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1. Introduction
In [17], Vershik pointed out that the indecomposable characters of the group Fin(N)
of finitary permutations of the natural numbers are closely connected with its ergodic
invariant random subgroups; and in [16], he suggested that this should also be true of
various other locally finite groups. In this paper, we will prove that if G � Alt(N) is an
inductive limit of finite alternating groups, then the indecomposable characters of G are
precisely the associated characters of the ergodic invariant random subgroups of G.

Let G be a countably infinite group and let SubG be the compact space of subgroups
H 6 G. Then a Borel probability measure ν on SubG which is invariant under the
conjugation action of G on SubG is called an invariant random subgroup or IRS. For
example, suppose that G acts via measure-preserving maps on the Borel probability space
(Z , µ) and let f : Z→ SubG be the G-equivariant map defined by

z 7→ Gz = {g ∈ G | g · z = z}.

Then the corresponding stabilizer distribution ν = f∗µ is an IRS of G. In fact, by a result
of Abért, Glasner and Virag [1], every IRS of G can be realized as the stabilizer distribution
of a suitably chosen measure-preserving action. Moreover, by Creutz and Peterson [4],
if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic action
G y (Z , µ).
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If G is a countable group, then a function χ : G→ C is said to be a character if the
following conditions are satisfied:
(i) χ(hgh−1)= χ(g) for all g ∈ G;
(ii)

∑n
i, j=1 λi λ̄ jχ(g−1

j gi )≥ 0 for all λ1, . . . , λn ∈ C and g1, . . . , gn ∈ G;
(iii) χ(1G)= 1.
For example, if G y (Z , µ) is any measure-preserving action on a Borel probability space,
then we can define a character χ of G by χ(g)= µ(FixZ (g)). In particular, if ν is an IRS
of G, then we can define a corresponding character χ by

χ(g)= ν({H ∈ SubG | gHg−1
= H})

= ν({H ∈ SubG | g ∈ NG(H)}).

On the other hand, we can also define a second character χ ′ by

χ ′(g)= ν({H ∈ SubG | g ∈ H}).

It is easily seen that χ ′ = χ if and only if NG(H)= H for ν-a.e. H ∈ SubG . Fortunately,
if G � Alt(N) is an inductive limit of finite alternating groups, then this is true of every
ergodic IRS ν of G, except for the Dirac measure δ1 which concentrates on the identity
subgroup 1. (This result is proved during the proof of Thomas and Tucker-Drob [15,
Theorem 3.21].) Since it turns out to be slightly more convenient to work with the character
χ ′, we choose the following definition.

Definition 1.1. If ν is an IRS of the countable group G, then the associated character χν
is defined to be χν(g)= ν({H ∈ SubG | g ∈ H}).

A character χ is said to be indecomposable or extremal if it is impossible to express
χ = rχ1 + (1− r)χ2, where 0< r < 1 and χ1 6= χ2 are distinct characters. The set of
characters of G will be denoted by F(G) and the set of indecomposable characters will be
denoted by E(G). The set F(G) always contains the two trivial characters χcon and χreg,
where χcon(g)= 1 for all g ∈ G and χreg(g)= 0 for all 1 6= g ∈ G. It is well known that
χcon is indecomposable, and that χreg is indecomposable if and only if G is an i.c.c. group,
i.e. the conjugacy class gG of every non-identity element g ∈ G is infinite. (For example,
see Peterson and Thom [10].) Let δG and δ1 be the Dirac measures which concentrate on
the normal subgroups G, 1 respectively. Then δG , δ1 are ergodic IRSs of G and clearly
χcon = χδG and χreg = χδ1 . Throughout this paper, we will refer to δG , δ1 as the trivial
ergodic IRSs of G.

Definition 1.2. A simple locally finite group G is said to be an L(Alt)-group if we can
express G =

⋃
i∈N Gi as the union of a strictly increasing chain of finite alternating groups

Gi . (Here we allow arbitrary embeddings Gi ↪→ Gi+1.)

We are now in a position to state the main result of this paper.

THEOREM 1.3. If G is an L(Alt)-group and G � Alt(N), then the indecomposable
characters of G are precisely the associated characters χν of the ergodic invariant random
subgroups ν of G.
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Note that the statement of Theorem 1.3 makes two distinct assertions about the
characters of the L(Alt)-group G � Alt(N). Firstly, if ν is any ergodic IRS of G, then
the associated character χν is indecomposable; and, secondly, that every indecomposable
character of G is the associated character χν of some ergodic IRS ν of G. The former
statement was proved in Thomas and Tucker-Drob [15], and so it will be enough for us
to prove the latter statement in this paper. Also note that [15] contains a classification
of the ergodic IRSs of the L(Alt)-group G � Alt(N). Thus, combining the results of this
paper and [15], we obtain a classification of the indecomposable characters of the L(Alt)-
group G � Alt(N). Of course, the indecomposable characters of Alt(N) have already been
classified by Thoma [14]. (It is perhaps interesting to note that both of the assertions in
Theorem 1.3 fail when G = Alt(N).)

The indecomposable characters of the diagonal limits G =
⋃

i∈N Gi of finite alternating
groups Gi = Alt(1i ) such that G � Alt(N) were earlier classified by Leinen and
Puglisi [7]. (Recall that G =

⋃
i∈N Gi is a diagonal limit if for each i ∈ N, every orbit of

Gi on 1i+1 is either natural or trivial.) It should be stressed that the proof of Theorem 1.3
makes essential use of the ideas and techniques of Leinen and Puglisi [7].

This paper is organized as follows. In §2, we will briefly discuss the ergodic IRSs of
the L(Alt)-groups; and in §3, we will briefly discuss the irreducible characters of the finite
alternating groups. In §§ 4 and 5, we will present the proof of Theorem 1.3. In §6, we will
point out how both of the assertions in Theorem 1.3 fail when G = Alt(N).

Finally, we will explain our notation for the various kinds of limits that arise in this
paper. Suppose that (ri | i ∈ N) is a bounded sequence of real numbers. If I ⊆ N is an
infinite subset which is enumerated in increasing order by the sequence (ik | k ∈ N), then
we will write limi∈I ri instead of limk→∞ rik . Also if U is a non-principal ultrafilter on N,
then limU ri will denote the unique real number r such that {i ∈ N : |ri − r |< ε} ∈ U for
all ε > 0.

2. The ergodic IRSs of the L(Alt)-groups
In this section, we will present a brief discussion of the ergodic IRSs of the L(Alt)-groups.
First we need to introduce some notation. Suppose that G =

⋃
i∈N Gi is the union of the

strictly increasing chain of finite alternating groups Gi = Alt(1i ). For each i ∈ N, let:
• ni = |1i |;
• si+1 be the number of natural Gi -orbits on 1i+1;
• fi+1 be the number of trivial Gi -orbits on 1i+1;
• ei+1 = ni+1 − (si+1ni + fi+1) be the number of points x ∈1i+1 which lie in a non-

trivial non-natural Gi -orbit.
Here an orbit � of Gi = Alt(1i ) on 1i+1 is said to be natural if |�| = |1i | and the
action Gi y� is isomorphic to the natural action Gi y1i . Also for each i < j , let sij =

si+1si+2 . . . s j . Thus sij is the number of ‘obvious’ natural orbits of Gi on 1 j .
The classification of the ergodic IRSs of the L(Alt)-groups involves a fundamental

dichotomy which was introduced by Leinen and Puglisi [6, 7] in the more restrictive setting
of diagonal limits of finite alternating groups, i.e. the linear versus sublinear natural orbit
growth condition.
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LEMMA 2.1. (Leinen and Puglisi [7]) For each i ∈ N, the limit ai = lim j→∞ sij/n j exists.

Definition 2.2. An L(Alt)-group G =
⋃

i∈N Gi has linear natural orbit growth if ai > 0
for some i ∈ N. Otherwise, G =

⋃
i∈N Gi has sublinear natural orbit growth.

Remark 2.3. Clearly if G =
⋃

i∈N Gi has linear natural orbit growth, then there exists
i0 ∈ N such that si+1 > 0 for all i ≥ i0. Also since ai = si+1ai+1, it follows that ai > 0 for
every i ≥ i0.

Since the proof of Theorem 1.3 makes use of the classification of the ergodic IRSs of
the L(Alt)-groups of linear natural orbit growth, we will briefly describe this classification.
So suppose that G =

⋃
i∈N Gi has linear natural orbit growth. Then, after replacing the

increasing union G =
⋃

i∈N Gi by G =
⋃

i0≤i∈N Gi for some suitably chosen i0 ∈ N, we
can suppose that si+1 > 0 for all i ∈ N. Let t0 = n0 and let ti+1 = ni+1 − si+1ni . Then we
can suppose that:
• 10 = {α

0
` | ` < t0}; and

• 1i+1 = {σ̂k | σ ∈1i , 0≤ k < si+1} ∪ {α
i+1
` | 0≤ ` < ti+1};

and that the embedding ϕi : Alt(1i ) ↪→ Alt(1i+1) satisfies

ϕi (g)(σ̂k)= g(σ )̂k

for each σ ∈1i and 0≤ k < si+1. Let 1 consist of all sequences of the form
(αi
`, ki+1, ki+2, ki+3, . . .) where i ∈ N and k j is an integer such that 0≤ k j < s j .

For each i ∈ N and σ ∈1i , let 1(σ)⊆1 be the subset of sequences of the form
σ̂(ki+1, ki+2, ki+3, . . .). Then the sets 1(σ) form a clopen basis for a locally compact
topology on 1; and by Thomas and Tucker-Drob [15, Proposition 3.18], there exists a
unique G-invariant ergodic probability measure m on 1. By Thomas and Tucker-Drob
[15, Corollary 2.5], since G is a simple locally finite group, it follows that the product
action G y (1r , m⊗r ) is also ergodic for all r ≥ 2, and hence the corresponding stabilizer
distribution νr is an ergodic IRS of G.

THEOREM 2.4. (Thomas and Tucker-Drob [15]) If G =
⋃

i∈N Gi has linear natural orbit
growth, then the ergodic IRSs of G are {δ1, δG} ∪ {νr | r ∈ N+}.

From now on, whenever G =
⋃

i∈N Gi has linear natural orbit growth, then we will
refer to G y (1, m) as the canonical ergodic action. Since the proof of Theorem 1.3 does
not require any knowledge of the ergodic IRSs of L(Alt)-groups of sublinear natural orbit
growth, we refer the interested reader to Thomas and Tucker-Drob [15] for the statements
of the classification theorems. (The cases when G � Alt(N) and G ∼= Alt(N) need to be
handled separately.)

3. Irreducible characters of finite alternating groups
In this section, we will discuss some results of Leinen and Puglisi [7] concerning
the asymptotic properties of the irreducible characters of Alt(n). But first, following
Zalesskii [19], we will discuss the relationship between the irreducible characters of
Alt(n) and Sym(n). It is well known that the irreducible representations of the symmetric
group Sym(n) are parametrized by the partitions λ= (`1, `2, . . . , `r ) of n; i.e. sequences
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of integers such that `1 ≥ `2 ≥ · · · ≥ `r > 0 and `1 + `2 + · · · + `r = n. For each such
partition λ, let ϕλ be the corresponding irreducible character of Sym(n) and let Dλ be the
corresponding Young diagram. Thus Dλ is an array of cells with `k cells in the kth row for
each 1≤ k ≤ r . Also let λ∗ be the partition corresponding to the Young diagram obtained
from Dλ by reflection in the diagonal that runs rightwards and downwards from the upper
left-hand corner of Dλ. For example, (5, 2, 1)∗ = (3, 2, 1, 1, 1). Finally, let E and ≤ be
the dominance and lexicographic orders on the set of partitions of n. (For example, see
Sagan [12].)

If λ is a partition of n such that λ 6= λ∗, then ϕλ � Alt(n) is an irreducible character
of Alt(n), which is equal to ϕλ∗ � Alt(n). On the other hand, if λ= λ∗, then ϕλ � Alt(n)
is the sum of two distinct irreducible representations of Alt(n). Furthermore, for every
irreducible character θ of Alt(n), there exists a unique λ such that λ≥ λ∗ and θ is an
irreducible component of ϕλ � Alt(n). This allows us to associate a partition λ such that
λ≥ λ∗ with each irreducible character θ of Alt(n). If λ > λ∗, then λ is associated with a
unique irreducible character of Alt(n); while if λ= λ∗, then λ is associated with a pair
of irreducible characters of Alt(n). If λ is associated with the irreducible character θ of
Alt(n), then we write D(θ)= Dλ for the corresponding Young diagram. For later use,
note that since λ≥ λ∗, it follows that the length of the first row of each Young diagram
D(θ) is greater than or equal to the length of the first column.

For each partition λ= (`1, `2, . . . , `r ) of n such that λ≥ λ∗, we define its type to be
αλ = (`2, . . . , `r ) and its depth to be d(λ)= `2 + · · · + `r . Similarly, we will refer to the
types and depths of the corresponding Young diagrams and the corresponding irreducible
characters of Alt(n); and if α = (`2, . . . , `r ) is a type, then we will refer to d(α)= `2 +

· · · + `r as its depth. Of course, since `1 = n − d(α), the corresponding partition λα of
n is uniquely determined by α; and if n ≥ 2d(α)+ 1, then λα > λ∗α and so there exists a
unique irreducible character of Alt(n) of type α, which we will denote by θα . Finally, for
each integer n ≥ 2d(α)+ 1, let8α be the set of partitions (P1, P2, . . . , Pr ) of n such that
|P1| = n − d(α) and |Pk | = `k for each 2≤ k ≤ r , and let πα be the permutation character
of the action Alt(n)y8α . In the remainder of this section, we will present some results
of Leinen and Puglisi [7] concerning the asymptotic properties of θα and πα for some fixed
type α as n→∞. We will be begin by stating two results concerning the growth rates of
the degrees πα(1), θα(1) of the representations. The first result is an easy exercise. For a
proof of the second result, see Leinen and Puglisi [7, Lemma 3.1].

LEMMA 3.1. For each type α, there exists a polynomial pα ∈Q[x] of degree d(α)
such that if n ≥ 2d(α)+ 1, then pα(n)= πα(1)= |8α| is the degree of the permutation
character πα of the action Alt(n)y8α .

LEMMA 3.2. For each type α, there exists a polynomial qα ∈Q[x] of degree d(α) such
that if n ≥ 2d(α)+ 1, then qα(n)= θα(1) is the degree of the unique irreducible character
θα of Alt(n) of type α.

Before we can state the final result of this section, we first need to translate the
dominance order on partitions to a corresponding partial order on types. So suppose that
α, β are types. Let n be an integer such that n ≥max{2d(α)+ 1, 2d(β)+ 1} and let λα ,
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λβ be the corresponding partitions of n. Then we define

α E β ⇐⇒ λα E λβ .

It is easily checked that this definition is independent of the choice of the integer n ≥
max{2d(α)+ 1, 2d(β)+ 1}. The following result, which is extracted from the proof of
Leinen and Puglisi [7, Theorem 3.2], will play a key role in the next section. For the sake
of completeness, we will sketch the main points of its proof.

LEMMA 3.3. Let α be a type of depth d = d(α), let n be an integer such that n ≥ 2d + 1,
and let θα be the irreducible character of Alt(n) of type α. Then there exist integers zβ ∈ Z,
which are independent of n, such that

θα =
∑
βDα

zβπβ . (3.3a)

Furthermore, the integers zβ satisfy

lim
n→∞

∑
βDα

d(β)=d

zβ
πβ(1)
θα(1)

= 1. (3.3b)

Sketch proof. Suppose that λ is any partition of n such that n ≥ 2d(λ)+ 1. If σ is any
partition of n such that σ D λ, then d(σ )≤ d(λ) and so n ≥ 2d(σ )+ 1. In particular,
letting ϕσ be the corresponding irreducible character of Sym(n), we have that ϕσ � Alt(n)
is the unique irreducible character θσ associated with σ . Thus Young’s rule [12, Theorem
2.11.2] implies that

θλ = πλ −
∑
σBλ

κσλθσ , (3.1)

where κσλ is the corresponding Kostka number; i.e. the number of semi-standard tableaux
of shape σ and content λ. It is easily checked that, since

n ≥ 2d(σ )+ 1≥ 2d(λ)+ 1,

each of these Kostka numbers κσλ depends only on the types of σ and λ. In particular,
letting λ be the partition of n corresponding to the type α, we can replace each partition in
(3.1) by its corresponding type and so obtain the following equality:

θα = πα −
∑
βBα

κβαθβ .

Proceeding inductively along the dominance order for types, we now easily obtain equation
(3.3a). In particular, we have that

θα(1)=
∑
βDα

zβπβ(1)

and so

1=
∑
βDα

zβ
πβ(1)
θα(1)

.

Using Lemmas 3.1 and 3.2, we easily obtain equation (3.3b). �
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4. Full limits of finite alternating groups
In this section, we will prove Theorem 1.3 in the special case when G =

⋃
i∈N Gi is a ‘full

limit’ of finite alternating groups. Our arguments in the first half of this section will follow
those of Leinen and Puglisi [7, §3].

Definition 4.1. Suppose that G =
⋃

i∈N Gi is the union of the strictly increasing chain of
finite alternating groups Gi = Alt(1i ).
(i) The embedding Alt(1i ) ↪→ Alt(1i+1) is said to be full if Alt(1i ) has no trivial orbits

on 1i+1.
(ii) G =

⋃
i∈N Gi is the full limit of the finite alternating groups Gi = Alt(1i ) if every

embedding Alt(1i ) ↪→ Alt(1i+1) is full.

Warning 4.2. A composition of two full embeddings is not necessarily full. Consequently,
if G =

⋃
i∈N Gi is a full limit and (ki | i ∈ N) is a strictly increasing sequence of natural

numbers, then G =
⋃

i∈N Gki is not necessarily a full limit. The notion of a full limit is a
purely technical one, first introduced in Thomas and Tucker-Drob [15], which is useful in
the proofs of results about L(Alt)-groups.

Most of this section will be devoted to the proof of the following result.

PROPOSITION 4.3. Suppose that G =
⋃

i∈N Gi is the full limit of finite alternating groups
Gi = Alt(1i ) and that G has a non-trivial indecomposable character χ . Then:
(a) χ = χν is the associated character of a non-trivial ergodic IRS ν of G; and
(b) G =

⋃
i∈N Gi has linear natural orbit growth.

The proof of Proposition 4.3 will make use of the following result.

PROPOSITION 4.4. (Thomas and Tucker-Drob [15]) If G =
⋃

i∈N Gi is the full limit of
finite alternating groups Gi = Alt(1i ), then G has a non-trivial ergodic IRS if and only if
G =

⋃
i∈N Gi has linear natural orbit growth.

We will also make use of the following result, which is a slight reformulation of Thomas
and Tucker-Drob [15, Corollary 7.5].

LEMMA 4.5. If G =
⋃

i∈N Gi is the full limit of the finite alternating groups Gi =

Alt(1i ), then lim inf |supp1i
(g)|/|1i |> 0 for all 1 6= g ∈ G.

From now on, suppose that G =
⋃

i∈N Gi is the full limit of the finite alternating groups
Gi = Alt(1i ) and that χ is a non-trivial indecomposable character of G. Then, by Vershik
and Kerov [18, Theorem 6], there exist irreducible characters θi of Gi such that for all
g ∈ G,

χ(g)= lim
i→∞

θ̂i (g),

where θ̂i = θi/θi (1) is the corresponding normalized irreducible character. For each i ∈ N,
let di be the depth of the corresponding Young diagram D(θi ). The proof of the next lemma
is almost identical to that of Leinen and Puglisi [7, Proposition 3.5].
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LEMMA 4.6. lim sup di <∞.

Proof. Since χ 6= χreg, there exists a non-identity element 1 6= g ∈ G such that χ(g) 6= 0.
Applying Lemma 4.5, there exists c > 0 such that |supp1i

(g)| ≥ cni for all sufficiently
large i . Also, by Roichman [11, Theorem 5.4], since the length ni − di of the first row
of the Young diagram D(θi ) is greater than or equal to the length of the first column, it
follows that there exist constants b > 0 and 0< q < 1 such that if i is sufficiently large,
then

|θ̂i (g)| ≤
(

max
{

q,
ni − di

ni

})b·|supp1i
(g)|

.

Since χ(g)= limi→∞ θ̂i (g) 6= 0 and limi→∞ |supp1i
(g)| =∞, it follows that if i is

sufficiently large, then max{q, (ni − di )/ni } = (ni − di )/ni and so

|θ̂i (g)| ≤
(

ni − di

ni

)b·|supp1i
(g)|

=

(
1−

di

ni

)b·|supp1i
(g)|

.

It also now follows that di/ni → 0 as i→∞. Since |supp1i
(g)| ≥ cni for all sufficiently

large i , we have that

|θ̂i (g)| ≤
((

1−
di

ni

)ni /di
)bcdi

.

Since di/ni → 0, it follows that (
1−

di

ni

)ni /di

→

(
1
e

)
and this implies that lim sup di <∞. �

Thus there exists an infinite subset I ⊆ N such that the irreducible character θi has the
same type α for each i ∈ I . Let d = d(α) be the corresponding depth.

LEMMA 4.7. χ(g)= limi∈I (|Fix1i (g)|/|1i |)
d for all g ∈ G.

Proof. Suppose that i ∈ I and that ni � d. In order to simplify notation, we will write n,
1, G, θ instead of ni , 1i , Gi , θi and we will write limits as limn→∞ instead of limi∈I .
For each type β = (`2, . . . , `r )D α, let d(β) be the corresponding depth and let 8β be
the corresponding set of partitions (P1, P2, . . . , Pr ) of 1 such that |P1| = n − d(β) and
|Pk | = `k for each 2≤ k ≤ r . Let πβ be the permutation character of the action G y8β

and let π̂β = πβ/πβ(1) be the corresponding normalized permutation character.

CLAIM 4.8. For each type β = (`2, . . . , `r )D α and element g ∈ G,

lim
n→∞

π̂β(g)= lim
n→∞

(|Fix1(g)|/|1|)d(β).

Proof of Claim 4.8. Clearly we can suppose that g 6= 1. Let

F0(g)= {(P1, P2, . . . , Pr ) ∈ Fix8β (g) | supp1(g)⊆ P1}

and let F1(g)= Fix8β (g)rF0(g). Let cβ be the number of partitions of a d(β)-set into
pieces of sizes `2, . . . , `r . Then clearly

|8β | = cβ

(
n

d(β)

)
and |F0(g)| = cβ

(
|Fix1(g)|

d(β)

)
.
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If (P1, P2, . . . , Pr ) ∈ F1(g), then P2 t · · · t Pr is the union of s non-trivial g-orbits
σ1, . . . , σs and t = d(β)−

∑s
j=1 |σ j | trivial g-orbits for some 1≤ s ≤ d(β)/2. Clearly

0≤ t ≤ d(β)− 2s. Since g obviously has less than n non-trivial orbits, it follows that

|F1(g)|< cβ
d(β)/2∑

s=1

(
n
s

) d(β)−2s∑
t=0

(
|Fix1(g)|

t

)

< cβ
d(β)/2∑

s=1

(
n
s

) d(β)−2s∑
t=0

(
n
t

)
and so there exists a polynomial q(x) ∈ Z[x] of degree at most d(β)− 1 such that
|F1(g)|< q(n). Since |8β | is a polynomial function of degree d(β), it follows that
limn→∞ |F1(g)|/|8β | = 0. Hence

lim
n→∞

π̂β(g)= lim
n→∞

|F0(g)|/|8β |

= lim
n→∞

(
|Fix1(g)|

d(β)

)/(
n

d(β)

)
= lim

n→∞
(|Fix1(g)|/|1|)d(β). �

Recall that d(α)= d. Hence, applying Lemma 3.3, there exist integers zβ ∈ Z, which
are independent of n, such that

θ = θα =
∑
βDα

zβπβ and lim
n→∞

∑
βDα

d(β)=d

zβ
πβ(1)
θα(1)

= 1.

It follows that for each g ∈ G,

χ(g)= lim
n→∞

θ̂α(g)= lim
n→∞

∑
βDα

zβ
πβ(1)
θα(1)

π̂β(g)

=

∑
βDα

zβ lim
n→∞

πβ(1)
θα(1)

lim
n→∞

π̂β(g)

=

∑
βDα

d(β)=d

zβ lim
n→∞

πβ(1)
θα(1)

lim
n→∞

π̂β(g)

=

∑
βDα

d(β)=d

zβ lim
n→∞

πβ(1)
θα(1)

lim
n→∞

(|Fix1(g)|/|1|)d

=

(
lim

n→∞

∑
βDα

d(β)=d

zβ
πβ(1)
θα(1)

)
lim

n→∞
(|Fix1(g)|/|1|)d

= lim
n→∞

(|Fix1(g)|/|1|)d .

This completes the proof of Lemma 4.7. �
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For each i ∈ N, let �i =1
d
i and let Gi y�i be the product action. Then the

corresponding normalized permutation character of Gi is

|Fix�i (g)|/|�i | = (|Fix1i (g)|/|1i |)
d
;

and hence for each g ∈ G, we have that χ(g)= limi∈I |Fix�i (g)|/|�i |. We are now ready
to complete the proof of Proposition 4.3. Our argument makes use of the Loeb measure
construction [9]. Our exposition and notation follow that of Conley, Kechris and Tucker-
Drob [3].

For each i ∈ N, let µi be the uniform probability measure on �i defined by µi (A)=
|A|/|�i |. Let U be a non-principal ultrafilter on N such that I ∈ U and let ∼U be the
equivalence relation on X =

∏
i∈N �i defined by

(xi )∼U (yi ) ⇐⇒ {i ∈ N | xi = yi } ∈ U .

For each (xi ) ∈ X , let [(xi )]U be the corresponding ∼U -equivalence class, and let

XU = {[(xi )]U | (xi ) ∈ X}.

For each sequence (Ai ) ∈
∏

i∈N P(�i ), define the subset [(Ai )]U ⊆ XU by

[(xi )]U ∈ [(Ai )]U ⇐⇒ {i ∈ N | xi ∈ Ai } ∈ U .

Then B0
U = {[(Ai )]U | (Ai ) ∈

∏
i∈N P(�i )} is a Boolean algebra of subsets of XU , and we

can define a finitely additive probability measure µU on B0
U by

µU ([(Ai )]U )= lim
U
µi (Ai ).

Furthermore, there exists a σ -algebra BU of subsets of XU such that B0
U ⊆ BU and such

that µU extends to a σ -additive probability measure on BU , which we will also denote
by µU . (A clear account of the construction of BU and µU can be found in Conley,
Kechris and Tucker-Drob [3, §2].) Thus (XU , BU , µU ) is a probability space. (Although
this will not cause any difficulties in this proof, it is perhaps still worthwhile to note that
this probability space is non-separable.)

Next for each g ∈ G and x ∈�i , we define

g · x =

{
g(x) if g ∈ Gi ,

x otherwise.

Then we can define a measure-preserving action G y (XU , BU , µU ) by

g · [(xi )]U = [(g · xi )]U .

It is easily checked that FixXU (g)= [(Fix�i (g))]U . Thus FixXU (g) ∈ B0
U and

µU (FixXU (g))= lim
U
|Fix�i (g)|/|�i | = χ(g).

Let f : XU → SubG be the G-equivariant map defined by x 7→ Gx . Note that for each
g ∈ G, we have that

f −1({H ∈ SubG | g ∈ H})= FixXU (g) ∈ B0
U .
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It follows that f is BU -measurable and hence ν = f∗µU is an IRS of G. Furthermore, for
each g ∈ G,

χ(g)= µU (FixXU (g))= ν({H ∈ SubG | g ∈ H});

and so χ = χν is the corresponding associated character. Finally, since χ is a non-
trivial indecomposable character, it follows that ν is a non-trivial ergodic IRS; and thus
Proposition 4.4 yields that G =

⋃
i∈N Gi has linear natural orbit growth. This completes

the proof of Proposition 4.3.
In the proof of Theorem 1.3, we will need to understand the decompositions of arbitary

characters χ of full limits with linear natural orbit growth. So suppose that G =
⋃

i∈N Gi

is a full limit with linear natural orbit growth, and let G y (1, m) be the canonical
ergodic action. For each r ≥ 1, let νr be the stabilizer distribution of the ergodic action
G y (1r , m⊗r ). Then, by Proposition 4.3 and Theorem 2.4, the set of indecomposable
characters of G is given by

E(G)= {χreg, χcon} ∪ {χνr | r ∈ N
+
}.

PROPOSITION 4.9. With the above hypotheses, for every character χ ∈ F(G), there exist
uniquely determined non-negative real coefficients α, β, and γr for r ≥ 1 such that:
(i) α + β +

∑
r≥1 γr = 1; and

(ii) χ = αχreg + βχcon +
∑

r≥1 γrχνr .
Consequently, µ= αδ1 + βδG +

∑
r≥1 γrνr is the unique IRS of G such that χµ = χ .

Proof. As in the proof of Leinen and Puglisi [7, Theorem 3.6], every convergent sequence
of elements of E(G), which does not tend to one of the functions in

{χcon} ∪ {χνr | r ∈ N
+
},

must converge to
lim

r→∞
χνr = lim

r→∞
(χν1)

r
= χreg,

since χν1(g)= m(Fix1(g)) < 1 for all 1 6= g ∈ G. Thus E(G) is a closed subset of F(G).
By Thoma [13], F(G) is a Choquet simplex; and, applying Choquet’s theorem, we obtain
that if χ ∈ F(G), then there exist uniquely determined non-negative real coefficients α, β,
and γr for r ≥ 1 such that:
(i) α + β +

∑
r≥1 γr = 1; and

(ii) χ = αχreg + βχcon +
∑

r≥1 γrχνr .
In particular, the IRS µ= αδ1 + βδG +

∑
r≥1 γrνr satisfies χµ = χ . By considering an

element 1 6= g ∈ G such that 0< m(Fix1(g)) < 1, we see that if ν 6= ν′ are two distinct
ergodic IRSs of G, then χν 6= χν′ ; and it follows that µ is the unique IRS of G such that
χµ = χ . �

Remark 4.10. It is not true in general that if G is a simple locally finite group and ν 6= ν′

are two distinct ergodic IRSs of G, then χν 6= χν′ . For example, let F= G F(q) be the finite
field with q elements and let V be a vector space over F having a countably infinite basis
B = {v1, v2, . . . , vn, . . .}. For each n ≥ 1, let Gn be the group of linear transformations
of V that leave the subspace Vn = 〈v1, . . . , vn〉 invariant, induce an element of SL(Vn) on

https://doi.org/10.1017/etds.2018.73 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.73


Characters of inductive limits of finite alternating groups 1079

Vn and fix each of the basis vectors in Br{v1, v2, . . . , vn}. Then the stable special linear
group G =

⋃
n≥1 Gn is a simple locally finite group.

Let V ∗ be the dual space of linear functionals ϕ : V → Fp and let λ be the Haar measure
on V ∗. Then G acts ergodically on (V ∗, λ); and, letting ν be the corresponding stabilizer
distribution, the associated character is χν(g)= 1/qrank(g−1).

Next let X = FN+ and let µ be the uniform product probability measure on X . Then,
identifying Fn with Vn , we can define an ergodic action of G on (X, µ) by letting each
subgroup Gn act via

g · (α1, . . . , αn, αn+1, . . . , αm, . . .)= (g(α1, . . . , αn), αn+1, . . . , αm, . . .).

Let ν′ be the corresponding stabilizer distribution. Then it is easily checked that the
associated character is χν′(g)= 1/qrank(g−1) and so ν 6= ν′ are two distinct ergodic IRSs
of G such that χν = χν′ .

5. The proof of Theorem 1.3
In this section, we will present the proof of Theorem 1.3. Suppose that G is an L(Alt)-
group and that G � Alt(N). Then, as explained in §1, it is enough to show that every
indecomposable character of G is the associated character χν of some ergodic IRS ν of G.
First suppose that G has no non-trivial indecomposable characters. Then, since χcon = χδG

and χreg = χδ1 , the desired conclusion holds. Hence we can suppose that G has a non-
trivial indecomposable character χ . Let G =

⋃
i∈N Gi be the (not necessarily full) union of

the increasing chain of finite alternating groups Gi = Alt(1i ). We will begin by expressing
G =

⋃
`∈N G(`) as a (not necessarily strictly) increasing union of subgroups G(`), each

of which can be expressed as a full limit of finite alternating groups.
Applying Hall [5, Theorem 5.1], since G � Alt(N), it follows that for each i ∈ N, the

number cij of non-trivial Gi -orbits on 1 j is unbounded as j→∞. Hence, after passing
to a suitable subsequence, we can suppose that each Gi has at least two non-trivial orbits
on 1i+1. Since Gi is simple, this implies that if 1 6= G ′i 6 Gi , then G ′i also has at least
two non-trivial orbits on 1i+1. For each ` ∈ N, we define sequences of subsets 1`j ⊆1 j

and subgroups G(`) j = Alt(1`j ) for j ≥ ` inductively as follows:
• 1`` =1`;
• 1`j+1 =1 j+1r Fix1 j+1(G(`) j ).
Clearly each G(`) j is strictly contained in G(`) j+1 and G(`)=

⋃
`≤ j∈N G(`) j is the full

limit of the alternating groups G(`) j = Alt(1`j ). It is also easily checked that if ` < m and
i < j , then

G` 6 G(`)i 6 G(m)i < G(m) j .

It follows that if ` < m, then G(`)6 G(m) and that G =
⋃
`∈N G(`). For each ` ∈ N, let

χ` = χ � G(`).

LEMMA 5.1. The subgroup G(`)=
⋃
`≤ j∈N G(`) j has linear natural orbit growth for all

but finitely many ` ∈ N.

Proof. For the sake of contradiction, suppose that there exists an infinite subset I ⊆ N
such that for all ` ∈ I , the subgroup G(`)=

⋃
`≤ j∈N G(`) j does not have linear natural
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orbit growth. Then, by Proposition 4.3, for each ` ∈ I , the only indecomposable characters
of G(`) are χcon and χreg. Hence there exists a real number 0≤ r` ≤ 1 such that χ` =
r`χcon + (1− r`)χreg. If ` < m are distinct elements of I , then G(`)6 G(m) and it
follows that r` = rm . But then there exists a fixed r such that r` = r for all ` ∈ I and
this implies that χ = rχcon + (1− r)χreg, which is a contradiction. �

Hence we can suppose that G(`)=
⋃
`≤ j∈N G(`) j has linear natural orbit growth for

all ` ∈ N. Let G(`)y (1`, m`) be the canonical ergodic action and for each r ∈ N+, let
ν(`)r be the stabilizer distribution of G(`)y (1r

`, m⊗r
` ). Then for each ` ∈ N, there exist

α(`), β(`), γ (`)r ∈ [0, 1] with α(`)+ β(`)+
∑

r∈N+ γ (`)r = 1 such that

χ` = α(`)χreg + β(`)χcon +
∑

r∈N+
γ (`)rχν(`)r . (5.1)

Thus χ` is the associated character χν` of the IRS ν` of G(`) defined by

ν` = α(`)δ1 + β(`)δG(`) +
∑

r∈N+
γ (`)rν(`)r . (5.2)

For each ` ∈ N, let f` : SubG(`+1)→ SubG(`) be the continuous map defined by H 7→
H ∩ G(`).

LEMMA 5.2. ( f`)∗ν`+1 = ν` for all ` ∈ N.

Proof. Let θ` be the character associated with the IRS ( f`)∗ν`+1 of G(`). Then for each
element g ∈ G(`),

θ`(g)= ( f`)∗ν`+1({K ∈ SubG(`) | g ∈ K })

= ν`+1({H ∈ SubG(`+1) | g ∈ H})

= χ`+1(g)

= χ`(g).

Hence the result follows from Proposition 4.9. �

Thus {(SubG(`), ν`) | ` ∈ N} is an inverse family of topological probability spaces in
the sense of Choksi [2], and clearly we can naturally identify the inverse limit lim

←−
SubG(`)

with SubG . For each ` ∈ N, let f∞` : SubG→ SubG(`) be the continuous map defined
by H 7→ H ∩ G(`). Applying Choksi [2, Theorem 2.2], since each SubG(`) is a compact
Hausdorff space, it follows that there exists a measure ν on SubG such that ( f∞`)∗ν = ν`
for each ` ∈ N. Note that for each ` ∈ N and element g ∈ G(`), we have that

χ(g)= ν`({K ∈ SubG(`) | g ∈ K })

= ( f∞`)∗ν({K ∈ SubG(`) | g ∈ K })

= ν({H ∈ SubG | g ∈ H}).

Thus χ is the character associated with the IRS ν of G; and since χ is a non-trivial
indecomposable character, it follows that ν is a non-trivial ergodic IRS. This completes
the proof of Theorem 1.3.
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6. The indecomposable characters of Alt(N)
In this final section, we will point out the two ways in which Theorem 1.3 fails when
G = Alt(N). Firstly, it follows from Thomas and Tucker-Drob [15, Theorem 9.2] that there
exist ergodic IRSs ν of Alt(N) such that the associated character

χν(g)= ν({H ∈ SubG | g ∈ H})

is not indecomposable. Secondly, as we will explain in the remainder of this section, there
exist indecomposable characters χ of Alt(N) for which there does not exist an ergodic IRS
ν such that χ = χν .

We will begin by recalling Thoma’s classification [14] of the indecomposable characters
of Alt(N). For each g ∈ Alt(N) and n ≥ 2, let cn(g) be the number of cycles of length n
in the cyclic decomposition of the permutation g. Then the indecomposable characters
of Alt(N) are precisely the functions χ : Alt(N)→ C such that there exist two sequences
(αi | i ∈ N+) and (βi | i ∈ N+) of non-negative real numbers satisfying:
• α1 ≥ α2 ≥ · · · ≥ αi ≥ · · · ≥ 0;
• β1 ≥ β2 ≥ · · · ≥ βi ≥ · · · ≥ 0;
•

∑
∞

i=1 αi +
∑
∞

i=1 βi ≤ 1;
and such that for all g ∈ Alt(N),

χ(g)=
∞∏

n=2

scn(g)
n where sn =

∞∑
i=1

αn
i + (−1)n+1

∞∑
i=1

βn
i .

(In these products, s0
n is always taken to be 1, including the case when sn = 0.)

PROPOSITION 6.1. If χ is the indecomposable character for which α1 = β1 = 1/2 and
αi = βi = 0 for all i > 1, then there does not exist an ergodic IRS ν of Alt(N) such that
χ = χν .

Proof. Suppose that ν is an ergodic IRS of Alt(N) such that χ = χν ; i.e. such that

χ(g)= ν({H ∈ SubAlt(N) | g ∈ H}).

Since χ((abc))= 1/4, it follows that there exist n 6= m such that

ν({H ∈ SubAlt(N) | (12n), (12m) ∈ H}) > 0;

and, since (12n)(12m)= (1n)(2m), it follows that

ν({H ∈ SubAlt(N) | (1n)(2m) ∈ H}) > 0.

But this contradicts that fact that χ((1n)(2m))= 0. �
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