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A REVIEW OF PANJER'S RECURSION FORMULA AND ITS
APPLICATIONS
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ABSTRACT

This paper reviews Panjer's recursion formula for evaluation of compound distributions
and illustrates how it can be applied to life and general insurance problems.

KEYWORDS

Recursions; Collective Risk Model; Probability of Ruin; Individual Risk Model

1. INTRODUCTION

Since the publication of Panjer's (1981) celebrated paper on recursive
calculation of compound distributions, extensive use of his results has been
made by practitioners and researchers alike. Kuon, Radtke & Reich (1993)
write ". . . the use of Panjer's algorithm has meanwhile become a widespread
standard technique for actuaries". It is, therefore, strange that hardly any
reference has been made to Panjer's results in the United Kingdom actuarial
literature, although some of these results have been included in the U.K.
examination syllabus since 1987.

The purpose of this paper is to review Panjer's recursion formula and to
show how it provides a solution to two classical actuarial problems: the
calculation of the distribution of aggregate claims from a portfolio and the
calculation of the probability of ultimate ruin in the classical risk model. We
also show how the formula can be applied to the calculation of the aggregate
claims distribution for an individual risk model.

This paper contains no new results. Our main aim in writing the paper is
to demonstrate that Panjer's recursion formula is a useful and powerful tool
which is simple to apply and which has many applications to insurance
problems.

We start by stating Panjer's recursion formula.

2. PANJER'S RECURSION FORMULA

In this section we present Panjer's recursion formula. Proofs of the main
results are given in the Appendix.

We consider a random variable S defined as:
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N

S = £ *,.
i = l

with S = 0 when Af = 0. JV is a discrete random variable, distributed on the
non-negative integers, and {Xi}^=i is a sequence of independent and
identically distributed (i.i.d.) random variables. We assume that N is
independent of this sequence. For example, we might model the total amount
of claims in a year under a motor insurance policy as S, with N representing
the number of claims under the policy and Xt representing the amount of the
ith claim.

In his paper, Panjer considers the cases when the distribution of Xt is
continuous, and when it is a discrete distribution on the positive integers. In
the following we restrict our attention to the latter case, as it is of more
practical interest.

We now introduce the following notation:

pn = p r [ N = ri] for n = 0,1,2, . . .

fk = Pr[Ar; = k] for k = 0,1,2, . . .

ft = Pr[Xi + X2 + ... + Xn = k] forn = 1,2,3,... and k = 0,1,2,. . .

fc] for k = 0,1,2, . . . .

Panjer's recursion formula applies when the probability function of N
satisfies the recursion formula:

Pn = \ n)Pn'1 = 1 ' 2 ' 3 ' - - - (2-^

where a and b are constants. Sundt & Jewell (1981) show that the only three
distributions which satisfy this recursion formula are the Poisson, the
binomial and the negative binomial, of which the geometric distribution is a
special case.

Result {Panjer's Recursion Formula)

When the probability function of N satisfies formula (2.1), and when
/o = 0:

go = Po

and for k = 1,2,3,... :

https://doi.org/10.1017/S1357321700000969 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000969


A Review of Panjer's Recursion Formula and its Applications 109

a + -k

The beauty of the recursion formula is that it is trivial (for a computer!) to
calculate successive values of gk. Given the values of a and b, and the
probability function of Xt, we require the value of g0 to calculate gt, then the
values of g0 and g^ to calculate g2, and so on.

To appreciate fully how useful Panjer's recursion formula is, we
must compare it with the alternative method of calculating gk. By
noting that S can take the value k, k = 1,2,3,..., if N = n (< k) and
Xl + X2 + ... + Xn = k, we have:

k

p r[S = fc] = £ Pr[JV = fi]Pr[X! + X2 + . . . + Xn = fc]

i.e.:

gk = Z PJk for/c = 1,2,3,... . (2.2)
n = I

It is possible to compute fk recursively for n = 2,3,4,... (see De Pril (1985))
and hence to calculate gk by formula (2.2). However, this approach is
computationally more intensive and hence requires substantially more
computer time than calculating gk by the recursion formula. Calculations
that take seconds using the recursion formula can take hours using formula
(2.2). We give an illustration of this in the next section.

In the remainder of this paper it is convenient to assume that Xt is
distributed on the non-negative integers rather than the positive integers. In
these circumstances values of gk are calculated from:

go = I Pnfo (2-3)
(1 = 0

and for/c = 1,2,3,... :

ft-7. (2-4)

Also, when / 0 > 0 the upper limit of summation in formula (2.2) changes to
QO, since it is possible for the sum of any number of Xts to be equal to k.
The formula we use in the next section to calculate / f for n = 2,3,4,... and
k = 1,2,3,... when / 0 > 0 is:
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fn* f - 1 V / n + 1 ; i 1 f f .•

Jk = JO L \ Z ' - ' \JiJk-i-

(See De Pril (1985) for a proof of this result.)

3. AGGREGATE CLAIMS DISTRIBUTIONS

In this section we interpret the variables introduced in the previous section
as follows:
— N is the number of claims arising from an insurance portfolio over a fixed

period of time, typically one year;
— Xj is the amount of the ith claim; and
— S is the aggregate claim amount.
Our objective is to use the recursion formula to calculate the distribution of
S. This model for aggregate claims is referred to as the collective risk model,
and in such a model a Poisson or negative binomial distribution is often
used as the claim number distribution.

Given data sets consisting of observed numbers of claims and of observed
individual claim amounts, it would be standard practice to fit distributions to
these data. It is not our purpose to describe how this is done. Techniques for
fitting distributions to insurance data are described by Hogg & Klugman
(1984) and Panjer & Willmot (1992). Normally we would use a continuous
distribution to fit the claim amounts data. However, in order to apply the
recursion formula, we require a discrete distribution for Xh and so we must
replace our fitted continuous distribution by a discrete distribution which has
similar features. The similarities can range from matching probabilities over
given ranges to matching a given number of moments of the distributions
over specified ranges. Discussions of different procedures to discretise a
continuous distribution are given by Gerber (1982) and Panjer & Lutek
(1983). In our numerical examples below, we apply one of the most
straightforward discretisation procedures, referred to by Panjer & Lutek
(1983) as crude rounding. This method discretises the continuous distribution
on 0,h,2h,..., where h > 0, and matches cumulative probabilities at a given
set of points.

Another important point in the discretisation procedure is the choice of
monetary unit. Suppose that individual claim amounts are recorded in units
of £1,000 and that the fitted distribution has mean 1 (unit). Then, if that
distribution is discretised on the integers (units, not £s), we would not expect
the resulting distribution to be a particularly good match to the original
distribution. If, however, the distribution is discretised on monetary amounts
of £10, that is one-hundredths of the mean of the fitted distribution, then
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intuitively we would expect the discretised distribution to be a much better
match to the original distribution.

Example 1

Let us suppose that the data from a portfolio lead us to choose a Poisson
distribution with mean 20 as the claim number distribution, so that the
aggregate claims distribution is compound Poisson. Suppose, also, that a
lognormal distribution with mean 1 and variance 3 (measuring in suitable
monetary units) is fitted as the individual claim amount distribution. To
apply the recursion formula to calculate the aggregate claims distribution, let
us choose to discretise the lognormal distribution on 20ths of its mean.

Since the constants in formula (2.1) are a = 0 and b = 20, and as our
discretisation procedure gives f0 > 0, formula (2.4) simplifies to:

20 *
Sk = -r X jfjgk-j for k= 1,2,3,...

K

with £ 0 = e x p { - 2 0 ( 1 - / „ ) } .
Since we have discretised the lognormal distribution on 20ths of its mean

(of 1) the computed value gk gives Pr[S = 0.05/c] for k = 0,1,2,... . The
table below shows some percentiles of the aggregate claims distribution.

X

18.5

20.5

22.9

26.1

31.1

36.1

48.7

Pr[S < x]

0.5

0.6

0.7

0.8

0.9

0.95

0.99

As a simple application, we can use the facts that E(S) = 20 —
approximately, since our discretisation procedure produces a distribution
whose mean is approximately equal to that of the original lognormal
distribution — and Pr[S < 31.1] = 0.9, to see that the premium loading
required for this portfolio to ensure that there is a 10% probability that
aggregate claims exceed the premium income is 55.5%. Figure 1 shows the
probability function for S, clearly illustrating the positive skew of the
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0.0025

0.0005

20 30 40

Aggregate claim amount

Figure 1. The probability function of aggregate claims from Example 1

distribution. (Note that the large number of points plotted gives the graph
the appearance of a density function rather than a probability function.)

To illustrate the computational advantage of the recursion formula over
formula (2.2), let us consider some calculation times. Calculation of values of
gk by the recursion formula for values of k from 1 up to 200 took about 1
second. Calculation of the next 200 values took about one more second. To
make a comparison of calculation times using formula (2.2) (with k = oo),
we have to truncate the summation at some point. We chose to truncate it at
a) where a> is the least integer such that:

0.9999.

This ensures that, for any value of k, the difference between the calculated
value and the true value of gk is less than 0.0001. For the calculations
described above, the calculation times were around 4 minutes for the first
200 values and 27 minutes for the next 200 values. It is clear that it would
require several hours of computer time to produce all the values underlying
Figure 1. It took a mere 6 seconds to produce these values using the
recursion formula, calculations being done on a 486DX, 33MHz PC.
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The distribution we have calculated is, of course, only an approximation to
the true distribution, as we have replaced a continuous distribution by a
discrete one. In general, the approximation should improve as the
discretisation procedure becomes more sophisticated. We shall see in the next
section that it is possible to assess the accuracy resulting from such an
approximation.

One problem that can arise with the recursion formula is that the value of
g0 may be so small that a computer will store it as zero. In such a situation
a computer would calculate all values of gk as zero. The reason for this is
that for each value of k, k = 1,2,3,..., gk is just some multiple of g0. This
points to one solution to the problem. We simply set g0 equal to some
arbitrary value, for example 1, and calculate values of gk based on this
starting value. Once the required values have been calculated they can be
scaled down, for example by multiplying each value n times by g^". It may,
in fact, be desirable to scale down calculated values at some intermediate
point in the calculation to prevent a numerical overflow in a computer
calculation. A full discussion of this problem, including alternative solutions,
can be found in Panjer & Willmot (1986, 1992).

4. T H E PROBABILITY OF ULTIMATE RUIN

We now consider an application of the recursion formula when the
distribution function of N is geometric with parameter p, where 0 < p < 1,
i.e.:

Pn = Pi" f o r n = 0,1,2,...

so that S has a compound geometric distribution.
In this case the constants in formula (2.1) are a = q and b = 0, giving:

go = p/(i - qfo)

and for k = 1,2,3,... :

If we define:

G(k) = Pr[S < k] =

then, by summing over both sides of formula (4.1), we find that, for
k = 1,2,3,...:
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G(k) =go + ^-2— £ fjG(k - j). (4.2)
1 — qj

In other words, when N has a geometric distribution, the recursion formula
extends to the distribution function of S. This proves to be extremely useful
in the following application.

In this section we use the recursion formula to calculate the probability of
ultimate ruin in the classical risk model. Full details of the classical risk
model and results in this section are given in the textbook by Bowers et al.
(1986). It is not our purpose to describe how the formulae below are derived.
However, a brief description of the problem is as follows.

In the classical risk model the insurer's surplus at time t is:

Z(t) = u + ct - X(t)

where u is the insurer's surplus at time 0, c is the insurer's premium income
per unit time and X(t) denotes aggregate claims up to time t. The aggregate
claims process is a compound Poisson process with Poisson parameter X, so
that k represents the expected number of claims per unit time. Individual
claim amounts have a continuous distribution, with distribution function
P(x) and mean [i, and it is assumed that P(0) = 0. The insurer's premium
income per unit time to cover the risk is c = (1 + 9)kpL, where 9 is referred
to as the premium loading factor. The probability of ultimate ruin is denoted
by \j/(u) and defined by:

\j/{u) = Pr[Z(0 < 0 for some t > 0].

The reason why we can apply Panjer's recursion formula to solve for \j/{u)
is that, as shown by Bowers et al. (1986), we can write:

1 - ij/(u) = Pr[S < II]
where:

N

S = £ X{ (= 0 if N = 0).

N has a geometric distribution with parameter 1 — i^(0) (which equals
9/(1 + 9)), and {X,}^ ! is a sequence of i.i.d. random variables, independent
of N, with distribution function:
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Z<t)

Time, t

Figure 2. A realisation of the surplus process where ruin occurs at the
second increase in the record high of the aggregate loss process

To interpret these variables, we note that the surplus process {Z(t)},>0 can
be defined in terms of the aggregate loss process {L(t)},>0 as:

Z(t) = u - L(t)
where:

L(t) = X(t) - ct

so that, for a fixed value of t, L(t) represents the accumulated loss (or gain)
up to time t.

Ruin occurs on the first occasion that the aggregate loss exceeds u (if this
ever happens). Hence the interpretation of the variables is:
— TV denotes the number of occasions on which the aggregate loss process

reaches a new record high value;
— X; represents the amount of the ith increase in the record high of the

aggregate loss process; and
— S represents the maximum aggregate loss.

Figure 2 shows a realisation of the surplus process where ruin occurs the
second time there is a new record high of the aggregate loss process, and
Figure 3 shows the corresponding aggregate loss process. In Figure 2, u — r
gives the amount of the first increase in the record high of the aggregate loss
process, and r — s gives the amount of the second.
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L(t)

Time, t

Figure 3. The aggregate loss process corresponding to the realisation of the
surplus process in Figure 2

We can apply Panjer's recursion formula, as in the previous section, by
replacing H(x) by a discrete distribution. This would give us an approximate
value for 1 — >p(u). However, it is actually possible to compute 4i(u) to any
number of decimal places by taking the following approach.

Define:
Hn'(x) = Pr[Z! + X2 +...+ Xn < x] for n = 1,2,3,...

to be the n-fold convolution of the distribution H{x). Then by conditioning
on N we can write:

where H°'(x) is defined to equal 1 for x > 0, and 0 otherwise.
We can now define two discrete distributions with probability functions

l(x) and u(x), and distribution functions L(x) and U(x) respectively, as
follows:

u(x) = H(x + h) - H(x)
l(x) = H(x) - H(x - h)

From these definitions we see that:

forx = 0,h,2h,..
for x = h, 2h, 3h,.
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L(x) < H(x) < U(x)

117

and hence:
L"\x) < Hn\x) < Un'(x)

where L"\x) and U"*(x) are the n-fold convolutions of the distributions L(x)
and U(x) respectively. It then follows that:

n=0 n = 0

Thus, it is possible to apply formula (4.2) directly to calculate bounds for
ip{u), since L(x) and U(x) are discrete distributions. As the distributions L(x)
and U(x) each have span h, the calculated values will be lower and upper
bounds for ^i(jh), j = 0,1,2,... .

Example 2

Suppose that the individual claim amount distribution is again lognormal
with mean 1 and variance 3 (in suitably scaled units) and let the premium
loading factor be 20%. The table below shows lower and upper bounds for
il/(u) when h = 0.05 and h = 0.01, together with the computed value of \j/(u)
when H(x) is discretised on intervals of 0.05.

Computed Upper Upper
value bound bound

of \ji(u) h = 0.01 h = 0.05

Lower
bound

h = 0.05

Lower
bound

h = 0.01

10

0.8261

0.3218

0.8319

0.3254

0.8298

0.3256

0.8333

0.3269

0.8333

0.3295

20

30

40

50

60

70

80

0.1553

0.0795

0.0424

0.0234

0.0133

0.0078

0.0047

0.1576

0.0809

0.0432

0.0238

0.0136

0.0080

0.0048

0.1578

0.0811

0.0433

0.0239

0.0136

0.0080

0.0048

0.1586

0.0815

0.0436

0.0241

0.0137

0.0080

0.0049

0.1605

0.0827

0.0443

0.0245

0.0140

0.0082

0.0049

We can see that a reduction in h produces tighter bounds for I/̂ (M). By
choosing smaller values of h we could produce bounds that agree to a given
number of decimal places. This has, in fact, happened when h = 0.01 and
u = 70, so we can say that to four decimal places 1̂ (70) = 0.0080. It is clear
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from the table that the computed values should give a reasonable
approximation to the true values, especially for values of ijr(u) less than 0.05,
which are the more important ones in practice. A greater degree of accuracy
could be obtained by discretising H(x) on a smaller span or by using a more
sophisticated discretisation method.

Naturally, this method of lower and upper bounds can be applied in the
example of the previous section, although it is not possible to compute the
bounds directly as there is no recursion formula for the distribution function
of the compound Poisson distribution.

Throughout this section we have assumed that P(x) is a continuous
distribution. If P(x) is a discrete distribution, the techniques described above
still apply, since H(x) is a continuous distribution even if P(x) is a discrete
distribution. The problem of calculating i/f(«) when P(x) is a discrete
distribution is discussed by Shiu (1988), who gives an explicit formula
for ij/(u).

5. THE INDIVIDUAL RISK MODEL

Consider a fixed number n, of independent policies over a fixed period, say
one year. Suppose that the number of claims from each policy will be either
zero or one. Then we can model the aggregate claim amount, denoted A,
from these policies as:

A = Y, + Y2 +...+ Yn

where Yj denotes the amount the insurer pays out under the jth policy. This
model is referred to as the individual risk model, as the aggregate claim
amount is modelled in terms of payments (zero or otherwise) under
individual policies. De Pril (1986) shows how the distribution of A can be
calculated recursively. Although this recursion formula is exact, it can be
computationally intensive when n is large. Several modifications to this
recursion have been suggested; see, for example, De Pril (1988). An
alternative to an exact calculation is an approximate calculation using
Panjer's recursion formula, as follows.

Let qj denote the probability that a claim occurs under the jth policy. The
amount of that claim is modelled as a random variable with distribution
function Pj (x). The distribution of the number of claims from this policy is
binomial with parameters 1 and qj. We can approximate this binomial
distribution by a Poisson distribution with parameter q}, which means that
the true compound binomial distribution of Y} is approximated by a
compound Poisson distribution. The reason for making this approximation is
that the sum of independent compound Poisson random variables is a
compound Poisson random variable (see, for example, Bowers et al. (1986),
Theorem 11.1), whereas we cannot say what the distribution of the sum of
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independent compound binomial random variables is. The approximate
distribution of A is compound Poisson with Poisson parameter:

and individual claim amount distribution:

Q(x) = t <1JPJ(X)/^ (5-1)

Given this compound Poisson distribution, we can now apply Panjer's
recursion formula as in Section 3.

Example 3
A pension scheme provides a death in service benefit to its members. The

table below shows the mortality rate and death benefit for members of the
scheme at the start of a year.

Mortality rate

0.0006

0.0006

0.0006

0.0007

0.0007

0.0007

0.0008

0.0018

0.0026

0.0026

0.0030

0.0030

0.0034

0.0038

0.0084

Death benefit (£000s)

38

42

45

40

40

42

45

53

48

74

48

55

75

57

78
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0.995 -

S 0.98

Exact distribution

* Approximate distribution

40 SO 60

Total benefit amount (in 000's)

70 90

Figure 4. The exact and approximate aggregate claims distributions from
Example 3

Using the method described above, we can easily compute the approximate
distribution of total death benefits in the year by Panjer's recursion formula.
The Poisson parameter is just the sum of the mortality rates, i.e. 0.0333, and
the individual claim distribution Q(x) is easily calculated, since the value of
each Pj(x) in formula (5.1) is 0 for values of x below the death benefit, and 1
thereafter. Figure 4 shows both exact and approximate values of the
distribution function. This graph shows that the compound Poisson
distribution provides a good approximation to the true distribution.

Kuon, Reich & Reimers (1987) conclude that this approximation method
is sufficiently accurate for practical purposes, and that it has a significant
advantage over an exact calculation in terms of computer time required. The
accuracy of the approximation is discussed by De Pril & Dhaene (1992), who
provide error bounds for the approximation.

6. CONCLUDING REMARKS

In the previous three sections we have illustrated applications of Panjer's
recursion formula. In each case it is a straightforward exercise to write a
computer program to implement the recursion formula. The recursion
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formula is a simple, but powerful tool for the calculation of compound
distributions.

All of the ideas contained in this paper are explored in greater depth in the
actuarial literature. Panjer & Willmot's (1992) book deals with the
calculation of the aggregate claims distribution for an insurance portfolio,
and includes a variety of models which allow recursive calculation of this
distribution. This book also contains an extensive bibliography. Panjer &
Wang (1993) discuss the stability of the recursion formula. They show that
when N has a Poisson or negative binomial distribution the recursion
formula is stable. When N has a binomial distribution the recursion formula
is unstable, but can still be applied to most practical problems.

Panjer's recursion formula has been generalised for counting distributions
of which formula (2.1) is a special case. Sundt & Jewell (1981) consider
distributions satisfying:

Pn = {a + -jPn-i for n = 2,3,4,...

and Willmot (1988) discusses numerical evaluation of the resulting
compound distributions. Schroter (1991) considers distributions satisfying:

pn = (a + -)pn-i + °-pn-2 for n = 1,2,3,...

and Sundt (1992) further generalises to distributions satisfying:

Pn = l(a, + %)pn-i forn = 1,2,3,...

with pn = 0 for n < 0 in each case. Both authors derive recursion formulae
for gk which generalise Panjer's result.

Other related papers of interest include Biihlmann (1984), who compares
the computation of aggregate claims distributions by fast Fourier transforms
and by the recursion formula, and Kuon, Reich & Reimers (1987) who
compare different methods of computing the aggregate claims distribution for
the individual risk model.
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APPENDIX

Throughout this appendix we assume that f0 > 0. We prove formulae
(2.3) and (2.4) rather than Panjer's recursion formula, which is found by
setting / 0 = 0 in these formulae. We start by stating and proving two
auxiliary results.

Result 1

Proof of Result 1
Since X1,X2,-..,Xn are i.i.d.:

£xt = k] = EIX1 _£*,. = k\ for j

hence:

£ £ X, = k] = E\£ XJ £xt = k\ = k

and the result follows.

Result 2
For n = 2,3,4,... :

' •=!

Proof of Result 2
The result comes from noting that for j = 0,1,. . . ,fc:

! = 7 and £ X; = /c -
f " "1

Pr ! * , = *
U=i J

and so:

E * i t x, = k\= tjfjfi'-j^
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Proof of Formulae (2.3) and (2.4)
To prove (2.3), first note that / £ = P r f ^ + X2 + ... + Xn = 0] = fn

0

since {Xi}^=1 is a sequence of i.i.d. random variables. Hence:

g0 = Pr[S = 0] = p0 + £ Pr [N = n]Pr [S = O|JV = n]

= Po + Z P*/o = I Pn/"o-

For fc = 1,2,3, . . . :

= ( a + b)pofk + V i a J - — 1 " ^(" + 1)*__ KnJ k
n = l '

Now / 1 " + 1 ) * = X fjfk-j a n d by Results 1 and 2:

^ f(«+D* _ V if f*
^ y - / * ~ 2̂  JJjJk-y

Hence:

j = 0

(a + b)pofk + zfa + ̂ Afjf, pnft-j
j=0\ KJ

k-l /k-l / , A

= (a + b)pofk + E (a + J)fjgk-j + (a + b)fk(g0 - p0)

https://doi.org/10.1017/S1357321700000969 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000969

