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Non-existence of conformally flat real
hypersurfaces in both the complex quadric
and the complex hyperbolic quadric
Zeke Yao, Bangchao Yin, and Zejun Hu

Abstract. In this paper, by applying for a new approach of the so-called Tsinghua principle, we prove
the nonexistence of locally conformally flat real hypersurfaces in both the m-dimensional complex
quadric Qm and the complex hyperbolic quadric Qm∗ for m ≥ 3.

1 Introduction

In this paper, we study real hypersurfaces of the complex quadric Qm and the complex
hyperbolic quadric Qm∗ for m ≥ 3. Due to their different background, we consider
these two ambient spaces separately.

First, recall that the complex quadric of dimension m is defined by Qm ∶=
{[(z0 , z1 , . . . , zm+1)] ∈ CPm+1 ∶ z2

0 + z2
1 +⋯+ z2

m+1 = 0}, where CPm+1 is the (m + 1)-
dimensional complex projective space equipped with the Fubini–Study metric g of
constant holomorphic sectional curvature 4, and z0 , . . . , zm+1 are the homogeneous
coordinates on CPm+1. Being as a complex hypersurface of CPm+1 with the induced
metric, denoted still by g, Qm is a compact and Einstein Riemannian symmetric
space (see Reckziegel [22], Smyth [23], and Berndt and Suh [3]). Besides the Kähler
structure J that is induced from that of CPm+1, Qm carries another important
geometric structure A, being called the almost product structure in [16], and they are
related by AJ = −JA (see [3, 22]). The complex quadric Qm is an important
Riemannian manifold, so the study of its submanifolds is significant, which has
attracted many geometers. To see the results, among others, we refer to Smyth [23],
Reckziegel [22], Berndt and Suh [3], and the many literatures citing them, which
could be looked up from MathSciNet.

Next, as the noncompact dual of Qm , the m-dimensional complex hyperbolic
quadric Qm∗ is a simply connected Riemannian symmetric space whose curvature
tensor is the negative of that of Qm . It is known that Qm∗ cannot be realized as a
homogeneous complex hypersurface of the complex hyperbolic spaceCHm+1 (see [13,
23]), whereas Montiel and Romero [19] proved that it can be isometrically immersed
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Non-existence of conformally flat real hypersurfaces 69

indeed into the indefinite complex hyperbolic spaceCHm+1
1 (−c) ( c > 0) as a complex

Einstein hypersurface. Accordingly, similar to the complex quadric Qm , the complex
hyperbolic quadric Qm∗ also admits two important geometric structures, namely an
almost product structure (also called real structure) and the Kähler structure, which
are still denoted by A and J, and they also satisfy AJ = −JA. These two structures
satisfy the same properties of those two in Qm . For more details about the complex
hyperbolic quadric Qm∗, we refer the readers to [13, 19, 25, 27, 28].

Now, we can state the main result of this paper as the following nonexistence
theorem.

Theorem 1.1 There do not exist any locally conformally flat real hypersurfaces in both
the complex quadric Qm and the complex hyperbolic quadric Qm∗ with m ≥ 3.

Recall that an n-dimensional Riemannian manifold (Mn , g) is said to be locally
conformally flat if it admits a coordinate covering {(Uα , x i

α); α ∈ Λ} such that
g( ∂

∂x i
α

, ∂
∂x j

α
) = e fα δ i j , for 1 ≤ i , j ≤ n, and each α ∈ Λ, where fα is a smooth function

defined on Uα . For n ≥ 4, it is well known that (Mn , g) is locally conformally flat if
and only if the Weyl curvature tensor of (Mn , g) vanishes identically. The study of
(locally) conformally flat manifolds is an important subject in Riemannian geometry,
and particularly from the viewpoint of submanifold theory. Our motivation of
proving Theorem 1.1 lies in the latter. Historically, there are many researches on the
conformally flat hypersurfaces in Riemannian manifolds. When the ambient space is
the space forms, such studies are given, e.g., in [4, 9, 20, 21] and many latter references
citing them. When the ambient space is the complex space form Mn(c) of constant
holomorphic sectional curvature c /= 0, based on a series studies of Kon [14], Cecil and
Ryan [5], and Montiel [18], Ki et al. [11] proved that it admits no real hypersurfaces
with harmonic Weyl tensor for n ≥ 3. It follows that there are no conformally flat real
hypersurfaces in such a complex space form Mn(c).

Related to Theorem 1.1, it is worth mentioning that there are many researches
on the real hypersurfaces of the complex quadric Qm very recently. For instance,
under additional conditions, Suh [24] studied real and Hopf hypersurfaces of Qm with
harmonic curvature, and also, under some special conditions, Suh [26] investigated
real and Hopf hypersurfaces of Qm with commuting Ricci tensor. On the other hand,
without the Hopf condition, Loo [17] studied the pseudo-Einstein hypersurfaces of
Qm and obtained meaningful results in some special cases.

To prove Theorem 1.1, we note that for the complex quadric Qm and the complex
hyperbolic quadric Qm∗, the curvature tensors are much more complicated than that
of the complex space forms and the Gauss equations become very difficult to solve
directly. This makes the problem of investigating conformally flat real hypersurfaces
of Qm and Qm∗ quite different from that of the nonflat complex space forms. In order
to get out of this difficulty, our proof of Theorem 1.1 makes use of a new approach, the
so-called Tsinghua principle due to H. Li, L. Vrancken, and X. Wang (see a statement
in Section 3 of [1]). Roughly speaking, this remarkable principle helps us to use the
Codazzi equation and the Ricci identity in a new way to obtain some nice linear
equations involving the components of the second fundamental form. For readers’
better understanding, we will elaborate on the Tsinghua principle in Section 3.
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Remark 1.1 The complex quadric Q2 is isometric to the Riemannian product of
two 2-spheres with constant curvature, whereas the complex hyperbolic quadric Q2∗

is isometric to the Riemannian product of two hyperbolic plane H2 with constant
negative curvature (cf. [3, 28]). Therefore, contrary to cases Qm and Qm∗ for m ≥ 3,
in both Q2 and Q2∗, there do exist conformally flat hypersurfaces. Indeed, for any
curve �↪ S

2(1) (resp. �̃↪ H2(−1)), � × S2(1) (resp. �̃ ×H2(−1)) is a conformally
flat hypersurface of S2(1) × S2(1) (resp. H2(−1) ×H2(−1)). On the other hand, to our
knowledge, the problem of classifying conformally flat hypersurfaces in either Q2 or
Q2∗ is still open.

This paper is organized as follows. In Section 2, we review some basic materials of
the complex quadric Qm , and, particularly, we derive several fundamental equations
for real hypersurfaces of Qm . In Section 3, as crucial steps toward the proof of
Theorem 1.1, we introduce the Tsinghua principle by proving two lemmas. In Section
4, we complete the proof of Theorem 1.1 for Qm . Finally, in Section 5, thanks to
the similarities between Qm and Qm∗, we give an outline proof of Theorem 1.1
for Qm∗.

2 Preliminaries

In this section, we shall introduce the basic materials only about the complex quadric
Qm and its real hypersurfaces. For those about the complex hyperbolic quadric Qm∗

that are completely similar, we refer to [13, 25, 27, 28] for details.

2.1 The complex quadric

As described in the introduction section, the complex quadric Qm is equipped with
a canonical Kähler structure, denoted by {J , g}, induced from that of CPm+1. For the
purpose of this paper, we shall assume m ≥ 3 in the sequel.

For a nonzero vector z ∈ Cm+2, we denote by [z] the complex span of z, that is, [z] =
{λz∣λ ∈ C∗}. For [z] ∈ Qm , the tangent space T[z]Qm can be identified canonically
with C

m+2 ⊖ ([z] ⊕ [z̄]) in C
m+2. Note that ζ = −z̄ is a unit normal vector of Qm

in CPm+1 at the point [z], and the shape operator Aζ of Qm in CPm+1 with respect
to ζ is given by Aζw = w̄ for all w ∈ T[z]Qm . Thus, restricted to T[z]Qm , Aζ is the
complex conjugation. Moreover, acting on the complex vector space T[z]Qm , the
shape operator Aζ is an anticommuting involution such that A2

ζ = Id and AJ = −JA.
Hence, we have T[z]Qm = V(Aζ) ⊕ JV(Aζ), where V(Aζ) = Rm+2 ∩ T[z]Qm is the
(+1)-eigenspace and JV(Aζ) = iRm+2 ∩ T[z]Qm is the (−1)-eigenspace of Aζ , respec-
tively. Because the normal space ν[z]Qm of Qm in CPm+1 at [z] is a complex sub-
space of T[z]CPm+1 of complex dimension one, every unit normal vector in ν[z]Qm

can be written as λz̄ with some λ ∈ S1 ⊂ C, and it holds that V(Aλz̄) = λV(Az̄).
We denote by A the set of all shape operators of Qm ↪ CPm+1 associated with
unit normal vector fields. Then, A is an S1-sub-bundle of the endomorphism bundle
End(TQm), consisting of complex conjugations on the tangent spaces of Qm . In
summary, we have
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Lemma 2.1 (cf. [22, 23]) For each A ∈ A, it holds that

A2 = Id , g(AX , Y) = g(X , AY), AJ = −JA, ∀X , Y ∈ TQm .(2.1)

The sub-bundle A is commonly called consisting of complex conjugations (cf.
[22]). On the other hand, Lemma 2.1 implies, in particular, that A is a family of
almost product structures on Qm (cf. [16]), and we will use the latter term in this paper.
Furthermore, because the second fundamental form of the embedding Qm ↪ CPm+1

is parallel, A is contained in a parallel sub-bundle of End( TQm). It follows that, for
each almost product structure A ∈ A, there exists a one-form q on Qm such that it
holds the relation (see [23])

(∇̄X A)Y = q(X)JAY , ∀X , Y ∈ TQm ,(2.2)

where ∇̄ denotes the Levi–Civita connection of Qm .
The Gauss equation for the complex hypersurface Qm ↪ CPm+1 implies that the

Riemannian curvature tensor R̄ of Qm can be expressed in terms of the Riemannian
metric g, the complex structure J, and a generic A ∈ A as follows (cf. [22]):

R̄(X , Y)Z =g(Y , Z)X − g(X , Z)Y + g(JY , Z)JX − g(JX , Z)JY
− 2g(JX , Y)JZ + g(AY , Z)AX − g(AX , Z)AY
+ g(JAY , Z)JAX − g(JAX , Z)JAY ,

(2.3)

where it should be noted that R̄ is independent of the special choice of A ∈ A.
According to Reckziegel [22], a real 2-dimensional linear subspace σ of T[z]Qm is

called a 2-flat if the curvature tensor R̄ of Qm vanishes identically on σ . A nonzero
tangent vector W ∈ T[z]Qm is called A-singular if it is contained in more than one
2-flat. There are two types of A-singular tangent vectors for Qm , namely, A-principal
and A-isotropic tangent vectors, described as follows (cf. [3, 22]):
1. If there exists an almost product structure A ∈ A[z] such that W ∈ V(A), then W

is A-singular. Such W ∈ T[z]Qm is called an A-principal tangent vector.
2. If there exists an almost product structure A ∈ A[z] and two orthonormal vectors

X , Y ∈ V(A) such that W
∥W∥ =

X+JY√
2

, then W is A-singular. In this case, we have
g(AW , W) = 0 and W ∈ T[z]Qm is called an A-isotropic tangent vector.

Further results about the complex quadric are referred to [3, 12, 22].

2.2 Hypersurfaces of the complex quadric

We begin with introducing the basic formulas. Let M be a hypersurface of Qm and
N its unit normal vector field. For a generic almost product structure A ∈ A and an
arbitrary tangent vector field X of M, we have the decomposition

JX = ϕX + η(X)N , AX = T X + μ(X)N ,(2.4)

where ϕX (resp. T X) and η(X)N (resp. μ(X)N) are the tangent and normal parts of
JX (resp. AX), respectively. Here, ϕ and T are tensor fields of type (1, 1), and η and μ
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are 1-forms over M. Then, by definition, we have the following relations:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η(X) = g(X , ξ), η(ϕX) = 0, ϕ2 X = −X + η(X)ξ,
g(ϕX , Y) = −g(X , ϕY), g(ϕX , ϕY) = g(X , Y) − η(X)η(Y),
g(T X , Y) = g(X , TY), μ(X) = g(AX , N),

(2.5)

where ξ ∶= −JN is called the Reeb vector field of M. The equations in (2.5) show that
{ϕ, ξ, η} determines an almost contact structure on M.

Let ∇ be the induced connection on M with R its Riemannian curvature tensor.
The formulas of Gauss and Weingarten state that

∇̄X Y = ∇X Y + g(SX , Y)N , ∇̄X N = −SX , ∀X , Y ∈ TM ,(2.6)

where S is the shape operator of M ↪ Qm .
Next, we calculate the covariant derivatives of the tensors ϕ, η, T , and μ. These

basic equations are necessary for our proof of Theorem 1.1.

Lemma 2.2 The covariant derivatives of the tensors ϕ, T , μ, and η are given by∶
∇X ξ = ϕSX ,(2.7)

(∇X ϕ)Y = −g(SX , Y)ξ + η(Y)SX ,(2.8)

(∇X T)Y = q(X)[ϕTY − μ(Y)ξ] + g(SX , Y)[−ϕT ξ + μ(ξ)ξ] + μ(Y)SX ,(2.9)

(∇X μ)Y = q(X)g(TY , ξ) − g(SX , TY) − g(SX , Y)g(T ξ, ξ),(2.10)

(∇X η)Y = −g(SX , ϕY).(2.11)

Proof These equations are derived by direct calculations. Specifically, we have the
following derivation by using the basic equations in (2.2), (2.5), and (2.6):

∇X ξ = −∇̄X JN − g(SX , ξ)N = −J∇̄X N − g(SX , ξ)N
= JSX − g(SX , ξ)N = ϕSX ,

(∇X ϕ)Y = ∇X ϕY − ϕ∇X Y = ∇̄X ϕY − g(SX , ϕY)N − ϕ∇X Y
= [∇̄X(JY − η(Y)N)]⊺ − ϕ∇X Y
= [(∇̄X J)Y + J∇̄X Y]⊺ − η(Y)∇̄X N − ϕ∇X Y
= −g(SX , Y)ξ + η(Y)SX ,

(∇X T)Y = ∇X TY − T∇X Y = ∇̄X TY − g(SX , TY)N − T∇X Y
= [∇̄X(AY − μ(Y)N)]⊺ − T∇X Y
= [(∇̄X A)Y + A∇̄X Y]⊺ − μ(Y)∇̄X N − T∇X Y
= [q(X)JAY + g(SX , Y)AN]⊺ + μ(Y)SX
= q(X)[ϕTY − μ(Y)ξ] + g(SX , Y)[−ϕT ξ + μ(ξ)ξ] + μ(Y)SX ,
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(∇X μ)Y = X(μ(Y)) − μ(∇X Y)
= g(∇̄X AY , N) + g(AY , ∇̄X N) − g(A∇̄X Y − g(SX , Y)AN , N)
= g((∇̄X A)Y , N) − g(SX , TY) + g(SX , Y)g(AN , N)
= g(q(X)JAY , N) − g(SX , TY) + g(SX , Y)g(AN , N)
= q(X)g(TY , ξ) − g(SX , TY) − g(SX , Y)g(T ξ, ξ),

(∇X η)Y = X(η(Y)) − η(∇X Y) = g(Y ,∇X ξ) = −g(SX , ϕY),

where ⋅⊺ denotes the tangential part. ∎

Third, by using the decomposition of A and the expression of the curvature tensor
of Qm , we have the following Gauss and Codazzi equations of M:

R(X , Y)Z =g(Y , Z)X − g(X , Z)Y + g(ϕY , Z)ϕX − g(ϕX , Z)ϕY
− 2g(ϕX , Y)ϕZ + g(AY , Z)(AX)⊺ − g(AX , Z)(AY)⊺

+ g(JAY , Z)(JAX)⊺ − g(JAX , Z)(JAY)⊺

+ g(SZ , Y)SX − g(SZ , X)SY ,(2.12)

g((∇X S)Y − (∇Y S)X , Z) = η(X)g(ϕY , Z) − η(Y)g(ϕX , Z)
− 2g(ϕX , Y)η(Z) + μ(X)g(TY , Z) − μ(Y)g(T X , Z)
− g(T X , ξ)g(TY , ϕZ) − g(T X , ξ)μ(Y)η(Z)
+ g(TY , ξ)g(T X , ϕZ) + g(TY , ξ)μ(X)η(Z).(2.13)

Contracting Y and Z in (2.12), we get the Ricci tensor of M (cf. (4.1) of [24]):

Ric (X , Y) = (2m − 1)g(X , Y) − 3η(X)η(Y) − g(AN , N)g(AX , Y)
+ g(AX , N)g(AN , Y) − g(Aξ, N)g(JAX , Y)
+ g(Aξ, X)g(Aξ, Y) +Hg(SX , Y) − g(S2 X , Y)
= (2m − 1)g(X , Y) − 3η(X)η(Y) + g(T ξ, ξ)g(T X , Y)
+ μ(X)μ(Y) + μ(ξ)g(T X , ϕY) + μ(ξ)μ(X)η(Y)
+ g(T X , ξ)g(TY , ξ) +Hg(SX , Y) − g(S2 X , Y),(2.14)

where H = tr S denotes the mean curvature of the hypersurface M.
Let ∇2S denote the second covariant derivative of S, defined by:

(∇2S)(X , Y , Z) ∶= ∇X[(∇Y S)Z] − (∇∇X Y S)Z − (∇Y S)∇X Z .

Then, we have the following Ricci identity:

g((∇2S)(X , Y , Z),W) − g((∇2S)(Y , X , Z), W)
= −g(R(X , Y)Z , SW) − g(R(X , Y)W , SZ).(2.15)

Notice that the tangent bundle TM of M splits orthogonally into TM = C⊕F,
where C = ker(η) is the maximal complex sub-bundle of TM and F = Rξ. When
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restricted to C, the structure tensor field ϕ coincides with the complex structure J.
Moreover, at each point [z] ∈ M, the set

Q[z] = {X ∈ T[z]M ∣ AX ∈ T[z]M for all A ∈ A[z]}

defines a maximal A[z]-invariant subspace of T[z]M.
According to Proposition 3 of [22], at each point [z] ∈ M, we can choose A ∈ A[z]

and two orthonormal vectors Z1 , Z2 ∈ V(A) such that the unit normal vector field N
takes the form

N = cos t Z1 + sin t JZ2 ,(2.16)

where the parameter function t satisfies 0 ≤ t ≤ π
4 . Using ξ = −JN , we further get

AN = cos t Z1 − sin t JZ2 ,
ξ = sin t Z2 − cos t JZ1 ,

Aξ = sin t Z2 + cos t JZ1 .

This implies that g(Aξ, N) = 0 and Aξ ∈ T[z]M.

Remark 2.1 From the above facts, we can get the following conclusions:
(1) If N[z] is A-principal, we have t = 0 at [z], Q[z] = C[z], and dimQ[z] = 2m − 2.

For each A ∈ A[z], (2.1) implies that A∣Q[z] has two eigenvalues 1 and −1. For
ε ∈ {1,−1}, if denoting by Q(ε) the eigenspace of A∣Q corresponding to ε, then
it holds that JQ(1) = Q(−1) and dimQ(1) = dimQ(−1) = m − 1.

(2) If N[z] is not A-principal, we get Q[z] = {N[z] , ξ[z] , AN[z] , Aξ[z]}� for any A ∈
A[z], and dimQ[z] = 2(m − 2). For each A ∈ A[z], (2.1) implies that A∣Q[z] has
two eigenvalues 1 and−1. Moreover, it holds that JQ(1) = Q(−1) and dimQ(1) =
dimQ(−1) = m − 2.

Finally, we recall the following lemma due to Berndt and Suh [3] (cf. also [17]). This
lemma is very helpful for simplifying our latter calculations. Specifically, it allows us
to choose locally, under appropriate conditions, the almost product structure A ∈ A
such that Aξ ∈ TM and g(AN , ξ) = 0.

Lemma 2.3 (cf. [3] and [17]) Let M be a hypersurface of Qm with unit normal vector
field N and ξ = −JN. Then, we have∶
(a) If N is A-principal on an open set U ⊂ M, then there exists an almost product

structure A ∈ A on U such that AN = N.
(b) If N is not A-principal at [z] ∈ M, then there exist a neighborhood U of [z] and

an almost product structure A ∈ A on U such that Aξ ∈ TM.

3 Key lemmas related to the Tsinghua principle

We begin with establishing the following general lemma about real hypersurfaces of
the complex quadric.
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Lemma 3.1 Let M be a real hypersurface in the complex quadric Qm (m ≥ 3). Then,
for a generic almost product structure A ∈ A and any tangent vector fields W , X , Y , Z ∈
TM, we have

− S
W XY
{g(R(W , X)Y , SZ) + g(R(W , X)Z , SY)} = S

W XY
I(W , X , Y , Z),(3.1)

where S
W XY

denotes the cyclic summation over W , X, and Y, and

I(W , X , Y , Z) ∶= −g(SW , ϕX)g(ϕY , Z) + g(SW , ϕY)g(ϕX , Z)
+ 2g(SW , ϕZ)g(ϕX , Y) − 3g(SW , Y)η(X)η(Z) + 3g(SW , X)η(Y)η(Z)
− [g(T X , SW) + η(T ξ)g(SW , X)]g(TY , Z) + μ(X)g(SW , Y)μ(Z)
+ [g(TY , SW) + η(T ξ)g(SW , Y)]g(T X , Z) − μ(Y)g(SW , X)μ(Z)
− [g(SW , X)μ(ξ) + μ(X)η(SW)]g(TY , ϕZ) − g(T X , ϕSW)g(TY , ϕZ)
+ η(T X)g(SW , Y)η(TZ) − g(SW , X)μ(ξ)μ(Y)η(Z) − g(T X , ϕSW)μ(Y)η(Z)
+ [g(SW , Y)μ(ξ) + μ(Y)η(SW)]g(T X , ϕZ) + g(TY , ϕSW)g(T X , ϕZ)
− η(TY)g(SW , X)η(TZ) + g(SW , Y)μ(ξ)μ(X)η(Z) + g(TY , ϕSW)μ(X)η(Z).

Proof We shall calculate the expression of the cyclic summation

B ∶= S
W XY
{g((∇2S)(W , X , Y), Z) − g((∇2S)(W , Y , X), Z)}(3.2)

in two different ways. On the one hand, taking the covariant derivative of the Codazzi
equation (2.13), we can get

g((∇2S)(W , X , Y), Z) − g((∇2S)(W , Y , X), Z)
= (∇W η)(X)g(ϕY , Z) + η(X)g((∇W ϕ)Y , Z) − (∇W η)(Y)g(ϕX , Z)
− η(Y)g((∇W ϕ)X , Z) − 2g((∇W ϕ)X , Y)η(Z) − 2g(ϕX , Y)(∇W η)(Z)
+ (∇W μ)(X)g(TY , Z) + μ(X)g((∇W T)Y , Z) − (∇W μ)(Y)g(T X , Z)
− μ(Y)g((∇W T)X , Z) − g((∇W T)X , ξ)g(TY , ϕZ) − g(T X ,∇W ξ)g(TY , ϕZ)
− g(T X , ξ)g((∇W T)Y , ϕZ) − g(T X , ξ)g(TY , (∇W ϕ)Z)
− g((∇W T)X , ξ)μ(Y)η(Z) − g(T X ,∇W ξ)μ(Y)η(Z) − g(T X , ξ)(∇W μ)(Y)η(Z)
− g(T X , ξ)μ(Y)(∇W η)(Z) + g((∇W T)Y , ξ)g(T X , ϕZ)
+ g(TY ,∇W ξ)g(T X , ϕZ) + g(TY , ξ)g((∇W T)X , ϕZ)
+ g(TY , ξ)g(T X , (∇W ϕ)Z) + g((∇W T)Y , ξ)μ(X)η(Z)
+ g(TY ,∇W ξ)μ(X)η(Z) + g(TY , ξ)(∇W μ)(X)η(Z) + g(TY , ξ)μ(X)(∇W η)(Z).

Then, by straightforward calculations of the RHS, with the use of equations in (2.5)
and Lemma 2.2, we can obtain

g((∇2S)(W , X , Y), Z) − g((∇2S)(W , Y , X), Z) = I(W , X , Y , Z).(3.3)

Here, we note that the terms involving q(W) are cancelled out with each other.
Interestingly, when taking the covariant derivative of the Codazzi equation for a
Lagrangian submanifold of Qm , this phenomenon also occurred in [16].
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Now, from (3.3), we have

B = S
W XY

I(W , X , Y , Z).(3.4)

On the other hand, the cyclic summation B can be rewritten as

B = S
W XY
{g((∇2S)(W , X , Y), Z) − g((∇2S)(X , W , Y), Z)}.(3.5)

Then, we can apply the Ricci identity (2.15), so that, from (3.5), we obtain

B = − S
W XY
{g(R(W , X)Y , SZ) + g(R(W , X)Z , SY)}.(3.6)

From (3.4) and (3.6), we get the assertion (3.1). ∎
Remark 3.1 The method used in the proof of Lemma 3.1 is elementary and is
called the Tsinghua principle. This remarkable technique has been applied in many
different situations since its first successful attempt in [8], see [1, 6, 7, 16, 29] for
details. Essentially, it establishes a bridge between the Codazzi equation and the
Ricci identity by calculating the cyclic sum of the second covariant derivative of the
second fundamental form. The significance of the Tsinghua principle lies in that,
under appropriate conditions, it simplifies some higher-order equations of the second
fundamental form into linear equations.

Next, for a conformally flat real hypersurface M of Qm , Lemma 3.1 reduces to the
following lemma, which is crucial for the proof of Theorem 1.1.

Lemma 3.2 Let M be a conformally flat real hypersurface in the complex quadric
Qm (m ≥ 3). Then, for a generic almost product structure A ∈ A and any tangent vector
fields W , X , Y , Z ∈ TM, we have

S
W XY

II(W , X , Y , Z) = S
W XY

I(W , X , Y , Z),(3.7)

where I(W , X , Y , Z) is defined as in Lemma 3.1, and

II(W , X , Y , Z) ∶= 3
2m − 3

[η(Y)η(SX) − η(X)η(SY)]g(W , Z)

+ 1
2m − 3

{η(T ξ)[g(T X , SY) − g(TY , SX)] + μ(X)μ(SY) − μ(Y)μ(SX)

− μ(ξ)[g(TY , ϕSX) − g(T X , ϕSY) + μ(Y)η(SX) − μ(X)η(SY)]

+ η(T X)η(TSY) − η(TY)η(TSX)}g(W , Z).

Proof The conformally flatness of the real hypersurface M implies that it has
vanishing Weyl curvature tensor or, equivalently, its Riemannian curvature tensor R
takes the following form:

g(R(X , Y)Z , W) = 1
2m − 3

{Ric(Y , Z)g(X , W) − Ric(X , Z)g(Y , W)

+ Ric(X , W)g(Y , Z) − Ric(Y , W)g(X , Z)}

+ r
(2m − 2)(2m − 3){g(X , Z)g(Y , W) − g(Y , Z)g(X , W)},(3.8)
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where r denotes the scalar curvature of M. Substituting (3.8) into (3.6), we obtain

B = 1
2m − 3 S

W XY
{g(W , Z)[Ric(X , SY) − Ric(Y , SX)]}.(3.9)

By using (2.14), we finally have that

B = S
W XY

II(W , X , Y , Z).(3.10)

By (3.4) and (3.10), the assertion (3.7) follows. ∎

4 Proof of Theorem 1.1 for Qm

In order to complete the proof of Theorem 1.1 for Qm (m ≥ 3), we suppose on the
contrary that Qm admits a conformally flat real hypersurface M. First of all, with the
help of Lemma 3.2, we can prove the following lemma.

Lemma 4.1 Let M be a conformally flat real hypersurface in the complex quadric
Qm (m ≥ 3). Then, the unit normal vector field of M must be A-principal everywhere.

Proof We argue by contradiction. Assume that at some point [z] ∈ M, the unit
normal vector N[z] is not A-principal. By Lemma 2.3, there exist a neighborhood
U around [z] in M and an almost product structure A ∈ A on U such that Aξ ∈ TM
and μ(ξ) = g(Aξ, N) = 0. It follows that there exist a unit tangent vector field e1 ∈ C
and functions a, c with c > 0 such that

AN = aN + ce1 , Aξ = cJe1 − aξ, a2 + c2 = 1.(4.1)

Then, we get η(T ξ) = g(T ξ, ξ) = −a.
Put e2 = Je1 , e2m−1 = ξ. From (2.1) and that dimQ = 2m − 4 on U, we can choose

orthogonal unit tangent vector fields {e3 , . . . , e2m−2} such that

e2p−3 ∈Q(1), e2p−2 = Je2p−3 ∈ Q(−1), 3 ≤ p ≤ m.

Then, {e i}2m−1
i=1 forms a local orthonormal frame field of M with the following

properties:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

AN = aN + ce1 , Ae1 = cN − ae1 , Ae2 = ce2m−1 + ae2 ,
Ae2p−3 = e2p−3 , Ae2p−2 = −e2p−2 , 3 ≤ p ≤ m,
Ae2m−1 = ce2 − ae2m−1 .

(4.2)

Put Se i = ∑2m−1
j=1 a i j e j , 1 ≤ i ≤ 2m − 1, where a i j = a ji , 1 ≤ i , j ≤ 2m − 1.

Now, we apply for Lemma 3.2 with A ∈ A being chosen as above.
By choosing appropriate W = e i , X = e j , Y = ek , Z = e l , 1 ≤ i , j, k, l ≤ 2m − 1,

with the use of (2.4), (4.2), μ(ξ) = 0, and η(T ξ) = −a, we can calculate I(W , X , Y , Z)
and II(W , X , Y , Z) directly. As the result, by (3.7), we shall obtain a system of
linear equations of the components {a i j}. For instance, for 3 ≤ p ≤ m, letting
(W , X , Y , Z) = (e1 , e2 , e2m−1 , e2p−3), (e1 , e2 , e2m−1 , e2p−2), respectively, by direct
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calculations, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(e1 , e2 , e2m−1 , e2p−3) = I(e2 , e2m−1 , e1 , e2p−3) = 0,
I(e2m−1 , e1 , e2 , e2p−3) = 2a2p−2,2m−1;
I(e1 , e2 , e2m−1 , e2p−2) = I(e2 , e2m−1 , e1 , e2p−2) = 0,
I(e2m−1 , e1 , e2 , e2p−2) = −2a2p−3,2m−1;
II(e1 , e2 , e2m−1 , e2p−3) = II(e2 , e2m−1 , e1 , e2p−3) = II(e2m−1 , e1 , e2 , e2p−3) = 0;
II(e1 , e2 , e2m−1 , e2p−2) = II(e2 , e2m−1 , e1 , e2p−2) = II(e2m−1 , e1 , e2 , e2p−2) = 0.

It then follows from (3.7) that

a2p−3,2m−1 = a2p−2,2m−1 = 0, 3 ≤ p ≤ m.(4.3)

In the following, we shall carry the above procedures repeatedly, but the detailed
calculation process will be omitted. To start, for 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e1 , e2p−3 , e2p−2 , e2m−1), (e2 , e2p−3 , e2p−2 , e2m−1),

respectively, and using the fact c > 0, we obtain

a2p−3,2p−3 = a2p−2,2p−2 , a2p−3,2p−2 = 0, 3 ≤ p ≤ m.(4.4)

For 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e1 , e2p−3 , e2p−2 , e1), (e1 , e2p−3 , e2p−2 , e2), (e2 , e2p−3 , e2p−2 , e1),

respectively, with the use of (4.4), we obtain

a12 = 0, a11 = a22 = a2p−3,2p−3 , 3 ≤ p ≤ m.(4.5)

For 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e2p−3 , e2p−2 , e2m−1 , e1), (e2p−3 , e2p−2 , e2m−1 , e2),

respectively, with the use of (4.4), we obtain

a1,2m−1 = a2,2m−1 = 0.(4.6)

For 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e1 , e2p−3 , e2m−1 , e2p−2),

respectively, together with (4.6) and c > 0, we obtain

a11 = a2m−1,2m−1 .(4.7)

For 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e2 , e2p−3 , e2m−1 , e2), (e2 , e2p−2 , e2m−1 , e2),

respectively, together with (4.3) and c > 0, we obtain

2m − 3 + 2a
2m − 3

a2,2p−3 = 0, 2m − 3 − 2a
2m − 3

a2,2p−2 = 0, 3 ≤ p ≤ m.
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Then, as m ≥ 3 and −1 < a < 1, we deduce that

a2,2p−3 = a2,2p−2 = 0, 3 ≤ p ≤ m.(4.8)

For 3 ≤ p ≤ m, taking in (3.7),

(W , X , Y , Z) = (e2p−3 , e2p−2 , e2m−1 , e2p−3), (e2p−3 , e2p−2 , e2m−1 , e2p−2),

respectively, together with (4.3), (4.8), and c > 0, we obtain

a1,2p−3 = a1,2p−2 = 0, 3 ≤ p ≤ m.(4.9)

If m = 3, then the above calculations show that Se i = a i i e i , 1 ≤ i ≤ 5, and a11 = ⋯ =
a55. Hence, M is totally umbilical and Sϕ = ϕS holds. This is equivalent to that M has
isometric Reeb flow. But, Corollary 1.3 of [3] states that there are no real hypersurfaces
with isometric Reeb flow in the odd-dimensional complex quadric Q2k+1 for each
k ≥ 1. As desired, we get a contradiction.

Next, we continue with the discussions for m ≥ 4.
For 3 ≤ p, s ≤ m and p ≠ s, taking in (3.7),

(W , X , Y , Z) =(e2p−3 , e1 , e2 , e2s−3), (e2p−3 , e1 , e2 , e2s−2),
(e2p−2 , e1 , e2 , e2s−3), (e2p−2 , e1 , e2 , e2s−2),

respectively, we obtain

a2p−3,2s−3 = a2p−3,2s−2 = a2p−2,2s−3 = a2p−2,2s−2 = 0, 3 ≤ p /= s ≤ m.(4.10)

From the above calculations, we see that Se i = a i i e i , 1 ≤ i ≤ 2m − 1, and a11 = ⋯ =
a2m−1,2m−1. Hence, M is totally umbilical and Sϕ = ϕS holds, so M has isometric Reeb
flow. But, according to Theorem 1.1 and Proposition 4.1 of Berndt and Suh [3], there
are no totally umbilical real hypersurfaces with isometric Reeb flow in the complex
quadric Qm (m ≥ 4). This gives again a contradiction.

From the above contradictions, we have completed the proof of Lemma 4.1. ∎

Remark 4.1 Our proof of Lemma 4.1 strongly depends on the results of [3]. In
Theorem 1.1 of [3], Berndt and Suh classified real hypersurfaces with isometric Reeb
flow in the complex quadrics Qm (m ≥ 3). Moreover, in Proposition 4.1 of [3], the
authors calculated the geometric invariants of all real hypersurfaces with isometric
Reeb flow in the complex quadrics Q2k (k ≥ 2), showing that each of such real
hypersurfaces has at least three distinct principal curvatures. Very recently, Hu and
Yin [10] obtained new characterizations of the real hypersurfaces with isometric Reeb
flow in the complex quadric.

Now, by Lemma 4.1, the unit normal vector field N of the conformally flat real
hypersurface M is A-principal everywhere. According to Lemma 2.3, there exists an
almost product structure A ∈ A such that AN = N and Aξ = −ξ. Thus, we have T ξ =
−ξ and μ(X) = g(AX , N) = 0 for any X ∈ TM.

Put e2m−1 = ξ. From (2.1) and that dimQ = 2m − 2, we can choose unit tangent
vector fields

e2p−3 ∈ Q(1), e2p−2 = Je2p−3 ∈ Q(−1), 2 ≤ p ≤ m,
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so that {e i}2m−1
i=1 forms a local orthonormal frame field of M with the following

properties:

Ae2p−3 = e2p−3 , Ae2p−2 = −e2p−2 , Ae2m−1 = −e2m−1 , 2 ≤ p ≤ m.(4.11)

Put again Se i = ∑2m−1
j=1 a i j e j , where a i j = a ji , 1 ≤ i , j ≤ 2m − 1.

Now, we apply for Lemma 3.2 with A ∈ A being chosen as above.
By choosing appropriate W = e i , X = e j , Y = ek , Z = e l , 1 ≤ i , j, k, l ≤ 2m − 1,

with the use of (2.4), (4.11), T ξ = −ξ, and that μ(X) = 0, for any X ∈ TM, we can
calculate I(W , X , Y , Z) and II(W , X , Y , Z) directly. Then, by (3.7), we will obtain
a system of linear equations of the components {a i j}. The procedure is essentially
totally similar to that in the proof of Lemma 4.1. Thus, for simplicity, most of the
detailed calculations below will be omitted.

For 2 ≤ p, s ≤ m and p ≠ s, taking in (3.7),

(W , X , Y , Z) = (e2p−3 , e2p−2 , e2m−1 , e2s−3), (e2p−3 , e2p−2 , e2m−1 , e2s−2),

respectively, we can obtain

a2s−3,2m−1 = a2s−2,2m−1 = 0, 2 ≤ s ≤ m.(4.12)

It follows that Sξ = a2m−1,2m−1 ξ, and therefore, M is a Hopf hypersurface such that its
unit normal vector field is A-principal everywhere. Then, we can apply for Theorem
14 of [17] or Theorem 2 of [15] to obtain that M is an open part of a tube around a
totally geodesic Qm−1 ↪ Qm . Thus, by Proposition 4.1 of [2], we have

Se2p−3 = −
2
α

e2p−3 , Se2p−2 = 0, Sξ = αξ, for all 2 ≤ p ≤ m.

Finally, letting (W , X , Y , Z) = (e3 , e2 , e4 , e1), by direct calculations, we have
⎧⎪⎪⎪⎨⎪⎪⎪⎩

I(e3 , e2 , e4 , e1) = −
4
α

, I(e2 , e4 , e3 , e1) = I(e4 , e3 , e2 , e1) = 0;

II(e3 , e2 , e4 , e1) = II(e2 , e4 , e3 , e1) = II(e4 , e3 , e2 , e1) = 0.

It then follows from (3.7) that 4
α = 0. This is a contradiction, by which we have

completed the proof of Theorem 1.1 for the complex quadric Qm (m ≥ 3).

Corollary 4.1 The complex quadric Qm (m ≥ 3) does not admit real hypersurface of
constant sectional curvature.

Remark 4.2 Corollary 4.1 follows also from Theorem 21 of [17], where it was shown
that the complex quadric Qm (m ≥ 3) admits no Einstein real hypersurfaces.

5 Proof of Theorem 1.1 for Qm∗

To begin, we first note that, like the complex quadric Qm , the set A of all almost
product structures of Qm∗ is also an S1-sub-bundle of the endomorphism bundle
End( TQm∗), and there are also two types of singular tangent vectors for the complex
hyperbolic quadric Qm∗: A-principal and A-isotropic.
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Now, suppose on the contrary that the complex hyperbolic quadric Qm∗ (m ≥ 3)
admits a conformally flat real hypersurface M̄, with N and S a unit normal vector
field and the shape operator, respectively, and g and ∇ be the induced metric and
the corresponding Levi–Civita connection on M̄, respectively. Then, there is also
naturally an almost contact structure {ϕ, ξ, η}, a type (1, 1) tensor field T, and a 1-form
μ induced from a generic almost product structure A ∈ A on M̄.

In the following, we outline the proof in three steps, which are essentially the same
as the proof of Theorem 1.1 for Qm (m ≥ 3).

Step 1. The real hypersurface M̄ in Qm∗ (m ≥ 3) satisfies equation (3.7).
As mentioned in the introduction, the almost product structure A and the Kähler

structure J of Qm∗ also satisfy (2.1) and (2.2) (see [13, 25, 27, 28]), and it makes the
tensors ϕ, T , μ, and η on M̄ also satisfy the equations (2.7)–(2.11) in Lemma 2.2.
Because the Riemannian curvature tensor of Qm∗ is exactly opposite to the Rieman-
nian curvature tensor of Qm , it makes both the Gauss–Codazzi equations and the
Ricci tensor of M̄ a slightly different from (2.12)–(2.14): some terms change at most by
negative signs. However, when we apply for the Tsinghua principle with M̄, following
the same discussions as in Section 3, we see that Lemma 3.2 still holds for conformally
flat real hypersurfaces in Qm∗ (m ≥ 3).

Step 2. The unit normal vector field of M̄ must be A-principal everywhere.
In fact, if otherwise, the unit normal vector field N is assumed locally not A-

principal. By Lemma 3.2 of [25], there exists an almost product structure A ∈ A in
local such that Aξ ∈ TM̄ and μ(ξ) = g(Aξ, N) = 0. Similarly, we can also choose a
local frame field {e i}2m−1

i=1 of M̄ satisfying equations (4.1) and (4.2) as in the proof of
Lemma 4.1. Then, following the same calculations as in the proof of Lemma 4.1, we can
show that M̄ is totally umbilical and Sϕ = ϕS holds. Thus, M̄ has isometric Reeb flow.
But, according to Theorem 1.1 and Proposition 4.1 of Suh [25], there are no totally
umbilical real hypersurfaces with isometric Reeb flow in the complex hyperbolic
quadric Qm∗ (m ≥ 3). This gives a contradiction.

Step 3. The unit normal vector field of M̄ cannot be A-principal everywhere.
In fact, if the unit normal vector field N is A-principal, there exists an almost

product structure A ∈ A such that AN = N and Aξ = −ξ. We can find a local frame
field {e i}2m−1

i=1 (e2m−1 = ξ) of M̄ satisfying the same equations as (4.11). Then, by similar
calculations as taking in (3.7),

(W , X , Y , Z) = (e2p−3 , e2p−2 , e2m−1 , e2s−3), (e2p−3 , e2p−2 , e2m−1 , e2s−2),

for 2 ≤ p, s ≤ m and p ≠ s, respectively, we can show that Sξ = αξ. Therefore, M̄ is a
Hopf hypersurface such that the unit normal vector field is A-principal everywhere.
Then, according to Lemma 4.2 (ii) of [27], by choosing the almost product structure
A ∈ A such that AN = N , it holds ASX = SX for any X ∈ C.

As M̄ is a Hopf hypersurface with A-principal unit normal vector field, the above
fact implies that SAX = SX for all X ∈ C. It follows that SQ(−1) = 0, where Q(−1) is
the eigenspace of A∣C corresponding to the eigenvalue −1. Then, for any X ∈ Q(−1),
Lemma 3.4 of [27] shows that αSϕX = 2ϕX. It follows that α /= 0 and SX = 2

α X for all
X ∈ Q(1) = JQ(−1). Thus, we have

Se2p−3 =
2
α

e2p−3 , Se2p−2 = 0, Sξ = αξ, for all 2 ≤ p ≤ m.
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Finally, taking (W , X , Y , Z) = (e3 , e2 , e4 , e1) in (3.7), by direct calculations, we
have 4

α = 0. This is a contradiction.
In summary, we have completed the proof of Theorem 1.1 for Qm∗ (m ≥ 3).

Corollary 5.1 The complex hyperbolic quadric Qm∗ (m ≥ 3) does not admit real
hypersurface of constant sectional curvature.

Acknowledgment We would like to express our sincere gratitude for the referee for
his/her valuable comments, which impel us to have modified the original version, so
that Theorem 1.1 includes the statement that the complex hyperbolic quadric Qm∗

does not admit any locally conformally flat real hypersurfaces for m ≥ 3.

References
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