ON A FUNCTION MODULE WITH APPROXIMATE HYPERPLANE SERIES PROPERTY

T. GRANDO^{®™} and M. L. LOURENÇO

(Received 22 November 2017; accepted 2 March 2019; first published online 3 July 2019)

Communicated by W. Moors

Abstract

We present a sufficient and necessary condition for a function module space X to have the approximate hyperplane series property (AHSP). As a consequence, we have that the space $C_0(L, E)$ of bounded and continuous *E*-valued mappings defined on the locally compact Hausdorff space L has AHSP if and only if *E* has AHSP.

2010 Mathematics subject classification: primary 46E25; secondary 15A03.

Keywords and phrases: Bishop–Phelps–Bollobás property for operators, approximate hyperplane series property, function module space.

1. Introduction

Throughout the paper, E and F will be complex Banach spaces. As usual, S_E , B_E and E^* will denote the unit sphere, the closed unit ball, and the (topological) dual of E, respectively. Given two Banach spaces E and F, $\mathcal{L}(E, F)$ denotes the space of all bounded linear operators from E into F.

The Bishop–Phelps theorem states that the set of norm-attaining functionals on E is dense in E^* [8]. It has been usefully extended in many directions and in the study of optimization. After the celebrated Bishop–Phelps theorem, it was a natural question as to whether the set of norm-attaining linear operators is dense in $\mathcal{L}(E, F)$, for all E and F.

In 1963, J. Lindenstrauss [18] gave a counterexample showing that it does not hold in general and he also showed that, if E is reflexive, then the set of all norm-attaining operators is always dense in the space of $\mathcal{L}(E, F)$.

Motivated by the study of numerical ranges of operators, B. Bollobás in [9] proved a refinement of the Bishop–Phelps theorem, nowadays known as the Bishop–Phelps– Bollobás theorem [9, Theorem 1].

Carrying Bollobás's ideas to the vector-valued case in 2008, Acosta, Aron, García and Maestre [1] introduced the notion of the Bishop–Phelps–Bollobás property for

^{© 2019} Australian Mathematical Publishing Association Inc.

operators (BPBP for operators, for short) (see the Definition 2.1). BPBP for operators is a stronger property than the denseness of norm-attaining operators. It had been known that the set of norm-attaining operators from ℓ_1 to any Banach space *F* is dense, but the pair (ℓ_1 , *F*) has BPBP for operators if *F* has a special property. This property was introduced in [1], called the approximate hyperplane series property (AHSP, for short), with the purpose of characterizing those Banach spaces *F* such that (ℓ_1 , *F*) has BPBP for operators. These two properties have attracted the attention of many researchers. For more details and recent results about BPBP for operators or AHSP, see [2–6, 10–12, 14–17].

In this note we study when a function module space X has AHSP and we obtain that the space C(K, E) has AHSP if, and only if, a Banach space E has AHSP. In this sense, we have generalized a result of Choi and Kim [13]. We also obtain as a consequence, the space $C_0(L, E)$ of bounded and continuous E-valued mappings defined on the locally compact Hausdorff space L has AHSP if and only if E has AHSP.

2. Results

For our purposes, it will be useful to recall the definition of BPBP for operators.

DEFINITION 2.1. Let *E* and *F* be Banach spaces. We say that the pair (*E*, *F*) has the *Bishop–Phelps–Bollobás property for operators* (*BPBP for operators*, for short) if given $\varepsilon > 0$, there is $\eta(\varepsilon) > 0$ such that whenever $T \in S_{\mathcal{L}(E,F)}$ and $x_0 \in S_E$ satisfy that $||Tx_0|| > 1 - \eta(\varepsilon)$, then there exist a point $u_0 \in S_E$ and an operator $S \in S_{\mathcal{L}(E,F)}$ satisfying the following conditions.

$$||Su_0|| = 1$$
, $||u_0 - x_0|| < \epsilon$, and $||S - T|| < \epsilon$.

Now we will give the definition of AHSP introduced in [1]. Recall that if $(x_k)_{k \in \mathbb{N}} \subset E$ and $(\lambda_k)_{k \in \mathbb{N}} \subset \mathbb{R}$ such that $\lambda_k \ge 0$ for all $k \in \mathbb{N}$, we say that the series given by $\sum_{k=1}^{\infty} \lambda_k x_k$ is a *convex series* if $\sum_{k=1}^{\infty} \lambda_k = 1$.

DEFINITION 2.2. A Banach space E is said to have AHSP (approximate hyperplane series property) if for every $\epsilon > 0$ there exists $0 < \eta < \epsilon$ such that for every sequence $(x_k)_k \subset S_E$ and convex series $\sum_{k=1}^{\infty} \alpha_k x_k$ with

$$\left\|\sum_{k=1}^{\infty}\alpha_k x_k\right\| > 1 - \eta,$$

there exist a subset $A \subset \mathbb{N}$ and a subset $\{z_k : k \in A\}$ satisfying

- (i) $\sum_{k \in A} \alpha_k > 1 \epsilon$;
- (ii) $||z_k x_k|| < \epsilon$ for all $k \in A$;
- (iii) $x^*(z_k) = 1$ for a certain $x^* \in S_{X^*}$ and for all $k \in A$.

We observe that the above property holds if it is satisfied just for a finite convex combination (instead of convex series). The very useful comment in [1] is:

'Geometrically, *E* has AHSP if whenever we have a convex series of vectors in B_E whose norm is very close to 1, then a preponderance of these vectors are uniformly close to unit vectors that lie in the same hyperplane $(x^*)^{-1}(1)$, where $||x^*|| = 1$.'

Among the spaces with AHSP, we may cite finite dimensional spaces, uniformly convex spaces and $C_0(L)$ spaces, as representative examples [1]. On the other hand, there are spaces failing this property: every strictly convex space which is not uniformly convex [1]. We refer the reader to the paper [15] for more examples of spaces with AHSP.

It was verified in [1] that in the Definition 2.2, we can consider sequences $(x_k)_k$ of vectors in the unit ball of *E*.

PROPOSITION 2.3. Let *E* be a Banach space. *E* has AHSP if and only if for all $\epsilon > 0$ there exist $0 < \gamma(\epsilon) < \epsilon$ and $\eta(\epsilon) > 0$ with $\lim_{\epsilon \to 0^+} \gamma(\epsilon) = 0$ such that for every sequence, $(x_k)_k \subset B_E$ and every convex series $\sum_{k=1}^{\infty} \alpha_k x_k$ satisfying

$$\left\|\sum_{k=1}^{\infty}\alpha_k x_k\right\| > 1 - \eta(\epsilon),$$

there exist a subset $A \subset \mathbb{N}$, $\{z_k : k \in A\} \subset S_E$ and $x^* \in S_{E^*}$ such that

(i) $\sum_{k \in A} \alpha_k > 1 - \gamma(\epsilon);$

- (ii) $||z_k x_k|| < \epsilon$ for all $k \in A$;
- (iii) $x^*(z_k) = 1$ for all $k \in A$.

Our objective is to study when a function module space has AHSP. For this, we define a function module space. Recall that a space X is a C(K)-module space if for all $x \in X$ and for all $h \in C(K)$, we have that $hx \in X$, where (hx)(t) := h(t)x(t).

DEFINITION 2.4. Function Module is (the third coordinate of) a triple $(K, (X_t)_{t \in K}, X)$, where K is a nonempty compact Hausdorff topological space, $(X_t)_{t \in K}$ a family of Banach spaces, and X a closed C(K)-submodule of the C(K)-module $\prod_{t \in K}^{\infty} X_t$ (the ℓ_{∞} -sum of the spaces X_t) such that the following conditions are satisfied:

- (1) for every $x \in X$, the function $t \mapsto ||x(t)||$ from K to \mathbb{R} is upper semicontinuous;
- (2) for every $t \in K$, we have $X_t = \{x(t) : x \in X\}$;
- (3) the set $\{t \in K : X_t \neq 0\}$ is dense in *K*.

REMARK 2.5. In the Definition 2.4, *K* is called the base space and the family $(X_t)_{t \in K}$ is called the component spaces.

For function modules we follow the notation of [7], where the basic results of such theory can be found.

Examples 2.6.

- (a) Let *K* be a nonempty compact Hausdorff space and $E \neq \{0\}$. The space C(K, E) can be viwed as a function module space when $X_t = E$ for all $t \in K$ and X = C(K, E).
- (b) Let *L* be a nonempty locally compact Hausdorff space. The space $C_0(L, E)$ is the space of all continuous function $f: L \to E$ such that for all $\epsilon > 0$ there exists a compact set $C \subset L$ such that $||f(t)|| \le \epsilon$, for all $t \in L \setminus C$. It can be regarded in a natural way as a function module with base space $K = \beta L$ (the Stone–Cech compactification of *L*) and the component spaces $(X_t)_{t \in K}$ given by $X_t = E$ if $t \in L$ and $X_t = \{0\}$ if $t \in K \setminus L$.

THEOREM 2.7. Let $(K, (X_t)_{t \in K}, X)$ be a complex function module and $\epsilon > 0$. Suppose that for all $t \in K$, $(X_t)_{t \in K}$ has AHSP with the same function $\eta(\epsilon)$ given by Proposition 2.3, and for every $x_t \in X_t$ there exists $f \in X$ such that $f(t) = x_t$ and $||f|| \le ||x_t||$ then X has AHSP.

PROOF. Let $0 < \epsilon < 1$. We consider a finite convex series $\sum_{k=1}^{n} \alpha_k x_k$ for $(x_k)_{k=1}^n \subset B_X$ such that

$$\left\|\sum_{k=1}^{n} \alpha_k x_k\right\| > 1 - \eta\left(\frac{\epsilon}{2}\right)$$

Since

$$\left\|\sum_{k=1}^{n} \alpha_k x_k\right\| = \sup\left\{\left\|\sum_{k=1}^{n} \alpha_k x_k(t)\right\|_{X_t} : t \in K\right\} > 1 - \eta\left(\frac{\epsilon}{2}\right),$$

there exists $t_0 \in K$ such that,

$$\left\|\sum_{k=1}^n \alpha_k x_k(t_0)\right\|_{X_{t_0}} > 1 - \eta\left(\frac{\epsilon}{2}\right).$$

And for all $k \in \{1, \ldots, n\}$ we have,

$$||x_k(t_0)||_{X_{t_0}} \le ||x_k|| \le 1.$$

Then, the sequence $(x_k(t_0))_{k=1}^n \subset B_{X_{t_0}}$. By hypothesis X_{t_0} has AHSP and by Proposition 2.3 there exist $A \subset \{1, \ldots, n\}, \{z_k : k \in A\} \subset S_{X_{t_0}}$ and $z^* \in S_{X_{t_0}}$ such that:

- (1) $\sum_{k \in A} \alpha_k > 1 \gamma(\epsilon/2);$
- (2) $||z_k x_k(t_0)||_{X_{t_0}} < \epsilon/2$ for all $k \in A$;
- (3) $z^*(z_k) = 1$ for all $k \in A$.

By hypothesis, for all $k \in A$ there exist $f_k \in X$ such that $f_k(t_0) = z_k$ and $||f_k|| \le ||z_k|| = 1$. Now, we define the following subset in *K*:

$$U = \bigcap_{k \in A} \left\{ t \in K : \|f_k(t) - x_k(t)\|_{X_t} \le \frac{\epsilon}{2} \right\}.$$

It is clear that $U \neq \emptyset$ and U is an open set of K, since the function $t \in K \mapsto ||x(t)|| \in \mathbb{R}$ is upper semicontinuous for all $x \in X$. By Urysohn's lemma there exists a function $\varphi : K \to [0, 1]$ such that $\varphi(t_0) = 1$ and $\varphi(t) = 0$ for all $t \in K \setminus U$.

Now, for each $k \in A$ let $g_k : K \to \bigcup_{t \in K} X_t$ defined by

$$g_k(t) = \varphi(t)f_k(t) + \left(1 - \frac{\epsilon}{2}\right)(1 - \varphi(t))x_k(t).$$

It is clear that $g_k \in X$ for all $k \in A$. We claim that $(g_k)_{k \in A} \subset S_X$. Indeed,

$$\begin{aligned} \|g_k(t)\|_{X_t} &= \left\|\varphi(t)f_k(t) + \left(1 - \frac{\epsilon}{2}\right)(1 - \varphi(t))x_k(t)\right\|_{X_t} \\ &\leq \varphi(t) + 1 - \varphi(t) = 1, \end{aligned}$$

and $||g_k(t_0)||_{X_{t_0}} = ||z_k||_{X_{t_0}} = 1$. So, for all $k \in A$

$$||g_k|| = \sup\{||g_k(t)||_{X_t} : t \in K\} = 1,$$

which means $g_k \in S_X$ for all $k \in A$.

Now, we will show that $||g_k - x_k|| < \epsilon$ for all $k \in A$. In fact, if $t \in U$, then

$$\begin{split} \|g_k(t) - x_k(t)\|_{X_t} &= \left\|\varphi(t)f_k(t) + \left(1 - \frac{\epsilon}{2}\right)(1 - \varphi(t))x_k(t) - x_k(t)\right\|_{X_t} \\ &= \left\|\varphi(t)(f_k(t) - x_k(t)) - \frac{\epsilon}{2}(1 - \varphi(t))x_k(t)\right\|_{X_t} \\ &\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

If $t \in K \setminus U$, then $||g_k(t) - x_k(t)||_{X_t} = ||(1 - \epsilon/2)x_k(t) - x_k(t)||_{X_t} < \epsilon$. Thus,

$$||g_k - x_k|| = \sup\{||(g_k - x_k)(t)|| : t \in K\} < \epsilon, \quad \forall k \in A.$$

Now we consider the valuation mapping $\delta_{t_0} : X \longrightarrow X_{t_0}$ and define the linear function $x^* := z^* \circ \delta_{t_0}$. If $x \in S_X$, then $|x^*(x)| = |z^*(x(t_0))| \le ||z^*|| ||x(t_0)|| \le 1$.

Besides that, for all
$$k \in A$$
, $|x^*(g_k)| = |z^*(g_k(t_o))| = |z^*(z_k)| = 1$. So $||x^*|| = 1$.

Finally, $x^* \in S_{X^*}$ and $x^*(g_k) = 1$, for all $k \in A$. Then X has AHSP.

In the next theorem we will show that it is possible to get the reciprocal of Theorem 2.7. We need to add the additional hypothesis that the mapping $t \in K \mapsto ||x(t)||$ is continuous for all $x \in X$, when $X_t = E$, for all $t \in K$ and for some *E*.

THEOREM 2.8. Let $(K, (X_t)_{t \in K}, X)$ be a complex function module where $X_t = E$, for all $t \in K$ for some Banach space E. Suppose that the mapping $t \in K \mapsto ||x(t)||$ is continuous for all $x \in X$. If X has AHSP, then X_t has AHSP for all $t \in K$.

PROOF. Let $\epsilon > 0$. Since *X* has AHSP, there exist $\eta(\epsilon), \gamma(\epsilon) > 0$ that satisfy the Proposition 2.3. Consider $(x_k)_k \subset B_E$ and the convex series $\sum_{k=1}^{\infty} \alpha_k x_k$ such that

$$\left\|\sum_{k=1}^{\infty} \alpha_k x_k\right\|_E > 1 - \eta(\epsilon).$$

For all $k \in \mathbb{N}$, we define $f_k : K \to \bigcup_{t \in K} X_t$ by $f_k(t) = x_k$. So $(f_k)_k \subset B_X$ and

$$\left\|\sum_{k=1}^{\infty} \alpha_k f_k\right\| = \sup\left\{\left\|\sum_{k=1}^{\infty} \alpha_k f_k(t)\right\| : t \in K\right\} = \left\|\sum_{k=1}^{\infty} \alpha_k x_k\right\|_E > 1 - \eta(\epsilon).$$

Since *X* has AHSP by Proposition 2.3, there are $A \subset \mathbb{N}$, $\{z_k : k \in A\} \subset S_X$ and $\Phi \in S_{X^*}$ such that $\sum_{k \in A} \alpha_k > 1 - \gamma(\epsilon)$, $||z_k - f_k|| < \epsilon$ and $\Phi(z_k) = 1$, for all $k \in A$. Now, we claim that $||\sum_{k \in A} \alpha_k z_k|| = \sum_{k \in A} \alpha_k$. Indeed,

$$\left\|\sum_{k\in A} \alpha_k z_k\right\| \leq \sum_{k\in A} \alpha_k ||z_k|| = \sum_{k\in A} \alpha_k.$$

Since for all $k \in A$, $\Phi(z_k) = 1$, then

$$\Phi\left(\sum_{k\in A}\alpha_k z_k\right) = \sum_{k\in A}\alpha_k,$$

so

$$\left\|\sum_{k\in A}\alpha_k z_k\right\| = \sup\left\{\left|\varphi\left(\sum_{k\in A}\alpha_k z_k\right)\right| : \varphi \in S_{X^*}\right\} = \sum_{k\in A}\alpha_k$$

Now,

$$\sum_{k\in A} \alpha_k = \left\| \sum_{k\in A} \alpha_k z_k \right\| = \sup \Big\{ \left\| \sum_{k\in A} \alpha_k z_k(t) \right\| : t \in K \Big\}.$$

By hypothesis, the function $t \in K \mapsto \|\sum_{k \in A} \alpha_k z_k(t)\|_E$ is continuous. Then there is $t_0 \in K$, such that $\|\sum_{k \in A} \alpha_k z_k(t_0)\| = \sum_{k \in A} \alpha_k$. Thus, $\sum_{k \in A} \alpha_k z_k(t_0) \neq \mathbf{0}$. So, there is a function $x^* \in S_{E^*}$ such that

$$x^* \left(\sum_{k \in A} \alpha_k z_k(t_0) \right) = \left\| \sum_{k \in A} \alpha_k z_k(t_0) \right\|_E = \sum_{k \in A} \alpha_k.$$

Now we consider $g_k := z_k(t_0)$ and observe that $x^*(g_k) = 1$ for all $k \in A$. That is, for all $k \in A$, $(g_k)_k \subset S_E$ and

$$||g_k - x_k||_E = ||z_k(t_0) - f_k(t_0)||_E \le ||z_k - f_k|| < \epsilon, \quad \forall k \in A.$$

The theorem follows.

COROLLARY 2.9. Let X be a dual complex Banach space such that X can be regarded as a function module space, where $X_t = E$, for all $t \in K$ and E a Banach space. Then X has AHSP if and only if X_t has AHSP for all $t \in K$.

PROOF. Now for *X* as a dual space which can be represented as a complex function module with a base space *K* (see [7, Proposition 3.10]), then for every $x \in X$, the function $t \in K \mapsto ||x(t)||$ is continuous [7, Theorem 5.13]. Therefore the assumptions in both Theorems 2.7 and 2.8 hold.

346

COROLLARY 2.10. Let L be a locally compact Hausdorff space and X a Banach space. Then $C_0(L, X)$ has AHSP if, and only if X has AHSP.

PROOF. Consider $K = \beta L$ the Stone–Cech compactification of *L*; the Theorems 2.7 and 2.8 imply the result.

As a consequence of Corollary 2.10 and Theorem 4.1 in [1] we have that $(\ell_1, C_0(L, E))$ has BPBP if, and only if *E* has AHSP. Generally, if $(K, (X_t)_{t \in K}, X)$ is a function module space with AHSP, then (ℓ_1, X) has BPBP.

COROLLARY 2.11. Let $K \neq \emptyset$ be a compact Hausdorff topological space and E be a Banach space. Then E has AHSP if, and only if C(K, E) has AHSP.

PROOF. Since C(K, E) is a function module, with *K* base space and $X_t = E$ for all $t \in K$ (see Examples 2.6(a)) and the mapping $t \in K \mapsto ||f(t)||$ is continuous for all $f \in C(K, E)$, the result follows straight away by Theorems 2.7 and 2.8.

S. Y. Choi and S. Kim in [13, Theorem 11] showed that if C(K, E) has AHSP, then *E* has AHSP. Here the Corollary 2.11 generalizes, in a sense, the result of Choi and Kim and we have the reciprocal.

Open problem: We do not know if Theorem 2.8 is true if there are two distinct component spaces. That means, there are $t_1, t_2 \in K$ such that $X_{t_1} \neq X_{t_2}$.

References

- M. D. Acosta, R. M. Aron, D. García and M. Maestre, 'The Bishop–Phelps–Bollobás theorem for operators', J. Funct. Anal. 254 (2008), 2780–2799.
- [2] M. D. Acosta, J. Becerra-Guerrero, Y. S. Choi, M. Ciesielski, S. K. Kim, H. J. Lee, M. L. Lourenço and M. Martín, 'The Bishop–Phelps–Bollobás property for operators between spaces of continuous functions', *Nonlinear Anal.* 95 (2014), 323–332.
- [3] M. D. Acosta, J. Becerra-Guerrero, D. García, S. K. Kim and M. Maestre, 'Bishop–Phelps– Bollobás property for certain spaces of operators', *J. Math. Anal. Appl.* 414 (2014), 532–545.
- [4] R. M. Aron, B. Cascales and O. Kozhushkina, 'The Bishop–Phelps–Bollobás theorem and Asplund operators', *Proc. Amer. Math. Soc.* 139(10) (2011), 3553–3560.
- [5] R. M. Aron, Y. S. Choi, D. García and M. Maestre, 'The Bishop–Phelps–Bollobás theorem for $\mathcal{L}(L_1(\mu), L_{\infty}[0, 1])$ ', Adv. Math. **228**(1) (2011), 617–628.
- [6] R. M. Aron, Y. S. Choi, S. K. Kim, H. J. Lee and M. Martín, 'The Bishop–Phelps–Bollobás version of Lindenstrauss properties A and B', *Trans. Amer. Math. Soc.* 367 (2015), 6085–6101.
- [7] E. Behrends, *M-Structure and the Banach–Stone Theorem* (Springer, Berlin, 1979).
- [8] E. Bishop and R. R. Phelps, 'A proof that every Banach space is subreflexive', *Bull. Amer. Math. Soc. (N.S.)* 67 (1961), 97–98.
- B. Bollobás, 'An extension to the theorem of Bishop and Phelps', Bull. Lond. Math. Soc. 2 (1970), 181–182.
- [10] B. Cascales, A. J. Guirao and V. Kadets, 'A Bishop–Phelps–Bollobás type theorem for uniform algebras', Adv. Math. 240 (2013), 370–382.
- [11] M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido and F. Rambla-Barreno, 'Bishop–Phelps– Bollobás moduli of a Banach space', J. Math. Anal. Appl. 412(2) (2014), 697–719.
- [12] Y. S. Choi and S. K. Kim, 'The Bishop–Phelps–Bollobás theorem for operators from $L_1(\mu)$ to Banach spaces with the Radon–Nikodým property', *J. Funct. Anal.* **261**(6) (2011), 1446–1456.
- [13] Y. S. Choi and S. K. Kim, 'The Bishop–Phelps–Bollobás property and lush spaces', J. Math. Anal. Appl. 390 (2012), 549–555.

- [14] Y. S. Choi, S. K. Kim, H. J. Lee and M. Martín, 'The Bishop–Phelps–Bollobás theorem for operators on L₁(μ)', J. Funct. Anal. 267(91) (2014), 214–242.
- [15] Y. S. Choi, S. K. Kim, H. J. Lee and M. Martín, 'On Banach spaces with the approximate hyperplane series property', *Banach J. Math. Anal.* 9(4) (2015), 243–258.
- [16] S. K. Kim, 'The Bishop–Phelps–Bollobás theorem for operators from c₀ to uniformly convex spaces', *Israel J. Math.* **197**(1) (2013), 425–435.
- [17] S. K. Kim and H. J. Lee, 'Uniform convexity and Bishop–Phelps–Bollobás property', Canad. J. Math. 66(2) (2014), 372–386.
- [18] J. Lindenstrauss, 'On operators which attain their norm', *Israel J. Math.* 1 (1963), 139–148.

T. GRANDO, Department of Mathematics, University of São Paulo, P.O. Box 66281, 05315-970, São Paulo, Brazil e-mail: tgrando@ime.usp.br

M. L. LOURENÇO, Department of Mathematics, University of São Paulo, P.O. Box 66281, 05315-970, São Paulo, Brazil e-mail: mllouren@ime.usp.br

https://doi.org/10.1017/S1446788719000144 Published online by Cambridge University Press