Characters of inductive limits of finite alternating groups

SIMON THOMAS

Mathematics Department, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA (e-mail: simon.rhys.thomas@gmail.com)

(Received 17 November 2016 and accepted in revised form 30 July 2018)

Abstract. If $G \ncong Alt(\mathbb{N})$ is an inductive limit of finite alternating groups, then the indecomposable characters of *G* are precisely the associated characters of the ergodic invariant random subgroups of *G*.

Key words: alternating groups, characters, group actions 2010 Mathematics Subject Classification: 22D40 (Primary); 22D10 (Secondary)

1. Introduction

In [17], Vershik pointed out that the indecomposable characters of the group $Fin(\mathbb{N})$ of finitary permutations of the natural numbers are closely connected with its ergodic invariant random subgroups; and in [16], he suggested that this should also be true of various other locally finite groups. In this paper, we will prove that if $G \ncong Alt(\mathbb{N})$ is an inductive limit of finite alternating groups, then the indecomposable characters of *G* are precisely the associated characters of the ergodic invariant random subgroups of *G*.

Let *G* be a countably infinite group and let Sub_G be the compact space of subgroups $H \leq G$. Then a Borel probability measure ν on Sub_G which is invariant under the conjugation action of *G* on Sub_G is called an *invariant random subgroup* or *IRS*. For example, suppose that *G* acts via measure-preserving maps on the Borel probability space (Z, μ) and let $f : Z \to \operatorname{Sub}_G$ be the *G*-equivariant map defined by

$$z \mapsto G_z = \{g \in G \mid g \cdot z = z\}.$$

Then the corresponding *stabilizer distribution* $v = f_*\mu$ is an IRS of *G*. In fact, by a result of Abért, Glasner and Virag [1], every IRS of *G* can be realized as the stabilizer distribution of a suitably chosen measure-preserving action. Moreover, by Creutz and Peterson [4], if v is an ergodic IRS of *G*, then v is the stabilizer distribution of an ergodic action $G \curvearrowright (Z, \mu)$.

If G is a countable group, then a function $\chi : G \to \mathbb{C}$ is said to be a *character* if the following conditions are satisfied:

- (i) $\chi(hgh^{-1}) = \chi(g)$ for all $g \in G$;
- (i) $\sum_{i,j=1}^{n} \lambda_i \overline{\lambda}_j \chi(g_j^{-1}g_i) \ge 0$ for all $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ and $g_1, \ldots, g_n \in G$; (ii) $\chi(1_G) = 1$.

For example, if $G \curvearrowright (Z, \mu)$ is any measure-preserving action on a Borel probability space, then we can define a character χ of *G* by $\chi(g) = \mu(\text{Fix}_Z(g))$. In particular, if ν is an IRS of *G*, then we can define a corresponding character χ by

$$\chi(g) = \nu(\{H \in \operatorname{Sub}_G \mid gHg^{-1} = H\})$$
$$= \nu(\{H \in \operatorname{Sub}_G \mid g \in N_G(H)\}).$$

On the other hand, we can also define a second character χ' by

$$\chi'(g) = \nu(\{H \in \operatorname{Sub}_G \mid g \in H\}).$$

It is easily seen that $\chi' = \chi$ if and only if $N_G(H) = H$ for ν -a.e. $H \in \text{Sub}_G$. Fortunately, if $G \ncong \text{Alt}(\mathbb{N})$ is an inductive limit of finite alternating groups, then this is true of every ergodic IRS ν of G, except for the Dirac measure δ_1 which concentrates on the identity subgroup 1. (This result is proved during the proof of Thomas and Tucker-Drob [15, Theorem 3.21].) Since it turns out to be slightly more convenient to work with the character χ' , we choose the following definition.

Definition 1.1. If v is an IRS of the countable group *G*, then the *associated character* χ_v is defined to be $\chi_v(g) = v(\{H \in \text{Sub}_G \mid g \in H\}).$

A character χ is said to be *indecomposable* or *extremal* if it is impossible to express $\chi = r\chi_1 + (1 - r)\chi_2$, where 0 < r < 1 and $\chi_1 \neq \chi_2$ are distinct characters. The set of characters of *G* will be denoted by $\mathcal{F}(G)$ and the set of indecomposable characters will be denoted by $\mathcal{E}(G)$. The set $\mathcal{F}(G)$ always contains the two *trivial* characters χ_{con} and χ_{reg} , where $\chi_{con}(g) = 1$ for all $g \in G$ and $\chi_{reg}(g) = 0$ for all $1 \neq g \in G$. It is well known that χ_{con} is indecomposable, and that χ_{reg} is indecomposable if and only if *G* is an i.c.c. group, i.e. the conjugacy class g^G of every non-identity element $g \in G$ is infinite. (For example, see Peterson and Thom [10].) Let δ_G and δ_1 be the Dirac measures which concentrate on the normal subgroups *G*, 1 respectively. Then δ_G , δ_1 are ergodic IRSs of *G* and clearly $\chi_{con} = \chi_{\delta_G}$ and $\chi_{reg} = \chi_{\delta_1}$. Throughout this paper, we will refer to δ_G , δ_1 as the *trivial* ergodic IRSs of *G*.

Definition 1.2. A simple locally finite group G is said to be an L(Alt)-group if we can express $G = \bigcup_{i \in \mathbb{N}} G_i$ as the union of a strictly increasing chain of finite alternating groups G_i . (Here we allow arbitrary embeddings $G_i \hookrightarrow G_{i+1}$.)

We are now in a position to state the main result of this paper.

THEOREM 1.3. If G is an L(Alt)-group and $G \ncong Alt(\mathbb{N})$, then the indecomposable characters of G are precisely the associated characters χ_v of the ergodic invariant random subgroups v of G.

Note that the statement of Theorem 1.3 makes two distinct assertions about the characters of the L(Alt)-group $G \ncong Alt(\mathbb{N})$. Firstly, if ν is any ergodic IRS of G, then the associated character χ_{ν} is indecomposable; and, secondly, that every indecomposable character of G is the associated character χ_{ν} of some ergodic IRS ν of G. The former statement was proved in Thomas and Tucker-Drob [15], and so it will be enough for us to prove the latter statement in this paper. Also note that [15] contains a classification of the ergodic IRSs of the L(Alt)-group $G \ncong Alt(\mathbb{N})$. Thus, combining the results of this paper and [15], we obtain a classification of the indecomposable characters of Alt(\mathbb{N}) have already been classified by Thoma [14]. (It is perhaps interesting to note that both of the assertions in Theorem 1.3 fail when $G = Alt(\mathbb{N})$.)

The indecomposable characters of the diagonal limits $G = \bigcup_{i \in \mathbb{N}} G_i$ of finite alternating groups $G_i = \text{Alt}(\Delta_i)$ such that $G \ncong \text{Alt}(\mathbb{N})$ were earlier classified by Leinen and Puglisi [7]. (Recall that $G = \bigcup_{i \in \mathbb{N}} G_i$ is a *diagonal limit* if for each $i \in \mathbb{N}$, every orbit of G_i on Δ_{i+1} is either natural or trivial.) It should be stressed that the proof of Theorem 1.3 makes essential use of the ideas and techniques of Leinen and Puglisi [7].

This paper is organized as follows. In §2, we will briefly discuss the ergodic IRSs of the L(Alt)-groups; and in §3, we will briefly discuss the irreducible characters of the finite alternating groups. In §§ 4 and 5, we will present the proof of Theorem 1.3. In §6, we will point out how both of the assertions in Theorem 1.3 fail when $G = Alt(\mathbb{N})$.

Finally, we will explain our notation for the various kinds of limits that arise in this paper. Suppose that $(r_i \mid i \in \mathbb{N})$ is a bounded sequence of real numbers. If $I \subseteq \mathbb{N}$ is an infinite subset which is enumerated in increasing order by the sequence $(i_k \mid k \in \mathbb{N})$, then we will write $\lim_{i \in I} r_i$ instead of $\lim_{k \to \infty} r_{i_k}$. Also if \mathcal{U} is a non-principal ultrafilter on \mathbb{N} , then $\lim_{\mathcal{U}} r_i$ will denote the unique real number r such that $\{i \in \mathbb{N} : |r_i - r| < \varepsilon\} \in \mathcal{U}$ for all $\varepsilon > 0$.

2. The ergodic IRSs of the L(Alt)-groups

In this section, we will present a brief discussion of the ergodic IRSs of the L(Alt)-groups. First we need to introduce some notation. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the union of the strictly increasing chain of finite alternating groups $G_i = Alt(\Delta_i)$. For each $i \in \mathbb{N}$, let:

- $n_i = |\Delta_i|;$
- s_{i+1} be the number of natural G_i -orbits on Δ_{i+1} ;
- f_{i+1} be the number of trivial G_i -orbits on Δ_{i+1} ;
- $e_{i+1} = n_{i+1} (s_{i+1}n_i + f_{i+1})$ be the number of points $x \in \Delta_{i+1}$ which lie in a non-trivial non-natural G_i -orbit.

Here an orbit Ω of $G_i = \text{Alt}(\Delta_i)$ on Δ_{i+1} is said to be *natural* if $|\Omega| = |\Delta_i|$ and the action $G_i \curvearrowright \Omega$ is isomorphic to the natural action $G_i \curvearrowright \Delta_i$. Also for each i < j, let $s_{ij} = s_{i+1}s_{i+2} \dots s_j$. Thus s_{ij} is the number of 'obvious' natural orbits of G_i on Δ_j .

The classification of the ergodic IRSs of the L(Alt)-groups involves a fundamental dichotomy which was introduced by Leinen and Puglisi [6, 7] in the more restrictive setting of diagonal limits of finite alternating groups, i.e. the linear versus sublinear natural orbit growth condition.

LEMMA 2.1. (Leinen and Puglisi [7]) For each $i \in \mathbb{N}$, the limit $a_i = \lim_{i \to \infty} s_{ii}/n_i$ exists.

Definition 2.2. An L(Alt)-group $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth if $a_i > 0$ for some $i \in \mathbb{N}$. Otherwise, $G = \bigcup_{i \in \mathbb{N}} G_i$ has sublinear natural orbit growth.

Remark 2.3. Clearly if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then there exists $i_0 \in \mathbb{N}$ such that $s_{i+1} > 0$ for all $i \ge i_0$. Also since $a_i = s_{i+1}a_{i+1}$, it follows that $a_i > 0$ for every $i \ge i_0$.

Since the proof of Theorem 1.3 makes use of the classification of the ergodic IRSs of the *L*(Alt)-groups of linear natural orbit growth, we will briefly describe this classification. So suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. Then, after replacing the increasing union $G = \bigcup_{i \in \mathbb{N}} G_i$ by $G = \bigcup_{i_0 \le i \in \mathbb{N}} G_i$ for some suitably chosen $i_0 \in \mathbb{N}$, we can suppose that $s_{i+1} > 0$ for all $i \in \mathbb{N}$. Let $t_0 = n_0$ and let $t_{i+1} = n_{i+1} - s_{i+1}n_i$. Then we can suppose that:

• $\Delta_0 = \{ \alpha_{\ell}^0 \mid \ell < t_0 \};$ and

• $\Delta_{i+1} = \{ \sigma \ k \mid \sigma \in \Delta_i, 0 \le k < s_{i+1} \} \cup \{ \alpha_{\ell}^{i+1} \mid 0 \le \ell < t_{i+1} \};$

and that the embedding φ_i : Alt $(\Delta_i) \hookrightarrow$ Alt (Δ_{i+1}) satisfies

$$\varphi_i(g)(\sigma \hat{k}) = g(\sigma) \hat{k}$$

for each $\sigma \in \Delta_i$ and $0 \le k < s_{i+1}$. Let Δ consist of all sequences of the form $(\alpha_{\ell}^i, k_{i+1}, k_{i+2}, k_{i+3}, ...)$ where $i \in \mathbb{N}$ and k_j is an integer such that $0 \le k_j < s_j$. For each $i \in \mathbb{N}$ and $\sigma \in \Delta_i$, let $\Delta(\sigma) \subseteq \Delta$ be the subset of sequences of the form $\sigma^{\widehat{}}(k_{i+1}, k_{i+2}, k_{i+3}, ...)$. Then the sets $\Delta(\sigma)$ form a clopen basis for a locally compact topology on Δ ; and by Thomas and Tucker-Drob [15, Proposition 3.18], there exists a unique *G*-invariant ergodic probability measure *m* on Δ . By Thomas and Tucker-Drob [15, Corollary 2.5], since *G* is a simple locally finite group, it follows that the product action $G \curvearrowright (\Delta^r, m^{\otimes r})$ is also ergodic for all $r \ge 2$, and hence the corresponding stabilizer distribution ν_r is an ergodic IRS of *G*.

THEOREM 2.4. (Thomas and Tucker-Drob [15]) If $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then the ergodic IRSs of G are $\{\delta_1, \delta_G\} \cup \{v_r \mid r \in \mathbb{N}^+\}$.

From now on, whenever $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth, then we will refer to $G \curvearrowright (\Delta, m)$ as the *canonical ergodic action*. Since the proof of Theorem 1.3 does not require any knowledge of the ergodic IRSs of L(Alt)-groups of sublinear natural orbit growth, we refer the interested reader to Thomas and Tucker-Drob [15] for the statements of the classification theorems. (The cases when $G \ncong Alt(\mathbb{N})$ and $G \cong Alt(\mathbb{N})$ need to be handled separately.)

3. Irreducible characters of finite alternating groups

In this section, we will discuss some results of Leinen and Puglisi [7] concerning the asymptotic properties of the irreducible characters of Alt(n). But first, following Zalesskii [19], we will discuss the relationship between the irreducible characters of Alt(n) and Sym(n). It is well known that the irreducible representations of the symmetric group Sym(n) are parametrized by the partitions $\lambda = (\ell_1, \ell_2, \dots, \ell_r)$ of n; i.e. sequences

of integers such that $\ell_1 \ge \ell_2 \ge \cdots \ge \ell_r > 0$ and $\ell_1 + \ell_2 + \cdots + \ell_r = n$. For each such partition λ , let φ_{λ} be the corresponding irreducible character of Sym(*n*) and let D_{λ} be the corresponding Young diagram. Thus D_{λ} is an array of cells with ℓ_k cells in the *k*th row for each $1 \le k \le r$. Also let λ^* be the partition corresponding to the Young diagram obtained from D_{λ} by reflection in the diagonal that runs rightwards and downwards from the upper left-hand corner of D_{λ} . For example, $(5, 2, 1)^* = (3, 2, 1, 1, 1)$. Finally, let \trianglelefteq and \le be the dominance and lexicographic orders on the set of partitions of *n*. (For example, see Sagan [12].)

If λ is a partition of *n* such that $\lambda \neq \lambda^*$, then $\varphi_{\lambda} \upharpoonright Alt(n)$ is an irreducible character of Alt(*n*), which is equal to $\varphi_{\lambda^*} \upharpoonright Alt(n)$. On the other hand, if $\lambda = \lambda^*$, then $\varphi_{\lambda} \upharpoonright Alt(n)$ is the sum of two distinct irreducible representations of Alt(*n*). Furthermore, for every irreducible character θ of Alt(*n*), there exists a unique λ such that $\lambda \ge \lambda^*$ and θ is an irreducible component of $\varphi_{\lambda} \upharpoonright Alt(n)$. This allows us to associate a partition λ such that $\lambda \ge \lambda^*$ with each irreducible character θ of Alt(*n*). If $\lambda > \lambda^*$, then λ is associated with a unique irreducible character of Alt(*n*); while if $\lambda = \lambda^*$, then λ is associated with a pair of irreducible characters of Alt(*n*). If λ is associated with the irreducible character θ of Alt(*n*), then we write $D(\theta) = D_{\lambda}$ for the corresponding Young diagram. For later use, note that since $\lambda \ge \lambda^*$, it follows that the length of the first row of each Young diagram $D(\theta)$ is greater than or equal to the length of the first column.

For each partition $\lambda = (\ell_1, \ell_2, \dots, \ell_r)$ of n such that $\lambda \ge \lambda^*$, we define its *type* to be $\alpha_{\lambda} = (\ell_2, \dots, \ell_r)$ and its *depth* to be $d(\lambda) = \ell_2 + \dots + \ell_r$. Similarly, we will refer to the types and depths of the corresponding Young diagrams and the corresponding irreducible characters of Alt(n); and if $\alpha = (\ell_2, \dots, \ell_r)$ is a type, then we will refer to $d(\alpha) = \ell_2 + \dots + \ell_r$ as its depth. Of course, since $\ell_1 = n - d(\alpha)$, the corresponding partition λ_{α} of n is uniquely determined by α ; and if $n \ge 2d(\alpha) + 1$, then $\lambda_{\alpha} > \lambda_{\alpha}^*$ and so there exists a unique irreducible character of Alt(n) of type α , which we will denote by θ_{α} . Finally, for each integer $n \ge 2d(\alpha) + 1$, let Φ_{α} be the set of partitions (P_1, P_2, \dots, P_r) of n such that $|P_1| = n - d(\alpha)$ and $|P_k| = \ell_k$ for each $2 \le k \le r$, and let π_{α} be the permutation character of the action Alt(n) $\frown \Phi_{\alpha}$. In the remainder of this section, we will present some results of Leinen and Puglisi [7] concerning the asymptotic properties of θ_{α} and π_{α} for some fixed type α as $n \to \infty$. We will be begin by stating two results concerning the growth rates of the degrees $\pi_{\alpha}(1)$, $\theta_{\alpha}(1)$ of the representations. The first result is an easy exercise. For a proof of the second result, see Leinen and Puglisi [7, Lemma 3.1].

LEMMA 3.1. For each type α , there exists a polynomial $p_{\alpha} \in \mathbb{Q}[x]$ of degree $d(\alpha)$ such that if $n \geq 2d(\alpha) + 1$, then $p_{\alpha}(n) = \pi_{\alpha}(1) = |\Phi_{\alpha}|$ is the degree of the permutation character π_{α} of the action Alt $(n) \frown \Phi_{\alpha}$.

LEMMA 3.2. For each type α , there exists a polynomial $q_{\alpha} \in \mathbb{Q}[x]$ of degree $d(\alpha)$ such that if $n \geq 2d(\alpha) + 1$, then $q_{\alpha}(n) = \theta_{\alpha}(1)$ is the degree of the unique irreducible character θ_{α} of Alt(n) of type α .

Before we can state the final result of this section, we first need to translate the dominance order on partitions to a corresponding partial order on types. So suppose that α , β are types. Let *n* be an integer such that $n \ge \max\{2d(\alpha) + 1, 2d(\beta) + 1\}$ and let λ_{α} ,

 λ_{β} be the corresponding partitions of *n*. Then we define

$$lpha \trianglelefteq eta \quad \Longleftrightarrow \quad \lambda_lpha \trianglelefteq \lambda_eta$$
 .

It is easily checked that this definition is independent of the choice of the integer $n \ge \max\{2d(\alpha) + 1, 2d(\beta) + 1\}$. The following result, which is extracted from the proof of Leinen and Puglisi [7, Theorem 3.2], will play a key role in the next section. For the sake of completeness, we will sketch the main points of its proof.

LEMMA 3.3. Let α be a type of depth $d = d(\alpha)$, let n be an integer such that $n \ge 2d + 1$, and let θ_{α} be the irreducible character of Alt(n) of type α . Then there exist integers $z_{\beta} \in \mathbb{Z}$, which are independent of n, such that

$$\theta_{\alpha} = \sum_{\beta \trianglerighteq \alpha} z_{\beta} \pi_{\beta}. \tag{3.3a}$$

Furthermore, the integers z_{β} satisfy

$$\lim_{n \to \infty} \sum_{\substack{\beta \succeq \alpha \\ d(\beta) = d}} z_{\beta} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} = 1.$$
(3.3b)

Sketch proof. Suppose that λ is any partition of n such that $n \ge 2d(\lambda) + 1$. If σ is any partition of n such that $\sigma \ge \lambda$, then $d(\sigma) \le d(\lambda)$ and so $n \ge 2d(\sigma) + 1$. In particular, letting φ_{σ} be the corresponding irreducible character of Sym(n), we have that $\varphi_{\sigma} \upharpoonright Alt(n)$ is the unique irreducible character θ_{σ} associated with σ . Thus Young's rule [12, Theorem 2.11.2] implies that

$$\theta_{\lambda} = \pi_{\lambda} - \sum_{\sigma \vartriangleright \lambda} \kappa_{\sigma \lambda} \theta_{\sigma}, \qquad (3.1)$$

where $\kappa_{\sigma\lambda}$ is the corresponding Kostka number; i.e. the number of semi-standard tableaux of shape σ and content λ . It is easily checked that, since

$$n \ge 2d(\sigma) + 1 \ge 2d(\lambda) + 1,$$

each of these Kostka numbers $\kappa_{\sigma\lambda}$ depends only on the types of σ and λ . In particular, letting λ be the partition of *n* corresponding to the type α , we can replace each partition in (3.1) by its corresponding type and so obtain the following equality:

$$\theta_{\alpha} = \pi_{\alpha} - \sum_{\beta \rhd \alpha} \kappa_{\beta \alpha} \theta_{\beta}.$$

Proceeding inductively along the dominance order for types, we now easily obtain equation (3.3a). In particular, we have that

$$\theta_{\alpha}(1) = \sum_{\beta \succeq \alpha} z_{\beta} \pi_{\beta}(1)$$

and so

$$1 = \sum_{\beta \trianglerighteq \alpha} z_{\beta} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)}.$$

Using Lemmas 3.1 and 3.2, we easily obtain equation (3.3b).

4. Full limits of finite alternating groups

In this section, we will prove Theorem 1.3 in the special case when $G = \bigcup_{i \in \mathbb{N}} G_i$ is a 'full limit' of finite alternating groups. Our arguments in the first half of this section will follow those of Leinen and Puglisi [7, §3].

Definition 4.1. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the union of the strictly increasing chain of finite alternating groups $G_i = \text{Alt}(\Delta_i)$.

- (i) The embedding $Alt(\Delta_i) \hookrightarrow Alt(\Delta_{i+1})$ is said to be *full* if $Alt(\Delta_i)$ has no trivial orbits on Δ_{i+1} .
- (ii) $G = \bigcup_{i \in \mathbb{N}} G_i$ is the *full limit* of the finite alternating groups $G_i = \text{Alt}(\Delta_i)$ if every embedding $\text{Alt}(\Delta_i) \hookrightarrow \text{Alt}(\Delta_{i+1})$ is full.

Warning 4.2. A composition of two full embeddings is not necessarily full. Consequently, if $G = \bigcup_{i \in \mathbb{N}} G_i$ is a full limit and $(k_i \mid i \in \mathbb{N})$ is a strictly increasing sequence of natural numbers, then $G = \bigcup_{i \in \mathbb{N}} G_{k_i}$ is not necessarily a full limit. The notion of a full limit is a purely technical one, first introduced in Thomas and Tucker-Drob [15], which is useful in the proofs of results about L(Alt)-groups.

Most of this section will be devoted to the proof of the following result.

PROPOSITION 4.3. Suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of finite alternating groups $G_i = \operatorname{Alt}(\Delta_i)$ and that G has a non-trivial indecomposable character χ . Then: (a) $\chi = \chi_{\nu}$ is the associated character of a non-trivial ergodic IRS ν of G; and (b) $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth.

The proof of Proposition 4.3 will make use of the following result.

PROPOSITION 4.4. (Thomas and Tucker-Drob [15]) If $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of finite alternating groups $G_i = \operatorname{Alt}(\Delta_i)$, then G has a non-trivial ergodic IRS if and only if $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth.

We will also make use of the following result, which is a slight reformulation of Thomas and Tucker-Drob [15, Corollary 7.5].

LEMMA 4.5. If $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of the finite alternating groups $G_i = \operatorname{Alt}(\Delta_i)$, then $\liminf |\operatorname{supp}_{\Delta_i}(g)|/|\Delta_i| > 0$ for all $1 \neq g \in G$.

From now on, suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is the full limit of the finite alternating groups $G_i = \operatorname{Alt}(\Delta_i)$ and that χ is a non-trivial indecomposable character of G. Then, by Vershik and Kerov [18, Theorem 6], there exist irreducible characters θ_i of G_i such that for all $g \in G$,

$$\chi(g) = \lim_{i \to \infty} \widehat{\theta}_i(g),$$

where $\widehat{\theta}_i = \theta_i / \theta_i(1)$ is the corresponding normalized irreducible character. For each $i \in \mathbb{N}$, let d_i be the depth of the corresponding Young diagram $D(\theta_i)$. The proof of the next lemma is almost identical to that of Leinen and Puglisi [7, Proposition 3.5].

LEMMA 4.6. $\limsup d_i < \infty$.

Proof. Since $\chi \neq \chi_{\text{reg}}$, there exists a non-identity element $1 \neq g \in G$ such that $\chi(g) \neq 0$. Applying Lemma 4.5, there exists c > 0 such that $|\text{supp}_{\Delta_i}(g)| \ge cn_i$ for all sufficiently large *i*. Also, by Roichman [**11**, Theorem 5.4], since the length $n_i - d_i$ of the first row of the Young diagram $D(\theta_i)$ is greater than or equal to the length of the first column, it follows that there exist constants b > 0 and 0 < q < 1 such that if *i* is sufficiently large, then

$$|\widehat{\theta_i}(g)| \le \left(\max\left\{q, \frac{n_i - d_i}{n_i}\right\}\right)^{b \cdot |\operatorname{supp}_{\Delta_i}(g)|}$$

Since $\chi(g) = \lim_{i \to \infty} \widehat{\theta}_i(g) \neq 0$ and $\lim_{i \to \infty} |\operatorname{supp}_{\Delta_i}(g)| = \infty$, it follows that if *i* is sufficiently large, then $\max\{q, (n_i - d_i)/n_i\} = (n_i - d_i)/n_i$ and so

$$|\widehat{\theta_i}(g)| \le \left(\frac{n_i - d_i}{n_i}\right)^{b \cdot |\operatorname{supp}_{\Delta_i}(g)|} = \left(1 - \frac{d_i}{n_i}\right)^{b \cdot |\operatorname{supp}_{\Delta_i}(g)|}$$

It also now follows that $d_i/n_i \to 0$ as $i \to \infty$. Since $|\operatorname{supp}_{\Delta_i}(g)| \ge cn_i$ for all sufficiently large *i*, we have that

$$|\widehat{\theta}_i(g)| \le \left(\left(1 - \frac{d_i}{n_i} \right)^{n_i/d_i} \right)^{bcd_i}$$

Since $d_i/n_i \rightarrow 0$, it follows that

$$\left(1-\frac{d_i}{n_i}\right)^{n_i/d_i} \to \left(\frac{1}{e}\right)$$

and this implies that $\limsup d_i < \infty$.

Thus there exists an infinite subset $I \subseteq \mathbb{N}$ such that the irreducible character θ_i has the same type α for each $i \in I$. Let $d = d(\alpha)$ be the corresponding depth.

LEMMA 4.7. $\chi(g) = \lim_{i \in I} (|\operatorname{Fix}_{\Delta_i}(g)|/|\Delta_i|)^d$ for all $g \in G$.

Proof. Suppose that $i \in I$ and that $n_i \gg d$. In order to simplify notation, we will write n, Δ , G, θ instead of n_i , Δ_i , G_i , θ_i and we will write limits as $\lim_{n\to\infty}$ instead of $\lim_{i\in I}$. For each type $\beta = (\ell_2, \ldots, \ell_r) \succeq \alpha$, let $d(\beta)$ be the corresponding depth and let Φ_β be the corresponding set of partitions (P_1, P_2, \ldots, P_r) of Δ such that $|P_1| = n - d(\beta)$ and $|P_k| = \ell_k$ for each $2 \le k \le r$. Let π_β be the permutation character of the action $G \frown \Phi_\beta$ and let $\widehat{\pi}_\beta = \pi_\beta/\pi_\beta(1)$ be the corresponding normalized permutation character.

CLAIM 4.8. For each type $\beta = (\ell_2, \ldots, \ell_r) \supseteq \alpha$ and element $g \in G$,

$$\lim_{n \to \infty} \widehat{\pi}_{\beta}(g) = \lim_{n \to \infty} (|\operatorname{Fix}_{\Delta}(g)|/|\Delta|)^{d(\beta)}.$$

Proof of Claim 4.8. Clearly we can suppose that $g \neq 1$. Let

$$F_0(g) = \{(P_1, P_2, \dots, P_r) \in \operatorname{Fix}_{\Phi_\beta}(g) \mid \operatorname{supp}_\Delta(g) \subseteq P_1\}$$

and let $F_1(g) = \text{Fix}_{\Phi_\beta}(g) \setminus F_0(g)$. Let c_β be the number of partitions of a $d(\beta)$ -set into pieces of sizes ℓ_2, \ldots, ℓ_r . Then clearly

$$|\Phi_{\beta}| = c_{\beta} \binom{n}{d(\beta)}$$
 and $|F_0(g)| = c_{\beta} \binom{|\operatorname{Fix}_{\Delta}(g)|}{d(\beta)}$.

If $(P_1, P_2, ..., P_r) \in F_1(g)$, then $P_2 \sqcup \cdots \sqcup P_r$ is the union of *s* non-trivial *g*-orbits $\sigma_1, ..., \sigma_s$ and $t = d(\beta) - \sum_{j=1}^s |\sigma_j|$ trivial *g*-orbits for some $1 \le s \le d(\beta)/2$. Clearly $0 \le t \le d(\beta) - 2s$. Since *g* obviously has less than *n* non-trivial orbits, it follows that

$$|F_1(g)| < c_\beta \sum_{s=1}^{d(\beta)/2} {n \choose s} \sum_{t=0}^{d(\beta)-2s} {|\operatorname{Fix}_\Delta(g)| \choose t}$$
$$< c_\beta \sum_{s=1}^{d(\beta)/2} {n \choose s} \sum_{t=0}^{d(\beta)-2s} {n \choose t}$$

and so there exists a polynomial $q(x) \in \mathbb{Z}[x]$ of degree at most $d(\beta) - 1$ such that $|F_1(g)| < q(n)$. Since $|\Phi_\beta|$ is a polynomial function of degree $d(\beta)$, it follows that $\lim_{n\to\infty} |F_1(g)|/|\Phi_\beta| = 0$. Hence

$$\begin{split} \lim_{n \to \infty} \widehat{\pi}_{\beta}(g) &= \lim_{n \to \infty} |F_0(g)| / |\Phi_{\beta}| \\ &= \lim_{n \to \infty} \binom{|\operatorname{Fix}_{\Delta}(g)|}{d(\beta)} / \binom{n}{d(\beta)} \\ &= \lim_{n \to \infty} (|\operatorname{Fix}_{\Delta}(g)| / |\Delta|)^{d(\beta)}. \end{split}$$

Recall that $d(\alpha) = d$. Hence, applying Lemma 3.3, there exist integers $z_{\beta} \in \mathbb{Z}$, which are independent of *n*, such that

$$\theta = \theta_{\alpha} = \sum_{\beta \succeq \alpha} z_{\beta} \pi_{\beta}$$
 and $\lim_{n \to \infty} \sum_{\substack{\beta \succeq \alpha \\ d(\beta) = d}} z_{\beta} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} = 1.$

(1)

It follows that for each $g \in G$,

$$\begin{split} \chi(g) &= \lim_{n \to \infty} \widehat{\theta}_{\alpha}(g) = \lim_{n \to \infty} \sum_{\beta \ge \alpha} z_{\beta} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} \widehat{\pi}_{\beta}(g) \\ &= \sum_{\beta \ge \alpha} z_{\beta} \lim_{n \to \infty} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} \lim_{n \to \infty} \widehat{\pi}_{\beta}(g) \\ &= \sum_{\substack{\beta \ge \alpha \\ d(\beta) = d}} z_{\beta} \lim_{n \to \infty} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} \lim_{n \to \infty} \widehat{\pi}_{\beta}(g) \\ &= \sum_{\substack{\beta \ge \alpha \\ d(\beta) = d}} z_{\beta} \lim_{n \to \infty} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)} \lim_{n \to \infty} (|\operatorname{Fix}_{\Delta}(g)|/|\Delta|)^{d} \\ &= \left(\lim_{n \to \infty} \sum_{\substack{\beta \ge \alpha \\ d(\beta) = d}} z_{\beta} \frac{\pi_{\beta}(1)}{\theta_{\alpha}(1)}\right) \lim_{n \to \infty} (|\operatorname{Fix}_{\Delta}(g)|/|\Delta|)^{d} \\ &= \lim_{n \to \infty} (|\operatorname{Fix}_{\Delta}(g)|/|\Delta|)^{d}. \end{split}$$

This completes the proof of Lemma 4.7.

For each $i \in \mathbb{N}$, let $\Omega_i = \Delta_i^d$ and let $G_i \curvearrowright \Omega_i$ be the product action. Then the corresponding normalized permutation character of G_i is

$$|\operatorname{Fix}_{\Omega_i}(g)|/|\Omega_i| = (|\operatorname{Fix}_{\Delta_i}(g)|/|\Delta_i|)^d;$$

and hence for each $g \in G$, we have that $\chi(g) = \lim_{i \in I} |\operatorname{Fix}_{\Omega_i}(g)|/|\Omega_i|$. We are now ready to complete the proof of Proposition 4.3. Our argument makes use of the Loeb measure construction [9]. Our exposition and notation follow that of Conley, Kechris and Tucker-Drob [3].

For each $i \in \mathbb{N}$, let μ_i be the uniform probability measure on Ω_i defined by $\mu_i(A) = |A|/|\Omega_i|$. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} such that $I \in \mathcal{U}$ and let $\sim_{\mathcal{U}}$ be the equivalence relation on $X = \prod_{i \in \mathbb{N}} \Omega_i$ defined by

$$(x_i) \sim_{\mathcal{U}} (y_i) \iff \{i \in \mathbb{N} \mid x_i = y_i\} \in \mathcal{U}.$$

For each $(x_i) \in X$, let $[(x_i)]_{\mathcal{U}}$ be the corresponding $\sim_{\mathcal{U}}$ -equivalence class, and let

$$X_{\mathcal{U}} = \{ [(x_i)]_{\mathcal{U}} \mid (x_i) \in X \}.$$

For each sequence $(A_i) \in \prod_{i \in \mathbb{N}} \mathcal{P}(\Omega_i)$, define the subset $[(A_i)]_{\mathcal{U}} \subseteq X_{\mathcal{U}}$ by

$$[(x_i)]_{\mathcal{U}} \in [(A_i)]_{\mathcal{U}} \iff \{i \in \mathbb{N} \mid x_i \in A_i\} \in \mathcal{U}.$$

Then $\mathbf{B}_{\mathcal{U}}^{0} = \{ [(A_i)]_{\mathcal{U}} \mid (A_i) \in \prod_{i \in \mathbb{N}} \mathcal{P}(\Omega_i) \}$ is a Boolean algebra of subsets of $X_{\mathcal{U}}$, and we can define a finitely additive probability measure $\mu_{\mathcal{U}}$ on $\mathbf{B}_{\mathcal{U}}^{0}$ by

$$\mu_{\mathcal{U}}([(A_i)]_{\mathcal{U}}) = \lim_{\mathcal{U}} \mu_i(A_i)$$

Furthermore, there exists a σ -algebra $\mathbf{B}_{\mathcal{U}}$ of subsets of $X_{\mathcal{U}}$ such that $\mathbf{B}_{\mathcal{U}}^0 \subseteq \mathbf{B}_{\mathcal{U}}$ and such that $\mu_{\mathcal{U}}$ extends to a σ -additive probability measure on $\mathbf{B}_{\mathcal{U}}$, which we will also denote by $\mu_{\mathcal{U}}$. (A clear account of the construction of $\mathbf{B}_{\mathcal{U}}$ and $\mu_{\mathcal{U}}$ can be found in Conley, Kechris and Tucker-Drob [3, §2].) Thus $(X_{\mathcal{U}}, \mathbf{B}_{\mathcal{U}}, \mu_{\mathcal{U}})$ is a probability space. (Although this will not cause any difficulties in this proof, it is perhaps still worthwhile to note that this probability space is non-separable.)

Next for each $g \in G$ and $x \in \Omega_i$, we define

$$g \cdot x = \begin{cases} g(x) & \text{if } g \in G_i, \\ x & \text{otherwise.} \end{cases}$$

Then we can define a measure-preserving action $G \curvearrowright (X_U, \mathbf{B}_U, \mu_U)$ by

$$g \cdot [(x_i)]_{\mathcal{U}} = [(g \cdot x_i)]_{\mathcal{U}}$$

It is easily checked that $\operatorname{Fix}_{X_{\mathcal{U}}}(g) = [(\operatorname{Fix}_{\Omega_i}(g))]_{\mathcal{U}}$. Thus $\operatorname{Fix}_{X_{\mathcal{U}}}(g) \in \mathbf{B}_{\mathcal{U}}^0$ and

$$\mu_{\mathcal{U}}(\operatorname{Fix}_{X_{\mathcal{U}}}(g)) = \lim_{\mathcal{U}} |\operatorname{Fix}_{\Omega_i}(g)| / |\Omega_i| = \chi(g).$$

Let $f: X_{\mathcal{U}} \to \text{Sub}_G$ be the *G*-equivariant map defined by $x \mapsto G_x$. Note that for each $g \in G$, we have that

$$f^{-1}({H \in \operatorname{Sub}_G \mid g \in H}) = \operatorname{Fix}_{X_{\mathcal{U}}}(g) \in \mathbf{B}_{\mathcal{U}}^0.$$

It follows that f is **B**_U-measurable and hence $\nu = f_* \mu_U$ is an IRS of G. Furthermore, for each $g \in G$,

$$\chi(g) = \mu_{\mathcal{U}}(\operatorname{Fix}_{X_{\mathcal{U}}}(g)) = \nu(\{H \in \operatorname{Sub}_G \mid g \in H\});$$

and so $\chi = \chi_{\nu}$ is the corresponding associated character. Finally, since χ is a non-trivial indecomposable character, it follows that ν is a non-trivial ergodic IRS; and thus Proposition 4.4 yields that $G = \bigcup_{i \in \mathbb{N}} G_i$ has linear natural orbit growth. This completes the proof of Proposition 4.3.

In the proof of Theorem 1.3, we will need to understand the decompositions of arbitary characters χ of full limits with linear natural orbit growth. So suppose that $G = \bigcup_{i \in \mathbb{N}} G_i$ is a full limit with linear natural orbit growth, and let $G \curvearrowright (\Delta, m)$ be the canonical ergodic action. For each $r \ge 1$, let ν_r be the stabilizer distribution of the ergodic action $G \curvearrowright (\Delta^r, m^{\otimes r})$. Then, by Proposition 4.3 and Theorem 2.4, the set of indecomposable characters of *G* is given by

$$\mathcal{E}(G) = \{\chi_{\text{reg}}, \chi_{\text{con}}\} \cup \{\chi_{\nu_r} \mid r \in \mathbb{N}^+\}.$$

PROPOSITION 4.9. With the above hypotheses, for every character $\chi \in \mathcal{F}(G)$, there exist uniquely determined non-negative real coefficients α , β , and γ_r for $r \ge 1$ such that:

(i) $\alpha + \beta + \sum_{r \ge 1} \gamma_r = 1$; and (ii) $\chi = \alpha \chi_{reg} + \beta \chi_{con} + \sum_{r \ge 1} \gamma_r \chi_{\nu_r}$. Consequently, $\mu = \alpha \delta_1 + \beta \delta_G + \sum_{r \ge 1} \gamma_r \nu_r$ is the unique IRS of G such that $\chi_{\mu} = \chi$.

Proof. As in the proof of Leinen and Puglisi [7, Theorem 3.6], every convergent sequence of elements of $\mathcal{E}(G)$, which does not tend to one of the functions in

$$\{\chi_{\rm con}\} \cup \{\chi_{\nu_r} \mid r \in \mathbb{N}^+\},\$$

must converge to

$$\lim_{r\to\infty}\chi_{\nu_r}=\lim_{r\to\infty}(\chi_{\nu_1})^r=\chi_{\mathrm{reg}},$$

since $\chi_{\nu_1}(g) = m(\operatorname{Fix}_{\Delta}(g)) < 1$ for all $1 \neq g \in G$. Thus $\mathcal{E}(G)$ is a closed subset of $\mathcal{F}(G)$. By Thoma [13], $\mathcal{F}(G)$ is a Choquet simplex; and, applying Choquet's theorem, we obtain that if $\chi \in \mathcal{F}(G)$, then there exist uniquely determined non-negative real coefficients α , β , and γ_r for $r \geq 1$ such that:

(i) $\alpha + \beta + \sum_{r>1} \gamma_r = 1$; and

(ii) $\chi = \alpha \chi_{reg} + \beta \chi_{con} + \sum_{r>1} \gamma_r \chi_{\nu_r}$.

In particular, the IRS $\mu = \alpha \delta_1 + \beta \delta_G + \sum_{r \ge 1} \gamma_r v_r$ satisfies $\chi_\mu = \chi$. By considering an element $1 \ne g \in G$ such that $0 < m(\operatorname{Fix}_{\Delta}(g)) < 1$, we see that if $\nu \ne \nu'$ are two distinct ergodic IRSs of *G*, then $\chi_\nu \ne \chi_{\nu'}$; and it follows that μ is the unique IRS of *G* such that $\chi_\mu = \chi$.

Remark 4.10. It is not true in general that if *G* is a simple locally finite group and $\nu \neq \nu'$ are two distinct ergodic IRSs of *G*, then $\chi_{\nu} \neq \chi_{\nu'}$. For example, let $\mathbb{F} = GF(q)$ be the finite field with *q* elements and let *V* be a vector space over \mathbb{F} having a countably infinite basis $\mathcal{B} = \{v_1, v_2, \ldots, v_n, \ldots\}$. For each $n \geq 1$, let G_n be the group of linear transformations of *V* that leave the subspace $V_n = \langle v_1, \ldots, v_n \rangle$ invariant, induce an element of SL(V_n) on

 V_n and fix each of the basis vectors in $\mathcal{B} \setminus \{v_1, v_2, \dots, v_n\}$. Then the *stable special linear* group $G = \bigcup_{n>1} G_n$ is a simple locally finite group.

Let V^* be the dual space of linear functionals $\varphi : V \to \mathbb{F}_p$ and let λ be the Haar measure on V^* . Then *G* acts ergodically on (V^*, λ) ; and, letting ν be the corresponding stabilizer distribution, the associated character is $\chi_{\nu}(g) = 1/q^{\operatorname{rank}(g-1)}$.

Next let $X = \mathbb{F}^{\mathbb{N}^+}$ and let μ be the uniform product probability measure on X. Then, identifying \mathbb{F}^n with V_n , we can define an ergodic action of G on (X, μ) by letting each subgroup G_n act via

$$g \cdot (\alpha_1, \ldots, \alpha_n, \alpha_{n+1}, \ldots, \alpha_m, \ldots) = (g(\alpha_1, \ldots, \alpha_n), \alpha_{n+1}, \ldots, \alpha_m, \ldots).$$

Let ν' be the corresponding stabilizer distribution. Then it is easily checked that the associated character is $\chi_{\nu'}(g) = 1/q^{\operatorname{rank}(g-1)}$ and so $\nu \neq \nu'$ are two distinct ergodic IRSs of *G* such that $\chi_{\nu} = \chi_{\nu'}$.

5. The proof of Theorem 1.3

In this section, we will present the proof of Theorem 1.3. Suppose that *G* is an *L*(Alt)group and that $G \ncong Alt(\mathbb{N})$. Then, as explained in §1, it is enough to show that every indecomposable character of *G* is the associated character χ_{ν} of some ergodic IRS ν of *G*. First suppose that *G* has no non-trivial indecomposable characters. Then, since $\chi_{con} = \chi_{\delta_G}$ and $\chi_{reg} = \chi_{\delta_1}$, the desired conclusion holds. Hence we can suppose that *G* has a nontrivial indecomposable character χ . Let $G = \bigcup_{i \in \mathbb{N}} G_i$ be the (not necessarily full) union of the increasing chain of finite alternating groups $G_i = Alt(\Delta_i)$. We will begin by expressing $G = \bigcup_{\ell \in \mathbb{N}} G(\ell)$ as a (not necessarily strictly) increasing union of subgroups $G(\ell)$, each of which can be expressed as a full limit of finite alternating groups.

Applying Hall [5, Theorem 5.1], since $G \ncong \operatorname{Alt}(\mathbb{N})$, it follows that for each $i \in \mathbb{N}$, the number c_{ij} of non-trivial G_i -orbits on Δ_j is unbounded as $j \to \infty$. Hence, after passing to a suitable subsequence, we can suppose that each G_i has at least two non-trivial orbits on Δ_{i+1} . Since G_i is simple, this implies that if $1 \neq G'_i \leq G_i$, then G'_i also has at least two non-trivial orbits on Δ_{i+1} . For each $\ell \in \mathbb{N}$, we define sequences of subsets $\Delta_j^{\ell} \subseteq \Delta_j$ and subgroups $G(\ell)_j = \operatorname{Alt}(\Delta_j^{\ell})$ for $j \geq \ell$ inductively as follows:

• $\Delta_{\ell}^{\ell} = \Delta_{\ell};$

•
$$\Delta_{j+1}^{\ell} = \Delta_{j+1} \smallsetminus \operatorname{Fix}_{\Delta_{j+1}}(G(\ell)_j)$$

Clearly each $G(\ell)_j$ is strictly contained in $G(\ell)_{j+1}$ and $G(\ell) = \bigcup_{\ell \le j \in \mathbb{N}} G(\ell)_j$ is the full limit of the alternating groups $G(\ell)_j = \operatorname{Alt}(\Delta_j^{\ell})$. It is also easily checked that if $\ell < m$ and i < j, then

$$G_{\ell} \leqslant G(\ell)_i \leqslant G(m)_i < G(m)_j.$$

It follows that if $\ell < m$, then $G(\ell) \leq G(m)$ and that $G = \bigcup_{\ell \in \mathbb{N}} G(\ell)$. For each $\ell \in \mathbb{N}$, let $\chi_{\ell} = \chi \upharpoonright G(\ell)$.

LEMMA 5.1. The subgroup $G(\ell) = \bigcup_{\ell \leq j \in \mathbb{N}} G(\ell)_j$ has linear natural orbit growth for all but finitely many $\ell \in \mathbb{N}$.

Proof. For the sake of contradiction, suppose that there exists an infinite subset $I \subseteq \mathbb{N}$ such that for all $\ell \in I$, the subgroup $G(\ell) = \bigcup_{\ell \le j \in \mathbb{N}} G(\ell)_j$ does *not* have linear natural

orbit growth. Then, by Proposition 4.3, for each $\ell \in I$, the only indecomposable characters of $G(\ell)$ are χ_{con} and χ_{reg} . Hence there exists a real number $0 \le r_{\ell} \le 1$ such that $\chi_{\ell} = r_{\ell}\chi_{con} + (1 - r_{\ell})\chi_{reg}$. If $\ell < m$ are distinct elements of I, then $G(\ell) \le G(m)$ and it follows that $r_{\ell} = r_m$. But then there exists a fixed r such that $r_{\ell} = r$ for all $\ell \in I$ and this implies that $\chi = r\chi_{con} + (1 - r)\chi_{reg}$, which is a contradiction.

Hence we can suppose that $G(\ell) = \bigcup_{\ell \le j \in \mathbb{N}} G(\ell)_j$ has linear natural orbit growth for all $\ell \in \mathbb{N}$. Let $G(\ell) \frown (\Delta_\ell, m_\ell)$ be the canonical ergodic action and for each $r \in \mathbb{N}^+$, let $v(\ell)_r$ be the stabilizer distribution of $G(\ell) \frown (\Delta_\ell^r, m_\ell^{\otimes r})$. Then for each $\ell \in \mathbb{N}$, there exist $\alpha(\ell), \beta(\ell), \gamma(\ell)_r \in [0, 1]$ with $\alpha(\ell) + \beta(\ell) + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r = 1$ such that

$$\chi_{\ell} = \alpha(\ell)\chi_{\text{reg}} + \beta(\ell)\chi_{\text{con}} + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r \chi_{\nu(\ell)_r}.$$
(5.1)

Thus χ_{ℓ} is the associated character $\chi_{\nu_{\ell}}$ of the IRS ν_{ℓ} of $G(\ell)$ defined by

$$\nu_{\ell} = \alpha(\ell)\delta_1 + \beta(\ell)\delta_{G(\ell)} + \sum_{r \in \mathbb{N}^+} \gamma(\ell)_r \nu(\ell)_r.$$
(5.2)

For each $\ell \in \mathbb{N}$, let $f_{\ell} : \operatorname{Sub}_{G(\ell+1)} \to \operatorname{Sub}_{G(\ell)}$ be the continuous map defined by $H \mapsto H \cap G(\ell)$.

LEMMA 5.2. $(f_{\ell})_* v_{\ell+1} = v_{\ell}$ for all $\ell \in \mathbb{N}$.

Proof. Let θ_{ℓ} be the character associated with the IRS $(f_{\ell})_* v_{\ell+1}$ of $G(\ell)$. Then for each element $g \in G(\ell)$,

$$\theta_{\ell}(g) = (f_{\ell})_* \nu_{\ell+1}(\{K \in \operatorname{Sub}_{G(\ell)} | g \in K\})$$
$$= \nu_{\ell+1}(\{H \in \operatorname{Sub}_{G(\ell+1)} | g \in H\})$$
$$= \chi_{\ell+1}(g)$$
$$= \chi_{\ell}(g).$$

Hence the result follows from Proposition 4.9.

Thus $\{(\operatorname{Sub}_{G(\ell)}, \nu_{\ell}) \mid \ell \in \mathbb{N}\}$ is an inverse family of topological probability spaces in the sense of Choksi [2], and clearly we can naturally identify the inverse limit $\lim_{\leftarrow} \operatorname{Sub}_{G(\ell)}$ with Sub_G . For each $\ell \in \mathbb{N}$, let $f_{\infty \ell} : \operatorname{Sub}_G \to \operatorname{Sub}_{G(\ell)}$ be the continuous map defined by $H \mapsto H \cap G(\ell)$. Applying Choksi [2, Theorem 2.2], since each $\operatorname{Sub}_{G(\ell)}$ is a compact Hausdorff space, it follows that there exists a measure ν on Sub_G such that $(f_{\infty \ell})_* \nu = \nu_{\ell}$ for each $\ell \in \mathbb{N}$. Note that for each $\ell \in \mathbb{N}$ and element $g \in G(\ell)$, we have that

$$\chi(g) = \nu_{\ell}(\{K \in \operatorname{Sub}_{G(\ell)} | g \in K\})$$
$$= (f_{\infty\ell})_* \nu(\{K \in \operatorname{Sub}_{G(\ell)} | g \in K\})$$
$$= \nu(\{H \in \operatorname{Sub}_G | g \in H\}).$$

Thus χ is the character associated with the IRS ν of *G*; and since χ is a non-trivial indecomposable character, it follows that ν is a non-trivial ergodic IRS. This completes the proof of Theorem 1.3.

6. *The indecomposable characters of* $Alt(\mathbb{N})$

In this final section, we will point out the two ways in which Theorem 1.3 fails when $G = Alt(\mathbb{N})$. Firstly, it follows from Thomas and Tucker-Drob [15, Theorem 9.2] that there exist ergodic IRSs ν of Alt(\mathbb{N}) such that the associated character

$$\chi_{\nu}(g) = \nu(\{H \in \operatorname{Sub}_G \mid g \in H\})$$

is not indecomposable. Secondly, as we will explain in the remainder of this section, there exist indecomposable characters χ of Alt(\mathbb{N}) for which there does *not* exist an ergodic IRS ν such that $\chi = \chi_{\nu}$.

We will begin by recalling Thoma's classification [14] of the indecomposable characters of Alt(\mathbb{N}). For each $g \in Alt(\mathbb{N})$ and $n \ge 2$, let $c_n(g)$ be the number of cycles of length nin the cyclic decomposition of the permutation g. Then the indecomposable characters of Alt(\mathbb{N}) are precisely the functions χ : Alt(\mathbb{N}) $\rightarrow \mathbb{C}$ such that there exist two sequences $(\alpha_i \mid i \in \mathbb{N}^+)$ and $(\beta_i \mid i \in \mathbb{N}^+)$ of non-negative real numbers satisfying:

• $\alpha_1 \geq \alpha_2 \geq \cdots \geq \alpha_i \geq \cdots \geq 0;$

•
$$\beta_1 \ge \beta_2 \ge \cdots \ge \beta_i \ge \cdots \ge 0;$$

• $\sum_{i=1}^{\infty} \alpha_i + \sum_{i=1}^{\infty} \beta_i \le 1;$ and such that for all $g \in Alt(\mathbb{N}),$

$$\chi(g) = \prod_{n=2}^{\infty} s_n^{c_n(g)}$$
 where $s_n = \sum_{i=1}^{\infty} \alpha_i^n + (-1)^{n+1} \sum_{i=1}^{\infty} \beta_i^n$.

(In these products, s_n^0 is always taken to be 1, including the case when $s_n = 0$.)

PROPOSITION 6.1. If χ is the indecomposable character for which $\alpha_1 = \beta_1 = 1/2$ and $\alpha_i = \beta_i = 0$ for all i > 1, then there does not exist an ergodic IRS v of Alt(N) such that $\chi = \chi_{\nu}$.

Proof. Suppose that ν is an ergodic IRS of Alt(\mathbb{N}) such that $\chi = \chi_{\nu}$; i.e. such that

$$\chi(g) = \nu(\{H \in \operatorname{Sub}_{\operatorname{Alt}(\mathbb{N})} \mid g \in H\}).$$

Since $\chi((abc)) = 1/4$, it follows that there exist $n \neq m$ such that

$$\nu(\{H \in \text{Sub}_{Alt(\mathbb{N})} \mid (12n), (12m) \in H\}) > 0;$$

and, since (12n)(12m) = (1n)(2m), it follows that

$$\nu(\{H \in \operatorname{Sub}_{\operatorname{Alt}(\mathbb{N})} \mid (1n)(2m) \in H\}) > 0.$$

But this contradicts that fact that $\chi((1n)(2m)) = 0$.

Acknowledgement. Research partially supported by NSF Grant DMS 1362974.

REFERENCES

- [1] M. Abért, Y. Glasner and B. Virag. Kesten's theorem for invariant random subgroups. Duke Math. J. 163 (2014), 465-488.
- [2] J. R. Choksi. Inverse limits of measure spaces. Proc. Lond. Math. Soc. (3) 8 (1958), 321–342.

- [3] C. Conley, A. S. Kechris and R. Tucker-Drob. Ultraproducts of measure preserving actions and graph combinatorics. *Ergod. Th. & Dynam. Sys.* 33 (2013), 334–374.
- [4] D. Creutz and J. Peterson. Stabilizers of ergodic actions of lattices and commensurators. *Trans. Amer. Math. Soc.* 369 (2017), 4119–4166.
- [5] J. I. Hall. Infinite alternating groups as finitary linear transformation groups. J. Algebra 119 (1988), 337–359.
- [6] F. Leinen and O. Puglisi. Diagonal limits of finite alternating groups: confined subgroups, ideals, and positive definite functions. *Illinois J. Math.* **47** (2003), 345–360.
- [7] F. Leinen and O. Puglisi. Positive definite functions of diagonal limits of finite alternating groups. J. Lond. Math. Soc. (2) 70 (2004), 678–690.
- [8] E. Lindenstrauss. Pointwise theorems for amenable groups. *Electron. Res. Announc. Amer. Math. Soc.* 5 (1999), 82–90.
- [9] P. A. Loeb. Conversion from nonstandard to standard measure spaces and applications in probability theory. *Trans. Amer. Math. Soc.* **211** (1975), 113–122.
- [10] J. Peterson and A. Thom. Character rigidity for special linear groups. J. Reine Angew. Math. 716 (2016), 207–228.
- [11] Y. Roichman. Upper bound on the characters of the symmetric groups. Invent. Math. 125 (1996), 451-485.
- [12] B. E. Sagan. *The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions (Graduate Texts in Mathematics, 203).* Springer, New York, 2001.
- [13] E. Thoma. Über unitäre Darstellungen abzählbarer, diskreter Gruppen. Math. Ann. 153 (1964), 111–138.
- [14] E. Thoma. Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. *Math. Z.* 85 (1964), 40–61.
- [15] S. Thomas and R. Tucker-Drob. Invariant random subgroups of inductive limits of finite alternating groups. J. Algebra 503 (2018), 474–533.
- [16] A. M. Vershik. Nonfree actions of countable groups and their characters. J. Math. Sci. (N.Y.) 174 (2011), 1–6.
- [17] A. M. Vershik. Totally nonfree actions and the infinite symmetric group. Mosc. Math. J. 12 (2012), 193–212.
- [18] A. M. Vershik and S. V. Kerov. Locally semisimple algebras. Combinatorial theory and the K-functor. J. Sov. Math. 38 (1987), 1701–1733.
- [19] A. E. Zalesskii. Group rings of inductive limits of alternating groups. Leningrad Math. J. 2 (1991), 1287–1303.