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We show how to reconstruct a finite directed graph E from its Toeplitz algebra, its
gauge action, and the canonical finite-dimensional abelian subalgebra generated by
the vertex projections. We also show that if E has no sinks, then we can recover E
from its Toeplitz algebra and the generalized gauge action that has, for each vertex,
an independent copy of the circle acting on the generators corresponding to edges
emanating from that vertex. We show by example that it is not possible to recover E
from its Toeplitz algebra and gauge action alone.
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1. Introduction

In recent years, there has been an enormous amount of work, led by Eilers
and his collaborators (see e.g., [2–7,17]) on determining which moves on finite
directed graphs generate the equivalence relations determined by various types of
isomorphism of the associated C∗-algebras. One spectacular example of this is
[5, theorem 3.1]: if E and F are graphs with finitely many vertices, then the
graph C∗-algebras C∗(E) and C∗(F ) are stably isomorphic if and only if E can be
transformed into F using a finite sequence of in-splittings, out-splittings, reductions,
additions of sinks, Cuntz splices, Pulelehua moves, and the inverses of these moves.
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By contrast, relatively little attention has been paid to the Toeplitz algebras of
directed graphs, until the recent interest in KMS-theory (see e.g., [1,10,11,13,18])
brought them to the fore. It has been known for some time [12,16] that the non-
selfadjoint Toeplitz algebra (also called the tensor algebra or the quiver operator
algebra) of a directed graph E contains all of the information about E—if E and
F are directed graphs with isomorphic tensor algebras, then they are themselves
isomorphic. But there are no results in this direction for the Toeplitz C∗-algebras
of directed graphs.

Here we consider the extent to which a finite directed graph can be recovered from
its Toeplitz algebra and gauge action. We show that at least one additional piece of
information is needed (see examples 2.1 and 3.10) and identify two pieces of infor-
mation, either of which suffices for finite graphs with no sinks. Our key tool is the
KMS structure of T C∗(E) for the dynamics arising from its gauge action; we show
that using this we can recover the rank-one projections in T C∗(E) that correspond
to the vertices of E. From this, using the spectral subspaces of the gauge action,
it is straightforward to count the number of edges (indeed, the number of paths of
length n for any n) emanating from a given vertex. However, additional information
is required to determine which of these paths have the same ranges. We show that
the subalgebra ME = span{qv : v ∈ E0} ⊆ T C∗(E) generated by the vertex projec-
tions is sufficient to recover this information, and that if E has no sinks then the
action κE of the torus T

E0
such that κEz (te) = zs(e)te for each e ∈ E1 also suffices.

Conventions. We use the conventions of [15] for graphs and their C∗-algebras; so
the Toeplitz algebra of a directed graph E is the universal C∗-algebra generated by
projections {qv : v ∈ E0} and partial isometries {te : e ∈ E1} such that t∗ete = qs(e)
and qv �

∑
r(e)=v tet

∗
e. We use the notational convention in which, for example,

vE1 = r−1(v) and E1v = s−1(v).

2. An example

We started this project by asking whether it is possible to recover a directed graph
E from its Toeplitz algebra and gauge action. The following example shows that the
answer is no, even for the particularly well-behaved class of strongly connected finite
graphs in which every cycle has an entrance. We thank Søren Eilers for very helpful
conversations that led to the construction of this example. For a simpler example
involving graphs that are not strongly connected, and have sinks and sources, see
example 3.10.

Example 2.1. Consider the following directed graphs E and F , that differ only in
the range of the edge e:
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Let (t, q) be the universal generating Toeplitz–Cuntz–Krieger F -family in T C∗(F ).
Define elements {Qw : w ∈ E0} and {Th : h ∈ E1} in T C∗(F ) as follows:

Qu = qu + tet
∗
e, Qv = qv − tet

∗
e, Tf = tf + tgtet

∗
e, Tg = tg(qv − tet

∗
e), and

Qw = qw for w ∈ E0 \ {u, v} and Th = th for h ∈ E1 \ {f, g}.

It is routine to check that (Q,T ) is a Toeplitz–Cuntz–Krieger E-family that gen-
erates T C∗(F ), and that the elements Qw −

∑
h∈wE1 ThT

∗
h are all nonzero. So the

universal property of T C∗(E) yields a surjective homomorphism πQ,T : T C∗(E) →
T C∗(F ) such that πQ,T (qw) = Qw and πQ,T (th) = Th, and [8, theorem 4.1] implies
that πQ,T is injective. It is immediate from the definitions of the Th and Qw that
πQ,T is gauge-equivariant. So (T C∗(E), γE) ∼= (T C∗(F ), γF ), but there is no graph-
isomorphism from E to F because, for example, E has a pair of parallel edges,
whereas F does not.

In fact, since the canonical diagonals DE = span{tμt∗μ : μ ∈ E∗} and DF =
span{tμt∗μ : μ ∈ F ∗} are maximal abelian in T C∗(E) and T C∗(F ), we see that
πQ,T (DE) is a maximal abelian subalgebra of T C∗(F ). Since this maximal
abelian subalgebra is contained in the maximal abelian subalgebra DF of
T C∗(F ), we deduce that πQ,T (DE) = DF . So the triples (T C∗(E), γE ,DE) and
(T C∗(F ), γF ,DF ) are isomorphic even though E and F are not.

3. The main theorem

Example 2.1 shows that recovering a directed graph from its Toeplitz algebra
requires more information than just the gauge action. Our main result identifies
two additional bits of data, either one of which bridges the gap. The first one is the
C*-subalgebra generated by the vertex projections inside the Toeplitz algebra. The
second one is a higher dimensional generalization of the gauge action.

Definition 3.1. When E is a directed graph, the generalized gauge action on
T C∗(E) is the action κE : T

E0 → Aut T C∗(E) determined by κEz (te) = zs(e)te for
all e ∈ E1 and z ∈ T

E0
. When E and F are two directed graphs, we say that an

isomorphism ρ : T C∗(E) → T C∗(F ) intertwines the generalized gauge actions κE

and κF if there is a bijection ϕ : E0 → F 0 such that the induced homomorphism
ϕ∗ : T

E0 → T
F 0

satisfies ρ ◦ κEz = κFϕ∗(z) ◦ ρ for all z ∈ T
E0

.

Theorem 3.2. Let E and F be finite directed graphs. As before, let γE be the gauge
action of T on T C∗(E), and let ME := span{qv : v ∈ E0} ⊆ T C∗(E). Let κE be
the generalized gauge action of T

E0
on T C∗(E) given by κEz (te) = zs(e)te for all

e ∈ E1. Denote by γF , MF , and κF the corresponding concepts for T C∗(F ).

(1) There is an isomorphism T C∗(E) ∼= T C∗(F ) that intertwines γE and γF and
carries ME to MF if and only if E ∼= F .

(2) Suppose that E and F have no sinks. Then there is an isomorphism
T C∗(E) ∼= T C∗(F ) that intertwines the generalized gauge actions κE and
κF if and only if E ∼= F .
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Remark 3.3. In both parts of theorem 3.2, the additional data required beyond the
gauge actions include the number of vertices in the graphs. We point out, however,
that this number is already available as an isomorphism invariant of the C∗-algebra
T C∗(E) alone: by [8, theorem 4.1] combined with [14, theorem 4.4], the Toeplitz
algebra T C∗(E) is KK-equivalent to C

E0
, and in particular K0(T C∗(E)) ∼= ZE0.

So if T C∗(E) ∼= T C∗(F ), we already know that |E0| = |F 0|.

The proof of the ‘if’ implication is easy in both cases. If ϕ0 : E0 → F 0 and
ϕ1 : E1 → F 1 constitute an isomorphism of graphs, then the isomorphism ρ :
T C∗(E) → T C∗(F ) given by ρ(te) = tϕ1(e) and ρ(qv) = qϕ0(v) carries ME to MF

and intertwines κE and κF (and, by restriction, γE and γF ), via the isomorphism
T
E0 ∼= T

F 0
induced by ϕ0.

To prove the reverse implications we shall use the results of [9,10] on the KMS
structure of the Toeplitz algebra T C∗(E) for the dynamics α : R → Aut(T C∗(E)),
where αt = γEeit is the lift of the gauge action; that is

αt(qv) = qv and αt(te) = eitte for all v ∈ E0, e ∈ E1, and t ∈ R. (3.1)

We write

Extβ(α) := {φ : φ is an extremal KMSβ state of (T C∗(E), α)}.

We first need to be able to recognize, using the data (T C∗(E), α), when a real
number β is strictly greater than the natural logarithm of the spectral radius of the
adjacency matrix AE of the directed graph E. For this, as in [10], we write ∼ for
the equivalence relation on E0 given by v ∼ w if both vE∗w �= ∅ and wE∗v �= ∅. We
call the equivalence classes C ∈ E0/∼ the strongly connected components of E. For
C ∈ E0/∼, we write AC for the C × C submatrix of AE , which is the adjacency
matrix of the subgraph of E with vertices C and edges CE1C.

Lemma 3.4. Let E be a finite directed graph. If β < log ρ(AE) < β′, then
|Extβ(α)| < |Extβ′(α)|.

Proof. If E has no cycles, then [9, lemma A.1(b)] shows that log ρ(AE) = −∞, and
so the result is vacuous. So suppose that E has at least one cycle. Then ρ(AE) =
max{ρ(AC) : C is a nontrivial strongly connected component of E}, as discussed
at the beginning of [10, § 4]. Let Hβ := {s(μ) : μ ∈ E∗ and r(μ) ∈

⋃
log ρ(AC)>β C}.

theorem 3.1 of [9] shows that |Extβ′(α)| = |E0|, and theorem 5.3 of [10] implies
that |Extβ(α)| � |E0 \Hβ |. Since β < log ρ(AE) = max{log ρ(AC) : C ∈ E0/∼},
we have Hβ �= ∅. Hence |E0 \Hβ | < |E0|, which proves the result. �

Lemma 3.5. The interior in R of the set{
β ∈ (0,∞) : |Extβ′(α)| = |Extβ(α)| for all β′ � β

}
(3.2)

is the open half-line (log ρ(AE),∞).

Proof. Theorem 3.1 of [9] shows that if β > log ρ(AE), then we have |Extβ′(α)| =
|Extβ(α)| for all β′ � β, and lemma 3.4 shows that if β < log ρ(AE), then
|Extβ′(α)| > |Extβ(α)| for some β′ > β. �
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Throughout the rest of this note, we shall let π : T C∗(E) → B(
2(E∗)) be the
canonical (faithful) path-space representation of T C∗(E). We will need to show
that the minimal projections in T C∗(E) corresponding to vertices of E can be
recovered using the gauge action γE . For each μ ∈ E∗, we define

Δμ := tμ(qs(μ) −
∑

e∈s(μ)E1

tet
∗
e)t

∗
μ ∈ T C∗(E). (3.3)

The Δμ are minimal projections in the canonical copy of
⊕

v∈E0 K(
2(E∗v)) in
T C∗(E); indeed, each π(Δμ) is the rank-1 projection θδμ,δμ onto the span of the
basis vector δμ ∈ 
2(E∗).

Lemma 3.6. Let E be a finite directed graph. Let α be the dynamics (3.1). Let β be
any real number greater than max{0, log ρ(AE)}. Let φ be an extremal KMSβ state
of (T C∗(E), α). Let Pmin denote the collection of minimal projections on T C∗(E).
There is a unique pφ ∈ Pmin such that φ(pφ) = max{φ(q) : q ∈ Pmin}. Moreover,
with Δv as in (3.3), we have pφ = Δvφ for some vφ ∈ E0.

Proof. For each v ∈ E0, let εv(·) denote the measure (
∑
μ∈E∗v e

−β|μ|)−1δv(·) on E0.
Since β > log ρ(AE), [9, theorem 3.1] implies that there is a unique vφ ∈ E0 such
that φ satisfies

φ(tμt∗ν) = δμ,νe
−β|μ|εvφs(μ), for all μ, ν ∈ E∗.

By the proof of [9, theorem 3.1(b)], we know that φ satisfies

φ(a) =
∑

μ∈E∗vφ

e−β|μ|(π(a)δμ|δμ)εvφs(μ) for all a ∈ T C∗(E).

We have

φ(Δvφ) = ε
vφ
vφ =

(∑
μ∈E∗vφ

e−β|μ|
)−1

.

Fix q ∈ Pmin \ Δvφ . It suffices to show that φ(q) < φ(Δvφ). Let πvφ : T C∗(E) →
B(
2(E∗vφ)) be the direct summand in π corresponding to vφ. Then φ factors
through πvφ . If φ(q) = 0 then we certainly have φ(q) < φ(Δvφ), so suppose that
φ(q) �= 0. Then πvφ(q) �= 0, and so πvφ(q) is a minimal projection in πvφ(T C∗(E)).
Since πvφ(T C∗(E)) contains all of K(
2(E∗vφ)), it follows that π(q) is the rank-one
projection θξ,ξ corresponding to a unit vector ξ ∈ 
2(E∗vφ). Hence

φ(q) =
∑

μ∈E∗vφ

e−β|μ|(π(q)δμ|δμ)εvφs(μ) =
∑

μ∈E∗vφ

e−β|μ|(θξ,ξ(δμ)|δμ)εvφs(μ)

=
∑

μ∈E∗vφ

e−β|μ|((ξ | δμ)ξ|δμ)εvφs(μ).

Since β > 0, we have e−β|μ| = 1 when μ = vφ and e−β|μ| � e−β when μ �= vφ, and
so we deduce that

φ(q) �
(
|ξvφ |2 + e−β

∑
μ�=vφ

|ξμ|2
)
ε
vφ
s(μ).
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Since q �= Δvφ , we have ξ �= δvφ , and so |ξvφ | < 1. We have
∑

|ξμ|2 = ‖ξ‖2 =
1, and so e−β

∑
μ�=vφ |ξμ|

2 = e−β(1 − |ξvφ |2) < 1 − |ξvφ |2. Hence φ(q) < εvs(μ) =
φ(Δvφ) as claimed. �

Lemma 3.6 allows us to recover the projections Δv of T C∗(E) from T C∗(E)
together with its simplex of KMS states. Since the KMS states are intrinsic to the
pair (T C∗(E), γE), it follows that we can recover the Δv from the Toeplitz algebra
and its gauge action. We show next how to recover the cardinalities of the sets Env
as well. We start with some notation.

Notation 3.7. For each μ, ν ∈ E∗ with s(μ) = s(ν) we define Θμ,ν := tμΔs(μ)t
∗
ν .

Recall that the path-space representation π carries each Θμ,ν to the canonical
matrix unit θδμ,δν . Recall also that for n ∈ Z, the nth spectral subspace T C∗(E)n of
T C∗(E) with respect to γ is

T C∗(E)n := {a ∈ T C∗(E) : γEz (a) = zna for all z ∈ T}.

Lemma 3.8. Let E be a finite directed graph. For n � 0, we have T C∗(E)nΔv =
span{Θμ,v : μ ∈ Env}; in particular, |Env| = dim(T C∗(E)nΔv).

Proof. It is standard that T C∗(E)n = span{tμt∗ν : μ, ν ∈ E∗, |μ| − |ν| = n, s(μ) =
s(ν)}. The path-space representation π carries Δv to θδv,δv , and carries each tμt

∗
ν

to the strong-operator sum
∑
λ∈s(ν)E∗ θδμλ,δνλ . The latter is nonzero at δv only if

v = νλ for some λ ∈ s(μ)E∗, which forces ν = v = λ = s(μ). So if a ∈ T C∗(E)n and
aΔv �= 0, then aΔv ∈ span{tμΔv : μ ∈ Env} = span{Θμ,v : μ ∈ Env}. Since each
Θμ,v = Θμ,vΔv, the reverse containment is clear. �

We can now prove the first part of the main theorem.

Proof of theorem 3.2 (1). By lemma 3.5 we may determine the value of log ρ(AE)
from the KMS state structure of α, and then choose β > log ρ(AE). For φ ∈
Extβ(α), lemma 3.6 yields a unique minimal projection pφ of T C∗(E) such that
φ(pφ) = max{φ(q) : q is a minimal projection of T C∗(E)}, and we have pφ = Δvφ

for some vφ ∈ E0. We have qvφ � Δvφ , and then for w �= vφ in E0 we have
qwΔvφ = qwqvφΔvφ = 0. So there is a unique minimal projection Pφ ∈ME that
dominates pφ, namely Pφ = qvφ .

For φ, ψ ∈ Extβ(α), let

N(φ, ψ) := dimPφT C∗(E)1pψ.

Let Ẽ be the directed graph with vertices Extβ(α) and with |φẼ1ψ| = N(φ, ψ) for
all φ, ψ ∈ Extβ(α). By construction, the graph Ẽ is an isomorphism invariant of
the triple (T C∗(E), γE ,ME). We claim that Ẽ ∼= E.

We know from lemma 3.6 that φ �→ vφ from Ẽ0 to E0 is a bijection, so it suffices
to show that N(φ, ψ) = |vφE1vψ| for all φ, ψ. Lemma 3.8 shows that T C∗(E)1pψ =
span{Θe,vψ : e ∈ E1vψ}. Since for each e ∈ E1vψ we have Θe,vψΘ∗

e,vψ
= Θe,e �
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qr(e), it follows that PφT C∗(E)1pψ = span{Θe,vψ : e ∈ vφE
1vψ}. Hence

|vφE1vψ| = dimPφT C∗(E)1pψ = N(φ, ψ).

So Ẽ ∼= E, as claimed. Applying the process of the preceding three paragraphs
to the system (T C∗(F ), γF ,MF ) we obtain a graph F̃ ∼= F . Since the systems
(T C∗(E), γE ,ME) and (T C∗(F ), γF ,MF ) are isomorphic, we see that Ẽ ∼= F̃ , and
therefore E ∼= F . �

To prove statement (2) of theorem 3.2 we first show how to determine which
coordinate of the generalized gauge action κE corresponds to the minimal projection
pφ obtained from φ ∈ Extβ(α) as in lemma 3.6.

Lemma 3.9. Let E be a finite directed graph with no sinks, and let κE and α be as
in definition 3.1 and (3.1). Fix β > ln ρ(AE) and let φ be an extremal KMSβ state
of (T C∗(E), α). Let pφ be the projection of lemma 3.6. Then the vertex vφ such
that pφ = Δvφ is the unique vertex such that κEz (a) = zvφa for all a ∈ T C∗(E)1pφ
and z ∈ T

E0
.

Proof. For w ∈ E0, lemma 3.8 gives T C∗(E)1Δw = span{Θe,w : e ∈ E1w} =
span{teΔw : e ∈ E1}, and so it follows from the definition of κE that κEz (a) = zwa

for all a ∈ T C∗(E)1Δw and z ∈ T
E0

. Since E has no sinks, each span{Θe,w : e ∈
E1w} is nontrivial, which proves uniqueness. �

Proof of theorem 3.2 (2). First observe that the dynamics α of T C∗(E) defined
in (3.1) is determined by κE via αt = κE(eit,...,eit). Using lemma 3.5 as in the proof
of theorem 3.2 (1), fix β > ln ρ(AE). For each extremal KMSβ state φ ∈ Extβ(α),
lemma 3.6 yields a unique minimal projection pφ of T C∗(E) such that

φ(pφ) = max{φ(q) : q is a minimal projection of T C∗(E)}.

Lemma 3.9 shows that pφ = Δvφ where vφ ∈ E0 is the unique vertex such that
κEz (a) = zvφa for all a ∈ T C∗(E)1pφ.

Suppose that φ, ψ ∈ Extβ(α) are distinct. For z ∈ T let ω(φ, ψ, z) ∈ T
E0

be the
element such that

ω(φ, ψ, z)u =

⎧⎪⎨
⎪⎩
z if u = vφ

z if u = vψ

1 otherwise.

Define an action γφ,ψ : T → Aut(T C∗(E)) by γφ,ψz = κEω(φ,ψ,z). Note that this action
fixes the partial isometry tef associated to ef ∈ E2vψ if and only if r(f) = s(e) = vφ.
Combining the fixed point algebra T C∗(E)γ

φ,ψ

of γφ,ψ with the second spectral
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subspace of the gauge action γE , we define

N(φ, ψ) := dim(T C∗(E)γ
φ,ψ ∩ T C∗(E)2pψ)/dim(T C∗(E)1pφ).

We extend the definition of N to the case φ = ψ ∈ Extβ(α) by setting

N(ψ,ψ) := dim(T C∗(E)1pψ) −
∑
φ�=ψ

N(φ, ψ).

We claim that N(φ, ψ) ∈ N for all φ, ψ ∈ Extβ(α), and that E is isomorphic to
the directed graph Ẽ with vertices Ẽ0 := Extβ(α), and such that |φẼ1ψ| = N(φ, ψ)
for all φ, ψ ∈ Extβ(α). Since we already have a bijection φ �→ vφ from Ẽ0 to E0, to
prove the claim, we just have to show that N(φ, ψ) = |vφE1vψ| for all φ, ψ.

For this, fix φ, ψ ∈ Extβ(α) and let ef ∈ E2. Then

γφ,ψz (tefpψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
tefpψ if f ∈ vφE

1vψ

z2tefpψ if f ∈ vψE
1vψ

ztefpψ if f ∈ E1vψ \ (vφE1vψ ∪ vψE1vψ)
0 if f �∈ E1vψ.

So lemma 3.8 implies that

T C∗(E)γ
φ,ψ ∩ T C∗(E)2pψ = span{Θef,vψ : ef ∈ E1vφ E

1vψ}.

Hence, |E1vφ| · |vφE1vψ| = |E1vφE
1vψ| = dim(T C∗(E)γ

φ,ψ ∩ T C∗(E)2pψ). Using
lemma 3.8, we see that |E1vφ| = dim(T C∗(E)1pφ). Since, by hypothesis, E has
no sinks, we have |E1vφ| �= 0, and so we deduce that

|vφE1vψ| = dim(T C∗(E)γ
φ,ψ ∩ T C∗(E)2pψ)/dim(T C∗(E)1pφ) = N(φ, ψ).

Now for each ψ ∈ Extβ(α), we see that

|vψE1vψ| = |E1vψ| −
∑
φ�=ψ

|vφE1vψ|

= dim(T C∗(E)1pψ)

−
∑
φ�=ψ

dim
(
T C∗(E)γ

φ,ψ ∩ T C∗(E)2pψ
)
/dim(T C∗(E)1pφ)

= N(ψ,ψ).

This shows that E ∼= Ẽ and concludes the proof of the claim.
To finish the proof of the ‘only if’ assertion in theorem 3.2 (2) assume now

there exist an isomorphism ρ : T C∗(E) → T C∗(F ) and a bijection ϕ : E0 → F 0

intertwining the generalized gauge actions κE and κF . Then ϕ∗ : T
E0 → T

F 0
maps

constant functions to constant functions. That is, ϕ∗ respects the diagonal embed-
dings of T. Hence ρ intertwines the gauge actions γE and γF , and also the dynamics
αE and αF obtained from them on setting z = eit. Passing to extremal KMSβ states,
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we get a bijection Ẽ0 := Extβ(αE) ∼= Extβ(αF ) =: F̃ 0 in which φ �→ φ′ := φ ◦ ρ−1.
The isomorphism ρ also intertwines the action γφ,ψ : T → Aut(T C∗(E)) with the
action γφ

′,ψ′
: T → Aut(T C∗(F )) and thus N(φ, ψ) = N(φ′, ψ′). Thus, much like

in the final paragraph of the proof of the ‘only if’ assertion in theorem 3.2 (1), we
conclude that Ẽ ∼= F̃ and hence that E ∼= F . �

Example 3.10. As compared to statement (1), statement (2) of our main theorem
has the additional hypothesis that E and F have no sinks. Here we present an
example—first shown to the fourth author in the context of Cohn path algebras
by Gene Abrams, and then independently by Søren Eilers—that shows that the
additional hypothesis in statement (2) is necessary. Consider the graphs

There is an isomorphism T C∗(E) → T C∗(F ) that carries qv to qv − tet
∗
e, carries qu

to qu + tet
∗
e and takes each of the remaining generators of T C∗(E) to the generator

of T C∗(F ) with the same label. This isomorphism intertwines κE and κF because
in both graphs every edge has source w. It does not, however, carry ME to MF

since, for example, qv − tet
∗
e �∈MF .
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