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Methodology in Practice: Statistical
Misspecification Testing

Deborah G. Mayo and Aris Spanos†

The growing availability of computer power and statistical software has greatly in-
creased the ease with which practitioners apply statistical methods, but this has not
been accompanied by attention to checking the assumptions on which these methods
are based. At the same time, disagreements about inferences based on statistical research
frequently revolve around whether the assumptions are actually met in the studies
available, e.g., in psychology, ecology, biology, risk assessment. Philosophical scrutiny
can help disentangle ‘practical’ problems of model validation, and conversely, a meth-
odology of statistical model validation can shed light on a number of issues of interest
to philosophers of science.

1. Introduction. Methodological disputes that arise in practice often turn
on questions of the nature, interpretation, and justification of methods
and models that are relied on to learn from incomplete, and often ‘ob-
servational’ (or nonexperimental), data: the methodology of statistical
inference and statistical modeling. Philosophers of science who immerse
themselves in practice have often discovered that the methods and models
routinely used to these ends are mired in confusion, controversy, and
unquestioned assumptions, often along with a reluctance among practi-
tioners to tinker with already accepted methods. Although at a number
of junctures these methodological debates revolve around philosophical
and logical issues, the scientific community seldom looks to philosophy
for help in their resolution.

This symposium (to which our paper is a contribution) arose from our
thinking that this situation should be remedied. Although precisely how
to make progress here is open to debate, at least one point of agreement
that emerged from our discussions (with Clark Glymour, Kristin Shrader-
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1008 DEBORAH G. MAYO AND ARIS SPANOS

Frechette, and Alison Wiley) is that it will require serious collaborative
efforts between philosophers of science and scientists, and that establishing
and promoting such collaboration demands a much more serious com-
mitment to interdisciplinary work than is now standard. Such a ‘practical-
philosophical’ enterprise, we think, is very much of a two-way street: On
the one hand, philosophers of science bring relevant skills and perspectives
to bear on methodological problems in practice, not because of a uniquely
privileged stance, but because of a penchant for broad generality, logical
criticism, and articulating reasoning; on the other, such collaborative work
seems to hold significant promise for a more dynamic, effective, and in-
teresting philosophy of science.

As much as these general points deserve analysis in their own right,
rather than pursue them here we propose to jump right into illustrating
a portion of our collaborative efforts concerning model validation in the
social sciences. One set of concerns in statistical modeling has to do with
gaps between variables in a statistical model and primary factors or ques-
tions of interest, but an even more basic question is whether the as-
sumptions needed to reliably model the statistical variables are met, e.g.,
whether an assumption of independent trials is marred by dependencies.
Our focus here is the latter, although the two are interrelated. We will
thus be talking about a methodology for testing misspecifications in sta-
tistical models, misspecification (M-S) testing.

A full methodology of M-S testing, as we see it, would tell us how to
specify and validate statistical models, and how to proceed when statistical
assumptions are violated. So developing such a methodology requires
methods for uncovering and probing model assumptions, isolating sources
of any anomalous results, and iterative procedures for accommodating
any flawed assumptions in respecified models until arriving at a statisti-
cally adequate model—a model that is adequate for subsequent (primary)
statistical inferences.

It is important to note at the outset that the problem of statistical model
specification is distinct from model selection, insofar as the latter selects
from an assumed family of models according to one or another criterion,
e.g., Akaike (AIC), Bayesian Information Criterion (BIC), by N-P testing,
and by causal structure searches. M-S testing is thus of central importance
to all model selection approaches because the presence of misspecifications
jeopardizes the ground for model selection, whichever criterion one uses.
Progress in the area of M-S tests would thus benefit the considerable,
interesting literature among philosophers of science revolving around
these model selection techniques (e.g., Forster 2001; Forster and Sober
1994; Glymour 1997; Spirtes, Glymour, and Scheines 2001; Woodward
1988).

Our example will focus on the linear regression model (LRM), which
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STATISTICAL MISSPECIFICATION TESTING 1009

forms the backbone of most statistical models of interest, as it gives rise
to variants such as non-Normal, nonlinear, and/or heteroskedastic re-
gression models, as well as multivariate and structural equations models.
A central problem we consider is that of spurious regression or spurious
correlation. Despite the extensive literature on spurious correlation, going
back to the late nineteenth-century Yule (1895), the source of the problem
and the way it intertwines with the problem of misspecification remain
ill understood. Traditional tools that are routinely used, we argue, are
poor at detecting the most obvious sorts of violations in assumptions;
they indicate a strong relationship between variables xt and yt when in
fact the two variables are unrelated, and they endorse fallacious ways of
accommodating violations when they are found. Our aim, as we proceed,
is to zero in on the most philosophically interesting questions and
problems.

2. Problems of Validation in the Linear Regression Model (LRM). The
Linear Regression Model (LRM) may be seen to take the form

M : y p b � b x � u , t p 1, 2, . . . , n, . . . ,0 t 0 1 t t

where is the systematic component, andm p b � b x u p y � b �t 0 1 t t t 0

is the error (nonsystematic) component. The error processb x {u , t p1 t t

is assumed to be Normal, Independent, and Identically1, 2, . . . , n, . . .}
Distributed (NIID) with mean 0, variance j2, i.e., Normal white noise.
Using the data the coefficients (b0, b1) arez :p {(x , y ), t p 1, 2, . . . , n}t t

estimated (by least squares) yielding an empirical equation intended to
enable us to understand how yt varies with xt.

2.1. Empirical Example. In his attempt to find a way to understand
and predict changes in the U.S. population, imagine that an economist
discovers, using regression, an empirical relationship that appears to pro-
vide almost a ‘lawlike’ fit:

ˆy p 167.115 � 1.907x � u ,t t t

(.610) (0.024) (1)

where yt denotes the population of the U.S.A. (in millions), and xt denotes
a secret variable whose identity we will reveal later on. Both series refer
to annual data for the period 1955–1989, and the numbers in brackets
denote standard errors for the coefficient estimates.

A primary statistical question. A primary question under the LRM is:
How good a predictor is xt? The goodness of fit measure of this estimated
regression, , indicates an almost perfect fit. Testing the statistical2R p .995
significance of the coefficients (whether they differ from 0) shows them
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to be highly significant: p-values are nearly 0, indicating a very strong
relationship between the variables.1 The question now is: Is this inference
reliable? We can answer this affirmatively only if data z satisfy the prob-
abilistic assumptions of the LRM, i.e., the errors are NIID with mean 0,
variance j2.

Misspecification (M-S) tests: ‘secondary’ questions. Questions of model
validation may be tackled by M-S tests, which can be regarded as ‘sec-
ondary’ questions in relation to the primary statistical ones. Whereas
primary statistical inferences take place within a specified (or assumed)
model M, the secondary inference has to put M’s assumptions to the test;
so to test M’s assumptions, we stand outside M, as it were.

Strictly speaking, however, the hypotheses of interest in M-S tests are

: the assumption(s) of statistical model M hold for data z,H0

as against alternative not-H0, where not-H0 would consist of all of the
ways one or more of M’s assumptions can fail. However, this alternative
is too unwieldy; in practice one needs to consider a specific departure
from H0, i.e., a specific way in which H0 can be false, in order to apply
a statistical significance test to H0. The logic of such significance tests is
this: We identify a test statistic d(Z) to measure the distance between what
is observed z0 and what is expected assuming the null hypothesis H0, so
as to derive the distribution of d(Z) under the assumption of H0. If z0 is
improbably far from what is expected under H0, i.e., if

P(d(Z) 1 d(z ); H true) p p0 0

is very small, then H0 is rejected, and there is said to be evidence that the
assumption(s) are violated (“p” denotes the p-value associated with the
observed difference).

As soon as a distance function is chosen, it is important to see, oned(7)
is choosing, in effect, a specific direction of departure from H0 to be
probed. Since only the null is explicitly set out, these departures may be
regarded as implicit alternatives to the null. They need to be made explicit
by considering the particular violations from H0 that the given test is
capable of probing.

2.2. Testing Randomness: A Nonparametric ‘Runs’ Test. M-S tests may
be carried out in two ways: nonparametric and parametric tests. We begin
with a nonparametric test called the runs test. It tests for both the in-

1. For example, in testing vs. our estimated b1 is 79.5 standard deviationsb p 0 b ( 01 1

away from 0. Under the assumption of model M0, this test statistic T p
has a known distribution (Student’s t), so we can calculate the statisticalˆ ˆ� �nb / Var (b )1 1

significance of our estimate: .P(T 1 79.5; H ) p 0.0000
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Figure 1. t-plot of residuals.

dependence and identical distribution (IID) assumptions at the same time,
that is, it is a test for randomness. The randomness assumption is generally
expressed as: the error ut is IID. To address this, the runs test looks at
the residuals,

ˆ ˆˆ{u p y � b � b x , t p 1, 2, . . . , n},t t 0 1 t

from our estimated regression to see if they exhibit randomness; ˆ(b ,0

denote the estimates of the coefficients (b0, b1). As is typical in M-Sb̂ )1

tests, the data set z (for the primary statistical test) is remodeled to ask
this secondary question. Instead of the particular value of each observed
residual (one for each data point) one records if the difference between
successive observations is positive, a “�”, or negative, a “�”. The resid-
uals from estimated regression (1), shown in Figure 1, give rise to the
following pattern of ups and downs:

����������������������������������

The patterns are called runs: a sub-sequence of one type (pluses only or
minuses only) immediately preceded and succeeded by an element of the
other type.
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The appeal of such a nonparametric test is that its own validity does
not depend on the assumptions of the (primary) model under scrutiny:
we can calculate the probability of different numbers of runs just from
the hypothesis that the assumption of randomness holds. In particular,
were the data to have arisen from a random process, then both too many
and too few runs would be very rare—indicating trends or cycles in the
data—where the rareness is given by the statistical significance level or
p-value corresponding to the values of the statistic R, the number of runs.2

As is plausible, then, the test based on R takes the form: Reject H0 iff
the observed R differs from the expected R (under IID) by a sufficient
amount (in either direction), where the expected number of runs, assuming
randomness, is or in our case of 35 values, 23. The data from(2n � 1)/3
our example yields 18 runs (around 2.4 standard deviation units)—yielding
a p-value of around .02.3 Equivalently, 98% of the time we would expect
an R closer to 23, were the null hypothesis true, that is,

P(a smaller departure from IID; IID true) p .98.

So the data, we might say, are a good indication of nonrandomness.4

However, since the test is sensitive to departures from both the I and
ID assumptions (both of which make up ‘randomness’), rejecting the null
does not warrant inferring anything more than a denial of IID. The test
itself does not indicate whether the fault lies with one or the other or
both assumptions. Given that no specific alternative is contemplated, there
is no temptation to infer anything beyond ‘non-IID’. Let us now compare
this to a parametric M-S test.

2.3. Testing Non-autocorrelation: The Parametric Durbin-Watson (D-
W) Test. The most widely used parametric test for independence is the
Durbin-Watson (D-W) test. All the assumptions of the LRM are retained,
except the one under test—independence—which is, as is often said, ‘re-
laxed’. In particular, the original error term in M0 is extended to allow
for the possibility that the errors ut are correlated with their past, i.e.,

2. Thus we can test the hypotheses about randomness by testing the following null
and alternative hypotheses about the expected number of runs, E(R):

H : E(R) p (2n � 1)/3, H : E(R) ( (2n � 1)/3.0 1

3. is approximately Normally distributed (N(0, 1)); see Lev-�Z p (R � E(R))/ Var (R)R

ene 1952.

4. We could say the data indicate nonrandomness with severity .98 (see Mayo and
Spanos 2000, Mayo 1996).
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. That is, a new model, M1, the Autocorrelation-Correctedu p ru � �t t�1 t

(A-C) LRM, is assumed:

M : y p b � b x � u , u p ru � � , t p 1, 2, . . . , n, . . . .1 t 0 1 t t t t�1 t

The D-W test assesses whether or not in model M1. That is, it testsr p 0
the conjunctions

H : {M & r p 0}, vs. H : {M & r ( 0}.0 1 1 1

Applying this test to the data in our example, the D-W test statistic rejects
the null hypothesis (at level .02), which is taken as grounds to adopt H1.
This move to infer H1, however, is warranted only if we are within M1.
Granted, if , we are back to the LRM, but r ( 0 does not entailr p 0
the particular violation of independence asserted in H1. Nevertheless,
modelers routinely go on to infer H1 upon rejecting H0, despite warnings,
e.g., “A simple message for autocorrelation correctors: Don’t” (Mizon
1995).

A clear elucidation of the flawed reasoning—the sort of thing a phil-
osophical analysis might afford—can highlight the fallacy that prevents
this strategy from uncovering what is really wrong both with the original
LRM and the A-C LRM. However, far from detecting the fallacy, the
traditional strategy finds strong evidence that the error-autocorrelation
of the new model is necessitated by the data.

Consider how ‘autocorrelation correctors’ traditionally proceed: having
inferred the A-C LRM, the next step is to estimate the new model yielding

ˆ ˆM : y p 167.209 � 1.898x � u, u p .431u � � .1 t t t t�1 t

(.939) (0.037) (0.152) (2)

Has the A-C LRM ‘corrected for’ the anomalous result that led to rejecting
the LRM? It appears that it has, at least according to the traditional
analysis. The common strategy here would be to check if the new error
process is free of any autocorrelation (by running{� , t p 1, 2, . . . , n, . . .}t

another D-W test), and indeed it is.5 Whereas the A-C LRM has, in one
sense, ‘corrected for’ the presence of autocorrelation, because the as-
sumptions of model M1 have been retained in H1, this check had no chance
to uncover the various other forms of dependence that could have been
responsible for . Duhemian problems loom large. By focusing ex-r ( 0
clusively on the error term the traditional viewpoint overlooks the ways
the systematic component of M1 may be misspecified and fails also to

5. The Durbin-Watson test statistic, D�W p 1.831, is not significant. The t-test for
H0: vs. H1: , is significant ( ), indicating that the ‘correction’ isr p 0 r ( 0 p p .004
justified. In addition, the A-C LRM shows improvements over the LRM in fit
( ).2R p 0.996
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acknowledge other hidden assumptions, e.g., are not2v :p (b , b , j )0 1

changing with the index .t p 1, 2, . . . , n
We are only highlighting the central logical flaws here; a full philo-

sophical scrutiny of the traditional strategy would go further. As a result
of these logical failings, the traditional strategy leads to models which,
while acceptable according to its own self-scrutiny, are in fact inadequate:
using them for the ‘primary’ statistical inferences yields actual error prob-
abilities much higher than the ones it is thought to license, and they are
unreliable when used to predict values beyond the observed data. This
fallacy illustrates the kind of pejorative use of the data, to construct (ad
hoc) a model to account for an anomaly, that leads many philosophers
of science, as well as statistical modelers, to be skeptical of the ‘double
counting’ of data that goes on in M-S testing; see Spanos 2000. Without
pinpointing precisely where and when such double counting leads to un-
reliable results, however, it is impossible to identify those strategies for
using data to detect and correct for violated assumptions that sidestep
these difficulties.6 Progress in identifying reliable M-S procedures, there-
fore, will at the same time give clues to solving the analogous problem
in philosophy of science.

3. Partitioning the Space of Possible Models: Probabilistic Reduction. We
would like a procedure that correctly identifies the flaws in conjectured
statistical models and that also points the way to developing an adequate
model. Let us explore a procedure that has been developed in order to
put the entire process of model validation on a sounder philosophical
footing. Recall that the task in validating a model M0 (LRM) is actually
to test ‘M0 is valid’ against everything else. In other words, if we let H0

assert that the sample Z follows a given distribution f(z), the alternative
H1 would be the entire complement of M0, more formally

H : f(z) � M vs. H : f(z) � [P � M ],0 0 1 0

where denotes the set of all possible statistical models that could haveP
given rise to . The traditional analysis ofz :p {(x , y ), t p 1, 2, . . . , n}0 t t

the LRM has already, implicitly, reduced the space of models that could
be considered. It reflects just one way of reducing the set of all possible
models of which data z0 can be seen to be a realization. This provides
the motivation for the modeling approach developed by Spanos (1986,
1989, 1995).

6. The issue of when and why the ‘use-novelty’ requirement has an epistemological
rationale is an old one (Mayo 1991, 1996).
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TABLE 1. THE LINEAR REGRESSION MODEL (LRM)

y p b � b x � u , t p 1, 2, . . . , n, . . .t 0 1 t t

[1] Normality: D(y Fx ; v)t t Normal
[2] Linearity: E(y FX p x ) p b � b xt t t 0 1 t Linear in xt

[3] Homoskedasticity:
2Var (y FX p x ) p jt t t Free of xt

[4] Independence: (y FX p x ), t � Tt t t Independent
[5] t-homogeneity:

2v :p (b , b , j )0 1 t-unvarying

Given that each statistical model arises from the joint distribution,

D(Z , . . . , Z ; f) :p D((X , Y ), (X , Y ), . . . , (X , Y ); f),1 n 1 1 2 2 n n

we can consider how one or another set of probabilistic assumptions on
the joint distribution gives rise to different models like the LRM. The
assumptions come from a menu of three broad categories: (D) Distri-
bution, (M) Dependence, (H) Heterogeneity. For example, the LRM arises
when we reduce by means of the assumptions (called reductionP
assumptions),

(D) Normal (N), (M) Independent (I), and (H) Identically Distributed
(ID).

Since we are partitioning or reducing by means of the probabilisticP
assumptions, it may be called the Probabilistic Partitioning or Probabilistic
Reduction (PR) approach.7 The same assumptions traditionally given by
means of the error term are specified in terms of the observable random
variables (yt, xt): [1]–[4] (see table 1). This has several advantages, espe-
cially if one is attempting to get at the foundations. Hidden or implicit
assumptions now become explicit ([5]). Moreover, the LRM (conditional)
assumptions can be assessed indirectly from the data via the (uncondi-
tional) reduction assumptions, since N entails [1]–[3], I entails [4], and ID
entails [5].

As a first step, we partition the set of all possible models coarsely in
terms of reduction assumptions on as follows:D(Z , . . . , Z ; f)1 n

7. This is because when the NIID assumptions are imposed on theD(Z , . . . , Z ; f)1 n

latter simplifies into a product of conditional distributions (LRM):D(y Fx ; J )t t 1

n n n
I IID

D(Z , . . . , Z ; f) p D (Z ; J ) p D(Z ; J) p D(y Fx ; J )D(x ; J ).� � �1 n i t t t t t 1 t 2
tp1 tp1 tp1
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LRM
Alternatives

(Coarsely Partitioned)

(D) Distribution Normal Non-Normal
(M) Dependence Independent Non-I
(H) Heterogeneity Identically Distributed Non-ID

Given the practical impossibility of probing for violations in all possible
directions, the PR approach consciously considers an effective probing
strategy to decide on the directions in which the primary statistical model
might be potentially misspecified. Having taken us back to the joint dis-
tribution, why not get ideas by looking at yt and xt themselves? This is
what the PR approach prescribes. Although such graphical techniques
involve a kind of ‘double use’ of data (or ‘use-constructed hypotheses’
(Mayo, 1991, 1996)), far from being a pejorative form of data-snooping
(as some allege), they become a powerful way to get ideas about which
M-S tests to apply in order to assess violations of the reduction assump-
tions (and indirectly the model assumptions) most effectively and most
severely.

3.1. Learning from Graphical Techniques: t-Plots. Plotting the observed
data—yt, population of the USA in millions, xt, secret variable—over time
(1955–1989) we get time plots or t-plots; Spanos (1999), as in Figures 2
and 3.

We ask: What would be expected if each data series were to have come
from a NIID process, as is assumed by the LRM? We answer this by
simulation, giving the graph in Figure 4. When we compare this typical
realization of a NIID process with the t-plots of the two series given in
Figures 2–3, we can see that the data exhibit glaring departures from IID.
In particular, both data series show the mean is increasing with time—
i.e., strong mean-heterogeneity (trending mean). The traditional approach
described above did not detect the presence of mean-heterogeneity and
so it misidentified the source of the problem with the LRM.

We can summarize our progress in finding a useful alternative to probe
thus far:

LRM
Alternative
(to Probe)

(D) Distribution Normal ?
(M) Dependence Independent ?
(H) Heterogeneity Identically Distributed Mean-heterogeneity

3.2. Discriminating and Amplifying the Effects of Mistakes. We could
correctly assess dependence if our data were ID and not obscured by the
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Figure 2. U.S. population (yt).

influence of the trending mean. Although we can not literally manipulate
relevant factors, we can ‘subtract out’ the trending mean in order to learn
what it would be like if there were no trending mean, by “manipulations
on paper” (Mayo 1996) yielding detrended xt and yt.

The data in both Figures 5 and 6 exhibit, to a trained eye, positive
dependence or ‘memory’ in the form of cycles—Markov dependence. So
the independence assumption also looks problematic, explaining the au-
tocorrelation detected by the M-S tests discussed earlier. Our LRM as-
sessment so far, just on the basis of the graphical analysis, is:

LRM
Alternative
(to Probe)

(D) Distribution Normal ?
(M) Dependence Independent Markov
(H) Heterogeneity Identically Distributed Mean-heterogeneity

Finally, we could evaluate the distribution assumption (Normality)
graphically if we had IID data, so if we could see what the data {(x ,t

would look like without the heterogeneity (‘de-y ), t p 1, 2, . . . , n}t

trended’) and without the dependence (‘dememorized’), we could get some
ideas about the appropriateness of the Normality assumption.
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Figure 3. Secret variable (xt).

These plots in Figures 7 and 8, as well as the scatter-plot of (xt, yt),
show no telltale signs of departure from Normality (the scatter-plot is
elliptical). So our procedure has brought us to a specific type of alternative
to the LRM:

LRM
Alternative
(to Probe)

(D) Distribution Normal Normal
(M) Dependence Independent Markov
(H) Heterogeneity Identically Distributed Mean-heterogeneity

While there are still several selections under each of the headings of Mar-
kov dependence and mean-heterogeneity, the length of the Markov de-
pendence (m), and the degree (l) of the polynomial in t, would be discerned
in subsequent rounds of the probing strategy. The model derived by im-
posing this set of reduction assumptions on is theD(Z , . . . , Z ; f)1 n
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Figure 4. A typical realization of a NIID process.

Dynamic Linear Regression Model (DLRM) (l, m), , ):l 1 0 m 1 0
trending mean temporal dependence= =

l m

iy p b � b x � d t � a y � g x � u ,� �t 0 1 t i j t�j j t�j t
ip1 jp1

t p 1, 2, . . . , n, . . . .

The values of (l, m) chosen on statistical adequacy grounds8 are: ,l p 1
. The DLRM is arrived at by probatively ‘looking at the data’m p 2

through the graphical discernments, but we must be clear on what is
licensed by such qualitative assessments.

3.3. The Nature of the Inferences from Graphical Techniques. What is
the status of the learning from graphs? As we see it, the graphs enable
one to get good ideas about the kinds of violations for which it would

8.

ˆy p 17.687 � 0.193t � .000x � 1.496y � .013x � 0.560y � .014x � u ,t t t�1 t�1 t�2 t�2 t

(5.122) (0.080) (.036) (0.147) (.037) (0.148) (.035)

, , .2R p 0.9999 s p 0.154 n p 35
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Figure 5. Detrended population (yt).

be useful to probe, much as looking at a forensic clue (e.g., footprint, tire
track) helps to narrow down the search for a given suspect, or a fault-
tree, for a given cause.

Consider the first t-plots looking for trends, Figures 2–3. Without pos-
ing a formal question, one reasons that such a trending t-plot would only
have arisen were the mean of the underlying process to be changing sys-
tematically with t. The same discernment can be achieved with a formal
analysis (using the nonparametric runs test), perhaps more discriminating
than can be accomplished by even the most trained eye, but the reasoning
and the justification are much the same. If there is a license to infer
evidence of nonrandomness with the runs test, then so would there be
with the informal graphical analysis. All of this, of course, invites further
philosophical examination—both logical and empirical.9

The combined indications from the graphs constitute evidence of de-
partures from the LRM in the direction of the DLRM, but only, for the
moment, as a fruitful model to probe further. We are not licensed to infer
it is itself a statistically adequate model until its own assumptions are

9. The empirical component involves simulating data deliberately generated to violate
or obey the various assumptions.
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Figure 6. Detrended secret variable (xt).

subsequently tested. Even when they are checked and found to hold up—
which happens to be in this case—our inference must still be qualified.
While we may infer that the model is statistically adequate, this should
be understood only as licensing the use of the model as a reliable tool
for primary statistical inferences, but not necessarily as representing the
substantive phenomenon being modeled.

4. Back to the Primary Statistical Inference: Nonsense Regressions. Hav-
ing established the statistical adequacy of the estimated DLRM, we are
then licensed in making ‘primary’ statistical inferences about the values
of parameters in this model. In particular, we can proceed to assess the
ability of the secret variable to help predict the population of the USA.
A test (an F test) of joint significance of the coefficients of (xt, , )x xt�1 t�2

does not reject the hypothesis that they are all 0, indicating that the secret
variable is uncorrelated with the population variable!10 We are thus led

10. .F(3, 26) p .302[.823]
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Figure 7. Detrended and dememorized population (yt).

to drop these terms from the DLRM, giving rise to an Autoregressive of
Order m (AR(m)) model with trends:

trending mean temporal dependence= =
l m

iy p b � d t � a y � u ,� �t 0 i j t�j t
ip1 jp1

t p 1, 2, . . . , n, . . . .

The estimated form of this AR(m) model yields

ˆy p 17.148 � 0.217t � 1.475y � 0.572y � u ,t t�1 t�2 t

(4.781) (0.063) (0.134) (0.119) (3)

, , . Hence, on the basis of a statistically2R p 0.9999 s p 0.147 n p 35
adequate model we were able to infer reliably that the secret variable
contributed nothing towards predicting or explaining the population var-
iable. The regression between xt and yt suggested by the estimated models
M0 and M1 turn out to be nonsense. The source of the problem is that
the inferences concerning the significance of xt were unreliable due to the
fact that the underlying models were misspecified.

https://doi.org/10.1086/425064 Published online by Cambridge University Press

https://doi.org/10.1086/425064


STATISTICAL MISSPECIFICATION TESTING 1023

Figure 8. Detrended and dememorized secret variable (xt).

Revealing the identity of the secret variable shows the egregiousness of
such erroneous inferences. It turns out that:

—the number of pairs of shoes owned by Spanos’s grandmother!xt

While this was an extreme case, the usual methods, we saw, do not readily
pick up the problem. It serves as a ‘canonical exemplar’ for the kind of
errors for which one requires methods to probe and rule out, and for the
fallacies which must conscientiously be avoided. Examples of unreliable
inferences abound in the empirical literature of numerous fields, especially
in the social sciences.

5. Concluding Remarks: Further Questions for a Methodology of Model
Validation. This brief foray into the methodology of M-S testing raises
numerous questions and problems of philosophical interest. We list three
areas for further work:

1. Justifying assumptions of tests of assumptions. A central concern in
basing statistical inference on models whose own assumptions require
testing is the threat of ending in an infinite regress of testing. How can
we get around this in M-S testing? The secret lies in shrewd testing strat-
egies: following a logical order of nonparametric and parametric tests,
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and combining tests that jointly probe several violations with deliberately
varied assumptions. It will be important to spell this out more fully in
future work.

2. The “double counting” charge. M-S tests “snoop” at the data, and
use them to arrive at a hypothesis, e.g., the trials are not independent, as
well as to evaluate that hypothesis. Such “double counting”, some charge,
leads to tests with high or incalculable error probabilities. Much more
needs to be said to explain when this criticism has weight and when this
criticism misses its mark. Far from increasing error rates, multiple tests,
if appropriate, may serve to cross-validate and fortify other tests, so that
the model inferred as statistically adequate has passed a reliable test.

3. Relevance for existing model selection techniques. Two related ques-
tions may be advanced using the PR approach: (i) How serious are the
consequences of misspecification for one or another model selection tech-
nique, e.g., AIC, BIC, Neyman-Pearson, causal modeling? (ii) What would
be the upshot of applying model selection techniques to the models out-
putted by the PR procedure? Model selection techniques require starting
with a prespecified family of models in which it is assumed the true model
lies. The iterative PR procedure, by contrast, with its numerous choices
under the three menu items, may give rise to models that would not have
arisen by the traditional model specification procedures.

The problem of whether, and if so how, to validate statistical models
is of fundamental importance across the entire modeling landscape, both
for practitioners wishing to ensure that the sophisticated modeling tech-
niques that are increasingly available lead to models with predictive and
explanatory power, and for philosophers seeking to justify induction and
statistical inference. We hope to encourage further work in this area.
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