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Abstract

We present a sufficient and necessary condition for a function module space X to have the approximate
hyperplane series property (AHSP). As a consequence, we have that the space C0(L, E) of bounded and
continuous E-valued mappings defined on the locally compact Hausdorff space L has AHSP if and only
if E has AHSP.
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1. Introduction
Throughout the paper, E and F will be complex Banach spaces. As usual, S E , BE
and E∗ will denote the unit sphere, the closed unit ball, and the (topological) dual of
E, respectively. Given two Banach spaces E and F, L(E, F) denotes the space of all
bounded linear operators from E into F.

The Bishop–Phelps theorem states that the set of norm-attaining functionals on E
is dense in E∗ [8]. It has been usefully extended in many directions and in the study of
optimization. After the celebrated Bishop–Phelps theorem, it was a natural question
as to whether the set of norm-attaining linear operators is dense in L(E, F), for all E
and F.

In 1963, J. Lindenstrauss [18] gave a counterexample showing that it does not hold
in general and he also showed that, if E is reflexive, then the set of all norm-attaining
operators is always dense in the space of L(E, F).

Motivated by the study of numerical ranges of operators, B. Bollobás in [9] proved
a refinement of the Bishop–Phelps theorem, nowadays known as the Bishop–Phelps–
Bollobás theorem [9, Theorem 1].

Carrying Bollobás’s ideas to the vector-valued case in 2008, Acosta, Aron, Garcı́a
and Maestre [1] introduced the notion of the Bishop–Phelps–Bollobás property for
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operators (BPBP for operators, for short) (see the Definition 2.1). BPBP for operators
is a stronger property than the denseness of norm-attaining operators. It had been
known that the set of norm-attaining operators from `1 to any Banach space F is dense,
but the pair (`1, F) has BPBP for operators if F has a special property. This property
was introduced in [1], called the approximate hyperplane series property (AHSP, for
short), with the purpose of characterizing those Banach spaces F such that (`1, F)
has BPBP for operators. These two properties have attracted the attention of many
researchers. For more details and recent results about BPBP for operators or AHSP,
see [2–6, 10–12, 14–17].

In this note we study when a function module space X has AHSP and we obtain
that the space C(K, E) has AHSP if, and only if, a Banach space E has AHSP. In
this sense, we have generalized a result of Choi and Kim [13]. We also obtain as
a consequence, the space C0(L, E) of bounded and continuous E-valued mappings
defined on the locally compact Hausdorff space L has AHSP if and only if E has
AHSP.

2. Results

For our purposes, it will be useful to recall the definition of BPBP for operators.

Definition 2.1. Let E and F be Banach spaces. We say that the pair (E, F) has the
Bishop–Phelps–Bollobás property for operators (BPBP for operators, for short) if
given ε > 0, there is η(ε) > 0 such that whenever T ∈ SL(E,F) and x0 ∈ S E satisfy that
‖T x0‖ > 1 − η(ε), then there exist a point u0 ∈ S E and an operator S ∈ SL(E,F) satisfying
the following conditions.

‖S u0‖ = 1, ‖u0 − x0‖ < ε, and ‖S − T‖ < ε.

Now we will give the definition of AHSP introduced in [1]. Recall that if (xk)k∈N ⊂

E and (λk)k∈N ⊂ R such that λk ≥ 0 for all k ∈ N, we say that the series given by∑∞
k=1 λk xk is a convex series if

∑∞
k=1 λk = 1.

Definition 2.2. A Banach space E is said to have AHSP (approximate hyperplane
series property) if for every ε > 0 there exists 0 < η < ε such that for every sequence
(xk)k ⊂ S E and convex series

∑∞
k=1 αk xk with∥∥∥∥∥ ∞∑

k=1

αk xk

∥∥∥∥∥ > 1 − η,

there exist a subset A ⊂ N and a subset {zk : k ∈ A} satisfying

(i)
∑

k∈A αk > 1 − ε;
(ii) ‖zk − xk‖ < ε for all k ∈ A;
(iii) x∗(zk) = 1 for a certain x∗ ∈ S X∗ and for all k ∈ A.
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We observe that the above property holds if it is satisfied just for a finite convex
combination (instead of convex series). The very useful comment in [1] is:

‘Geometrically, E has AHSP if whenever we have a convex series of vectors in BE

whose norm is very close to 1, then a preponderance of these vectors are uniformly
close to unit vectors that lie in the same hyperplane (x∗)−1(1), where ‖x∗‖ = 1.’

Among the spaces with AHSP, we may cite finite dimensional spaces, uniformly
convex spaces and C0(L) spaces, as representative examples [1]. On the other
hand, there are spaces failing this property: every strictly convex space which is not
uniformly convex [1]. We refer the reader to the paper [15] for more examples of
spaces with AHSP.

It was verified in [1] that in the Definition 2.2, we can consider sequences (xk)k of
vectors in the unit ball of E.

Proposition 2.3. Let E be a Banach space. E has AHSP if and only if for all ε > 0
there exist 0 < γ(ε) < ε and η(ε) > 0 with limε→0+ γ(ε) = 0 such that for every sequence,
(xk)k ⊂ BE and every convex series

∑∞
k=1 αk xk satisfying∥∥∥∥∥ ∞∑

k=1

αk xk

∥∥∥∥∥ > 1 − η(ε),

there exist a subset A ⊂ N, {zk : k ∈ A} ⊂ S E and x∗ ∈ S E∗ such that

(i)
∑

k∈A αk > 1 − γ(ε);
(ii) ‖zk − xk‖ < ε for all k ∈ A;
(iii) x∗(zk) = 1 for all k ∈ A.

Our objective is to study when a function module space has AHSP. For this, we
define a function module space. Recall that a space X is a C(K)-module space if for
all x ∈ X and for all h ∈ C(K), we have that hx ∈ X, where (hx)(t) := h(t)x(t).

Definition 2.4. Function Module is (the third coordinate of) a triple (K, (Xt)t∈K , X),
where K is a nonempty compact Hausdorff topological space, (Xt)t∈K a family of
Banach spaces, and X a closed C(K)-submodule of the C(K)-module

∏∞
t∈K Xt (the

`∞-sum of the spaces Xt) such that the following conditions are satisfied:

(1) for every x ∈ X, the function t 7→ ‖x(t)‖ from K to R is upper semicontinuous;
(2) for every t ∈ K, we have Xt = {x(t) : x ∈ X};
(3) the set {t ∈ K : Xt , 0} is dense in K.

Remark 2.5. In the Definition 2.4, K is called the base space and the family (Xt)t∈K is
called the component spaces.

For function modules we follow the notation of [7], where the basic results of such
theory can be found.
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Examples 2.6.

(a) Let K be a nonempty compact Hausdorff space and E , {0}. The space C(K, E)
can be viwed as a function module space when Xt = E for all t ∈ K and X =

C(K, E).
(b) Let L be a nonempty locally compact Hausdorff space. The space C0(L, E) is

the space of all continuous function f : L→ E such that for all ε > 0 there exists
a compact set C ⊂ L such that ‖ f (t)‖ ≤ ε, for all t ∈ L \ C. It can be regarded
in a natural way as a function module with base space K = βL (the Stone–Cech
compactification of L) and the component spaces (Xt)t∈K given by Xt = E if t ∈ L
and Xt = {0} if t ∈ K \ L.

Theorem 2.7. Let (K, (Xt)t∈K , X) be a complex function module and ε > 0. Suppose
that for all t ∈ K, (Xt)t∈K has AHSP with the same function η(ε) given by Proposition
2.3, and for every xt ∈ Xt there exists f ∈ X such that f (t) = xt and ‖ f ‖ ≤ ‖xt‖ then X
has AHSP.

Proof. Let 0 < ε < 1. We consider a finite convex series
∑n

k=1 αk xk for (xk)n
k=1 ⊂ BX

such that ∥∥∥∥∥ n∑
k=1

αk xk

∥∥∥∥∥ > 1 − η
(
ε

2

)
.

Since ∥∥∥∥∥ n∑
k=1

αk xk

∥∥∥∥∥ = sup
{∥∥∥∥∥ n∑

k=1

αk xk(t)
∥∥∥∥∥

Xt

: t ∈ K
}
> 1 − η

(
ε

2

)
,

there exists t0 ∈ K such that,∥∥∥∥∥ n∑
k=1

αk xk(t0)
∥∥∥∥∥

Xt0

> 1 − η
(
ε

2

)
.

And for all k ∈ {1, . . . , n} we have,

‖xk(t0)‖Xt0
≤ ‖xk‖ ≤ 1.

Then, the sequence (xk(t0))n
k=1 ⊂ BXt0

. By hypothesis Xt0 has AHSP and by
Proposition 2.3 there exist A ⊂ {1, . . . , n}, {zk : k ∈ A} ⊂ S Xt0

and z∗ ∈ S X∗t0
such that:

(1)
∑

k∈A αk > 1 − γ(ε/2);
(2) ‖zk − xk(t0)‖Xt0

< ε/2 for all k ∈ A;
(3) z∗(zk) = 1 for all k ∈ A.

By hypothesis, for all k ∈ A there exist fk ∈ X such that fk(t0) = zk and ‖ fk‖ ≤
‖zk‖ = 1. Now, we define the following subset in K:

U =
⋂
k∈A

{
t ∈ K : ‖ fk(t) − xk(t)‖Xt ≤

ε

2

}
.
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It is clear that U , ∅ and U is an open set of K, since the function t ∈ K 7→ ‖x(t)‖ ∈ R
is upper semicontinuous for all x ∈ X. By Urysohn’s lemma there exists a function
ϕ : K → [0, 1] such that ϕ(t0) = 1 and ϕ(t) = 0 for all t ∈ K \ U.

Now, for each k ∈ A let gk : K →
⋃

t∈K Xt defined by

gk(t) = ϕ(t) fk(t) +

(
1 −

ε

2

)
(1 − ϕ(t))xk(t).

It is clear that gk ∈ X for all k ∈ A. We claim that (gk)k∈A ⊂ S X . Indeed,

‖gk(t)‖Xt =

∥∥∥∥∥ϕ(t) fk(t) +

(
1 −

ε

2

)
(1 − ϕ(t))xk(t)

∥∥∥∥∥
Xt

≤ ϕ(t) + 1 − ϕ(t) = 1,

and ‖gk(t0)‖Xt0
= ‖zk‖Xt0

= 1. So , for all k ∈ A

‖gk‖ = sup{‖gk(t)‖Xt : t ∈ K} = 1,

which means gk ∈ S X for all k ∈ A.
Now, we will show that ‖gk − xk‖ < ε for all k ∈ A. In fact, if t ∈ U, then

‖gk(t) − xk(t)‖Xt =

∥∥∥∥∥ϕ(t) fk(t) +

(
1 −

ε

2

)
(1 − ϕ(t))xk(t) − xk(t)

∥∥∥∥∥
Xt

=

∥∥∥∥∥ϕ(t)( fk(t) − xk(t)) −
ε

2
(1 − ϕ(t))xk(t)

∥∥∥∥∥
Xt

≤
ε

2
+
ε

2
= ε.

If t ∈ K \ U, then ‖gk(t) − xk(t)‖Xt = ‖(1 − ε/2)xk(t) − xk(t)‖Xt < ε.
Thus,

‖gk − xk‖ = sup{‖(gk − xk)(t)‖ : t ∈ K} < ε, ∀k ∈ A.

Now we consider the valuation mapping δt0 : X −→ Xt0 and define the linear
function x∗ := z∗ ◦ δt0 . If x ∈ S X , then |x∗(x)| = |z∗(x(t0))| ≤ ‖z∗‖‖x(t0)‖ ≤ 1.

Besides that, for all k ∈ A, |x∗(gk)| = |z∗(gk(to))| = |z∗(zk)| = 1. So ‖x∗‖ = 1.
Finally, x∗ ∈ S X∗ and x∗(gk) = 1, for all k ∈ A. Then X has AHSP. �

In the next theorem we will show that it is possible to get the reciprocal of Theorem
2.7. We need to add the additional hypothesis that the mapping t ∈ K 7→ ‖x(t)‖ is
continuous for all x ∈ X, when Xt = E, for all t ∈ K and for some E.

Theorem 2.8. Let (K, (Xt)t∈K , X) be a complex function module where Xt = E, for all
t ∈ K for some Banach space E. Suppose that the mapping t ∈ K 7→ ‖x(t)‖ is continuous
for all x ∈ X. If X has AHSP, then Xt has AHSP for all t ∈ K.

Proof. Let ε > 0. Since X has AHSP, there exist η(ε), γ(ε) > 0 that satisfy the
Proposition 2.3. Consider (xk)k ⊂ BE and the convex series

∑∞
k=1 αk xk such that∥∥∥∥∥ ∞∑

k=1

αk xk

∥∥∥∥∥
E
> 1 − η(ε).
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For all k ∈ N, we define fk : K →
⋃

t∈K Xt by fk(t) = xk. So ( fk)k ⊂ BX and∥∥∥∥∥ ∞∑
k=1

αk fk
∥∥∥∥∥ = sup

{∥∥∥∥∥ ∞∑
k=1

αk fk(t)
∥∥∥∥∥ : t ∈ K

}
=

∥∥∥∥∥ ∞∑
k=1

αk xk

∥∥∥∥∥
E
> 1 − η(ε).

Since X has AHSP by Proposition 2.3, there are A ⊂ N, {zk : k ∈ A} ⊂ S X and Φ ∈ S X∗

such that
∑

k∈A αk > 1 − γ(ε), ‖zk − fk‖ < ε and Φ(zk) = 1, for all k ∈ A. Now, we claim
that ‖

∑
k∈A αkzk‖ =

∑
k∈A αk. Indeed,∥∥∥∥∥∑

k∈A

αkzk

∥∥∥∥∥ ≤∑
k∈A

αk‖zk‖ =
∑
k∈A

αk.

Since for all k ∈ A, Φ(zk) = 1, then

Φ

(∑
k∈A

αkzk

)
=

∑
k∈A

αk,

so ∥∥∥∥∥∑
k∈A

αkzk

∥∥∥∥∥ = sup
{∣∣∣∣∣ϕ(∑

k∈A

αkzk

)∣∣∣∣∣ : ϕ ∈ S X∗

}
=

∑
k∈A

αk.

Now, ∑
k∈A

αk =

∥∥∥∥∥∑
k∈A

αkzk

∥∥∥∥∥ = sup
{∥∥∥∥∥∑

k∈A

αkzk(t)
∥∥∥∥∥ : t ∈ K

}
.

By hypothesis, the function t ∈ K 7→ ‖
∑

k∈A αkzk(t)‖E is continuous. Then there is
t0 ∈ K, such that ‖

∑
k∈A αkzk(t0)‖ =

∑
k∈A αk. Thus,

∑
k∈A αkzk(t0) , 0. So, there is a

function x∗ ∈ S E∗ such that

x∗
(∑

k∈A

αkzk(t0)
)

=

∥∥∥∥∥∑
k∈A

αkzk(t0)
∥∥∥∥∥

E
=

∑
k∈A

αk.

Now we consider gk := zk(t0) and observe that x∗(gk) = 1 for all k ∈ A. That is, for all
k ∈ A, (gk)k ⊂ S E and

‖gk − xk‖E = ‖zk(t0) − fk(t0)‖E ≤ ‖zk − fk‖ < ε, ∀k ∈ A.

The theorem follows. �

Corollary 2.9. Let X be a dual complex Banach space such that X can be regarded
as a function module space, where Xt = E, for all t ∈ K and E a Banach space. Then
X has AHSP if and only if Xt has AHSP for all t ∈ K.

Proof. Now for X as a dual space which can be represented as a complex function
module with a base space K (see [7, Proposition 3.10]), then for every x ∈ X, the
function t ∈ K 7→ ‖x(t)‖ is continuous [7, Theorem 5.13]. Therefore the assumptions
in both Theorems 2.7 and 2.8 hold. �
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Corollary 2.10. Let L be a locally compact Hausdorff space and X a Banach space.
Then C0(L, X) has AHSP if, and only if X has AHSP.

Proof. Consider K = βL the Stone–Cech compactification of L; the Theorems 2.7
and 2.8 imply the result. �

As a consequence of Corollary 2.10 and Theorem 4.1 in [1] we have that
(`1,C0(L, E)) has BPBP if, and only if E has AHSP. Generally, if (K, (Xt)t∈K , X) is
a function module space with AHSP, then (`1, X) has BPBP.

Corollary 2.11. Let K , ∅ be a compact Hausdorff topological space and E be a
Banach space. Then E has AHSP if, and only if C(K, E) has AHSP.

Proof. Since C(K, E) is a function module, with K base space and Xt = E for all
t ∈ K (see Examples 2.6(a)) and the mapping t ∈ K 7→ ‖ f (t)‖ is continuous for all
f ∈ C(K, E), the result follows straight away by Theorems 2.7 and 2.8. �

S. Y. Choi and S. Kim in [13, Theorem 11] showed that if C(K, E) has AHSP, then
E has AHSP. Here the Corollary 2.11 generalizes, in a sense, the result of Choi and
Kim and we have the reciprocal.

Open problem: We do not know if Theorem 2.8 is true if there are two distinct
component spaces. That means, there are t1, t2 ∈ K such that Xt1 , Xt2 .
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