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Shock reflection experiments are performed to study the large-scale convective mixing
created by the forward jetting phenomenon. Experiments are performed at a wedge angle
of θw = 30◦ in nitrogen, propane–oxygen and hexane with incident shock Mach numbers
up to M = 4. Experiments are complemented by shock-resolved viscous simulations of
triple-point reflection in hexane for M = 2.5 to 6. Inviscid simulations are performed
over a wider range of parameters. Reynolds numbers up to Re � 103 are covered by
simulations and Reynolds numbers of Re ∼ 105 are covered by experiments. The study
shows that as the isentropic exponent is lowered, and as the Mach number and Reynolds
number are increased, the forward jet approaches the Mach stem, forms a vortex,
deforms the shock front and in some cases bifurcates the Mach stem. Experiments show
that Kelvin–Helmholtz instabilities in the vortex cause large-scale convective mixing
behind the Mach stem at low isentropic exponents (γ ≤ 1.15). The limits of Mach stem
bifurcation (triple Mach–White reflection) in inviscid simulations are plotted in the phase
space of M–θw–γ . A maximum isentropic exponent of γ ≈ 1.3 is found beyond which
bifurcation does not occur (at θw = 30◦). This closely matches the boundary between
irregular and regular detonation cellular structures.

Key words: detonation waves, gas dynamics, shock waves

1. Introduction

One major category of shock reflection is the Mach reflection, illustrated in figure 1. It is
composed of three shocks: the incident, reflected and Mach shocks, and a slip line joined
at the triple point. The slip line separates gas shocked by the incident and reflected shocks
from gas shocked by the Mach shock (Mach stem). Under certain conditions (Hornung
1986; Henderson et al. 2003), the slip line curls towards the Mach stem and forms a
forward jet. As the isentropic exponent is lowered or the Mach number is increased (Mach
2011), the head of the forward jet approaches the Mach stem, eventually causing it to bulge,
kink or even bifurcate, meaning a new triple point is formed on the Mach stem. The jet
rolls up into a large vortex behind the Mach stem.

† Present address: Department of Chemistry and Chemical Engineering, Royal Military College,
11 Crerar Crescent, Kingston, Ontario K7K 7B4, Canada. Email address for correspondence:
shem.lau-chapdelaine@rmc.ca

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-1541-6183
https://orcid.org/0000-0002-2752-9313
mailto:shem.lau-chapdelaine@rmc.ca
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.731&domain=pdf
https://doi.org/10.1017/jfm.2020.731


908 A18-2 S. S.-M. Lau-Chapdelaine, Q. Xiao and M. I. Radulescu

Incident shock

Reflected (transverse) shock

Triple point

Mach stem

Mach stem

bifurcation

Mach stem

bulge

Head of jetForward jet

Jet vortex

Kelvin–Helmholtz

instability

Axis of symmetry

(or wall)

Slip line (contact surface)

Bow shock

θw

FIGURE 1. Illustration of a Mach reflection with Mach stem bifurcation.

The configuration of shock reflection depends on three parameters: the Mach number
M, angle of reflection (i.e. wedge angle θw) and the isentropic exponent (heat capacity
ratio) γ . Classifications of shock reflection types are presented in the works of

Ben-Dor (2007), Vasilev, Elperin & Ben-Dor (2008) and Semenov, Berezkina &
Krassovskaya (2012) and thorough reviews on shock reflections have been written by
Hornung (1986) and Ben-Dor (2007).

The parameters that lead to forward jet and vortex formation are typical of hydrocarbon
detonations (i.e. low γ , high M). These phenomena are important to understanding
the multidimensional instability and propagation limits of detonations. For instance, the
forward jet (Sorin et al. 2009) and vortex are believed to accelerate reaction rates through
large-scale mixing (Maley et al. 2015), while Mach stem bifurcation caused by the jet is
postulated (Radulescu et al. 2009) to be a source of new detonation cells.

In this study, inert shock reflection simulations and experiments are used to investigate
the cause of large-scale mixing in shock reflections as they pertain to detonations.
Particular attention will be placed on the role of the forward jet and the jet–shock
interaction. The simulations and experiments are designed to overcome some of the
challenges posed by traditional wedge reflection configurations.

There is conflicting evidence on the prominence of the jet and vortex, or the conditions
under which they affect the shape of the shock front. Comparisons of experiments and
inviscid simulations (Glaz et al. 1985a,b) have found that the Mach stem bulges more in
simulations than experiments. Bulging can become severe enough to cause Mach stem
bifurcation in inviscid simulations (e.g. Mach 2011) but has only been observed in a few
experiments (Semenov, Berezkina & Krasovskaya 2009b; Mach & Radulescu 2011; Maley
et al. 2015).

The fundamental issue with the Euler equations, often used to model shock reflections
and detonations, is that they do not converge in multidimensional cases featuring slip
lines (Samtaney & Pullin 1996). The shock reflection and forward jet behave differently
depending on the numerical scheme and grid layout (Quirk 1992; Lau-Chapdelaine &
Radulescu 2013) as they differ in how artificial diffusion is introduced. The shortcomings
of the Euler equations are overcome in this study by use of the Navier–Stokes equations.

Implementation of the reflecting surface also poses problems. In simulations, surfaces
oblique to the grid alter the reflection configuration depending on how they are
implemented (Ben-Dor et al. 1987; Lau-Chapdelaine & Radulescu 2013). This will be
avoided by using triple-point reflections (Lau-Chapdelaine & Radulescu 2016) from
grid-aligned surfaces.
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FIGURE 2. Diagram of the shock tube with a depth of 1.91 cm; optical access throughout
the third section; the chevron had an 80◦ inner apex, 60◦ outer apex, 15 cm outside edges.
(a) Apparatus. (b) Transmitted and incident shocks in the test section, (c) Subsequent shock
reflection.

Boundary layers on the reflecting surface change the effective wedge angle (Hornung
1985; Ben-Dor 2007) and cause the forward jet to oscillate (Vasilev et al. 2004; Shi et al.
2017). While most simulations use free-slip boundaries, the few experiments (Smith 1959;
Henderson & Lozzi 1975; Higashino, Henderson & Shimizu 1991; Barbosa & Skews
2002) performed with free-slip surfaces were focused on the transition from regular to
irregular reflection. Shock reflections in detonations happen on a symmetry boundary,
where boundary layers are absent, and there is a need for experiments to explore jetting
under these conditions.

In this study, well-posed experiments and simulations are used to explore the conditions
that lead to a strong forward jet, vortex and jet–shock interaction. This is done
through experiments of shock reflection from a plane of symmetry, shock-resolved
Navier–Stokes simulations and inviscid simulations. Viscous simulations are performed
at Reynolds numbers up to Re ∼ 103 and experiments up to ∼105. For comparison,
detonations in stoichiometric hydrogen–oxygen, methane–oxygen and propane-oxygen
under atmospheric conditions have been estimated to reach Reynolds numbers of ∼105

to 106 on cellular length scales (Lau-Chapdelaine & Radulescu 2016). The effects of
Reynolds number, Mach number and isentropic exponent on the forward jet, the flow field
behind the Mach stem and the shock front are scrutinized. Conditions where jet–shock
interactions become important are determined and their boundaries are reported.

The experiments are addressed in § 2 followed by numerical simulations in § 3. The
discussion is found in § 4 and the conclusion in § 5.

2. Experiments

2.1. Experimental technique
Experiments were carried out in a detonation-driven aluminium shock tube illustrated in
figure 2(a) and described by Maley (2015). The shock tube measured 3.48 m in length and
had a rectangular cross-section measuring 20.32 cm tall by 1.91 cm in depth. A diaphragm
separated the driver and test sections.
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Experiment Test mixture T̂0 (◦C) p̂0 (kPa) l̂d (m) λ̂0 (μm) γ0 Mc Figures Movie

1 N2 20.5 3.7 1.85 1.8 1.40 2.4 3(a) to 3(c) 1
2 N2 19.0 3.4 1.85 1.9 1.40 3.0 3(d) to 3( f ) 2
3 N2 20.5 3.8 1.85 1.7 1.40 3.5 3(g) to 3(i) 3
4 0.8C3H8 + 0.2O2 21.0 6.96 1.85 0.407 1.15 2.4 4(a) to 4(c) 4
5 0.8C3H8 + 0.2O2 22.0 3.5 1.85 0.81 1.15 2.9 4(d) to 4( f ) 5
6 0.8C3H8 + 0.2O2 21.5 3.9 1.85 0.74 1.15 3.5 4(g) to 4(i) 6
7 C6H14 20.0 2.6 1.85 0.51 1.06 2.5 5(a) to 5(c) 7
8 C6H14 22.5 2.6 1.85 0.52 1.06 2.7 5(d) to 5( f ) 8
9 C6H14 23.0 2.3 1.85 0.56 1.06 3.4 5(g) to 5(i) 9
10 0.8C3H8 + 0.2O2 23.0 14.3 0.32 0.199 1.15 4.0 6(a) to 6(c) 10
11 C6H14 23.5 ∼3.5 0.68 0.38 1.06 4.0 6(d) to 6( f ) 11

TABLE 1. Experimental conditions.

The shock tube was evacuated to �80 Pa before gases were introduced. The driver
section was filled with stoichiometric ethylene–oxygen (C2H4 + 3O2). The test section
was filled with a gas selected for its isentropic exponent, listed in table 1. Nitrogen was
used for γ0 = 1.4, an inert rich-propane–oxygen mixture (0.8C3H8 + 0.2O2) for γ0 = 1.15
and normal hexane for γ0 = 1.06. The subscript 0 refers to the unshocked state.

Experiments were initiated with a spark that ignited the driver gas. A mesh of obstacles
in the first third of the shock tube promoted detonation initiation in the driver section. The
detonation ruptured the diaphragm, transmitting a shock into the test section.

The diaphragm was composed of aluminium foil covered by aluminium tape on the test
gas side. An ‘I’-shaped slot matching the channel dimensions was cut through the tape.
The foil separated the driver and test gases and opened along the slot in the tape when hit
by the detonation. The tape kept the foil in place during opening, preventing diaphragm
petals from polluting the test section with large fragments, though small fragments still
formed. Experiment 10 used a plastic sheet as a diaphragm (an exception, from the
diaphragm selection process).

The transmitted shock travelled through the test gas to a chevron-shaped obstacle. The
top and bottom portions of the shock diffracted past the chevron (figure 2b) and reflected
from each other at the trailing edge (figure 2c). The chevron tip was located in the last third
of the shock tube at a distance l̂d from the diaphragm, listed in table 1. The chevron limbs
measured 15 cm on the outside and had a 60◦ outer apex. This made for reflection with
a wedge angle of θw = 30◦. The geometry was chosen to approximate the angle between
shocks at the end of a detonation cell (Strehlow & Biller 1969; Austin 2003; Radulescu
et al. 2009; Bhattacharjee 2013).

Glass walls on the last third of the shock tube allowed optical access. A Z-type schlieren
with a vertical knife edge was used to capture high-speed movies with a Phantom v1210
camera at 77 481 frames per second with 0.468 μs exposures and a resolution of 384 × 288
pixels. The movies were centred downstream of the chevron with the trailing edge in view.

The strength of the shock interacting with the obstacle was controlled by the pressure
ratio between driver and test gases. It was also affected by the distance between the
diaphragm and chevron, and the diaphragm construction. Higher pressure ratios, shorter
separation distances and fewer layers of tape made for stronger shock waves.
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FIGURE 3. Schlieren photographs of nitrogen experiments (γ0 = 1.4, θw = 30◦): (a) Mc = 2.4;
(b) Re = 1.9×104, t̂ = 64.5 μs; (c) Re = 1.1×105, t̂ = 232 μs; (d) Mc = 3.0; (e) Re = 2.3×104,
t̂ = 51.6 μs; ( f ) Re = 1.5×105, t̂ = 194 μs; (g) Mc = 3.5; ( h) Re = 2.5×104, t̂ = 38.7 μs;
(i) Re = 1.9×105, t̂ = 168 μs.

2.2. Experimental results
Experimental results are shown in figures 3, 4 and 5. They are a sample of the experiments
performed. Movies are supplied as supplementary movies available at https://doi.org/10.
1017/jfm.2020.731.

Each row of the figures shows three snapshots from one experiment. The first frame is
taken immediately before reflection, and the two subsequent frames are taken from later
times. The Mach number Mc noted in the figures is the shock strength on the chevron
surface prior to reflection, calculated using the averaged shock spacing between frames,
the inter-frame delay and sound speed of the unshocked gas. The channel height of
0.2032 m is used to scale the photographs. Each row corresponds to a different experiment.

The schlieren photographs show horizontal density gradients. Bright features indicate
an increase of density from left to right, and vice versa.

2.2.1. Experiments in nitrogen (γ0 = 1.4)
Figure 3(a) shows a schlieren photograph of an experiment in nitrogen gas, γ0 = 1.4,

immediately before shock reflection. The dark curves are two shocks that have diffracted
over the obstacle, travelling to the right at Mc = 2.4. These form the incident shocks for
the reflection in the following frames. The asymmetry in shock strengths prior to reflection
was typically below 5 % of Mc. The flow field is shown 64.5 μs later in figure 3(b).
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FIGURE 4. Schlieren photographs of propane–oxygen experiments (γ0 = 1.15, θw = 30◦):
(a) Mc = 2.4; (b) Re = 1.2×105, t̂ = 90.3 μs; (c) Re = 7.3×105, t̂ = 310 μs; (d) Mc = 2.9;
(e) Re = 7.9×104, t̂ = 77.4 μs; ( f ) Re = 3.7×105, t̂ = 219 μs; (g) Mc = 3.5; ( h) Re =
7.9×104, t̂ = 64.5 μs; (i) Re = 3.8×105, t̂ = 168 μs.

Single Mach reflections are formed with a nearly straight Mach stem. Slip lines emanate
from the triple points and curl towards the Mach stem near the axis of symmetry. The flow
field 232 μs after reflection is shown in figure 3(c). The Mach stem has grown to occupy
most of the channel and has curved due to unsteadiness. Kelvin–Helmholtz instabilities
have appeared along the slip lines.

The Mach number is increased to Mc = 3.0 in the next experiment by increasing
the pressure ratio between driver and test gas. A transitional Mach reflection is formed
(figure 3e) and transitions to a double Mach reflection (figure 3f ), seen by the formation
of a secondary triple point and reflected shock where there was previously a kink. The slip
line curls into a forward jet that is longer and closer to the Mach stem than before.

A double Mach reflection is formed (figure 3h) in the next experiment, at Mc = 3.5, and
vorticies begin to form at the head of the jet (figure 3i).

2.2.2. Experiments in propane with oxygen (γ0 = 1.15)
The set of experiments in figure 4 are performed for the same Mach numbers but with a

lower isentropic exponent of γ0 = 1.15, by changing the test gas to rich-propane–oxygen.
Double Mach reflections are seen in all cases.

At Mc = 2.4 (figure 4b), the slip lines curl forward into a forward jet (figure 4c) that is
more distinct and closer to the Mach stem than of all the γ0 = 1.4 cases. The jet terminates
with a vortex. Kelvin–Helmholtz instabilities on the slip line are entrained into the jet.
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FIGURE 5. Schlieren photographs of hexane experiments (γ0 = 1.06, θw = 30◦): (a) Mc = 2.5;
(b) Re = 1.1×105, t̂ = 129 μs; (c) Re = 6.8×105, t̂ = 426 μs; (d) Mc = 2.7; (e) Re = 5.1×104,
t̂ = 103 μs; ( f ) Re = 5.2×105, t̂ = 323 μs; (g) Mc = 3.4; ( h) Re = 1.0×105, t̂ = 90.3 μs;
(i) Re = 7.5×105, t̂ = 258 μs.

At Mc = 2.9 (figure 4e), the vortex at the head of the forward jet (figure 4f ) has a rough
appearance caused by the entrainment of Kelvin–Helmholtz instabilities which create a
turbulent substructure.

Increasing the Mach number to Mc = 3.5 causes triple points to form on the diffracting
shocks (figure 4g). These triple points are a result of the diffraction process (Skews 1967).
After reflection (figure 4i), the forward jet impinges on the Mach stem, causing it to
deform, bulge along the centre line and possibly bifurcate. A large portion of the region
behind the Mach stem has a turbulent appearance.

2.2.3. Experiments in hexane (γ0 = 1.06)
The isentropic exponent was lowered to γ0 = 1.06 by employing n-hexane as the test

gas. The double Mach reflection formed at Mc = 2.5 (figure 5c) is qualitatively similar
to the Mc = 2.9, γ0 = 1.15 case (figure 4f ). Kelvin–Helmholtz instabilities appear close
to the triple point and are entrained into the jet vortex, giving it a turbulent appearance
that is distinct from the rest of the comparatively smooth-looking region behind the Mach
stem. This rough, turbulent appearance of the vortex is present in all experiments where
Mc ≥ 2.5 and γ0 = 1.06.

The four triangular protrusions from the incident shocks seen in figure 5(c) are
small diaphragm shards that have overtaken the shock. This occurs because the highly
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FIGURE 6. Schlieren photographs of experiments at a larger Mach number (Mc = 4.0, θw =
30◦; (a–c): propane–oxygen; (d–f ): hexane): (a) γ0 = 1.15; (b) Re = 2.2×106, t̂ = 103 μs;
(c) Re = 4.7×106, t̂ = 219 μs; (d) γ0 = 1.06; (e) Re = 5.8×105, t̂ = 103 μs; ( f ) Re = 2.3×106,
t̂ = 258 μs.

compressible (low isentropic exponent) layer of gas between the shock and driver–test gas
interface is thinner than in the other gases, which allows spall from the diaphragm to catch
up to the shock front.

The Mach stem becomes shorter when the Mach number is increased to Mc = 2.7,
making it difficult to see the flow field behind the shock front at early times (figure 5e).
A forward jet that impinges on the Mach stem becomes visible as the reflection grows
(figure 5f ). The forward jet in the following experiment, Mc = 3.4, reaches the Mach stem
and causes it to deform and possibly bifurcate (figure 5i).

The schlieren photographs in the last two cases (figure 5d–i) have a textured appearance
behind the Mach stem, incident and reflected shocks that is absent from the comparably
smooth-looking flow fields seen all the previous cases, vortex aside. The textured
appearance makes it difficult to observe fine features and suggests there is a flow instability
present. This instability is not caused by the presence of driver gas, is discussed in §§ 2.2.4
and 4.4 and the appendix.

2.2.4. Experiments at a larger Mach number
In order to increase the Mach number further, the distance between the diaphragm and

the chevron had to be shortened. The results are shown in figure 6.
In both gases, double Mach reflections are formed with Mach stems that are taller

than expected from the previous cases. This is due to the influence of the driver–test gas
interface. The forward jets reach the Mach stem and cause them to curve and bifurcate,
seen in the last column of figure 6.

Moving the diaphragm too close to the chevron causes the driver gas to interfere with the
reflection. All of the previous experiments (figures 3 to 5) are not affected by the presence
of the driver gas. This is evidenced by the fact that their bow shocks (i.e. the horizontal
reflected shocks between the triple point and chevron, see figure 5h) remain intact and
attached to the chevron. These shocks are absent in figure 6 where contamination by the
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xtp = (xtp1 + xtp2)/2

xtp1

xtp2

xstem
2h

FIGURE 7. Definitions of xtp, xstem and h.

high-sound-speed driver gas causes them to disperse. Simulations in the appendix support
that the driver–test gas interface is far from the leading shock in the previous experiments.

2.2.5. Summary of experimental results
A series of experiments were performed with Re ∼ 105 to 106, Mc = 2.4 to 4 and γ0 =

1.4 to 1.06. The experiments show that decreasing the isentropic exponent and increasing
the Mach number cause a transition from single Mach reflection, to transitional Mach
reflection, onto double Mach reflection. The forward jet and vortex gradually become
stronger and eventually deform the Mach stem as the isentropic exponent decreases
and the Mach number is increased. Concurrently, Kelvin–Helmholtz instabilities become
entrained in the vortex, resulting in a turbulent structure behind the Mach stem in the cases
with lower isentropic exponents.

2.2.6. Mach stem bulging
The size or ‘strength’ of the forward jet and vortex is difficult to measure at moderate

Mach numbers (�3) and low isentropic exponents (≤1.15) due to the short Mach stems
and the rough appearance of the photos behind the shock front. The bulging of the Mach
stem foot is measured instead, as a proxy of the jet’s strength. Bulging is measured as the
horizontal distance between the rightmost point of the Mach stem (xstem) and the triple
point (xtp, averaged between the top and bottom triple points), and normalized by the
Mach stem height h (see figure 7). Bulging, (xstem − xtp)/h, is plotted against the Reynolds
number in figure 8. Each point corresponds to one frame from the movies.

The Reynolds number for a Mach reflection was defined as

Re = ushear

νmean
h (2.1)

by Rikanati et al. (2006, 2009) to study Kelvin–Helmholtz instability along the slip line.
Here ushear is the velocity difference across the slip line and νmean is the kinematic viscosity
averaged across the slip line. This definition takes into account the velocity and viscosity
across the slip line (which forms the forward jet) where diffusion is expected to be
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FIGURE 8. Evolution of the Mach stem bulging in experiments: (a) γ0 = 1.4; (b) γ0 = 1.15;
(c) γ0 = 1.06.

γ0 1.4 1.15 1.06

Mc 2.4 3.0 3.5 2.4 2.9 3.5 4.0 2.5 2.7 3.4 4.0

Re/ĥ (mm−1) 1602 2138 2797 14 490 11 171 17 635 79 818 18 523 22 926 38 219 78 506

TABLE 2. Estimate of Reynolds number growth rates.

important, and the Mach stem height h provides an easily measured characteristic length
scale.

Three shock theory is used to get analytical estimates of the shear velocity and viscosity,
which are assumed constant. The inputs required for the calculation are the wedge
angle θw = 30◦, isentropic exponent γ0, incident shock strength Mc and the unshocked
temperature and pressure listed in table 1. The estimates for ûshear/ν̂mean = Re/ĥ are listed
in table 2, giving Reynolds numbers as a function of Mach stem height. The Mach stem
height is measured directly from experiments as half the vertical distance between triple
points. For example, the distance between triple points in figure 3(b) is 2ĥ = 24 mm, and
Re/ĥ = 1602 mm−1 (table 2), yielding a Reynolds number of Re = 19 000.

In a self-similar pseudo-steady reflection, Mach stem bulging would draw a horizontal
line in figure 8. However, the incident shocks are curved in these experiments, causing
the reflection angle and shock strength to change continuously, leading to more bulging as
Reynolds number increases.

Bulging is approximately equal in all gases at Mc ≈ 2.5 and is independent of Mach
number in the γ0 = 1.4 experiments because the jet never reaches the shock front. The
additional bulging in the γ0 = 1.15 and γ0 = 1.06 gases at higher Mach numbers is
caused when the forward jet approaches or contacts the Mach stem. Jetting becomes strong
enough to cause bulging when the isentropic exponent is sufficiently low (γ0 ≤ 1.15) and
the Mach number is sufficiently large (Mc � 3). The vortex is turbulent in these cases.

3. Numerical prediction

The experiments were limited to moderate Mach numbers and large Reynolds numbers.
Numerical simulations will now be used to elucidate the flow field at early stages of the
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reflection and at higher Mach numbers. The numerical study is an extension of the work
by Lau-Chapdelaine & Radulescu (2016).

3.1. Numerical technique
The two-dimensional, laminar, unsteady Navier–Stokes equations for a calorically perfect
gas were used. A Prandtl number of 3/4 was used for all the simulations and the isentropic
exponent was uniform throughout the domain. Bulk viscosity was neglected, and viscosity
and heat conductivity were assumed to be power laws of temperature and a known
reference state:

μ̂ = μ̂ref

√√√√ T̂

T̂ref

and k̂ = k̂ref

√√√√ T̂

T̂ref

. (3.1a,b)

The equations were non-dimensionalized using the unshocked gas (subscript 0) as
reference state (subscript ‘ref ’):

ρ̂ref = ρ̂0, p̂ref = p̂0, T̂ref = T̂0, x̂ref = λ̂0 = μ̂0

p̂0

√
πR̂sT̂0

2
, (3.2a–d)

where ρ is density, p is pressure, T is temperature, x is the spatial dimension, Rs is the
specific gas constant and the circumflex (hat) indicates dimensional variables. The spatial
dimension was non-dimensionalized by the mean free path in the unshocked gas λ̂0, listed
in table 1 for the experimental conditions, and time was non-dimensionalized by t̂ref =
λ̂0

√
ρ̂0/p̂0 for consistency.

The Navier–Stokes equations are valid in the continuum regime (Knudsen number
Kn = λ/L < 0.01, where L is a characteristic length scale), and in the slip flow regime
(0.01 < Kn < 0.1), where special conditions are required near walls (Faghri & Zhang
2006). Because shock reflection from a symmetry condition is studied instead of reflection
from a wall, the Navier–Stokes equations remain valid in the slip flow regime. The
simulations that are presented in the next section (figure 12, at Re ≈ 1000) have Knudsen
numbers of λ0/h = 0.009 to 0.06 in the unshocked gas and λM/h = 0.001 to 0.003 behind
the Mach shock, where the slip line and forward jet lie, which are well within the validity
range of the Navier–Stokes equations.

The equations were solved using the mg software package developed by Falle (Falle
1991; Falle & Komissarov 1996). A second-order Godunov scheme using a monotonized
central symmetric flux limiter (Van Leer 1977) solved convective terms, and diffusion was
solved explicitly in time with second-order central differences in space.

A Cartesian grid with adaptive mesh refinement (Sharpe & Falle 2011) was used. The
mesh was refined by a factor of two in both directions whenever a relative tolerance of
1 % was exceeded between existing mesh levels for density, pressure or velocity. The
refinement was extended five to ten cells in all directions from the cell needing refinement.
Figure 9 shows the resulting adaptive mesh in viscous and inviscid simulations. A maximal
resolution of 16 points per mean free path in the unshocked gas was used. Under the
conditions of experiment 9, for example, the mean free path of the test gas was 0.56 μm
(before being shocked). At maximum resolution, the distance of one mean free path is
covered by up to 16 grid points, resulting in a maximum resolution of 16 grid points per
0.56, or 0.035 μm between every grid point. Figure 10 shows this resolution is sufficient
to accurately reproduce shock wave thickness.
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FIGURE 9. Adaptive computational mesh overlayed on a temperature plot (M = 3.5, γ = 1.06,
t = 132). (a) Viscous and (b) inviscid.
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FIGURE 10. Comparison of shock profiles evolved from a discontinuity to t = 4 at different
resolutions and the steady solution of the Navier–Stokes equations (M = 3.5, γ = 1.06).

The Navier–Stokes shock structure recovers the experimental and direct simulation
Monte Carlo results at low Mach numbers but deteriorates at moderate and higher Mach
numbers (Uribe & Velasco 2018). The lack of phenomenological models that can recreate
the strong shock structure remains an open problem. The purpose of using shock-resolved
Navier–Stokes simulations is to remove the solution’s dependence on solver type and to
ensure the correct Navier–Stokes solution is reached for all larger features, such as the slip
line, forward jet, vortex and their interaction with the shock front. It also provides properly
resolved results for future shock reflection studies which may seek to compare other
models or simulations with reduced resolutions. Simulating shock reflection using direct
simulation Monte Carlo methods would be a further improvement, but these are even more
computationally demanding. The Navier–Stokes simulations require much computational
time due to the high resolution and the viscous Courant–Friedrichs–Lewy (CFL) criterion.
As a result, the viscous simulations were limited to γ = 1.06. Reflections at this isentropic
exponent have short Mach stems which permits the use of small domains, and their
Reynolds numbers grow quickly thus necessitating fewer time steps. The maximum time
step size was determined using the CFL condition with CFL = 0.4 on the refined meshes.

The initial conditions consisted of a triple-shock, calculated using the ideal three shock
theory, whose triple point was imposed above a symmetry boundary, as illustrated in
figure 11(a). The large arrows point from the post-shock state to the pre-shock state. The
initial conditions can be recreated using the data from table 3 employing the shock Mach
numbers with the Rankine–Hugoniot equations, the angles w between discontinuities and
the reference frame speed u0 (post-reflection Mach stem speed, calculated using three
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FIGURE 11. Initial and boundary conditions of simulations, and triple-shock reflection; 0©
unshocked state, 1© pre-reflection incident shock state, 2© pre-reflection transverse shock state,
3© pre-reflection Mach shock state and post-reflection incident shock state. (a) t = −1: initial and

boundary conditions; (b) t = 0: triple point reaches reflecting surface; (c) t > 0: Mach reflection
forms and grows; (d) t � 0: pre-reflection features leave domain.

MM,pre Mi,pre Mr,pre u0 w1 w2 w3

2.5 2.03663 1.22304 −3.14027 104.462◦ 44.6553◦ 60.8829◦
3 2.45729 1.21608 −3.74700 118.124◦ 36.2915◦ 55.585◦
3.5 2.45762 1.21592 −3.74647 118.108◦ 36.2434◦ 55.6491◦
4 3.30702 1.20460 −4.95286 140.018◦ 24.1620◦ 45.8199◦
5 4.16138 1.19658 −6.15981 141.205◦ 23.5999◦ 45.1955◦
6 5.01458 1.19159 −7.36482 145.904◦ 21.2707◦ 42.8248◦

TABLE 3. Initial conditions for triple-shock simulations (see figure 11); pre-reflection shock
Mach numbers are listed so Mi = MM,pre; γ = 1.06, v0 = 0, p0 = 1, ρ0 = 1, w0 = 150◦.

shock theory). Using a triple shock as initial condition does away with non-physical
leaky boundary conditions and provides an unambiguous way to pose the problem
(Lau-Chapdelaine & Radulescu 2016). It also closely resembles triple-shock reflections
in detonations.

In this configuration, the triple point initially moves downwards and to the left
(figures 11a to 11b) because the pre-reflection incident shock is slower than u0. The initial
distance of the triple point above the symmetry boundary was chosen to allow the viscous
shock structures to develop before reflection. The triple point reaches the origin on the
symmetry boundary at t = 0 (figure 11b) and reflects. The pre-reflection Mach stem (the
oblique shock between states 0© and 3©, figure 11b) becomes the post-reflection incident
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shock and a Mach reflection is formed (figure 11c). The pre-reflection slip line, incident
and transverse shocks are washed out to the left because they travel slower than the frame
of reference (figures 11c to 11d).

The top and right boundaries were functions of time, moving the initial shock and slip
line states along the boundaries. An outflow condition with zero normal gradient was used
on the left boundary. The domain was sized to fit the double Mach reflection structure
at the target simulation time. The remaining parts of the reflection (e.g. bow shock;
figure 11d) were allowed to flow out of the domain. Comparison of different domain sizes
showed the domains chosen were sufficiently large to have no effect on the phenomena
being studied.

The target simulation time was found for a desired Reynolds number of Retarget = 1000,
defined in (2.1). The Mach stem height was estimated a priori from three shock theory
as h = tan(χ)MMc0t, with post-reflection triple-point path angle χ , post-reflection Mach
stem Mach number MM and unshocked sound speed c0. This yields an expression for the
target time:

ttarget = νmean

ushear tan(χ)MMc0
Retarget, (3.3)

where νmean and ushear are also estimated from three shock theory. The solution was
exported at fixed time steps throughout the simulation. Reaching the target time for
Mi = 2.5 in a domain measuring 352 × 192 λ0 took approximately 20 days on 60 AMD
Opteron 6282 processor cores with a coarse grid of 22 × 12 cells and 8 levels of
refinement, for a finest possible grid of 5632 × 3072 cells. The computational resources
limited the scope of simulations to Re ∼ 103, smaller than those of the experiments by
a factor of 10 to 103, because the computational effort scales with the cube of the target
Reynolds number. The gap between shock-resolved viscous simulations and experiments
remains to be bridged.

Inviscid simulations of triple-shock reflection were performed under the same
conditions, but without viscosity or heat conduction. The same resolution, number of
refinement levels and refinement criteria were used, and they were marched to the same
time as their viscous counterparts.

3.2. Viscous simulation results
Plots of temperature are presented in figure 12. Each row represents one simulation at the
Mach number specified in the first column. The Reynolds number is increased from ≈30
to ≈110 and ≈1000 in each column. The Reynolds number is measured the same way as
in experiments: (2.1) is used with the shear velocity and viscosity from three shock theory
and the Mach stem height is measured from the results. The temperature scales on the right
range from the incident shock temperature to the maximal temperature in the simulation.
They apply to each panel in the row. The panels are cropped to the region of interest around
the jet, vortex and Mach stem.

The triple-shock reflection with an incident shock of Mi = 2.5 is shown in
figure 12(a–c). The Mach stem at Re = 34 is smoothly curved from the triple point to the
reflecting surface and straightens as Reynolds number increases. The forward jet grows
with Reynolds number and develops a vortex by Re ≈ 1000; however, the head of the
forward jet remains far from the Mach stem.

The jet is closer to the Mach stem at Mi = 3.0. The jet reaches the Mach stem and causes
it to bulge when Re ≈ 1000, and eventually bifurcate when Re > 1200. The vortex at the
head of the jet is larger than the previous case.
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FIGURE 12. Temperature plots of viscous simulations (γ = 1.06, θw = 30◦): (a) Mi = 2.5,
Re = 34, t = 12; (b) Re = 114, t = 36; (c) Re = 1014, t = 276; (d) Mi = 3.0, Re = 29, t = 6;
(e) Re = 108, t = 18; ( f ) Re = 993, t = 138; (g) Mi = 3.5, Re = 48, t = 6; ( h) Re = 118,
t = 12; (i) Re = 1022, t = 87; ( j) Mi = 4.0, Re = 32, t = 3; (k) Re = 103, t = 7.5; (l) Re =
1029, t = 60; (m) Mi = 5.0, Re = 31, t=2; (n) Re = 101, t = 4.5; (o) Re = 965, t = 33;
( p) Mi = 6.0, Re = 29, t = 1.5; (q) Re = 106, t = 3.5; (r) Re = 1010, t = 24.
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At Mi = 3.5, the forward jet is strong enough to cause a change of curvature in the Mach
stem by Re ≈ 110, and the Mach stem bifurcates when Re > 440, as seen in figure 12(i).
Only a portion of the Mach stem is straight below the triple point. A new triple point is
located about midway on the Mach stem, below which the Mach stem is curved. The vortex
is large enough that it causes the slip line to deflect downwards. Double Mach reflections
with a Mach stem bifurcation have been classified as triple Mach–White reflections by
Semenov, Berezkina & Krasovskaya (2009a).

The trend continues as Mach number is increased: the jet moves closer to the Mach stem,
causing the Mach stem to deform and bifurcate as early as Re ≈ 200. The jet terminates
in an increasingly large vortex that dominates the space behind the Mach stem. The vortex
grows large enough to interfere with the slip line and flow behind the reflected shock.

3.3. Inviscid simulation results
The Euler equations are typically used to simulate shock reflections and detonations. These
‘inviscid’ simulations suffer from numerical dissipation that depends on grid and scheme,
not a physical phenomenon. However, inviscid simulations are much faster to compute and
offer insight into how the reflection will evolve as Reynolds number becomes very large.

Temperature plots of inviscid simulations are shown in figure 13. The first row shows
results for Mi = 2.5. The inviscid double Mach reflection at t = 12 resembles the viscous
case in figure 12(c), but with Kelvin–Helmholtz instabilities along the slip line and a vortex
that has completed more than one rotation. As time increases, the forward jet and vortex
move closer to the Mach stem, causing a change of curvature on the Mach stem but no
bifurcation. Kelvin–Helmholtz instabilities grow along the slip line, forward jet and vortex.

The following rows of figure 13 show the effect of increasing Mach number. The jet
approaches, deforms and bifurcates the Mach stem; the vortex becomes large enough
to disrupt the slip line, and a shock develops in the forward jet. Kelvin–Helmholtz
instabilities become more prevalent in the vortex, resulting in a heterogeneous temperature
field behind the Mach stem.

At larger Mach numbers (Mi ≥ 4.5) the bifurcation point is disproportionately elevated
at early times (e.g. figures 13j to 13l). Here the bifurcation point moves up-and-down and
the Mach stem foot rocks to-and-fro, leading to instances where the Mach stem bulge
appears flattened, like in figure 13(l). However, the shape of the bifurcated Mach stem
generally remains similar to that in figure 12(r), composed of a straight Mach shock and
round bulge.

3.4. Summary of simulations
The reflection of a triple point from an axis of symmetry was simulated for Mi = 2.5 to 6,
γ = 1.06, θw = 30◦ and Re ≤ 2×103. Reynolds number was found to play and important
role in the development of the shock reflection. Forward jetting and the vortex size
increased with Reynolds number and Mach number. Interaction of the jet with the Mach
stem led to bulging and bifurcation of the Mach stem. Inviscid simulations developed
Kelvin–Helmholtz instabilities and heterogeneous temperature fields in the vortex behind
the Mach stem that were absent from the viscous results. Varying the Mach number led to
the same changes that were seen in experiments.

4. Discussion

The experiments and numerical simulations are compared in the next two subsections.
A qualitative comparison of the shock structures is made in § 4.1, followed by a
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FIGURE 13. Temperature plots of inviscid simulations (γ = 1.06, θw = 30◦): (a) Mi = 2.5,
t = 12; (b) t = 36; (c) t = 276; (d) Mi = 3.0, t = 6; (e) t = 18; ( f ) t = 138; (g) Mi = 3.5, t = 6;
( h) t = 12; (i) t = 84; ( j) Mi = 6, t = 1.5; (k) t = 3.5; (l) t = 24.

comparison of bulging and jetting, and of numerical triple-point paths. Mach stem
bifurcation is compared in § 4.2 then explored in further depth using inviscid simulations.

The reader should remain cognizant of differences between viscous simulations where
Re � 103, inviscid simulations that hint at larger Reynolds numbers and unsteady
experiments where Re ∼ 105. The viscous simulations resemble triple-shock reflections
that occur at the beginning of a detonation cell, and the experiments, which include shock
curvature, are a better representation of the reflection process later in the detonation cell
cycle. Differences between individual simulations and experiments are to be expected.
However, the effects that lead to a strong forward jet, vortex and jet–shock interaction can
be inferred by comparing the three sets of results while considering their similarities, their
trends and the unique ways they differ.

4.1. Comparison of results
Experiments and simulations are qualitatively compared in figure 14. As predicted by three
shock theory and observed in all cases, increasing Mach number shortens the Mach stem
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FIGURE 14. Comparison of viscous (a,d,g) and inviscid (b,e,h) simulations with experiments
(c, f,i) (γ = 1.06, θw = 30◦); scale shown by vertical black bar : (a) Mi = 2.5, Re = 1340;
(b) Mi = 2.5; (c) Mc = 2.5, Re = 6.8×105; (d) Mi = 3.0, Re = 1481; (e) Mi = 3.0; ( f ) Mc =
2.7, Re = 5.2×105; (g) Mi = 3.5, Re = 1600; (h) Mi = 3.5; (i) Mc = 3.4, Re = 7.5×105.

and increases the reflected shock angle w1. More pertinent to this study, increasing the
Mach number also increases the forward jet, vortex and bulging size in all cases. The
forward jet catches up to the shock front (M ≥ 2.7), causing it to deform in the experiment
(Mc = 3.4) and clearly bifurcate in simulations.

The forward jet length, size of the vortex and the shock reflection structure are
qualitatively alike in the inviscid simulations and the viscous simulations at Re > 1000.
However, the inviscid simulations contain Kelvin–Helmholtz instabilities that significantly
change the flow field in the jet and vortex behind the Mach stem. The instabilities cause
rough-looking features in the flow field behind Mach stem in experiments and inviscid
simulations, but are absent from viscous simulations. This means Reynolds number plays
an important role in the development of large-scale mixing behind the Mach stem.

The extent of forward jetting and Mach stem bulging in simulations are quantified in
figure 15 as functions of the Reynolds and Mach numbers. They are measured as the
horizontal distance between the triple point and the jet’s head, or Mach stem position
along the reflecting surface, respectively, and normalized by the Mach stem height. The
amount of viscous bulging on the left of figure 15(a) is compared to the average inviscid
value on the right, sharing the ordinate axis. Figure 15 shows that the viscous Mach stem
and jet overtake the triple point as Mach number and Reynolds number are increased. The
jet size and amount of bulging grow in tandem once the jet passes the triple point. The
amount of bulging converges towards the mean inviscid value.

The Mach stem bulges more in simulations than experiments (figure 8c). While some
difference is to be expected due to the experiments’ unsteadiness and large Reynolds
numbers, the difference remains to be reconciled. It is worth noting that three-dimensional
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FIGURE 15. Evolution of the Mach stem and jet at the reflecting surface from simulations
(γ = 1.06, θw = 30◦); bold points where bifurcation is first observed; error bars at 3 standard
deviations. (a) Mach stem position; left: viscous; right: inviscid. (b) Viscous jet position.

effects caused by the shallow channel depth (19.1 mm) are not responsible for this
difference. In experiment 9, for example, while the shock travels 200 mm from the tip
of the obstacle, boundary layers on the channel windows grow only 0.7 mm (Fay 1959)
from the shock to the rear of the jet. The boundary layers do not intersect across the jet.

Another clear and easily quantifiable measure is the median instantaneous angle χ

between the triple-point path and the horizontal plotted in figure 16. Experimental results
are omitted due to their unsteadiness. The difference between viscous and inviscid
simulations is less than 1◦, suggesting viscosity has little effect on the triple-point path.
Three shock theory underestimates χ in the simulations by 1◦ to 3◦, increasing with Mach
number, which is on a par with its underestimation of experiments (Ando 1981; γ = 1.29).
This may be explained by the idealistic assumption that the Mach stem is perpendicular to
the reflecting surface (Li & Ben-Dor 1999).

4.2. Mach stem bifurcation limits
Triple Mach–White reflections (Semenov et al. 2009a) are characterized by the appearance
of a new triple point that bifurcates the Mach stem; however, there is little data (Mach
2011) on its limits. The limits of Mach stem bifurcations are explored in this section as a
function of M, θw, γ and Re.
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FIGURE 16. Angle of the triple-point path with respect to the reflecting surface from three
shock theory, viscous and inviscid simulations (γ = 1.06, θw = 30◦).
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FIGURE 17. Onset of Mach stem bifurcation in viscous simulations (γ = 1.06, θw = 30◦).

The Reynolds number where Mach stem bifurcation is first observed is displayed in
figure 17. Bifurcation occurs at Reynolds numbers above the points in the plot, while the
Mach stem remains unbifurcated below. The plot points to a minimum Mach number,
Mi < 3, below which bifurcation does not occur when γ = 1.06 and θw = 30◦. These
novel results show that Mach stem bifurcation is sensitive to Reynolds number near the
minimum Mach number, whereas bifurcations at high Mach numbers occur early in the
reflection, once Re � 200. These points are plotted in bold in figure 15, revealing that
bifurcations occur when the jet overtakes the triple point by (xjet − xtp)/h � 5 % (for γ =
1.06, θw = 30◦). The presence of Mach stem bifurcation serves as an indication of the jet’s
strength.

There is agreement between inviscid simulations and viscous simulations at Re � 1000
regarding the shape of the shock reflection, the triple-point path angle and the amount of
Mach stem bulging. Additionally, Mach stem bifurcation occurs between 2.5 ≤ Mi < 3
in both cases. This motivates the use of inviscid simulations to estimate the bifurcation
limits, and the amount of jetting by proxy, over a range of reflection angles and isentropic
exponents that would be computationally expensive to calculate with viscosity.

A resolution study is first performed, since the lack of scale in the Euler equations makes
it ambiguous to know for how much time the inviscid simulations should be run. Figure 18
shows inviscid simulations near the bifurcation limit at target times calculated using (3.3),
with Retarget = 100 (figure 18a–c) and an Retarget = 1000 (figure 18d–f ). The latter case
has about ten times more grid points resolving the Mach stem height. The schlieren plots
are inspected for the presence of a transverse shock wave on the Mach stem, as indicated
in figure 18, and the Mach stem is considered to have bifurcated if one is found. This is
similar to how transitional and double Mach reflections were differentiated in past work.
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FIGURE 18. Comparison of inviscid simulations across the bifurcation boundary at times equal
to viscous triple-shock calculations with Retarget = 100 (a–c) and 1000 (d–f ), γ = 1.06, θw =
30◦; insets are magnifications of the Mach stem. (a) Mi = 2.5, t = 36.3; (b) Mi = 2.75, t = 26.5;
(c) Mi = 3, t = 20.3; (d) Mi = 2.5, t = 363; (e) Mi = 2.75, t = 265; ( f ) Mi = 3, t = 203.
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FIGURE 19. Mach stem bifurcation domain from inviscid simulations; rr: regular reflection;
ir: irregular reflection; sMr: single Mach reflection; tMr: transitional Mach reflection; dMr:
double Mach reflection, cases I and II; bif. crit.: analytic bifurcation criterion (Mach 2011;
bifurcations predicted above, no bifurcations below). (a) γ = 1.06 and (b) γ = 1.15.

No bifurcation is found at Mi = 2.5, and a bifurcation is found at Mi = 3 at both
resolutions. The Mi = 2.75 case is critical, with the bifurcation at t = 26.5 disappearing
by t = 265. This critical behaviour is to be expected near the bifurcation limit since the
phenomenon is sensitive to diffusion and affected by the appearance of Kelvin–Helmholtz
instability. Using Retarget = 100 to calculate simulation time is sufficient to recover the
bifurcation limit found in viscous reflections at Re ≈ 1000, within ±0.25 of the Mach
number in this case.

The computations are extended to a larger range of M, θw and γ and plotted in figures 19
and 20. Each square represents one simulation; filled squares show simulations with a
bifurcated Mach stem and open squares indicate simulations without one. The Mach stem
bifurcation limit lies on the boundary between filled and open squares.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

73
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.731


908 A18-22 S. S.-M. Lau-Chapdelaine, Q. Xiao and M. I. Radulescu

Bifurcation

No bifurcation

1.0

2

4

6Mi

8

10

1.1 1.3 1.41.2

γ

� Bifurcation observed � No bifurcation observed

FIGURE 20. Mach stem bifurcation domain from inviscid simulations at a fixed angle
(θw = 30◦); dotted: analytic bifurcation criterion (Mach 2011); dashed: shock Mach number for
a density ratio of 6.7.

Figure 19 shows the effect of Mach number and reflection angle on Mach stem
bifurcations. The inviscid results match the bifurcation limit of viscous simulations
(2.5 < Mi ≤ 3, γ = 1.06, θw = 30◦) and are in agreement with the onset of Mach stem
deformation found in the experiments (2.9 < Mc ≤ 3.5 for γ0 = 1.15 and 2.7 < Mc ≤ 3.4
for γ0 = 1.06, θw = 30◦). The γ = 1.15 limit also lies close to the experimental limit of
3.84 < Mi ≤ 4.09 at γ0 = 1.13 and θw = 15◦ found by Semenov et al. (2009b).

A number of curves are plotted along with the simulation results in figure 19 to help
locate where Mach stem bifurcations begin relative to other types of shock reflection.
The curves delimit other shock reflection boundaries: the sonic criterion of the regular
reflection boundary (ir/rr) is plotted at the top with a solid nearly horizontal curve. Mach
reflections do not occur above this curve. The lower solid curve connected to the vertical
line represents the single/transitional Mach reflection boundary (sMr/tMr). Transitional
and double Mach reflections occur above this curve. Details of these limits are available
in Ben-Dor (2007).

The dashed curve identifies the boundary between cases I and II of the double Mach
reflection (dMr I/II), defined by Li & Ben-Dor (1995). Case I lies below the curve and
case II is above. The flow around the secondary triple point in a double Mach reflection
can be calculated using three shock theory, with an assumption about the angles between
the shocks. In a type I double Mach reflection, the secondary reflected shock is assumed to
be straight and to intersect the slip line at a right angle (e.g. figure 12c). A type II double
Mach reflection occurs when this assumption would put the intersection point below the
reflecting surface, so the secondary reflected shock is assumed to form a straight line
between the secondary triple point and the intersection of the slip line with the reflecting
surface.

The dMr I/II boundary fits well with a turning point of the bifurcation limit. Mach (2011)
postulated that the secondary reflected shock of a type II double Mach reflection would
prevent bifurcation, by turning the jet away from the Mach stem; however, the transition
from I to II only shifts the bifurcation limit to higher Mach numbers.

The dotted line in figure 19 (bif. crit.) is an analytic bifurcation criterion proposed by
Mach (2011). It is based on the idea that the slip line must eventually become parallel to
the wall (Hornung 1986). When pressure from the flow deflection process (flow passing
the over wedge tip) exceeds pressure from the shock reflection process, a stagnation point
is created near the slip line, driving streamlines to its right into the forward jet. The speed
of flow in the jet is compared to the Mach stem speed and if the jet is faster than the
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Mach stem, bifurcation is assumed to occur. Li & Ben-Dor (1999) and Shi et al. (2019)
performed similar analyses to account for bulging (not bifurcation) of the Mach shock.
This criterion underestimates the Mach number and wedge angle required for bifurcation
and performs poorly at higher isentropic exponents.

The dependence of the bifurcation boundary on the isentropic exponent is explored in
Mi–γ phase space in figure 20 for θw = 30◦. The Mach number required for bifurcation
increases with isentropic exponent until γ ≈ 1.3 is reached. Strong jets that bulge the
Mach stem are still present above this value, but no bifurcations are observed despite
Mach’s bifurcation criterion (dotted curve, Mach (2011)) predicting otherwise. This lack
of limit in Mach’s bifurcation criterion suggests that there is a missing link between
jetting and bifurcation. A better criterion is required for predicting the triple Mach–White
reflections.

4.3. Implication to detonation structure
Shock reflections have been shown to contribute to the propagation of detonations (Lee
2008). Detonations are supersonic combustion waves that suffer from a multidimensional
instability that causes their shock front to be punctuated by triple points. The triple points
periodically reflect from each other, creating new triple points. A curved Mach stem is
formed upon reflection, like in the experiments, and the new triple points go on to collide
with their neighbours. The Mach stem becomes the incident shock for the next reflection
and the process repeats. The experiments’ curved shocks form a nice analogue to the
unsteady shock reflection process in detonations.

Tracing the triple-point paths of a detonation creates a pattern of interlocking diamonds
called the cellular detonation structure. Detonations are often characterized by the size
and regularity of their cellular structure. Detonations with irregular structures are more
resistant to quenching and their mixtures are easier to detonate than regular ones (Moen
et al. 1986; Radulescu & Lee 2002).

Radulescu et al. (2009), Mach (2011) and Mach & Radulescu (2011) suggested that
Mach stem bifurcation may contribute to the irregularity of the detonation cellular
structure by creating new detonation cells. They showed that bifurcations contribute
to an irregular appearance on numerical soot foils of detonations. They tabulated 21
experiments from other work and categorized the cellular structure as regular, intermediate
and irregular and found perfect agreement between regular detonations and the absence
of bifurcation in their inviscid simulations. A clear distinction can be made from their
tabulated data: irregular and intermediate structures arise when γ1 ≤ 1.32 and regular
structures occur when 1.41 ≤ γ1. This closely matches the bifurcation limit of γ ≈ 1.3
found in this study.

The detonability and quenching resistance exhibited by irregular mixtures may be a
result of the strong jetting and large-scale mixing that occurs behind the Mach stem
in gases with low isentropic exponents. Experiments show that this mixing becomes
especially evident when Kelvin–Helmholtz instabilities are entrained into the vortex. In
detonations, reaction rates behind the Mach stem will be sensitive to the presence of
mixing and turbulence, predominantly near detonation propagation limits. A parametric
investigation of the effect of isentropic exponent on mixing in detonations and their
cellular structure would be of particular interest.

4.4. Shock instability at high Mach number and low isentropic exponent
The textured appearance of the schlierens behind the incident, reflected and Mach
shocks seen in certain experiments (e.g. figures 4g, 5d and 5g) indicates a non-uniform
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density field. The flow field becomes less uniform as the isentropic exponent is decreased
from γ0 = 1.15 to 1.06 and as the Mach number is increased. The non-uniformity is not
caused by contamination of the test section by driver gas. This is evidenced by the fact the
bow shocks remain intact and attached to the chevron, as discussed in § 2.2.4. Furthermore,
simulations in the appendix show that the driver–test gas interface is far from the leading
shock in all experiments when the full stand-off distance of l̂d = 1.85 is used. The cause
of the phenomenon is not understood but may be linked to shock wave instability.

Shock wave instability has been ascribed to endothermic processes such as ionization
(Griffiths, Sandeman & Hornung 1976; Glass & Liu 1978; Grun et al. 1991) and
dissociation (Griffiths et al. 1976), or to heavy gases (i.e. low-isentropic-exponent gases)
where vibrational relaxation may occur behind the shock (Griffiths et al. 1976; Mishin
et al. 1981; Hornung & Lemieux 2001; Semenov et al. 2009b; Ohnishi et al. 2015).
Shock instability has been observed by Sirmas & Radulescu (2015, 2019) in molecular
dynamic calculations of relaxing shock waves in gases with inelastic collisions, as would
occur where strong vibrational relaxation effects are present. Work with hypersonic
projectiles has attributed similar shock instability to vibrating or unstable contact surfaces.
Experiments and simulations of Hornung & Lemieux (2001) and Ohnishi et al. (2015)
found instability when density jumps of ρ1/ρ0 ≥ 14 and ρ1/ρ0 ≥ 10 were reached across
the shock. Interestingly, the bifurcation boundary in M–γ space is well represented by
a constant density ratio of ρ1/ρ0 = 6.7 across the shock, plotted with a dashed curve in
figure 20.

The stability of these low-isentropic-exponent gases is of interest and should be
investigated in future work. This could be done by introducing vibrational relaxation
effects into simulations, for instance, as the instability was not seen in the Navier–Stokes
simulations.

5. Conclusion

Experiments and simulations were used to study the effect of the isentropic exponent,
Mach number and Reynolds number on the large-scale convective mixing caused by the
forward jet, vortex and flow behind the Mach stem. Experiments were performed over
a limited range of Mach numbers at large Reynolds numbers (Re ∼ 105) and various
isentropic exponents. Viscous simulations were performed for a larger range of Mach
numbers but were limited to small Reynolds numbers (Re ∼ 103) and γ = 1.06. Inviscid
simulations were used to bridge the gap between viscous simulations and experiments;
however, differences between simulations and experiments remain to be reconciled.

In all cases, as the isentropic exponent decreased, or the Mach number or Reynolds
number increased, the forward jet approached the Mach stem and developed a vortex. The
jet and vortex can grow strong enough to completely disrupt the flow field behind the Mach
shock, and cause the Mach stem to bulge once jet–shock interaction becomes important.

The region behind the Mach stem continuously evolves as Reynolds number is
increased. A turbulent structure becomes visible behind the Mach stem in experiments
when the isentropic exponent is sufficiently small and the Mach number is sufficiently
large. Similar heterogeneous flow fields are observed in inviscid simulations. This is
attributed to Kelvin–Helmholtz instability in the vortex, and is absent from the viscous
results. The experiments clearly show that large-scale convective mixing behind the Mach
stem is driven primarily by low isentropic exponents. When the isentropic exponent is too
large, e.g. γ = 1.4, neither jet–shock interaction nor large-scale mixing are observed.
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The limits of Mach stem bifurcation (triple Mach–White reflection) have been reported
in θw–Mi–γ phase space. Bifurcations are found to be absent when γ � 1.3 at θw = 30◦,
a limit which corresponds closely to the boundary between regular and irregular cellular
structures of detonations. The detonability and quenching resistance of irregular mixtures
may be a result of the strong jetting and large-scale mixing that occurs behind the Mach
stem in gases with low isentropic exponents.
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Appendix. Simulations with varying diaphragm stand-off distances

Inviscid simulations of the shock tube and obstacle were performed to assess the
diaphragm stand-off distance and to gauge the effect of the driver–test gas interface on
the shock reflection.

The two-dimensional domain spanned half the shock tube height, from the centre line
to the shock tube wall, five half-heights upstream of the chevron tip and three half-heights
downstream. The domain was covered by a 40 × 5 coarse grid with six levels of refinement
for a finest possible grid of 2560 × 320 and resolution of 3.15 grid points per millimetre.
The chevron was created with a step-like boundary. Step boundaries have been shown to
affect the shock reflection configuration (Ben-Dor et al. 1987), but perform decently (Falle
& Giddings 1992) with sufficient dissipation (controlled here by low resolution). The top
and bottom boundaries employed symmetry conditions, and the left and right boundary
had zero normal gradients. The origin was located at the trailing edge of the chevron. The
simulations were initiated with a shock located at x̂s,0 = −15.24 cm. The driver gas was
initially at x̂d,0 = ut/Dt(x̂s,0 − l̂d) + x̂s,0, where Dt = Mtc0 is the shock speed and ut is the
shocked particle speed. The driver gas has the same pressure and velocity as the shocked
gas, but with a density of 2ρ0.

Experiment 9 (see table 1, Mc = 3.4 and γ = 1.06) is simulated because it is the most
compressible (i.e. highest Mach number and lowest isentropic exponent) of all experiments
with a stand-off of l̂d = 1.85 m. If this experiment is unaffected by the driver–test gas
interface, then so are all the other experiments where 1.06 ≤ γ0, Mc ≤ 3.4 and l̂d = 1.85
m. An initial shock strength of Mt = 4.2 is required to generate a shock of Mc = 3.4 on
the chevron.

The simulation results are presented in figure 21. The panels show schlieren images in
the top halves. The bottom halves show temperature cutoff at T = 1.6 to emphasize details
in the reflection. The x and y coordinates are scaled in metres.
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FIGURE 21. Inviscid simulation of shock reflection over a chevron (γ = 1.06, Mc = 3.4,
l̂d = 1.85 m); top: schlieren; dotted red line: driver–test gas interface; bottom: temperature;
axes scaled in metres. (a) Initial condition, before shock interaction with chevron; (b) shock
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FIGURE 22. Inviscid simulations of shock reflection over a chevron (γ = 1.06); top: schlieren;
dotted red line: driver–test gas interface; bottom: temperature; axes scaled in metres. (a) Mc =
3.4, no driver–test gas interface; (b) Mc = 4.0, l̂d = 0.68 m.
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Figure 21(a) shows the initial conditions, i.e. after a shock has been transmitted through
the diaphragm, but before it interacts with the obstacle. The driver–test gas interface
is overlayed with a dotted red line. The shock diffracts over the chevron and reaches
the trailing edge in figure 21(b). The driver–test gas interface remains far behind the
shock front. The shock wave reflects from the axis of symmetry, forming a double Mach
reflection with Mach stem bifurcation, as shown in figure 21(c). The driver gas has
diffracted over the obstacle, driving a pressure wave that has not reached the front. When
there is no driver–test gas interface (figure 22a), the shock front is identical to that of
figure 21(c), showing that the driver–test gas interface does not interfere with the reflection
front when l̂d = 1.85 m.

Figure 22(b) is a simulation of experiment 11 (Mc = 4.0 and γ = 1.06) where the
stand-off distance was shortened to l̂d = 0.68 m. The driver–test gas interface is closer to
the shock front and the double Mach reflection has a Mach stem that is clearly bifurcated
and taller than the previous case, despite the higher Mach number. The bow shock
(secondary Mach shock) travels much faster through the hot driver gas, forming a vertical
shock.

These simulations demonstrate that the driver–test gas interface has no effect on the
experiments with l̂d = 1.85 m, and that only experiments 10 and 11, where l̂d < 1.85 m,
suffer from interference by the driver gas.
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