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We investigate the organization of the momentum-carrying eddies in turbulent
Couette–Poiseuille flows. The study relies on a direct numerical simulation (DNS)
database covering a wide range of flow configurations from pure Couette to pure
Poiseuille flows, at Reτ ≈ 250 (based on the flow properties at the stationary wall).
The study highlights the occurrence of streaky patterns of alternating high and low
momentum throughout the channel for all flow configurations, except near zeros of the
mean shear, where streaks are suppressed. The mean streak spacing shows a relatively
universal distribution in the core of the channel, where it ranges from 50 to 100 local
viscous units. The validity of the local viscous scaling in collapsing flow features at
different wall distances is confirmed by the analysis of the spanwise velocity spectra,
which also highlights (in the case of Couette-like flows) the onset of a secondary
low-wavenumber flow mode, superposed on the high-wavenumber flow mode that
is responsible for the inner-layer dynamics. The effect of the former mode on the
latter is studied by means of the two-point amplitude modulation coefficient, which
brings to light a nonlinear modulation phenomenon. Physical mechanisms to explain
the modulation effect are proposed, based on the interpretation of the conditional
average events. Note that, although similar mechanisms have been previously observed
in high-Reynolds-number turbulent boundary layers and channels, the modulation
effect is here rather associated with the intrinsic large-scale dynamics of Couette-like
flows, and takes place at DNS-accessible Reynolds numbers. We thus believe that the
study of Couette-like flows may give an alternative avenue for probing inner/outer
interaction effects than canonical channel flows.
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1. Introduction
The near-wall region of turbulent flows has been extensively investigated in

boundary layers, channels and pipes. Experiments and direct numerical simulations
(DNS) performed in a wide range of Reynolds numbers have established the existence
of coherent structures populating the inner layer of wall-bounded flows, which are
primarily responsible for sustaining the turbulence. As shown by early experimental
works (Wallace, Eckelmann & Brodkey 1972; Willmarth & Lu 1972), a large fraction
of turbulence kinetic energy in wall-bounded flows is produced in the buffer layer
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during bursting processes, consisting of violent outward ejections of low-speed fluid
that is pumped up and away from the wall, and sweeps of high-speed fluid towards
the wall. As a consequence, the near-wall velocity field is organized into narrow
regions of alternating low and high momentum, referred to as streaks, being the
signature of ejection and sweep events, respectively. Streaks have a characteristic
length of about 100 wall units in the spanwise direction (Kline et al. 1967) and
are associated with the occurrence of counter-rotating vortex pairs aligned in the
streamwise direction (Robinson 1991). Streaks and quasi-streamwise vortices are
currently regarded to be the elementary units responsible for the regeneration cycle
of near-wall turbulence (Hamilton, Kim & Waleffe 1995; Schoppa & Hussain 2002),
whereby quasi-streamwise vortices act on the mean shear to create the streaks, which
become inviscidly unstable and eventually produce tilted streamwise vortices. An
alternative vortex regeneration mechanism, which does not explicitly involve the
streaks, was proposed by Orlandi & Jiménez (1994), based on the idea that when a
vortex approaches a no-slip wall, it induces a layer of vorticity of opposite sign, which
may roll up into new vortices. The new vorticity, which is already predominantly
streamwise, leaves the wall under the induction of its parent, and is stretched and
intensified by the mean shear. The interaction generates local wall-normal velocities
and may directly lead to the formation of new streaks. Following Jiménez & Pinelli
(1999), these two mechanisms will hereafter be referred to as the ‘streaks cycle’ and
the ‘wall cycle’, respectively.

While it is believed that the streaks/streamwise vortices pattern is a universal feature
of wall-bounded flows, much less is known about the organization of turbulence
away from walls. It is a relatively recent finding that the outer part of boundary
layers, as well as the core region of channels and pipes, is characterized by large
coherent structures, having the same qualitative features as the near-wall streaks,
i.e. an alternating pattern of low- and high-speed momentum, but scaling in outer
flow units (i.e. either the boundary-layer thickness, the channel height or the pipe
radius). From inspection of the pre-multiplied energy spectra of streamwise velocity
fluctuations, Kim & Adrian (1999) first identified very-large-scale motions (VLSM) in
pipe flow, having a typical length of up to 14 pipe radii. Hutchins & Marusic (2007)
observed the occurrence of elongated regions of positive and negative momentum
fluctuations in the logarithmic region of turbulent boundary layers, extending for
at least six boundary-layer thicknesses, that they called superstructures or large-
scale motions (LSM). Large-scale and very-large-scale motions in wall-bounded flows
have been addressed in detail in the recent studies by Monty et al. (2007) and
Mathis et al. (2009b). It has been found that large-scale motions in the outer layer
superpose onto the near-wall turbulence, causing deviations from the universal wall
scaling at sufficiently large Reynolds number. Such an effect mainly manifests itself
as a slow (logarithmic) increase of the streamwise turbulence intensity (Hoyas &
Jiménez 2006). Large-scale motions are also responsible for more subtle phenomena
of amplitude modulation of the near-wall coherent structures, whereby (Mathis,
Hutchins & Marusic 2009a) positive large-scale velocity fluctuations above the wall
cause increased small-scale near-wall turbulent activity. As observed by Morrison
(2007), mechanisms of amplitude modulation are inherently nonlinear, and cannot
be simply traced back to the imprint of superstructures on the near-wall region. For
LSM and VLSM to be energetically significant and affect the inner-layer dynamics,
clear separation between inner and outer turbulence scales is necessary, which implies
high Reynolds numbers. Therefore, inner/outer layer interactions have mostly been
observed in experiments, and remain (so far) inaccessible for most DNS, except for
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some recent remarkable efforts (Hoyas & Jiménez 2006; Schlatter et al. 2009; Jiménez
et al. 2010).

It is important to note that streaks are not an exclusive feature of wall-bounded
flows, and the presence of a solid boundary is indeed not strictly necessary. Lee,
Kim & Moin (1990) showed that homogeneous turbulence subjected to intense shear
exhibits coherent flow patterns which closely resemble the streaks found in the near-
wall region of wall-bounded flows. They noted that the formation of streaky structures
is primarily controlled by the value of a dimensionless shear parameter σ k/ε (where
σ is the mean shear, k is the turbulence kinetic energy, and ε is its dissipation rate),
which is a measure of the ratio between the eddy turnover time k/ε and the time scale
of mean deformation 1/σ . Lam & Banerjee (1992) arrived at similar conclusions, but
identified the production-to-dissipation ratio σ |u′v′|/ε as the controlling parameter
for the occurrence of streaks.

The class of the Couette–Poiseuille flows (hereafter C–P) allows introduction of
an additional degree of freedom in the study of channel flows, and in particular to
establish the effect of the movement of one of the two walls. As will be shown later, this
special feature makes C–P flows a good candidate for study of the interaction of the
large-scale structures in the channel core with the near-wall turbulence. Besides their
intrinsic theoretical interest, C–P flows have also been used as a basis for analysing the
resilience of the logarithmic law to pressure gradients (Johnstone, Coleman & Spalart
2010), and for understanding the mechanisms of drag reduction in ultra-hydrophobic
surfaces (Spencer et al. 2009), which can be regarded as surfaces having a finite slip
velocity.

An experimental apparatus for the study of C–P flows was first designed by El
Telbany & Reynolds (1980, 1981), who performed extensive measurements of mean
and fluctuating velocities. Those early studies highlighted difficulties in achieving
universal scaling of the velocity fluctuations, especially near the moving wall, and
the moderate success of scaling based on the local value of the total shear stress
in collapsing data in the core of the channel. Thurlow & Klewicki (2000) found
evidence for exchange of fluid momentum between the two walls, which is increased
when one of the walls is put into motion, and disturbances originating from the
stationary wall may impinge onto the moving wall. Nakabayashi, Kitoh & Katoh
(2004) investigated the similarity laws of the mean velocity profiles and the influence
of mean shear and Reynolds number, and argued about the different structure of
Poiseuille-like flows, for which the mean shear vanishes at a point in the channel,
and Couette-like flows, for which the mean shear never vanishes, and which exhibit
a global circulatory motion. Those observations were made more precise by Kitoh,
Nakabayashi & Nishimura (2005), who focused on the extreme case of the Couette
flow, and inferred the existence of large longitudinal vortices in the central part of the
channel. For this reason, Couette flow has characteristic length scales that are much
longer than those found in Poiseuille flow.

DNS gives access to all flow properties of interest, thus bypassing the inherent
limitations of experimental investigations. In particular, DNS allows a detailed
analysis of the near-wall region, where most turbulence production takes place.
The limiting case of Poiseuille flow has of course been extensively analysed over the
years (see Hoyas & Jiménez 2006 for some recent developments). The other limiting
case of Couette flow has comparatively received much less attention, one of the most
relevant studies being Bech et al. (1995). They performed DNS at low Reynolds
number (the friction Reynolds number was Reτ = 82) and carried out a conditional
eduction of coherent structures in the near-wall region based on the variable interval
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time averaging (VITA) technique. The study showed a similar pattern of the near-wall
turbulence compared to canonical Poiseuille flow, which is dominated by meandering
streaks and shear layers. However, an extension of the near-wall correlations into
the channel core was observed, which led the authors to infer a closer influence of
the outer region in the case of Couette flow. In DNS at Reτ =52 in a very large
domain, Komminaho, Lundbladh & Johansson (1996) found that the typical large-
scale structures developing in the inner part of the channel have a spanwise separation
of about 4h and a length of about 30h. To our knowledge, the only extensive DNS
study of C–P flows (although limited to Poiseuille-like flow conditions) was performed
by Kuroda, Kasagi & Hirata (1993). They considered low-Reynolds-number flows (at
Reτ ≈ 150) and reported velocity statistics and Reynolds stress budgets. Based on the
analysis of instantaneous flow visualizations, they concluded that the mean shear rate
plays a primary role in the mechanisms of generation of coherent structures near the
wall.

In the present study, we develop a DNS database of C–P flows, which covers a wide
range of flow conditions, at Reynolds numbers larger than considered by Kuroda et al.
(1993). The objective of the paper is to shed light on the global turbulence organization
in this class of flows, and quantitatively address the scaling of the energy-carrying
motions. For this purpose, we will investigate the main mechanisms responsible
for momentum exchange, embodied by streaks, to verify possible similarities with
streaky motions in homogeneous shear flows. Furthermore, we will focus on the
large-scale motions in the channel core and try to establish a quantitative relationship
(in terms of imprinting and modulation) with the organization of the near-wall
structures.

This paper is organized as follows. The numerical methodology and the test cases
are presented in § 2. The organization of the various flows is studied in § 3 and § 4,
where we analyse, respectively, the statistics of the velocity field and the geometry of
the streaks. The interactions between the fine-grained near-wall turbulence and the
large-scale structures in the channel core are addressed in § 5. Concluding remarks
are given in § 6.

2. Numerical methodology
We solve the non-dimensional Navier–Stokes momentum equations for a

divergence-free velocity field:

∂uj

∂xj

= 0,

∂ui

∂t
+

∂uiuj

∂xj

= − 1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

− H δi1,

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where H is the (negative) pressure gradient required to maintain a constant flow rate,
ui (i = 1, 2, 3) is the component of the velocity vector in the ith direction, ρ is the
density (assumed to be uniform), p is the pressure, and ν is the kinematic viscosity. The
Navier–Stokes equations have been discretized in an orthogonal coordinate system
(x1, x2, x3, for the streamwise, wall-normal and spanwise directions, respectively)
using staggered central second-order finite-difference approximations, whereby kinetic
energy is globally conserved in the inviscid limit. The details of the numerical method
are reported in Orlandi (2000).
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Figure 1. Sketch of mean velocity profiles in Poiseuille-like and Couette-like flows.

A sketch of the flow configuration, showing the reference system and typical mean
velocity profiles, is depicted in figure 1. The boundary conditions at the lower (moving)
wall, indicated by the subscript M , are applied by forcing a constant value (uM ) for
the streamwise velocity. On the upper (stationary) wall, indicated by the subscript S,
all three velocity components (hereafter also denoted as u, v, w) are set to zero.

The controlling parameter for the flow under consideration is the ratio of the shear
stress at the two walls γ = τM/τS . With no loss of generality, one can always assume
−1 � γ � 1. Couette-like flows are obtained for γ > 0, whereas Poiseuille-like flows
are recovered for γ < 0. Specifically, pure Couette and Poiseuille flows correspond to
γ =1 and γ = −1, respectively. Flows with γ ≈ 0 (hereafter referred to as shear-less)
are of special interest, as they exhibit nearly zero mean shear at the moving wall,
and can thus be used as a model for the understanding of turbulent flows near
separation. Under such conditions, the wall affects the core flow only through the
impermeability condition, and the coherent structures that are observed near the
moving wall significantly differ from those found in canonical channel flow.

The simulations have been performed in a computational box with size L1 = 12 πh

in the streamwise and L3 = 4 πh in the spanwise directions, h being the channel half-
height. Such a large computational box is dictated by the need to accommodate very
large coherent structures in the inner part of the channel, especially in the case of
Couette-like flows (Bech et al. 1995). The computational domain has been discretized
with N1 ×N2 ×N3 ≡ 1024 × 256 × 512 cells in the x1, x2, x3 directions, respectively. In
the following, x2 is used to denote the vertical coordinate (−1 � x2/h � 1, x2/h= −1
corresponding to the moving wall, and x2/h= 1 to the stationary wall), whereas y

is used to indicate the distance from the nearest wall (y = min(h − x2, h + x2), with
0 � y/h � 1).

Simulations representative of the entire allowed range of γ have been performed.
The flow case P is a canonical channel flow with two stationary walls (γ = −1); flow
case P1 corresponds to a Poiseuille-like flow with reduced shear; flow case SL is
representative of a shear-less flow (γ ≈ 0); flow cases C1 and C are Couette-like flows,
the latter being very close to pure Couette flow. The main flow parameters (uM , γ

and the friction Reynolds numbers at the moving and the stationary wall, ReτM
, ReτS

)
are reported in table 1.

The simulations have been initiated with a laminar parabolic Poiseuille velocity
profile, with maximum velocity up at the centreline, and bulk velocity ub = 2/3 up .
The calculations have then been time-advanced by forcing constant mass flux through
the channel in such a way that ub does not vary with time. All the simulations reported
in the present study have been performed at Re = uph/ν =7200, the corresponding
bulk Reynolds number being Reb = ubh/ν = 4800. After an initial transient (lasting
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Flow case uM/up γ Reτ M Reτ S Line style

P 0 −1 284 284 —–—––
P1 0.5 −0.24 128 261 – – – – –
SL 0.8 0.01 26 255 · – · – · –
C1 1.0 0.27 130 250 — ——
C 1.3 0.98 242 245 · · · · · ·

Table 1. Flow parameters for DNS of C–P flows. γ = τM/τS , Reτ M,S = uτ M,Sh/ν,

uτ M,S = (|τM,S |/ρ)1/2.
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Figure 2. Distributions of (a) mean velocity (u) and (b) mean shear rate (σ =du/dx2). Lines:
——–, P; – – –, P1; · – · –, SL; — —, C1; · · · ·, C.

approximately 100 time units h/up) the pressure gradient starts to fluctuate about a

nearly constant value (H ). After the end of this transient, 200 flow samples have been
collected at unit time intervals, which is sufficient to guarantee statistical convergence
of all properties reported in the paper.

3. Velocity statistics
Fully developed C–P flows are characterized by balance between the streamwise

pressure gradient and the cross-stream shear-stress gradient, expressed by the mean
axial momentum equation

dτ

dx2

=
τS − τM

2 h
=

τS (1 − γ )

2 h
= H � 0, (3.1)

where the total shear stress (τ ) is the sum of the viscous shear stress ρνσ (σ = du/dx2 is
the mean shear), and the Reynolds shear stress −ρ u′v′ (Reynolds-averaged quantities
are hereafter indicated by an overbar and fluctuations by the prime symbol). Note
that the two forcing mechanisms are different in principle because the pressure drop
between the entrance and the exit of the duct is globally felt by the flow, whereas
the movement of one wall locally forces momentum, that is transmitted into the core
flow through viscous forces and turbulent transport.

The distributions of the mean velocity and the mean shear stress are reported in
figure 2. When the lower wall is put into motion, the wall stress τM gradually decreases
and the location where maximum velocity is attained shifts from the channel centreline
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Figure 3. (a–d ) Statistics of velocity fluctuations across the channel. Lines: ——–, P; – – –,
P1; · – · –, SL; — —, C1; · · · ·, C.

towards the moving wall. When uM/up ≈ 0.8, the maximum velocity is first attained at
the moving wall. This situation corresponds to a locally shear-less motion, for which
the only effect of the wall is the suppression of the wall-normal motions (blocking
effect). Further increase of uM leads to Couette-like flows, for which no change of
sign of the mean shear occurs.

The root-mean-square (r.m.s.) velocity fluctuations and the Reynolds shear stress
are reported in figure 3 in computational units. Minor sensitivity to the wall motion
is observed in close proximity of the stationary wall, where the flow is dominated by
the local shear, and reasonable collapse of the flow statistics is observed. Significant
differences are found near the channel centreline, where a monotonic increase of all
the Reynolds stress components with γ is found. The velocity fluctuations in the lower
half of the channel are apparently strongly affected by the friction at the moving
wall, and a definite trend with γ is not observed. Also note that the near-wall peak
of the streamwise velocity fluctuations, associated with the turbulence regeneration
cycle, vanishes in the case of the SL flow.

The possible establishment of a universal distribution of velocity fluctuations has
been explored by scaling the flow properties with respect to viscous units taken at the
nearest wall, i.e.

uτ M,S = ν1/2 |σ |1/2
M,S , 	M,S = ν/uτ M,S, (3.2)

where uτ M,S and 	M,S are, respectively, the friction velocity and the viscous length
scale based on the local shear at the moving (M) and stationary (S) walls. Note
that, in the singular case of vanishing wall shear stress, reference velocity and length
scales can be conveniently defined on the basis of the imposed pressure gradient
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Figure 4. Mean velocity profiles near the moving wall scaled in (a) wall units and (b) pressure
units. The distance from the wall (y = h + x2) is denoted by y. The thick solid line indicates
the standard log-law for Poiseuille flow (u+ = 1/k log y+ + B , with k = 0.41, B = 5.2) in (a),
and the square root law (u/uH =2/k∗(y/	H )1/2 + B∗, with k∗ = 0.55, B∗ = −2.65) in (b). Lines:
——–, P; – – –, P1; · – · –, SL; — —, C1; · · · ·, C.

(Schlichting & Gersten 2000)

uH =

(
− ν

ρ
H

)1/3

, 	H = ν/uH . (3.3)

The mean velocity distributions near the moving wall are reported in figure 4 in
friction and pressure scaling. The scaling based on the wall friction gives rise, limited
to the case of the C and P flows, to a narrow layer (if any) with near-logarithmic
scaling (u+ = 1/k log y+ + B). As pointed out by many previous authors, the log-law
constant (provided an overlap layer exists at this low Reynolds number) is different
between C and P flows, owing to the different pressure gradient. Specifically, we find
B = 4.7 for the C flow, which is in perfect agreement with the DNS study of Bech
et al. (1995), and the standard value B = 5.2 for the P flow. A sizeable region with
square-root variation of the mean velocity is recovered in the case of the SL flow
(figure 4b), when pressure scaling is used.

Figures 5 and 6 give the Reynolds stress components scaled in wall units near the
two walls. For a consistency check, in the figures we also report the fully developed
channel flow data by Hoyas & Jiménez (2006), at two Reynolds numbers, one higher
and one lower than the present study. As expected, the reference DNS data envelope
our P flow data. With regard to the flow statistics near the stationary wall (figure 5),
a rather weak sensitivity to the movement of the opposing wall is found for the
streamwise velocity fluctuations, whereas larger differences are found for the cross-
stream ones. In all cases, a systematic trend for velocity fluctuations to increase with
γ is observed, which resembles the effect of increasing the Reynolds number in the P
flow case (recalling table 1, Reτ S here is nearly the same for all cases). This behaviour
suggests the existence of a different coupling between the near-wall region and the
inner channel dynamics for P-like and C-like flows, which will be investigated later.
Larger spread of the curves and stronger deviations from the canonical channel
behaviour are observed near the moving wall (figure 6), where the statistics for the
P and the C flow cases are identical to those for the stationary wall. In this case, no
definite trend with γ is observed.

Flatter distributions of the velocity fluctuations are found introducing a viscous
scaling based on the local value of the mean shear

uτ L(x2) = ν1/2 |σ (x2)|1/2
, 	L(x2) = ν/uτ L(x2). (3.4)
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(b) local total friction. The inset in (b) gives the distribution of the structure parameter

χ = u′v′/u′
iu
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i . Lines: ——–, P; – – –, P1; · – · –, SL; — —, C1; · · · ·, C.

Obviously, the classical wall scaling is recovered near the two walls. The scaling (3.4)
amounts to assuming that the flow is locally similar to a uniformly sheared turbulent
flow subjected to the local mean velocity gradient. In the case of uniformly sheared
homogeneous turbulence it was found that urms/uτ L ≈ 3–7 (Lee et al. 1990). The
distribution of the scaled r.m.s. streamwise velocity fluctuations is reported in
figure 7(a), where the wall-normal coordinate is not scaled. Interestingly, away from
the walls and from zeros of the mean shear, the scaled velocity distributions remain
approximately constant across a large part of the channel, for all the flow cases.
However, the plateau value is different for the different flow cases, and it steadily
increases with increasing γ . This stands to indicate that, while turbulence inside the
channel can be approximately regarded as uniformly sheared turbulence subjected to
the local mean shear, deviations from universality still occur, which may be related
either to the effect of the imposed pressure gradient, being different from case to
case, or to differences in the global flow dynamics, to be discussed in § 5. Similar
distributions are also found for the other fluctuating velocity components, not shown
here. As seen in figure 7(b), even better collapse is achieved (as also observed by El
Telbany & Reynolds 1980) using the friction velocity based on the total stress (τ/ρ)1/2

to scale the velocity fluctuations. In this case, nearly universal values are found for
the r.m.s. velocity components in the core of the channel. Observing that, away from
walls τ ≈ −ρu′v′, constancy of the velocity statistics in the total stress scaling implies
constancy of the structure parameter (Klebanoff 1955), χ = u′v′/u′

iu
′
i , which is found

to be |χ | ≈ 0.13–0.15 (see inset to figure 7b).

The budgets of the turbulence kinetic energy (k = u′
i u

′
i/2) near the two walls are

considered next:

−σ u′ v′︸ ︷︷ ︸
P

− 1

ρ

d v′p′

dx2︸ ︷︷ ︸
Π

−d v′k

dx2︸ ︷︷ ︸
T

+ν
d2k

dx2
2︸ ︷︷ ︸

V

−ν
∂u′

i

∂xj

∂u′
i

∂xj︸ ︷︷ ︸
ε

= 0, (3.5)

where P, Π , T , V and ε are the terms associated, respectively, with production,
pressure transport, turbulent transport, viscous diffusion and dissipation. Very similar
distributions for all cases (not shown) are found near the stationary wall, with
near-wall balance between viscous diffusion and dissipation, and balance between
production and dissipation far from it, as for canonical Poiseuille flow. Near the
moving wall (figure 8), near-canonical behaviour is again found for both the P and
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Figure 8. (a–d ) Turbulence kinetic energy budget near the moving wall (all terms scaled with
respect to u3

p/h, y = h + x2). �, P; �, Π; �, T ; �, V ; �, ε. The inset in (a) shows a zoom near
the channel centreline.

the C flow, with peak production occurring at y/h = 0.04–0.05 (corresponding to
y+ = 10–12). The main effect of reducing the mean shear at the moving wall is the
suppression of the production term in its vicinity, and the near-wall production peak
indeed vanishes in the case of the SL flow. In that case, the importance of the turbulent
transport term (which is everywhere positive) suggests that near-wall turbulence is
dominated by the transport of kinetic energy from the channel core. Balance between
turbulent transport and dissipation is observed at the channel centre for the P flow
(see inset of figure 8a), where, owing to the annihilation of the mean shear, sustaining
turbulence requires inward turbulence kinetic energy flux from the two walls. For all
the other cases, equilibrium between production and dissipation is recovered near the
channel centre, since the mean shear is not zero (recalling figure 2b).

4. Streaks geometry
The velocity statistics illustrated in the previous section are here complemented

with the analysis of the geometrical organization of the velocity field. The occurrence
of momentum streaks can be conveniently appreciated from the inspection of the
velocity fluctuation field in wall-parallel planes, reported in figures 9–11. A streaky
pattern is always observed near the stationary wall, as well as near the moving wall,
except for the SL flow. Streaks (with apparently much larger size) are also observed
at the channel centreline, except for the P flow. These observations can be explained
recalling that for non-uniformly sheared flows (Lam & Banerjee 1992), streaks can
only be sustained if the ratio of the local turbulence kinetic energy production to
the local viscous dissipation is at least of order unity. Applying this criterion to the
C–P class of flows leads to the map depicted in figure 12 which, consistent with the
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Figure 9. (a–c) Contours of streamwise velocity fluctuations in a parallel plane near the
stationary wall (taken at a distance y/h =0.04, where P/ε = 1.72, 1.73 and 1.69, respectively).
Sixteen contour levels are shown, −1.5 < u′/urms < 1.5 (grey scale from black to white). Only a
quarter of the full domain is shown.

instantaneous visualizations, suggests that streaks are not expected to occur in the
lower part of the channel for the SL flow, and near zeros of the local mean shear for
the P and P1 flows.

Turning to the flow visualizations more carefully, several additional observations
can be made. Looking at the moving wall (figure 11), it is clear that the larger the
spanwise size of the streaks the smaller is the wall shear. Furthermore, comparing
the P and C flows (which have approximately the same absolute value of the wall
shear), one can see a similar size of the streaks. However, closer inspection highlights
a roughly uniform distribution of streaks in the spanwise direction for the P flow,
whereas the C flow apparently exhibits (both near the stationary and the moving
wall) streaky organization on two typical length scales, one similar to that of the
P flow streaks, and one typical of the C flow in the channel core (compare with
figure 10c). As will be demonstrated in the next section, this phenomenon is caused
by an imprinting imparted by large-scale events in the channel core onto the near-wall
motions. It is also interesting to note the differences between the SL flow near the
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Figure 10. (a–c) Contours of streamwise velocity fluctuations at the channel centreplane
(x2 = 0), where P/ε = 0, 1.04 and 1.01, respectively. Sixteen contour levels are shown,
−1.5 <u′/urms < 1.5 (grey scale from black to white). Only a quarter of the full domain
is shown.

moving wall and the P flow at the channel centreline, which both have P/ε ≈ 0.
Although streaks are absent in both cases, the pattern of the velocity fluctuations is
quite different, owing to the blocking effect of the moving wall in the SL flow.

The spanwise streak spacing (say λz) is usually inferred (Kim, Moin & Moser
1987) from inspection of the two-point autocorrelation of the streamwise velocity
fluctuations. It is known that in the near-wall region of wall-bounded flows a distinct
negative correlation peak occurs for spanwise separations �z+ ≈ 50, which implies
λ+

z ≈ 100 (Kim et al. 1987). On the other hand, in the case of uniformly sheared
flows, Lee et al. (1990) showed that λz ≈ 120–200 	L. The autocorrelation coefficient
of streamwise velocity fluctuations is reported in figure 13 for points located near the
moving wall (figure 13a) and at the channel centreline (figure 13b). As expected from
visual analysis of the velocity fields, the two-point correlations exhibit a prominent
negative peak for most cases, indicating the occurrence of an alternating pattern of
low- and high-speed streaks, which grow in size moving away from the wall. A distinct
minimum is not found near the moving wall for the SL flow and near the centreline
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Figure 11. (a–c) Contours of streamwise velocity fluctuations in a parallel plane near the
moving wall (taken at a distance y/h =0.04, where P/ε = 1.72, 0.093 and 1.69, respectively).
Sixteen contour levels are shown, −1.5 < u′/urms < 1.5 (grey scale from black to white). Only a
quarter of the full domain is shown.
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Figure 12. Distribution of local production-to-dissipation ratio. Lines: ——–, P; – – –, P1;
· – · –, SL; — —, C1; · · · ·, C.
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Figure 13. Auto-correlation coefficient of streamwise velocity fluctuations in the spanwise
direction taken (a) near the moving wall and (b) at the channel centreline. Lines: ——–, P;
– – –, P1; · – · –, SL; — —, C1; · · · ·, C.
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Figure 14. Mean spanwise streak spacing, estimated from absolute minimum of the spanwise
auto-correlation of u. The spacing is scaled with respect to outer units in (a) and with respect
to local viscous units in (b). Lines: ——–, P; – – –, P1; · – · –, SL; — —, C1; · · · ·, C.

for the P flow, confirming the absence of a streaky pattern. Close examination of
figure 13(a) in the case of C flow shows the presence of a plateau (rather than a clear
minimum) in the two-point correlation at �x3 ≈ 0.33h (amounting to �x3 ≈ 81 	M ),
and a primary negative peak at �x3 ≈ 1.6h, which is approximately the same location
as in figure 13(b). This is suggestive of the presence of two characteristic scales
for the streaks and supports the observations made in figure 11. In this case, the
correlation minimum associated with the inner-layer dynamics is masked by the
minimum associated with large-scale organization in the outer layer.

To get an insight into the change of scales of the momentum-carrying motions
across the channel, we have determined the absolute negative minimum of the
spanwise two-point correlations (wherever it occurs) at all wall-normal stations.
Comparison of the calculated streak spacing for the P flow with available channel
data (Smith & Metzler 1983; Kim et al. 1987) shows excellent agreement in the inner
layer, with spacing of about 100 wall units at the wall, which increases with the wall
distance. The distributions of λz for all the flow cases is reported in figure 14. Note
that the curves are interrupted where the minimum search algorithm fails, which is
indicative of the local inhibition of streaks. Also note that outer scaling is used in
figure 14(a), whereas the local scaling (3.4) is used to report the same data in
figure 14(b). Figure 14(b) supports the capability of local viscous scaling to yield
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Figure 15. Analysis of filtered streamwise velocity fields. (a) C flow: autocorrelation coefficient
near the moving wall determined from full velocity field (�), low-pass-filtered velocity field (�),
and high-pass-filtered velocity field (�). The low- and high-pass-filtered velocity fields contain
33 % and 67 % of the total energy, respectively. (b) Mean streak spacing in local viscous units
determined from the high-pass-filtered fields. Lines: ——–, P; – – –, P1; · – · –, SL; — —, C1;
· · · ·, C.

relatively flat distributions of flow statistics across large part of the channel, even
though, as also observed for the velocity fluctuation statistics, the constant may
change from flow to flow, with variations in the range 50 � λz/	L � 100. The closest
value to those reported by Kim et al. (1987) for homogeneous turbulence is found in
the C flow (in which case λz/	L ≈ 100), consistent with the fact that Couette flow can
be assimilated to a homogeneously sheared flow in the core of the channel. In this
case (the results are not shown), using a local scaling based on the total stress yields
more scattered results than using the mean shear.

It is worth noting that, when reported in local viscous units, the streak spacing has
a strong peak in the vicinity of the walls in the case of C-like flows, which requires
some explanation. In this respect, we recall that the spacings have been determined
solely on the basis of the absolute negative minimum of Ruu. However, as previously
mentioned, a secondary minimum in the autocorrelations is likely to be present for
C-like flows, which is not accounted for in figure 14. To bring out such secondary
minima we have high-pass filtered the velocity fields in the spanwise direction, using
a sharp Fourier cut-off at the wavelength h, which (given the spanwise length of the
domain L3 = 4πh) approximately amounts to retaining only the Fourier modes of the
velocity field from 12 to N3/2. The autocorrelation coefficient near the moving wall
(only shown for the C flow) and the mean streak spacing determined from the filtered
velocity fields are plotted in figure 15. The figure must be interpreted with caution,
since the filtering operator does not strictly preserve the structure of the flow field.
However, the negative correlation peak observed for the high-pass-filtered C flow in
figure 15(a), now much more evident, matches well the position of the plateau seen
in figure 13, and the negative peak correlation found in the low-pass-filtered fields
occurs at the same location as the global minimum in the unfiltered fields. This is a
compelling confirmation that near-wall streaks for the C flow are characterized by two
distinct length scales. The distribution of the mean streaks spacing determined from
the autocorrelations of the high-pass-filtered velocity fields, reported in figure 15(b),
further suggests that the spanwise spacing of small streaks near the walls obeys a
nearly universal scaling. The collapse observed in figure 15(b) in the core of the
channel (where large-scale structures dominate) does not have physical significance,
since all energy-containing scales of motion have been filtered out.
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Figure 16. Pre-multiplied spectra of streamwise velocity fluctuations in the spanwise direction
(kzEuu) at various wall-normal locations. The distance from the nearest wall (y) is reported on
the horizontal axis in logarithmic scale to emphasize the near-wall behaviour. The spanwise
wavelength λz is scaled with respect to either (a, c, e) the channel height or (b, d, f ) the local
viscous length scale. The channel centreline is shown by a vertical dot-dashed line. Sixteen
logarithmically spaced contour levels from 10−4u2

p to 10−2u2
p are shown. The black crosses

denote the peak locations of the spectral densities for λz/h =3.

5. Inner/outer layer interactions
5.1. Energy spectra

The information contained in the autocorrelations of u′ can also be usefully
represented in Fourier space in terms of the pre-multiplied energy spectra, and
reported as a function of the spanwise wavelength at all the vertical stations, as done
in figure 16. As pointed out by Hutchins & Marusic (2007), this type of representation
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yields immediate understanding of the energetic relevance of the various scales of
motions at different distances from the wall, and it was therefore used to assess the
signature of super-structures in turbulent boundary layers (Hutchins & Marusic 2007)
and the occurrence of VLSM in channels and pipes (Kim & Adrian 1999; Monty
et al. 2009) at high Reynolds number. In experiments, spectra are usually taken in
the streamwise direction by applying Taylor’s hypothesis to time series at a given
off-wall station. Here spectra are directly taken in physical space, which removes any
uncertainty associated with the application of Taylor’s hypothesis to the large scales
of motion (del Álamo & Jiménez 2009).

In the case of the P flow, figure 16 shows the presence of two distinct peaks in
the spanwise power spectral density, specular with respect to the centreline, whose
energy is concentrated about λz ≈ 0.39h (corresponding to λ+

z ≈ 110). These peaks,
which are located at a distance from the wall y/h ≈ 0.05 (corresponding to y+ ≈ 12),
are the typical signature of the inner-layer streaks regeneration cycle. Consistent with
the moderate Reynolds number of the simulation, no obvious secondary peak is
observed further away from the walls, associated with possible LSM, even though
the characteristic scale of the energy-containing motions is seen to increase steadily
with the wall distance. When the lower wall is set into motion, the primary effect
is a depletion of energy in its proximity, associated with suppression of the streaks,
until (SL flow) a low-wavenumber energy maximum forms in the upper part of the
channel, which also extends its influence to the lower part. This modification suggests
the occurrence of transfer of energy from the stationary to the moving wall, which
is consistent with the previously observed increased importance of the turbulence
transport term in that region. Finally, a global circulation establishes across the whole
channel for the C flow, associated with the secondary energy peak (now at the channel
centreline) having λz ≈ 3h (λ+

z ≈ 730), and with the re-formation of the near-wall energy
site at the moving wall. Note that a ridge in the spectrum departs from this secondary
peak, which extends to the vicinity of both walls and supports significant influence
of the outer motions on the near-wall ones, through a superposition (imprinting)
mechanism. To further test the relevance of the local viscous scaling defined in (3.4),
in figure 16(b, d, f ) the spectral densities of u′ are reported as a function of the
locally scaled wavelength (λz/	L(x2)). Scaling the wavenumber has the evident effect
of yielding a flatter distribution of the spectral peaks (at a given wall-normal station)
across the channel, the peaks being clustered around λz =75–100 	L, at least far from
the walls. This observation further substantiates the previously noted relevance of the
local mean shear in setting the length scales of the turbulence structures. A similar
organization of the power spectral density is also observed in the streamwise spectra
of u′ (reported in figure 17), which reveal that the near-wall streaks (whenever they
are present) have a length of about 3h, corresponding to λ+

x ≈ 850. The large-scale
streaks observed in the core of the channel in C-like flows retain but a faint signature
in the streamwise spectra, and their length, estimated on the basis of the weak spectral
peak at the symmetry plane, is λx ≈ 10h. In terms of local viscous units (figure 17b,
d, f ), the typical streamwise length of the streaks is found to be very nearly constant
across the inner part of the channel for all flow cases, λz ≈ 450 	L. Note that, because
of the meandering nature of the streaks (Hutchins & Marusic 2007), this is likely to
be a lower limit for the actual streaks length.

Based on the spanwise spectra, one can (more or less arbitrarily, given the lack
of clear scale separation at the Reynolds number here dealt with) define a cutoff
length scale to distinguish between small and large scales of motion. Looking at
figure 16, it seems that λz = h is a reasonable choice (at least in the case of the C
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Figure 17. Pre-multiplied spectra of streamwise velocity fluctuations in the streamwise
direction (kxEuu) at various wall-normal locations. Note that the distance from the nearest
wall (y) is reported on the horizontal axis in logarithmic scale to emphasize the near-wall
behaviour. The streamwise wavelength λx is scaled with respect to (a) the channel height and
(b) the local viscous length scale. The channel centreline is indicated by a vertical dot-dashed
line. Sixteen logarithmically spaced contour levels from 10−4u2

p to 10−2u2
p are shown.

flow) to discriminate between the inner-layer dynamics and the large-scale channel
core circulation. The analysis of the low- and high-pass-filtered velocity fields can
be used to explain the trends observed in the r.m.s. velocity fluctuations near the
stationary wall in figure 5. In figure 18 we report (limited to the C and P flows) the
variance of the filtered velocity components, to highlight the small-scale (high-pass)
and the large-scale (low-pass) contributions. Note that the variance is here reported
instead of the r.m.s. value, so that the two contributions add up to the variance of
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Figure 18. (Colour online available at journals.cambridge.org/flm) (a–d ) Statistics of filtered
velocity fluctuations near the stationary wall in wall units (only data for 0 � x2/h � 1 are
shown, y =h − x2). Symbols indicate statistics obtained from low-pass- (<) and high-pass- (>)
filtered fields. Lines without symbols denote unfiltered data (as reported in figure 5). Lines:
——–, P; · · · ·, C.

the unfiltered velocity signal. In the figure, we also report contributions of the low-
and high-pass velocity fields to the Reynolds shear stress. A similar analysis was
presented for boundary-layer flows by Marusic, Mathis & Hutchins (2010), but based
on filtering in the time domain and limited to the streamwise velocity variance. The
figure highlights several facts. First, it is found that the small-scale contribution to
the r.m.s. of the three velocity components is similar for the two flows. This is a clear
indication that the inner-layer dynamics is robust, and, in a first approximation, it is
insensitive to the global flow geometry. As is well known, the nature of the near-wall
velocity fluctuations associated with the small-scale dynamics is very anisotropic,
with a prevalence of the streamwise velocity component. The contribution of the
large-scale velocity field is found to be very small up to the buffer layer, but it always
becomes dominant towards the channel core. Furthermore, the large-scale velocity
fluctuations are found to be much more ‘isotropic’ (in the sense that the variance of
the velocity components are of similar magnitude) than the small-scale ones, because
they feel the blocking influence of wall-normal motions to a lesser extent (Townsend
1976). As a consequence, stronger influence of the large-scale motions is observed on
the cross-stream velocity components, which explains the trends observed in figure 5.
These conclusions also apply to the Reynolds shear stress, also reported in figure 18.
Remarkable invariance of the small-scale contribution is found between the C and P
flows, to an even greater extent than for the velocity variances. On the other hand,
a substantial contribution from the large scales is found outside the buffer layer for
the C flow.
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Figure 19. (a–c) Conditional expected fields associated with low-speed streaks
(u′/urms < −1.5) at the outer low-wavenumber energy site (marked by a cross; see figure 16 for
reference). Flooded contours correspond to streamwise velocity fluctuations (16 contour levels
are shown, −0.13 � u′/up � 0.13, grey scale from black to white. Contour lines correspond to
iso-levels of streamwise vorticity (16 contour levels are shown, −0.3 � ωxh/up � 0.3, dashed
lines denoting negative values).

5.2. Conditional eddies

The physical mechanisms through which the large structures that arise within the
channel modify the mechanisms of turbulence production near the walls can be
understood by analysing the conditional average fields based on the presence of
large-scale low-speed streaks, which are shown in figure 19. For this purpose, we
consider reference points which are possibly representative of the large scales of
motion, whenever they are present. Indeed, as previously noted, no genuine large-scale
dynamics can be isolated for P-like flows, whereas an outer energy site emerges for
the C-like flows, with the eventual formation of a distinct energy peak at the channel
centreline with wavelength λz ≈ 3h, in the case of pure Couette flow. Therefore, to use
the same definition for all the flow cases, we conventionally set the reference point for
the conditional eddy analysis at the peak of the pre-multiplied energy spectrum for
λz = 3h. The peaks thus determined are shown by crosses in figure 16. The occurrence
of low-speed streaks is determined by chasing events characterized by intense negative
streamwise velocity fluctuations, i.e. with u′/urms < −1.5. The conditionally sampled
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Figure 20. (a–c) Conditional expected fields associated with low-speed streaks
(u′/urms < −1.5) at the outer low-wavenumber energy site (marked by a cross; see figure 16
for reference). Sixteen contour levels of u′ are shown, −0.13 � u′/up � 0.13, the dashed lines
denoting negative values. Note that only a limited streamwise portion of the computational
domain is shown.

streamwise velocity and vorticity fields exhibit the typical organization of all shear
flows (Hamilton et al. 1995), whose building blocks are momentum streaks flanked
by pairs of counter-rotating quasi-streamwise vortices (rollers), which carry positive
velocity fluctuations from regions of high momentum to regions of low momentum
and vice versa. As recalled in the Introduction, streaks and streamwise vortices are at
the heart of the currently accepted model of the turbulence regeneration mechanism
in the presence of shear (Jiménez & Pinelli 1999; Schoppa & Hussain 2002).

For all flow cases, large-scale streaks are found to have a roughly circular core
in the cross-stream plane, whose typical radius becomes of the order of the channel
height in the case of the C flow. As can be inferred looking at the secondary minima
in figure 19, the typical spanwise separation between streaks of the same sign may
be up to 3h. More important yet, the conditional fields associated with outer-layer
streaks appear to extend to the nearest wall (and also to the opposite wall, as in the
case of C flow), inducing the formation of oppositely signed vorticity owing to the
no-slip condition. This scenario closely recalls the wall cycle mechanism of turbulence
regeneration proposed by Orlandi & Jiménez (1994), whereby secondary vorticity is
generated at solid walls from existing vortices because of the no-slip condition.

The projection of the conditional eddies in the x1–x2 plane, shown in figure 20,
further illustrates the strong spatial coherence of the structures in the channel core,
which extend for up to 20h and are inclined by about −14◦ with respect to the
positive horizontal direction. Such an inclination (in absolute value) is very similar
to that reported for the large-scale coherent structures in the logarithmic region
of turbulent boundary layers (Marusic & Heuer 2007) and Poiseuille flows at high
Reynolds number (Chung & McKeon 2010). We note that the negative sign of the
inclination is due to the fact that the conditioning point in these examples lies in
the upper part of the channel, where the mean shear is always negative (recalling
figure 2). Placing the conditioning probe in regions with positive mean shear would
yield the commonly quoted result that the inclination is +14◦.
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5.3. Amplitude modulation mechanism

The possible occurrence of a modulating action of the large-scale outer motions in
the small-scale near-wall structures was first investigated in the context of turbulent
boundary-layer flow by Mathis et al. (2009a). They found that, in addition to
the (linear) imprinting mechanism previously discussed, nonlinear phenomena of
amplitude modulation (AM) also take place between the inner- and outer-layer
eddies. They quantified the intensity of the amplitude modulation imparted by a
large-scale eddy placed at a location P1 on a small-scale eddy placed at another
location P2 by (i) determining the high-pass-filtered component of the velocity signal
at P2 (say, u2H ), (ii) determining the envelope of u2H (say, u2E) by means of the
Hilbert transform, (iii) determining the low-pass-filtered component of the signal
envelope (say, u2EL) and (iv) calculating the correlation coefficient (hereafter referred
to as amplitude modulation coefficient, RAM ) between the low-pass-filtered envelope
at P2 and the low-pass-filtered signal at P1,

R12
AM =

u1L u2EL√
u1

2
L

√
u2

2
EL

. (5.1)

Although the correlation can in general be applied to signals taken from two distinct
points, Mathis et al. (2009a) argued that the one-point AM coefficient provides a
reasonable estimate for the full two-point AM coefficient, and exploited a one-point
analysis to quantify inner/outer interaction effects across the boundary layer. High
levels of positive and negative correlation were observed in the inner and outer regions
of the wall layer, respectively, with a zero crossing in the logarithmic region. According
to the interpretation of Mathis et al. (2009a), the positive correlation found in the near-
wall region indicates that positive (negative) large-scale velocity excursions induce
local enhancement (suppression) of the small-scale turbulent velocity fluctuations.
The opposite effect is observed in the outer layer. The analysis was extended to pipe
and channel flows by Mathis et al. (2009b), who observed approximate invariance of
the one-point AM coefficient in the inner region when data are compared at a similar
friction Reynolds number.

The computed one-point AM correlation coefficient R11
AM (x2) (for obvious reasons

related to homogeneity of the flow, only the x2 dependence is left) for C–P flows is
reported in figure 21(a) as a function of the wall-normal outer-scaled coordinate. Note
that, for the purpose of evaluating the various terms in (5.1), filtering is performed in
the spanwise direction, with cutoff wavelength λz =h, which, based on the previous
discussion, approximately marks the boundary between the small- and large-scale
domains. The effect of varying the filter width was also addressed, but no qualitative
change was observed. A trend consistent with the experiments of Mathis et al. (2009b)
is found away from the wall when outer scaling is used, and in the near-wall region
when inner scaling is used. Also accounting for the wide disparity in the Reynolds
numbers and the different approaches used for filtering (spatial filtering is used here
as opposed to filtering in the time domain), this makes us confident that the AM
quantification procedure is properly implemented. Looking at the stationary wall, the
typical behaviour observed in canonical wall-bounded flows is recovered for all the
flow cases, with inversion of the sign of the modulation coefficient from positive to
negative taking place just outside the buffer layer.

As shown by Schlatter & Örlü (2010), the one-point AM coefficient is strongly
related to the local skewness of velocity fluctuations. Indeed, the streamwise velocity
skewness, reported in figure 21(b), highlights remarkable similarities to the data
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Figure 21. (Colour online) Distribution of (a) one-point amplitude modulation coefficient
(R11

AM ), according to (5.1), and (b) skewness of streamwise velocity fluctuations. The symbols in
(a) denote experimental data for the P flow at Reτ =3000 (Mathis et al. 2009b). The inset in (a)
shows a comparison between P flow data and experiments in semi-logarithmic representation.
Lines: ——–, P; – – –, P1; · – · –, SL; — —, C1; · · · ·, C.

reported in figure 21(a), especially near the wall. Incidentally, the skewness at the
channel centreline is found to be negative for the P flow (as also found by Kim et al.
1987) and zero for the C flow (as found by Komminaho et al. 1996). Schlatter &
Örlü (2010) were able to show that this similarity also persists when applying the AM
analysis to synthetic random signals having the same probability density function as
the original velocity signals (and thus non-zero skewness), indicating an inherent link
between skewness and one-point modulation.

To overcome the possible limitations of the one-point modulation analysis, we
propose fully exploiting the two-point AM correlation. Specifically, to evaluate the
modulation mechanism we consider the two-point covariance between the large-scale
velocity at P1 and the low-pass-filtered envelope at P2,

C12
AM = u1L u2EL. (5.2)

The AM covariance is here preferred over the corresponding correlation coefficient,
since it has the advantage of providing understanding of the absolute importance of
the modulation effect between any two probe pairs. The modulation covariance thus
defined is applied to the study of C–P class of flows by placing (as previously done
for the conditional eddies) the conditioning point P1 at a distance from the stationary
wall corresponding to the peak of the spectral density for Fourier modes with λz = 3h,
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Figure 22. (Colour online) (a–d ) Maps of the two-point AM covariance (C12
AM ), according to

(5.2). The position of the modulating event is shown by a cross (see figure 16 for reference),
and data are scaled with respect to u2

τ S . The dot-dashed lines indicate the local ±14◦ direction
with respect to the horizontal direction.

which are representative of the large scales of motion. The probe P2 is then displaced
with respect to P1 in the streamwise and wall-normal directions, thus obtaining AM
covariance maps which depend on the wall-normal coordinate and the streamwise
separation, say �x1.

The two-dimensional modulation maps obtained from this procedure are shown in
figure 22. For clarity of the representation, the wall-normal distance (y) is reported
(instead of x2) in logarithmic scale to zoom into the near-wall region, and the position
of the modulating probe is indicated by crosses. For guidance in the interpretation,
the local ±14◦ directions about the modulating point are drawn with dot-dashed
lines. In the case of the P flow, a scenario similar to that observed by Mathis
et al. (2009a) is recovered, with a negative modulation peak around the conditioning
point (associated with locally negative skewness) and a positive modulation peak
located in the proximity of the nearby wall (in this case, the upper, stationary wall).
Note that such a peak approximately leans in the same direction (−14◦) with respect
to the conditioning point as the conditional eddies shown in figure 20. The same
qualitative scenario is also found for the P1 and the SL flows, for which the modulating
influence on the near-wall region becomes stronger. In the case of the C flow, it is
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Figure 23. Coherent vortices near the (a) stationary and (b) moving wall for the C flow,
educed as iso-surfaces of the swirling strength (λci = 1.25 up/h, black shades), superposed on
flooded contours of u′/urms at the channel centreplane (the iso-lines −1, −2 are in blue and
the iso-lines 1, 2 are in red). Only a quarter of the full domain is shown.

found that the centreline velocity has a modulating influence on both the moving
and the stationary walls. In this case, the modulation covariance imparted on the
stationary wall has positive sign, whereas negative modulation is observed at the
moving wall. Also, in this case the modulation peaks lie along a line having small
negative inclination with respect to the horizontal, even though the characteristic
angle seems to be somewhat larger than 14◦ in absolute value. It is remarkable
that the site where the peak modulation occurs lies, for all cases, at a wall distance
y+ ≈ 6.5, and its influence extends to both the viscous sublayer and the buffer zone.

The patterns observed in figure 22(c) can be interpreted by noting that, in the
case of the C-like flows, a positive large-scale velocity fluctuation near the centre
of the channel causes the reduction of the velocity gradient at the moving wall
(with subsequent reduction of the turbulent activity) and the increase of the wall
friction at the stationary wall (with enhancement of the turbulent activity). Recalling
figure 11(c), one can indeed observe a noticeable clustering of small-scale streaks near
the moving wall corresponding to regions of local low momentum at the channel
centreline, whereas the opposite effect is found near the stationary wall (see figure 9c).
A clearer illustration of the modulation mechanism is obtained by superposing the
velocity fields at the centreline with the small-scale vortical structures educed near
the two walls, as shown in figure 23 for the C flow. Vortex cores have been extracted
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using the criterion developed by Zhou et al. (1999), based on the imaginary part of
the complex conjugate eigenvalue pair of the velocity gradient tensor (the so-called
swirling strength, here referred to as λci). The figure shows a remarkable association
between low-momentum zones at the channel centreline (shown by blue contours)
and zones of strong vortical activity near the moving wall, and zones depleted with
vortices near the stationary wall. The opposite effect is observed for high-momentum
zones at the channel centreline (shown by red contours) in figure 23.

An alternative strategy for quantifying inner/outer interactions in terms of
modulating influences has recently been proposed by Guala, Metzger & McKeon
(2011) in the study of the atmospheric surface layer, which apparently is not biased
by non-zero skewness of the velocity signal. The implementation of that strategy
could usefully complement the results of the present study.

6. Conclusions
The structure of turbulence in Couette–Poiseuille flows has been investigated by

means of DNS. A series of flow conditions have been covered, including the limiting
cases of pure Poiseuille flow (canonical channel flow), pure Couette flow and shear-less
flow (near-zero shear at the moving wall). This class of flows is of particular interest
since it allows study of the effect of changing the conditions at one of the walls (in
this case, changing its velocity) on the opposing one. The study has the main merit of
allowing insight into the effect of the large-scale channel dynamics on the structure
of near-wall turbulence, even at the moderate Reynolds numbers considered.

The results indicate the absence of true large-scale dynamics for the P-like flows,
which is associated with the lack of significant transport of turbulence kinetic energy
from one wall to the other. In this case, the effect of one wall approximately extends
up to the position where the maximum mean velocity is attained, and turbulence
kinetic energy production vanishes. On the other hand, global influence of the moving
wall on the entire flow is observed for C-like flows, associated with the establishment
of large-scale motions in the channel core, whose typical length and width are of the
order of 10h (at least) and 3h, respectively. Such large-scale motions come in the form
of low- and high-speed streaks associated with small (but non-zero) values of the shear
near the middle of the channel, unlike the case for canonical channel and pipe flow.

The velocity statistics near both the stationary and the moving wall indicate lack
of collapse in classical wall scaling, with a general tendency of turbulence intensities
to increase from P to C flow, which is consistent with an increased imprinting of the
large-scale motions on near-wall turbulence. Indeed, as well shown by the velocity
spectra, the outer-scaled motions that form for C-like flows maintain a clear footprint
in the near-wall region, providing additional energy at low wavenumbers. The large-
scale motions are found to have much more ‘isotropic’ behaviour, since they perceive
the constraining effect of the walls more weakly. As a consequence, it is found that the
wall-parallel velocity components are more significantly affected by the wall motion
than the streamwise velocity, whose peak is associated with the strongly anisotropic
nature of the small-scale velocity fluctuations near the walls. The improved collapse
of the velocity statistics in the core of the channel when local friction scaling is
used suggests similarities with homogeneously sheared flows. However, differences
persist between different flows, the r.m.s. velocity fluctuations varying in the range
8 � urms/uτ L(x2) � 14 (figure 7a).

The study of the geometry of the velocity field has shown that the formation/
suppression of streaks is approximately controlled by the local turbulence kinetic
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energy production/dissipation ratio, as proposed by Lam & Banerjee (1992), the
streaks vanishing around local extrema of the mean velocity profile. In that case, the
local geometry of the flow is found to be strongly affected by the blocking effect of
the wall. The streak spacing is found to vary by almost an order of magnitude across
the flow cases, when reported in classical wall scaling. Much better universality is
found in the channel core when local scaling is used, in which case streak spacings
in the range 50 � λz/	L(x2) � 100 are obtained. This result again points not only to
the validity of local viscous scaling in establishing the turbulence properties, but also
to the need to incorporate (in some form) the pressure gradient in the analysis to
achieve collapse of flow statistics among different flow cases (Johnstone et al. 2010).

The analysis of the effect of the large-scale structures which form in the channel
core on the turbulence dynamics near the two walls has highlighted the occurrence
of a more subtle influence than simple imprinting, which is very similar to the
amplitude modulation mechanisms observed in high-Reynolds-number boundary
layers and channels. In first instance, visualizations of C-like flows clearly indicate
that the low-momentum regions found near the channel centreline are associated
with regions of increased turbulent activity near the moving wall. This modulating
effect has been characterized through an extension of the procedure developed by
Mathis et al. (2009a), and based on the design of a two-point amplitude modulation
covariance. This tool allows inference of a growing near-wall influence of the outer-
layer structures in the case of C-like flows. In this case, the modulating influence
near the stationary wall manifests itself with the appearance of a positive lobe of
the amplitude modulation covariance at a wall distance y+ ≈ 6.5, which is primarily
caused by local decrease of the wall friction induced by large-scale low-momentum
deficit at the channel centre. The opposite effect is observed near the stationary wall.
Secondly, the analysis of the conditional average coherent structures in the channel
core shows the emergence (at least in statistical sense) of large momentum streaks
associated with pairs of quasi-streamwise vortices, which promote the formation
of secondary near-wall streamwise vorticity because of the no-slip condition. The
latter effect is reminiscent of the wall cycle of turbulence self-sustainment envisaged
by Orlandi & Jiménez (1994). Jiménez & Pinelli (1999) provided hints that in the
case of canonical channel flows this mechanism has less dynamical significance than
the primary streaks regeneration mechanism. It would then be interesting to verify
whether the same conclusions also apply to Poiseuille flow, in which case, based
on the results reported in this paper, greater relevance of the wall cycle seems
possible.

In perspective, we believe that the class of C–P flows can be conveniently utilized
to analyse in a simple setting some mechanisms of wall-bounded flows, such as the
formation of large structures and the inner–outer interactions, which (so far) have
only been observed in experiments and DNS at large Reynolds numbers. Of special
importance may be the case of the shear-less flow, which does not seem to have
been thoroughly studied so far, and which is of interest for the analysis of wall
turbulence near a separation point. Much interest may also reside in the analysis
of the large- and small-scale contributions to the Reynolds shear stress, which is
the turbulence statistics of primary importance. In this respect, this study seems to
suggest universality of the contribution of the small scales, which, if confirmed for
other Reynolds numbers and/or flow cases, would be of extreme theoretical interest.
We also expect that the database reported in the present paper can be of use for a
RANS modeller, providing access to statistics for wall-bounded flows in the presence
of non-zero pressure gradients (Borello & Orlandi 2011).
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