thus limiting its applicability
to the moderate, if not low, Péclet flow regimes.

Given these inherent limitations, an alternative computational method was proposed
by Meunier & Villermaux (2010), called the diffusive strip method (DSM). Instead
of keeping track of the location of very many tracer particles, or solving an
advection–diffusion equation for the concentration field on an extremely refined mesh,
the method consists of visualizing a mixture as a set of blobs, stretched by the stirring
field. The blobs are deformed kinematically by the flow, soon shaping into stretched
stripes in two dimensions (Ottino 1989), parameterized by their local elongation. For
each blob, the full advection–diffusion equation describing the dynamics of the scalar
concentration is amenable, nearly rigorously (see Meunier & Villermaux 2003), to
a simple diffusion equation in suitably transformed coordinates of space and time
functions of the diffusivity D and the strip elongation rate, as first exploited in
this context by Ranz (1979). The corresponding solution is asymptotically valid in
the limit of large Péclet numbers and vanishing blob thickness with respect to the
curvature radius. The method, which has a long history and a wide range of fields
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of interest (see the references in Meunier & Villermaux 2010), has some proximity
to the flamelet representation of reactive mixtures in the combustion context (Peters
1984), as well as direct implications for the study of mixing in particulate suspensions
(Souzy et al. 2017). Once the kinematic transport of the strip is made, the overall
concentration field of the mixture is computed a posteriori, for any Péclet number Pe,
and results from a superposition principle discovered by Villermaux & Duplat (2003),
explained in detail in Duplat & Villermaux (2008) and more recently worked out
for the study of mixing by porous media (Villermaux 2012a; Le Borgne, Dentz &
Villermaux 2015) and for fundamental aspects of the architecture of random mixtures
(Le Borgne et al. 2017). Variation of the Péclet number is thus made, with this
method, at no additional cost, even for very large Pe.

The present paper extends the two-dimensional DSM to its fully three-dimensional
version which we call, by analogy, the diffusive sheet method (with, hence, the
same acronym, DSM) since sheets are the three-dimensional analogues of the
two-dimensional stripes (Buch Jr & Dahm 1996; Fountain, Khakhar & Ottino 1998).
We follow a surface advected by a three-dimensional flow, keeping track of its local
expansion, thus allowing us to reconstruct the overall scalar concentration at any
time, for any Péclet number. Figure 1 is a comparison of the method with a straight
DNS for a simple Batchelor vortex, to be studied in detail in § 2, showing a good
agreement between the two methods concerning the position of the scalar sheet. The
comparative computational cost in figure 2 demonstrates the obvious advantage of the
DSM over traditional DNS.

The details of the numerical method, notably the way surfaces are parameterized
and refined as they are distorted by the flow, are given in § 2, where the method
is also validated by a comparison with a DNS in a simple Batchelor vortex. In § 3,
we study mixing in a real experiment, using a Taylor–Couette configuration whose
stirring field is documented and modelled. The mixing properties of this flow, which
are measured quantitatively, are inferred from its stirring kinematics and compared
with the predictions from the DSM. We conclude in § 4.

2. A new method for scalar mixing in three dimensions
The mixing process of a passive-scalar substance in a prescribed flow has been

modelled in many ways. The Eulerian formulation provides a full description of the
evolution of a scalar concentration field through an advection–diffusion equation,

∂c
∂t
+ v · ∇c=D1c, (2.1)

where c is the concentration of the scalar field and D is the diffusivity of the substance
being mixed. The flow field v(x, t) is assumed to be known a priori and is not coupled
with the evolution of c itself, defining a passive-scalar dynamics. It is feasible to solve
(2.1) with a DNS, but, as explained in § 1 and visible from figure 2, it is costly at
large Péclet number.

The DSM, on the other hand, enables the study of convection–diffusion mixing
problems by relying on the kinematics of the flow only. The approach consists
of reducing the problem (2.1) to a simple diffusion equation in adequate rescaled
coordinates, given by

∂c
∂τ
=
∂2c
∂ ñ2

, (2.2)

where τ and ñ are time and space variables respectively, depending on the scalar
diffusivity and the topology of the velocity field, which are explicitly given below.
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(a) (b)

FIGURE 3. (Colour online) Schematic figure of the advected triangulated surface (a),
where sk and Ak are the striation thickness and area of a given triangle k respectively. An
arbitrary surface is chosen as initial condition (b) with homogeneous mesh triangulation
(black) and flow-dependent refinement (colour). It should be noted that even though the
original triangulation is evenly distributed, the refinement depends spatially on the local
deformation experienced by each triangle following the flow field.

2.1. The DSM
We know (see, e.g., Batchelor 1952; Cocke 1969; Orszag 1970; Girimaji & Pope
1990; Duplat & Villermaux 2000) that material line elements tend to orient along the
principal axis corresponding to the maximum positive strain rate (we call it γ ) of the
stirring field. Similarly, material area elements tend to lie in the plane of the principal
strain-rate axis, whereas the principal compression direction lies perpendicular to the
surface (Betchov 1956; Ashurst et al. 1987), an essential feature at the root of the
DSM (Meunier & Villermaux 2010). When a volume of fluid is deformed, it typically
stretches (more in one direction than the other; see Betchov 1956), and contracts in the
third direction, due to incompressibility. The area Ai(t) of a (non-diffusing) material
element i covering an advected surface is related to its transverse thickness si(t) by

si(t)= si0
Ai0

Ai(t)
, (2.3)

where si0 and Ai0 are the initial thickness and area of element i respectively. We will
suppose that the initial distribution of scalar in the fluid bulk can be well approximated
by a triangulated surface (figure 3), carrying the information on the local thickness.
We now make the assumption that, in this frame of reference, the displacement field
can be adequately approximated by a Taylor expansion of the flow at first order. The
normal shrinking velocity is simply

vn =
n
si

dsi

dt
. (2.4)

This stretching dynamics produces an increasing gap of length scales between the
thickness of the sheet, which diminishes with time, and the characteristic lengths
along the elongating surface. Therefore, the longitudinal concentration gradients can
be neglected in comparison with the normal ones (Meunier & Villermaux 2003).
This allows us to rewrite the advection–diffusion equation (2.1) by neglecting the
scalar gradients on the surface, ∂c/∂σ1, ∂c/∂σ2 (see figure 3), as well as longitudinal
diffusion terms as

∂c
∂t
+

n
si

dsi

dt
∂c
∂n
=D

∂2c
∂n2

. (2.5)
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This one-dimensional advection–diffusion equation can be further simplified by
defining rescaled time and space coordinates (Ranz 1979),

τ =D
∫ t

0

dt′

si(t′)2
and ñ=

n
si(t)

, (2.6a,b)

thus mapping (2.5) onto the diffusion equation (2.2). For a given initial concentration
profile C0(n) across the surface element, the general solution is given by

c(τ , ñ)=
∫ ñ′=+∞

ñ′=−∞

C0(ñ′)
√

4πt
exp

(
−
(ñ− ñ′)2

4τ

)
dñ′. (2.7)

It has a simple form in the case of an initial Gaussian concentration profile C0(ñ)=
c0 exp(−ñ2),

c(τ , ñ)= cm exp
(
−

ñ2

1+ 4τ

)
, (2.8)

cm =
c0

√
1+ 4τ

. (2.9)

Therefore, computation of the deformation of a scalar sheet in a fluid flow, following
its local stretching rate and thickness, is sufficient to reconstruct the three-dimensional
concentration field around it a posteriori, including diffusive effects. The power of
this method lies in its simplicity: the computation is to be made only once and the
concentration field can be obtained for any value of the diffusivity D or initial sheet
thickness s0 (because they are encoded in ñ and τ ) from a unique simulation with no
additional numerical cost.

The concentration profile across a diffusing element i paving a sheet deformed in
a flow is entirely determined by its local compression state si(t) and history (the
definition of τ in (2.6) involves an integral over time). These depend on the flow
in particular, and several canonical examples have been considered, including random
chaotic flows where si(t) shrinks exponentially fast in time or flows where the decay
is a power law (see Villermaux (2012b) and references therein). We will be interested
here in deformation fields similar to shear flows, which induce a compression as

si(t)=
s0√

1+ (γ t)2
, (2.10)

with a rate of compression −ṡi/si weakening at large time as t−1. In that case, we
have from (2.6)

τ(t)=
γ t
Pe0

(
1+

1
3
(γ t)2

)
, (2.11)

where

Pe0 =
γ s2

0

D
(2.12)

is the Péclet number based on the initial sheet thickness s0. Molecular diffusion alters
the distribution of the concentration levels c for times τ larger than unity (Villermaux
& Duplat 2003), thus defining the mixing time ts such that τ(ts)=O(1), providing, in
the present case,

ts ∼ γ
−1Pe1/3

0 for Pe0� 1. (2.13)
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The maximal concentration at the centre of the sheet element given by (2.9) is
constant and equal to c0 for t< ts and decays as

cm ∼ τ
−1/2
∼ (γ t)−3/2 for t> ts. (2.14)

This decay law is a straightforward consequence of mass conservation cm ×
√

Dt ×
Ai(t)= c0 × s0 × Ai0 with Ai(t)/Ai0 = s0/si(t) given in (2.3).

It is interesting to check that the approximation at the root of the Ranz transforma-
tion in (2.6) used by the DSM is valid. The longitudinal diffusion terms have been
neglected with respect to the normal diffusion terms at the time when diffusion starts
to act, i.e. at the mixing time. The ratio of these terms is proportional to (γ t)4 for a
linear growth of the material elements, that is, equal to Pe4/3

0 at t = ts. This ratio is
equal to Pe2

0 in the case of exponential growth of material elements. In each case, the
method is thus asymptotically valid in the limit of large Péclet numbers.

2.2. Numerical implementation
A numerical code in C language was developed to simulate the advection of a
prescribed sheet with the flow motion. In order to triangulate the surface and
follow each triangular element, together with the information on local stretching
and thickness, we have made use of the GNU Triangulated Surface (GTS) Library
(Popinet 2010). The interest of this library lies in an efficient connection between
elements such as vertices, edges and triangular faces, together with a wide set of
functions that allow for fast calculation of areas, distances and normals, among others.
The navigation through the hierarchy of triangles, edges and vertices pertaining to
the whole surface is optimized with a tree-like structure.

A crucial point in the implementation of the DSM is the dynamic refinement of the
surface. Indeed, although the initial triangulated surface is well resolved, its stretching
leads to large triangles in areas where higher definition is required to properly describe
the scalar distribution. Moreover, regions of the surface that display high curvature
need a larger number of triangles than flat regions. The mesh-refinement process is
triggered periodically (depending on the stretching experienced by the surface, every
50 time steps being typically enough for the cases considered here) by both triangle
size (every triangle edge reaching a length longer than a prescribed criterion is split
into two, a vertex is added at its middle point, and two new triangles are built through
that new vertex) and triangle quality (a far-from-equilateral triangle is also divided to
avoid a mesh predominant orientation forced by a directional stretch).

A fourth-order Runge–Kutta scheme was used to integrate the displacement of
each mesh vertex with a given flow velocity field. The Courant–Friedrichs–Lewy
(CFL) condition for the time step 1t of integration is constrained by the spacing l
between contiguous vertices to be displaced with local velocity v, so that 1t< l/|v|.
A surface under stretch poses a less restrictive condition as vertices move apart
since mesh refinement shortens the distance between integration points. The time
step is imposed such that the maximum vertex displacement between two time steps
on the whole mesh is smaller than the minimum sheet edge thickness. Real flows,
however, may produce material sheet folding, and seldom highly curved and/or
stagnant regions where the tracers accumulate. These areas, where the DSM method
breaks down, are characterized by a radius of curvature that becomes smaller than
the striation thickness. In 2D, Meunier & Villermaux (2010) found that these cusps
were localized and that they did not alter the global quantities of the flow such as
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the probability density function and the spectra, precisely because they were less and
less numerous with respect to the ever growing regular area of the sheet.

Several modifications were performed to the GTS library in order to implement the
DSM: primarily, the creation of an extended triangle object to track intrinsic variables,
namely the striation thickness si and dimensionless time τi. The evolution of each
triangle thickness si is computed at each time step tn from (2.3), making use of the
directly measurable triangle area,

si(tn)= si(tn−1)
Ai(tn−1)

Ai(tn)
, (2.15)

as well as the dimensionless time (2.6),

τi(tn)= τi(tn−1)+D
∫ tn

tn−1

dt
s2

i
. (2.16)

The concentration located at each triangular face is therefore obtained by the
expression (2.9), cmi(tn) = c0/

√
1+ 4τi(tn) for selected values of Pe0. A count of

the number of events for values of cm/c0 ranging from 0 to 1 yields the distribution
of maxima q(cm). Nevertheless, a more detailed distribution of the scalar concentration
p(c) can be extracted from the DSM data. Each triangular face contributes to the total
distribution by a transverse Gaussian diffusive profile of concentration which peaks at
the surface with a value equal to cm and reaches transverse distances of the order of
si
√

1+ 4τi (2.9). Accounting for the relative area of each triangle and the extension
of their thickness, the overall concentration distribution p(c) is constructed as the
weighted sum of the whole set of elements paving the surface. Since each of them
contributes by a characteristic ∪-shaped elementary distribution (∼(c

√
ln[cM/c])−1,

see Meunier & Villermaux 2003), reflecting a Gaussian profile of concentration across
the sheet element, we have

p(c) =
∑

i

pi(c) (2.17)

∼

∑
i

Aisi
√

1+ 4τi

c
√
−log(c/cm)

, (2.18)

subjected to the normalization
∫

p(c) dc= 1.

2.3. Comparison with DNS and theoretical predictions
In order to validate the DSM and its numerical implementation, we compare it with
a more conventional numerical method, namely a DNS that solves for (2.1) using
an open-source pseudospectral code called SNOOPY (Lesur & Longaretti 2007). To
facilitate this comparison, we consider an idealized configuration that can be explored
using classical pseudospectral methods in tri-periodic domains. This allows us to reach
sufficiently large Péclet numbers, which optimizes the comparison with the DSM.

For the sake of simplicity and continuity with the two-dimensional version of the
DSM (Meunier & Villermaux 2010), we consider the case of a modified Batchelor
vortex defined in cylindrical coordinates as

u= (ur, uθ , uz)=

(
0,

1− e−(r/R1)
2

r/R1
, qe−(r/R2)

2

)
, (2.19)
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where q is the axial velocity on the axis of symmetry. The classical Batchelor
vortex would correspond to R1 = R2, with a constant axial velocity in addition to
the Gaussian profile above. This flow is invariant along the vertical direction but is
not periodic in the horizontal direction. Since we want to compare the DSM with a
classical pseudospectral approach, the Batchelor vortex has to be regularized in order
to match the tri-periodic boundary conditions. This is achieved by multiplying the
velocity components by a two-dimensional Tukey window localized on the vertical
sides of a cubic domain of side L = 2π centred around the origin. For instance, in
order to enforce periodicity in the x direction, the velocity components are multiplied
by the following window function:

f (x)=



1
2

(
1+ cos

(
π
−π− x+ ε

ε

))
if x ∈ [−π,−π+ ε],

1 if x ∈ [−π+ ε,π− ε],

1
2

(
1+ cos

(
π

π− x+ ε
ε

))
if x ∈ [π− ε,π],

(2.20)

where ε is a small constant, typically ε = 10−1. The resulting flow is 2π-periodic
in both horizontal directions and exactly corresponds to the Batchelor vortex, apart
from a very thin region close to the vertical boundaries of the cubic domain. In the
following, the concentration is non-zero only in the central part of the vortex, ensuring
that our localized regularization does not affect the results in the bulk of the vortex.

The initial condition for the passive scalar is given by

c(x, y, z, t= 0)=

e−(y/s0)
2 if x ∈

[
−

3π

4
,
−π

4

]
, z ∈

[
−5π

6
,
−π

3

]
,

0 elsewhere,
(2.21)

where s0 is the initial thickness of the scalar sheet. Although this exact initial
condition was imposed in the DSM calculations, a regularization of the edges
and corners of the initial sheet is required in DNS in order to build a continuous
three-dimensional scalar field. This is achieved by using the same Gaussian profile in
all directions around the sheet border.

From a numerical point of view, the scalar is decomposed onto N Fourier modes
in each direction. The diffusive term in (2.1) is solved implicitly using exponential
factors whereas the advection term is solved explicitly using a fourth-order Runge–
Kutta scheme. The solution is fully dealiased using the 2/3 truncation method. The
numerical resolution of the DNS depends on the Batchelor scale, defined as the length
scale where diffusion balances stretching by the flow. In the following, we simply
assume that a DNS of (2.1) requires a grid size of the order of the Batchelor scale.

The results shown in figures 1 and 4 were obtained for the set of parameters R1=

0.3, R2= 0.9, q= 0.2, s0= 0.05 and D= 1/30 000. This corresponds to a global Péclet
number of Pe= UL/D≈ 188 400 using U ≈ 1 and L= 2π. The local Péclet number,
relevant for the DSM, is Pe0 = γ s2

0/D ≈ 12 using γ ≈ U/L ≈ 0.16. The Batchelor
scale (Batchelor (1959); see also Villermaux (2012a) for an adaptation to a decaying
stretching rate) can be estimated by `B =

√
D/γ ≈ 0.015, which imposes a resolution

of at least 512 Fourier modes in each direction so that `B ≈ 1.2 dx (dx being the
grid size). We study the evolution of the scalar sheet up to t = 40. Figure 1 shows
isocontours of the scalar field at the particular value c/c0 = 10−3 for different times
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FIGURE 4. (Colour online) (a) The probability density function of concentrations p(c) at
successive times given by the DSM (white circles), the DNS computation (solid colour
lines) and the theoretical prediction (black circles) for s0 = 0.05, D = 30 000−1 and
γ = 0.16, and thus Pe0 = γ s2

0/D ≈ 12. The theoretical prediction of q(cm) (dot-dashed)
is added for the sake of completeness. The distributions at different times have been
shifted downwards for clarity. (b) The temporal evolution of the concentration maximum
computed with the DSM (solid line), DNS (white circles) and the theoretical evolution for
the Batchelor vortex (black triangles).

together with the DSM zero-thickness surface and local maximum concentration. The
DSM simulation is run for 25 000 time steps, the final surface is composed of 77 688
triangles and the time step, which varies in time according to the mesh refinement and
the velocity field, ranges from 10−2 to 10−4. The total area grows linearly with time;
therefore, upon mesh refinement, the number of triangles used to describe the surface
grows linearly with time too. The temporal evolution of the maximum concentration
in the field, cM =max(cmi), is shown in figure 4(b), comparing the data obtained with
the DNS (dots), the DSM (solid line) and the theoretical prediction (dot-dashed),

cM =max
(

c0
√

1+ 4τ(r)

)
, where τ(r)= t

D
s0

2
+ t3 DΓ 2

3π2r4s0
2
, (2.22)

with Γ = 2πR1 the circulation of the vortex and r the radial position of the scalar.
For the problem considered here, the mixing time (2.13) is approximately ts≈ 14 and
the expected decay cM ∼ t−3/2 for t> ts is observed.

The probability density function p(c) for this Batchelor vortex is computed at
different times from the DNS data and shown in figure 4(a). The DSM prediction
from (2.18) is in excellent agreement with it, as well as with the expected distribution
of maximal concentrations q(cm) ∼ 1/(dcm/dr) and concentration distribution p(c),
which are

q(cm)=
t3/4s0

2

(−(cm
2 − 1)s0

2 − 4tDcm
2)5/4

√
Γ

2π

(
D
3

)1/4
√
−

2
cm
−

3
4
(cm

2 − 1)s0
2

tDcm
3

, (2.23)

p(c)=
∫ rmax

rmin

√
1+ 4τ(r)

c
√
−log(c

√
1+ 4τ(r))

dr, (2.24)

where rmin =π/4 and rmax = 3π/4. Initially, p(c) displays a ∪ shape (the signature in
concentration space of the spatial Gaussian profile), implying large values of the initial
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concentration, peaking at c/c0= 1 and c/c0= 0. Progressively, the large concentrations
are transported towards lower levels, which sit on the most stretched area and are thus
proportionally more numerous, therefore modifying the shape of p(c) into a globally
decaying distribution in c, the most probable levels being close to c= 0 at maximal
dilution.

Let us now discuss the relative numerical cost between the two methods. The DNS
is run until t = 40, which corresponds to 6692 iterations with a typical time step
of dt = 6 × 10−3 fixed by the CFL condition associated with the explicit treatment
of the advection term. Using 16 Intel Xeon processors and a parallelization using
Message Passing Interface, the simulation took approximately 11.5 h, for a total
CPU cost of approximately 187 h (which does not include the additional time spent
writing outputs). This has to be compared with the DSM numerical cost, which is
approximately 1.5 h on one single processor of a personal laptop. In addition, it is
straightforward to change the Péclet number for the DSM since it corresponds to
changing the diffusive kernel while keeping the same Lagrangian advection of the
sheet. On the contrary, a new simulation must be run from scratch to change the
Péclet number in a DNS. Additionally, any increase of the Péclet number increases
the DNS cost accordingly: the spatial resolution is fixed by the Batchelor scale
`B =
√

D/γ ∼ L/Pe1/2. Let us assume that we fix the spatial resolution according to
`B = dx= L/N, where dx is the grid size. The total numerical cost of a DNS scales
approximately as N4 (a factor N3 is due to the increase in spatial resolution in each
direction and a factor N is due to the decrease in time step associated with the CFL
condition, increasing the number of iterations required to reach a given physical time).
This means that the computational cost of a DNS goes like Pe2, as shown in figure 2,
which limits its applicability to low Péclet numbers only. The DSM cost, however,
is independent of the Péclet number and therefore out-scales any classical Eulerian
grid-based method in the limit of large Péclet number.

The spatial convergence of the DSM simulations has been tested by gradually
increasing the number of triangles with a constant time step for all cases and
dynamical refinement switched off. We recall that the temporal integration is based
on a fourth-order Runge–Kutta scheme. Figure 5 shows that the relative error between
the quasianalytical solution and the DSM is typically below 1 %. The method is of
order one with respect to the parameter R=

√
N corresponding to the inverse of the

mesh size. It is clear that a better convergence could be obtained by using optimized
parameterizations of the surface as in Branicki & Wiggins (2009). Furthermore, the
description of invariant manifolds in 3D has been extensively studied recently (see the
review by Krauskopf et al. 2005), leading to various techniques that might be useful
for the advection of the sheet in the DSM. However, it should be noted that the error
is already extremely small, with a moderate number of flat triangles showing that the
DSM is extremely promising.

2.4. Reconstruction of the scalar field
The information confined at the surface of an advected sheet in the DSM suffices to
infer the local structure of the mixture (maximal concentration and sheet thickness) as
long as the sheet does not fold onto itself. However, when two subparts of the sheet
are brought close by so that their diffuse Gaussian concentration boundaries overlap
(a process called aggregation; see Duplat & Villermaux 2008), the local maximal
concentration is not equal to the maximal concentration of each subpart. In that case,
a full 3D reconstruction of the scalar field is necessary, as shown in figure 6(a).
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100 103102101

FIGURE 5. The relative error on the maximum concentration at time t= 40 for the case
of the Batchelor vortex as a function of the resolution parameter R=

√
N, where N is the

number of triangles. The white triangle shows the relative error for the actual simulation
discussed in the paper where dynamical refinement and adaptive time steps are used.
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FIGURE 6. (Colour online) (a) Scalar reconstruction in three dimensions around the
simulated 3D-DSM triangulated surface and cut-plane depicting the concentration level for
a coarse mesh and a moderate Pe for the sake of visualization. (b) Discretized coordinates
inside truncated volumes of triangular base ÂBC are filled with concentration levels
defined by the Gaussian profile in the transverse direction n.

A three-dimensional reconstruction of the spatial distribution of scalar is performed
in the following way. Once the elongation of each triangle is computed, the
concentration level cm= c0/

√
1+ 4τi at the mid-plane of the virtual surface is obtained.

This is the maximum value of the transverse diffusional Gaussian profile, which
depends on time and on the prescribed Péclet number (see (2.9)). The concentration
decays with the distance from the sheet mid-plane, as shown in figure 6(b). Therefore,
a concentration value, coming from each triangle, is set for each coordinate in the
three-dimensionally discretized surrounding space through the relative position to
each triangle. The procedure considers truncated volumes around each triangular face
such that two neighbouring triangles do not contribute to the same space and nor are
vacuum volumes left in between. For each triangle, every vertex A, B and C is shifted
in the direction resulting from the sum of the normals of all of the triangles pertaining
to that specific vertex ma, mb, mc, to yield A+, B+ and C+, as shown in figure 6(b),
and in the opposite direction to yield A−, B− and C−. The distance that places these
sets apart is the thickness of the diffusive profile si

√
1+ 4τi. The truncated volume
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Meridional streamlines

Stagnation
point

FIGURE 7. Schematic view of the Taylor–Couette configuration. A primary azimuthal flow
vθ of order 1 is generated by the inner rotating cylinder (r=R′1). The presence of viscous
boundary layers at the top and bottom induces a secondary circulation of order Re−1/2 in
the meridian plane, also known as Ekman pumping.

is then enclosed by a constructed set of four triangles for each lateral face (as shown
in the figure, A+C+C−A−) and the top and bottom covers.

The algorithm to reconstruct the concentration field makes use of the GTS library to
identify the points lying inside each volume and then provides a concentration value
depending on the distance from the mid-plane ÂBC through the Gaussian profile and
on the calculated cm of that triangle with the DSM, by summation. Figure 6(a) shows
a scalar reconstruction around a given triangulated surface of 200 elements (black
lines) and a cut-plane view across one section of it (grey plane with isocontours). The
algorithm has been used with a three-dimensional discretization of 1003 points in a
cube containing the whole surface at t= 2 s for Pe0 = 5000.

This procedure eliminates the multiple contributions of a direct transverse filling
of the concentration level to points near curved regions of the surface. Nevertheless,
it allows for the aggregation process (the concentration sums) to be well treated
since non-neighbouring triangles sitting in different regions of a folded surface could
contribute from opposite sides to overlapping volumes between two scalar sheets
when the distance between those sheets is smaller than the thickness si

√
1+ 4τ .

3. A real Taylor–Couette flow
We now investigate the capabilities of the DSM in representing a mixing experiment

in a real flow, at much higher Péclet number than those reachable by DNS. In order
to model the velocity field correctly and simply, the flow is, on purpose, chosen
axisymmetric and stationary. The well-known Taylor–Couette configuration formed
by the gap between two concentric cylinders is an excellent candidate due to its
experimental and numerical simplicity.

3.1. Experimental set-up
A small solid cylinder of radius R′1 = 2 cm is located concentrically in a larger
glass cylinder of radius R′2 = 5 cm (see figure 7). The flow under study is located
between the two cylinders and delimited vertically by a flat bottom and a flat PMMA
transparent top at a height H′ = 6 cm. The inner solid cylinder is rotated using
a brushless motor at an angular velocity Ω equal to 1.5 or 3 rad s−1 while the
outer cylinder is kept motionless. The working fluid is made of a mixture of water
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and a volume fraction of 10 % of UCON oil (which is approximately 40 000 times
more viscous than water at room temperature (UCON 75-H-90,000, available from
DOW Company, Michigan, USA)). This working mixture has a viscosity five times
larger than the viscosity of water, which prevents the appearance of time-dependent
centrifugal instabilities. This property also has the advantage of decreasing the
diffusion coefficient D of the working fluid (Sutherland 1905) and hence increasing
the Péclet number by a factor of 5. The diffusion coefficient of fluorescein in this
mixture is equal to 10−10 m2 s−1.

The inner-cylinder characteristic length R′1 and rotation-associated time Ω−1 are
chosen to non-dimensionalize the problem. The non-dimensional parameters are the
dimensionalized outer cylinder R= R′2/R

′

1 = 2.5, the aspect ratio H = H′/R′1 = 3, the
Reynolds number Re = ΩR′1

2
/ν (which is equal to 120 and 240 at Ω = 1.5 and

3 rad s−1 respectively) and the Péclet number Pe = ΩR′1
2
/ν (equal to 6 × 106 and

12× 106 at Ω = 1.5 and 3 rad s−1 respectively, out of reach from DNS).
Two different visualization methods are used to characterize the mixing induced by

this flow. First, an illumination in volume provided by an LED strip wound around
the outer cylinder is used, which allows for qualitative top-view visualizations. This
strip superimposes RGB LEDs such that the emitted light can be tuned in colour
and intensity in order to excite fluorescein and/or rhodamine. Second, a 1.5 W blue
laser (488 nm) is used to produce a luminous meridian sheet of 0.5 mm thickness.
Side view visualizations permit quantitative measurement of the light intensity which
has been calibrated with respect to the concentration in fluorescein. Both imaging
techniques are optimized by painting the bottom disk and the inner cylinder black to
avoid undesired reflection. Images are recorded using a sensitive 8 bit camera.

3.2. Laminar flow field
The rotation of the inner cylinder at Ω induces an azimuthal velocity vθ , as
shown in figure 7. This flow would be invariant along the axial coordinate z for
an infinite cylinder height H′ since the experiments were carried out at sufficiently
low Reynolds number to prevent centrifugal instabilities. However, the presence of the
top and bottom end plates induces a strong Ekman pumping, leading to a meridional
recirculation shown schematically in figure 7. These two torus-like vortices break
the z-invariance of the azimuthal velocity while preserving the axisymmetry and the
stationarity of the flow. This 3D viscous flow is not known theoretically and it has
thus been measured experimentally and simulated numerically. It has then been fitted
by an analytical model which will be used as an input for the DSM simulations.

3.2.1. Particle image velocimetry (PIV) measurements
In order to measure the velocity in a meridional plane, the flow was seeded

with small buoyant particles of diameter 100 µm and the meridional laser sheet
was thickened to 3 mm to prevent particles from leaving the sheet during the
time 1t = 0.04 s between two images. Images were first recorded from a side
view orthogonal to the meridional laser sheet and treated using an intercorrelation
PIV algorithm (Meunier & Leweke 2003). This leads to instantaneous meridional
velocity fields (vr, vz), which are then averaged over 100 realizations of the fields.
Figure 8(a) shows the upper half of the meridional plane, where the torus-like vortex
is clearly visible. The third component of the velocity, vθ , can also be obtained by
recording images with an angle α≈ 15◦ with respect to the normal of the laser sheet.
This stereoscopic PIV measurement gives a horizontal velocity component equal to
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FIGURE 8. (Colour online) Particle image velocimetry measurements of the Taylor–
Couette flow at Re= 120. (a) The vector field (ur, uz) is superimposed on the azimuthal
velocity uθ plotted as grey scale. (b) Experimental velocity profiles at z= 0.95 (top) and
r = 1.5 (bottom) are plotted as symbols and compared with numerical simulations (solid
lines) and analytic expressions (dashed lines) given by (3.2).

cos(α)vr + sin(α)vθ , from which the azimuthal component vθ can be extracted by
comparison with the previous (orthogonal) measurement. This azimuthal velocity is
plotted as a colour scale in figure 8(a). It clearly shows that the strong azimuthal
velocity located close to the inner cylinder is advected by the meridional flow at
mid-height towards the outer cylinder. It should be noted that there is a (weakly
visible) velocity discontinuity at the top left corner due to the sliding of the rotating
inner cylinder along the motionless top end plate.

Two different velocity profiles are extracted from this experimental velocity field
and compared with axisymmetric numerical simulations obtained with a finite element
code. There is an excellent agreement between the experimental results (symbols) and
the numerical results (solid lines) except for a 20 % discrepancy close to the inner
cylinder for the radial velocity and at mid-height for the axial profile. This is probably
due to the strong azimuthal velocity in these regions which creates a loss of particles
between the two images despite the large thickness of the laser sheet during the PIV
measurement.

3.2.2. Analytical field approximation
Analytical expressions are used to fit the velocity components measured in the

previous section. The azimuthal velocity can be chosen independently of the radial
and axial velocities, these two being linked by continuity as

1
r
∂(rur)

∂r
+
∂uz

∂z
= 0. (3.1)

This constraint is easily fulfilled by assuming that they derive from a stream function
Ψ (r, z) as ur =−(1/r)(∂Ψ /∂z), uz = (1/r)(∂Ψ /∂r). This stream function is taken as
a sum of Fourier modes whose parity is chosen in order to respect the impermeable
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Stream torus

Fluid particle
trajectory

Separatrix

r

z

(a) (b)

FIGURE 9. (a) Averaged stack of particle images in a meridional section, revealing the
meridional streamlines. (b) Schematic drawing of a 3D streamline and its stream torus.

boundary conditions. For two Fourier modes, this leads to

ur =
1
r

2πK
H

[
sin
(

π(r− 1)
R− 1

)] [
cos
(

2πz
H

)
+ a cos

(
4πz
H

)]
,

uθ = exp
[
−

c1(r− 1)
tanh(c2(H/2− z))

−
c1(r− 1)

tanh(c2(H/2+ z))

]
+ c3 sin2

(
π(r− 1)

R− 1

)(
1−

4z2

H2

)
,

uz =
−1
r

πK
R− 1

[
cos
(

π(r− 1)
R− 1

)] [
sin
(

2πz
H

)
+

a
2

sin
(

4πz
H

)]
,


(3.2)

where K and a allow the radial and vertical velocity to be fitted. The azimuthal
velocity uθ is sought as the sum of two terms. The first term (containing two fitting
constants c1 and c2) models the singularities at the top and bottom inner corners. The
second term (with amplitude c3) models the bulk flow. These expressions are plotted
as dashed lines in figure 8(b) and compared with the PIV measurements (dots) and
the numerical simulations (solid lines) with K = 0.95, a= 0.4, c1 = 1.8, c2 = 1.2 and
c3= 0.17. There is a good agreement between the analytical model and the numerical
solution in the bulk of the flow. The model is not perfectly tuned inside the boundary
layers (see, for example, the divergence of uz in the radial profile for r′ < 2.5 cm)
since the model is chosen with slip boundary conditions for simplicity. However,
these simple expressions are sufficient to study the dynamics of the scalar since it is
injected and remains far from the boundary layers. This analytical flow field is used
in the following as an input for the DSM simulations.

3.3. Topology and dynamics of the scalar
The structure of the streamlines obviously reflects the axisymmetry of the flow. The
projection of the streamlines on a meridional plane is made of concentric closed
curves due to the meridional circulation, as revealed by the stack of particle images
of figure 9(a). The 3D streamlines lie on the tori obtained by revolving these
closed curves around the cylinder axis, as schematically shown in figure 9(b). Each
streamline looks like a helix wrapped around the inner cylinder. However, this helix
is asymmetric since the azimuthal velocity is smaller at the outer top side of the
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Injection

(a)

(b)

FIGURE 10. Top views of the Taylor–Couette cell under global LED illumination. (a) Raw
images showing the successive deformation of a fluorescein blob into a helical strip just
after injection at radius 4 cm and after 2, 4, 6, 8 and 10 turns in the cell for a rotation
rate of 1.5 rad s−1 and Re = 120. (b) Top-view images of a developed fluorescein strip
after several turning periods for Re= 120 (left) and Re= 240 (right).

torus than at the inner bottom side. It should be noted that these streamlines do not
need to be closed curves since the period of rotation in the meridional plane and
around the axis may not be commensurate.

This helical topology is indeed observed experimentally on injecting a scalar blob
into the bulk of the flow (at approximately half a radius below the top end plate).
Figure 10 shows the structure of the scalar illuminated in volume for different blob
injection locations and Reynolds numbers. The scalar progressively shapes into a
helical strip wrapped around the cylinder axis. The helix is also asymmetric and its
amplitude is larger when the injection location is closer to the cell wall boundaries.
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FIGURE 11. (Colour online) Numerical simulation of an injected blob at flow conditions
given by Re= 120, Pe= 6× 106. A ribbon-like surface, as observed in the experiments,
is obtained through the numerical advection of the vertex positions at time 1.5 ts. The
initial thickness of the sheet is taken such that the local Péclet number is equal to Pe0=

Ωs2
0/D= 5000.

The initial scalar blob, because it is a blob and not a point, is not located on
a single torus: it ranges from a small torus to a large torus, which have different
azimuthal velocities. At the smaller Reynolds number (Ω = 1.5 rad s−1), the smaller
torus is advected faster than the larger torus, such that the head of the spiral has a
smaller diameter than its tail. It is surprising to see that this phenomenon is reversed
at the larger Reynolds number (Ω = 3 rad s−1), where the head has a larger diameter
than the tail. This is due to the fact that a strong azimuthal velocity is present in the
viscous boundary layers which become thinner at large Reynolds number and cannot
reach the inner part of the helix. This highlights the fact that the structure of the scalar
is sensitive to the Reynolds number via the position of the meridional streamlines with
respect to the azimuthal velocity field.

The structure of the scalar is then checked numerically using the DSM. The velocity
field is prescribed analytically for the low-Reynolds-number flow (Ω = 1.5 rad s−1)
by (3.2), with K = 0.95, a = 0.4, c1 = 1.8, c2 = 1.2 and c3 = 0.17. The initial sheet
of scalar is located at r' 1.45, z' 0.4 with a virtual thickness equal to s0= 0.7 mm.
Figure 11 shows the position of the scalar sheet at time t ' 42 s. The sheet indeed
rolls up into a helix where the head has a smaller diameter than the tail. The helix
presents approximately three pitches and the pitch is equal to 0.43, which is in good
agreement with the experiment. The location of the sheet could have been predicted
by a classical Lagrangian method. However, the DSM simulations give much more
information, as will be shown below.

3.4. Maximum scalar concentration
For any distorted state of the scalar sheet, the DSM predicts the concentration field
structure around it. Figure 11 shows the maximum concentration cm along the sheet,
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(a) (b)
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FIGURE 12. (a) The temporal evolution of the maximum concentration obtained
experimentally (round symbols) and numerically (solid line) for Re= 120. Time is scaled
by the longest mixing time ts = 35 s given by the less stretched regions. The numerical
prediction is computed with cM =max[erf(1/4

√
τ)] for a characteristic top-hat function of

the diffusive profile (see (3.3)). (b) Experimental visualization of the scalar blob within
the meridional laser sheet at four different times marked by arrows in (a).

no longer equal to its initial value c0 at that instant of time. The maximum of the
scalar has been reduced by approximately 40 % at the head of the helix. At the tail
of the spiral, the scalar has been reduced by a factor of 10, which indicates that the
stretching has been larger there, where the diameter of the helix is larger than at the
tail.

On the experimental side, the laser-induced fluorescence technique gives quantitative
measurements of the fluorescein concentration c in a meridional section. Such
visualizations are shown in figure 12(b) at the exact time when the stretched blob
reaches this meridional section. In the first and second images (obtained after one
and two rotations around the cylinder axis respectively), the concentration is almost
equal to the initial concentration. However, in the third and fourth images, the blob
has been sufficiently stretched for diffusion to set in and decrease the concentration
levels.

The global maximum concentration of the scalar, cM =max(cm), defined in (2.22),
can be measured both from the DSM and from the experiment. A slight modification
to match the injection condition of the blob in the experiment is, however, in order.
The blob is initially segregated from the diluting environment, and in that case the
initial concentration profile across the deformed blob is not a Gaussian as used before
for numerical convenience, but a top-hat profile, for which, in place of (2.9), we have
(Villermaux & Duplat 2003)

cm = c0 erf(1/4
√
τ), (3.3)

with no other consequence on the trends and scaling dependences but slight
quantitative differences with (2.9). The temporal evolution of cM is plotted in
figure 12(a) as a solid line and compared with the direct measurements. Unlike
the numerical simulations, the experimental measurements do not give the full
three-dimensional concentration field, so that cM is only obtained at discrete times
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FIGURE 13. (Colour online) (a) The temporal evolution of the distance between two
nearby tracers initially aligned in the r direction (solid line), in the azimuthal direction
(dashed line) and in the axial direction (dotted line). The long-dashed line is drawn to
point out the linear growth of [x0x1]. (b) The scalar concentration decay for the four
triangular surface elements based on the four tracers used in (a). The local Péclet number
Pe0 =Ωs2

0/D based on the initial thickness s0 is taken equal to 100.

when the blob passes through the laser sheet (distinguished as grey symbols). The
maximal concentration remains constant up to a mixing time ts and then decreases
as t−3/2. This temporal evolution is observed for any triangular element of the sheet
in the DSM and it is only the mixing time that varies from one triangle to another,
depending on the local stretching. The maximal concentration cM is found on the
triangle that has been the least stretched, and that has therefore the longest mixing
time ts.

The temporal decay cm ∼ (t/ts)
−3/2 observed all along the sheet for t> ts indicates

that the flow in this Taylor–Couette cell induces a deformation kinematics very similar
to a simple shear flow, of the kind of the Batchelor vortex studied before. We will
now discuss this point using the detailed information provided by the DSM.

3.5. Stretching rates
The concentration decay in a scalar sheet is intimately linked to its stretching history,
which is analysed here using the DSM for the analytic velocity field (3.2). Three
small orthogonal segments are located initially at the injection point of the scalar and
advected in time. The lengths of these segments are plotted as a function of time
in figure 13(a). The segment [x0x2] aligned with the azimuthal direction (plotted as
a dashed line) has a length that oscillates very weakly but remains close to zero,
a consequence of axisymmetry. The segment [x0x3] aligned with the axial direction
(plotted as a dotted line) also has a length that remains close to zero because its two
extremities belong to the same stream torus (see the schematic drawing of figure 9).
Their azimuthal velocity uθ and angular velocity ω around (rC, zC) may be different at
a given time. However, their mean azimuthal velocity and angular velocity over one
period are equal. This is why the length of the segment [x0x3] is exactly periodic. By
contrast, the length of the segment [x0x1] aligned with the radial direction increases
linearly with time, although being modulated periodically. This is due to the fact that
x0 and x1 belong to different stream tori that have different mean azimuthal velocities
and mean angular velocities. After one period, the point x1 has a different axial and
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FIGURE 14. (a) The temporal evolution of the total area AT (solid line) of the full
numerical sheet used to model the experiment compared with a linear growth with time
(dashed line). (b) The probability density function of elongations ρ of the areas Ai of the
triangular elements for t∼ 0.07 ts (black), t= 0.5 ts (dark grey), t= 0.83 ts (light grey) and
t= 1.3 ts (white), where ts refers to the longest mixing time along the sheet.

azimuthal position from the point x0. This difference is proportional to the initial
radial distance 1r = r1 − r0, which remains constant. The length thus grows linearly
in each period as in a simple radial shear flow. This property of the flow, although
surprising for such a complex 3D flow, is a direct consequence of the axisymmetry
and the stationarity of the flow. These two constraints restrict the flow to a quasi-2D
dynamics despite the 3D structure of the scalar sheet.

The concentration can then be studied locally using the small orthogonal segments.
It is clear that the triangle [x0x2x3], which is tangent to the stream torus, has a surface
that is only modulated periodically. The striation thickness s of such a triangle does
not decrease with time in a long period. The time τ(t)=

∫ t
0 D dt′/s2 in (2.6) is thus

proportional to the time t in a long period such that the maximal concentration cm ∼

τ−1/2 decays as a normal diffusion process, i.e. like t−1/2, as seen in figure 13(b). By
contrast, all of the other triangles contain the point x1 which lies on a different stream
torus. These triangles have a surface that grows linearly with time in a long period
and a striation thickness s that decreases as t−1 because of incompressibility. The time
τ(t) is thus now proportional to t3 (see (2.11)) such that the maximal concentration
cm decreases like t−3/2. This is clearly observed in figure 13(b) for all of the triangles
that contain x1. These scalings are only valid in a long period (t > 5 ts) due to the
periodic modulation of the (overall linear) growth of the area.

In the experiment, the blob of dye is injected with a small but finite radial extent
such that the surface of the sheet is expected to grow linearly with time. The total area
AT of the sheet computed numerically is plotted in figure 14(a) as a function of time.
It increases linearly despite small and evanescent periodic modulations, a linear growth
of the surface elements consistent with the scaling law of the maximal concentration
as t−3/2 observed experimentally and numerically.

3.6. Elongations
However, if the net sheet area and the one of all of its subelements grow linearly in
time, they do not do so at the same pace: at a given instant of time, some elements
have been more elongated that others. The DSM is also useful in quantifying the
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distribution of the elongation ρ = Ai/Ai0 = si0/si (see (2.3)) of the triangular surface
elements that constitute the sheet area. Given the calculated thickness s̃i = si/si0 for
each triangle, the elongation ρi = Ai/Ai0 = s̃i

−1 is obtained as well as its probability
density function p(ρ) from the ensemble of triangles on the surface, as shown in
figure 14(b). This distribution is obviously a Dirac function around ρ = 1 initially.
The most probable stretching increases linearly in time, like the mean stretching, and
the distribution p(ρ) progressively broadens around it. The support of the distribution
remains, however, bounded around the maximum, a sign that the stretching rates
experienced by different parts of the sheet are close. This is partly due to the fact
that the initial blob is very small, and is thus sensitive to the motion of nearby tori
only, preventing it from visiting the entire flow, but is also due to the fact that the
motion within these tori is correlated in time (the flow is stationary), preventing the
multiplicative succession of stretchings/foldings which is known to be a good recipe
for homogeneous mixing. This relatively narrow elongation distribution is in contrast
to the one found in chaotic flows (see, for example, Meunier & Villermaux (2010)
with a two-dimensional sine flow), where p(ρ) converges towards a lognormal broad
distribution.

This fact also indicates that the nature of the stirring protocol has a profound
consequence on the transient stretching histories of different subparts of a stirred
blob in the flow (Varosi, Antonsen & Ott 1991), and thus on the distribution of the
mixing times ts along the resulting distorted sheet, and finally on the distribution
of concentration p(c) produced by the interplay between substrate stretching and
molecular diffusion, the aspect we envisage now.

3.7. The probability density function of the concentration
The quantitative measurement of the fluorescein dye concentration made in the
meridional section allows us to reconstruct the three-dimensional concentration of the
helix of scalar by assuming that it is advected at a constant rate by the azimuthal
velocity (the so-called Taylor hypothesis). This approximation is valid since the scalar
does not diffuse much during the rapid passage of the helix through the meridional
laser sheet. The concentration distribution can thus be calculated at each passage of
the helix by summing up the concentration level given by the pixels on each image
comprising the period of the blob passage.

The concentration distributions p(c) are plotted in figure 15 for four different times.
At early times t∼ 0.3 ts, that is before the mixing time, the concentration distribution
has a characteristic ∪ shape (∼(c

√
ln[cM/c])−1), reflecting a Gaussian-like profile of

the concentration across the merely eroded sheet, with cM ≈ 0.9 c0. The distribution of
the maxima of concentration along the sheet q(cm), which is linked to the distribution
of elongations ρ by

q(cm)= p(ρ)
∣∣∣∣ dρ
dcm

∣∣∣∣ , (3.4)

is indeed peaked around cM.
After the mixing time, diffusion tends to erode the large-concentration peak and all

concentration levels are transported towards zero, the dilution concentration. As for
the Batchelor vortex studied in § 2, lower concentration levels sit in the most stretched
area and are thus proportionally more numerous, therefore modifying the shape of p(c)
into a globally decaying distribution in c, the most probable levels being close to c=0
at maximal dilution, as seen in figure 15. In this way, the maximum concentration cM
has dropped to a third of the initial concentration at t∼ 2.47 ts.
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FIGURE 15. (Colour online) Comparison of the scalar concentration levels obtained
experimentally (circles) and numerically (solid lines) at Re = 120 and Pe = 6 × 106

at progressive stages referred to the mixing time ts = 35 s. The maximal concentration
distributions q(cm) are plotted as red dashed lines.

The distribution p(c) is reconstructed by the DSM as explained in § 2, assigning
to each triangular element constituting the sheet a Gaussian spatial profile of width
si
√
τi (see (2.18) and (2.24)). This straightforward calculation in the DSM scheme

provides a correct prediction of the real concentration distribution as long as the
sheet does not reconnect with itself. This is the ‘solitary strip’ or ‘solitary sheet’
limit described by Meunier & Villermaux (2010) and more recently by Le Borgne
et al. (2015), which suits the high-Péclet-number and/or intermediate-time limit. The
strongly diffusive limit, at large times, involves necessarily, by contrast, diffusive
overlaps between subparts of the sheet. In this case, the scalar field reconstruction
described in § 2.4 is mandatory to obtain the full concentration field. The solitary sheet
assumption is nevertheless correct here within the times displayed in figure 15 (see,
however, figure 16), the DSM calculation, without field reconstruction, succeeding in
representing the measured concentration distribution well.

It should be noted finally that p(c) is progressively well approximated by q(cm), a
fact originally discussed by Meunier & Villermaux (2003), who explained how the
variability in cm caused by the distribution of elongations overcomes in p(c) that due
to the Gaussian transverse profile at large times. This fact has, since then, allowed a
transparent discussion on the status of p(c) in the fully overlapping aggregation regime
(Villermaux & Duplat 2003; Duplat & Villermaux 2008; Meunier & Villermaux 2010;
Le Borgne et al. 2015).
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FIGURE 16. (Colour online) Top-view picture of an elongated blob of fluorescein (leading
green half) and rhodamine (following red half) in the Taylor–Couette set-up turning
counterclockwise in progressive pictures globally illuminated with an LED white-light
array. The injection was performed with a single pipette half filled with rhodamine (red)
and the other half with fluorescein (green).

4. Conclusions
The purpose of this work was to extend the diffusive strip method (DSM) originally

proposed by Meunier & Villermaux (2010) to its ‘sheet’ version suitable for modelling
scalar mixing in three dimensions. The numerical adaptation of this method was
achieved by employing a triangulation method (Popinet 2010) to parametrize the
surface of a blob, soon deformed as a sheet by three-dimensional stirring fields.
Across each triangle, a transverse diffusive problem is solved in suitably modified
space–time coordinates, as a function of the local deformation rate. The method is,
like its two-dimensional version, close to exact in the sense that the only components
of the concentration gradients that are not represented are those that are rendered
negligible by the dynamics, that is, those along the sheet.

The method was first validated against an accurate DNS in a modified Batchelor
vortex at moderate Péclet number (§ 2) and then confronted with detailed experimental
measurements in a Taylor–Couette cell, at much higher Péclet number (§ 3). In both
cases, a blob initially injected into the stirring field shapes into a helical sheet, whose
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local concentration decays in time t as a result of a coupling between elongation
and molecular diffusion, like t−3/2, earlier when the sheet element has been more
stretched. A distribution of concentration arises from the variability of the sheet
element elongation at a given instant of time, very well represented by the DSM,
whether at moderate Péclet number on a model flow when the DNS can be a judge
of it or at large Péclet number when experiments in the real world are the natural
reference.

The method amounts to computing the deformation of a scalar sheet in a flow,
following its local stretching rate and thickness, and we have shown that this
information is sufficient to reconstruct the three-dimensional concentration field
around it a posteriori, including diffusive effects. The power of this method lies in
its proximity to first principles (it is a reformulation of the diffusion equation on a
moving substrate) and its simplicity: the computation is to be made only once and
the concentration field is obtained for any value of the scalar diffusivity or initial
sheet size from a unique simulation with no additional numerical cost (figure 2).

This method is particularly well suited to representing transient mixing, in any
stirring protocol, irrespective of the mean stretching law, be it algebraic, as in the
cases investigated here (where material lines grow proportionally to time), exponential
(like in chaotic flows producing Baker transforms) or even super-exponential flows
(occurring as transients in developing instabilities; see, e.g., de Rivas & Villermaux
2016). The reason is that the kinematics of the flow is all absorbed in the Ranz
transformation (see (2.6)) mapping any particular case to a diffusion equation. In this
respect, the method will equally apply to chaotic flows with steady or time-dependent
protocols (Cartwright, Feingold & Piro 1996) and turbulent flows.

As it is now, the drawback of the method is that as a blob is progressively deformed
and expanded in a flow, it has to be more refined to be accurately represented. For
instance, in the deformation fields considered here, the sheet area grows linearly in
time, and thus so does the number of triangles needed to cover it. This inflation
has a numerical cost. However, a not-yet-implemented mesh-coarsening process has
been studied to delete triangles reaching concentration values below a given threshold
in order to preserve the high efficiency of the method when applied to complicated
flows. There is indeed no need to over-resolve sheet subareas that are basically flat (a
few large triangles are sufficient for these regions which are the rule rather than the
exception, see, e.g., figure 10) or those bearing a very small concentration, close to
the trivial dilution level (which carry no useful information). This easily implemented
modification of the method will naturally limit the inflation. It might prove very useful
for long runs in chaotic flows with mean exponential area stretching. However, the
application of the method at its present stage of development to an Arnold–Beltrami–
Childress (ABC) flow (Dombre et al. 1986) poses no difficulty at least when the
simulation runs for up to a few average mixing times. As seen in figure 17, the
concentration levels are close to bimodally distributed when t/ts� 1, and there is no
trace of the initial concentration c= c0 anymore at t= 4.5 ts, showing that the medium
is then appreciably mixed, as expected. Similarly to the linear flows studied here, the
concentration distribution P(c) is uniformly decreasing in the ABC flow, reflecting the
fact that lower concentration levels c lie on more stretched, and thus proportionally
more numerous, portions of the deformed blob.

Another more subtle issue concerns the possible interaction of the sheet with itself,
the phenomenon we have called diffusive overlap, or aggregation, which is known
to be at the root of the build-up of non-academic stirred concentration fields. This
ingredient was not considered here, although it concerns the very late stages of the
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FIGURE 17. (Colour online) Mixing of a blob in an ABC flow with A = B = C = 1,
Pe= 7500 and Pe0= 12 with s0= 0.1 for (a) t= 0.95 ts and (b) t= 4.5 ts. (c) Concentration
distributions P(c) for increasing times normalized by the mixing time ts.

helical sheet dilution, as illustrated in figure 16. The injected blob was on purpose
composed of two colour dyes (fluorescein and rhodamine), and it is seen that, when
the sheet diffuse boundaries have grown enough, overlap stars to occur. At these
very late stages, the helix parts are intertwined and start to interact, invading regions
that share the contributions of both dyes. In that limit, the overall concentration field
must be reconstructed according to the method described in § 2.4. However, triangle
merging or deletion in the overlapping regime remains a challenging issue for the
DSM.
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