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The Burnett- and super-Burnett-order constitutive relations are derived for homogen-
eously sheared gas–solid suspensions by considering the co-existence of ignited and
quenched states and the anisotropy of the second moment of velocity fluctuations
(M=〈CC〉,C is the fluctuation or peculiar velocity) – this analytical work extends our
previous works on dilute (Saha & Alam, J. Fluid Mech., vol. 833, 2017, pp. 206–246)
and dense (Alam et al., J. Fluid Mech., vol. 870, 2019, pp. 1175–1193) gas–solid
suspensions. For the combined ignited–quenched theory at finite densities, the
second-moment balance equation, truncated at the Burnett order, is solved analytically,
yielding expressions for four invariants of M as functions of the particle volume
fraction (ν), the restitution coefficient (e) and the Stokes number (St). The phase
boundaries, demarcating the regions of (i) ignited, (ii) quenched and (iii) co-existing
ignited–quenched states, are identified via an ordering analysis, and it is shown that
the incorporation of excluded-volume effects significantly improves the predictions
of critical parameters for the ‘quenched-to-ignited’ transition. The Burnett-order
expressions for the particle-phase shear viscosity, pressure and two normal-stress
differences are provided, with their Stokes-number dependence being implicit via
the anisotropy parameters. The roles of (St, ν, e) on the granular temperature, the
second-moment anisotropy and the nonlinear transport coefficients are analysed using
the present theory, yielding quantitative agreements with particle-level simulations
over a wide range of (St, ν) including the bistable regime that occurs at St ∼ O(5).
For highly dissipative particles (e� 1) that become increasingly important at large
Stokes numbers, it is shown that the Burnett-order solution is not adequate and
further higher-order solutions are required for a quantitative agreement of transport
coefficients over the whole range of control parameters. The latter is accomplished
by developing an approximate super-super-Burnett-order theory for the ignited state
(St� 1) of sheared dense gas–solid suspensions in the second part of this paper. An
extremum principle based on viscous dissipation and dynamic friction is discussed to
identify ignited–quenched transition.
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887 A9-2 S. Saha and M. Alam

1. Introduction
This analytical work is devoted to analysing the hydrodynamics and rheology

(i.e. the non-Newtonian stress tensor and related transport coefficients) of sheared
gas–solid suspensions, and follows our recent works on finite-density (Alam, Saha &
Gupta 2019) and dilute (Saha & Alam 2017) gas–solid suspensions using a Grad-like
kinetic theory (Grad 1949; Chapman & Cowling 1970) based on the maximum
entropy principle. For an up-to-date review of the literature on related theoretical
works on rapid granular and gas–solid suspensions, the readers are referred to the
introductory sections of above two papers. Here, our primary goal is to obtain
closed-form expressions for the granular temperature and transport coefficients of
sheared gas–solid suspensions that hold at the Burnett-order and beyond in which the
anisotropies of the second moment of velocity fluctuations play a crucial role.

Figure 1(a), adapted from Saha & Alam (2017), shows the variation of granular
temperature with Stokes number for a sheared gas–solid suspension, with the particle
volume fraction (ν = 5 × 10−4) representing a dilute regime. It is clear that the
sheared suspension can have two stable states: the high and low temperature states
are called ‘ignited’ and ‘quenched’ states (Tsao & Koch 1995), respectively. The
particle agitation is high in the ignited state, implying that the collision time (i.e. τcol
is the average time between two successive collisions between particles) is much
smaller than the viscous time scale τcol � γ̇ −1

� τvis (where τvis = m/3πµgσ is the
viscous relaxation time that a particle takes to relax back to the local gas velocity;
here, m and σ are the mass and diameter of a particle, and µg is the shear viscosity
of the gas): therefore, the particle–particle collisions are dominant mechanism of
momentum transfer in the ignited state. On the other hand, the quenched state refers
to the regime of τcol � τvis � γ̇ −1 in which the particles largely follow the fluid
motion, with occasional shear-induced collisions, and its peculiar velocity is close to
zero, resulting in a low-temperature (T � 1) state with negligible particle agitation.
Depending on the competition between two mechanisms, both ignited and quenched
states can co-exist with each other, see the phase diagram in figure 1(b) that identifies
the co-existing parameter space in the (St, ν)-plane for elastically colliding particles
(e = 1). The effect of inelasticity on the solution multiplicity was studied by the
present authors (Saha & Alam 2017) who developed an anisotropic moment theory,
based on the maximum entropy principle, that yielded quantitative predictions for the
underlying hydrodynamics and rheology of ‘dilute’ gas–solid suspensions.

In the first part of this paper (§§ 2 and 3) we extend our work (Saha & Alam
2017) by taking into account the dense-gas corrections (excluded volume effects)
in a combined ignited–quenched theory such that the resulting theory holds for
moderately dense suspensions at small-to-large Stokes numbers. Although the
anisotropic moment theory of Saha & Alam (2017) was able to quantitatively predict
the granular temperature and all transport coefficients on the ignited branch of a
dilute gas–solid granular suspension of highly dissipative particles (e � 1), there
remained discrepancies in predicting the critical Stokes number for the onset of
the ‘quenched→ignited’ transition, see the right arrow in figure 1(a) and the phase
boundaries, marked by dashed (Tsao & Koch 1995) and dotted (Saha & Alam 2017)
curves, in figure 1(b). The role of dense-gas corrections in predicting the phase
boundaries in figure 1(b) will be critically analysed in § 3.1 – we shall show that the
present dense theory can provide quantitative agreement with simulation data even
on the quenched branch. More importantly, the Burnett-order analytical solutions
for the granular temperature and the anisotropies of the second-moment tensor are
derived in § 3.2; the expressions for the transport coefficients (viscosity, pressure
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FIGURE 1. (a) Dependence of granular temperature
√

T on Stokes number St = γ̇ τvis
for ν = 5 × 10−4 and the restitution coefficient is e = 1; the high- and low-temperature
branches are called ignited (I) and quenched (Q) states, respectively. (b) Phase boundaries,
delineating the ignited, quenched and co-existence (I+Q) regions, in the (St, ν)-plane for
e= 1; the dotted and dashed lines represent theoretical predictions of Saha & Alam (2017)
and Tsao & Koch (1995), respectively; the symbols refer to direct simulation Monte Carlo
(DSMC) simulations of Tsao & Koch (1995).

and normal-stress differences) are derived in § 3.3 and are valid over wide ranges
of density and Stokes number, including the bistable regime that occurs at ν � 1
(dilute) and St∼O(5). The resulting ignited–quenched theory is further validated via
comparisons of transport coefficients with simulation data in § 3.4.

The second part of this paper (§ 4) deals only with the ignited state of gas–solid
suspensions; we provide analytical solutions up to the super-super-Burnett order
(i.e. fourth order in the shear rate) for all hydrodynamic fields and transport
coefficients that are likely to hold over a wide range of restitution coefficient
(0 < e 6 1) at finite densities with St� 1. The closed-form solutions derived in § 4
complement the numerically obtained transport coefficients described in our recent
work (Alam et al. 2019) for the ignited state of finite-density suspensions. Moreover,
the resulting analytical expressions for the Burnett- and super-Burnett-order transport
coefficients of gas–solid suspensions are uncovered for the first time in the present
work. The expression for the Navier–Stokes (NS)-order viscosity is deduced from
its Burnett-order counterpart, and its explicit dependence on the Stokes number (i.e.
the gas-phase effects) is identified and compared with existing literature. We shall
demonstrate that the super-Burnett-order solutions are indeed needed to quantitatively
predict hydrodynamics and rheology of dilute-to-dense gas–solid suspensions of
highly dissipative (e � 1) particles, even at moderate values of the Stokes number
St=O(50).

2. Brief overview of theory: homogeneously sheared suspension with combined
ignited and quenched states

For a homogeneously sheared gas–solid suspension of inelastic, smooth spheres of
mass m, diameter σ and the normal restitution coefficient e, with an overall shear
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887 A9-4 S. Saha and M. Alam

rate γ̇ , the velocity gradient tensor can be decomposed as

∇u= D +W =

 0 γ̇ /2 0
γ̇ /2 0 0

0 0 0

+
 0 γ̇ /2 0
−γ̇ /2 0 0

0 0 0

 , (2.1)

where D and W are the strain-rate and vorticity tensors, respectively. Let x, y and
z be the flow, gradient and vorticity directions, respectively. The eigenvalues of D
are (γ̇ /2,−γ̇ /2, 0), having an orthonormal set of eigenvectors that are directed along
|D1〉 = (1, 1, 0)/

√
2, |D2〉 = (−1, 1, 0)/

√
2 and |D3〉 = (0, 0, 1), respectively.

As elaborated in Saha & Alam (2016, 2017) and Alam et al. (2019), the present
analysis is intimately connected with the anisotropies of the second-moment tensor
of velocity fluctuations M = 〈CC〉 (where C= c− u is the peculiar/fluctuation velocity
of particles, with the angular bracket denoting averaging over the single-particle
distribution function f (c, x, t) which is defined as the probability of finding a particle
in a volume element of dc dx around the phase-space location (c, x) at time t)
that can be characterized in terms of its eigenvalues and eigenvectors (Goldreich
& Tremaine 1978; Shukhman 1984; Araki & Tremaine 1986; Jenkins & Richman
1988; Richman 1989; Saha & Alam 2014). Let us denote the eigendirections of M as
(|M1〉, |M2〉, |M3〉) with corresponding eigenvalues (M1, M2, M3), respectively; while
the shear plane (i.e. in the (x, y) plane) eigenvectors (|M1〉, |M2〉) are assumed to
make an angle φ with the corresponding eigenvectors (|D1〉, |D2〉) of the strain-rate
tensor, |M3〉 is taken to be aligned with |D3〉 for homogeneous shear flow; for a
pictorial representation, see the figure in appendix A in the supplementary material
available at https://doi.org/10.1017/jfm.2019.1069.

The expression for M =
∑

α Mα|Mα〉 〈Mα| can be simplified (Richman 1989; Saha
& Alam 2016) to

M = T

1+ λ2
+ η sin 2φ −η cos 2φ 0

−η cos 2φ 1+ λ2
− η sin 2φ 0

0 0 1− 2λ2

≡ T I + M̂, (2.2)

where M̂ is the deviator of M and I is the identity tensor. In addition to the granular
temperature T = 〈C2

〉/3 ≡
∑

α Mα/3 which is the trace of (2.2), the following three
parameters, viz. (i) the shear-plane temperature anisotropy η= (M2 −M1)/2T ∝ (Tx −

Ty), i.e. the temperature difference on the shear plane, (ii) the non-coaxiality angle
φ = |D1〉]|M1〉, i.e. the angle between the principal directions of M and D, and (iii)
the excess temperature along the vorticity direction λ2

= (T −M3)/2T ∝ (T − Tz), are
needed to completely specify the second-moment tensor for homogeneous shear flow.

2.1. The second-moment balance in the particle phase
The Stokes equations of motion govern the gas phase since the particle Reynolds
number (Rep= ρgγ̇ σ

2/µg� 1, where γ̇ is the local shear rate and ρg and µg are the
density and shear viscosity of the gas) is assumed to be small. For homogeneously
sheared gas–solid suspension, (i) the gas-phase equations and (ii) the mass and
momentum balances for the particle phase are identically satisfied when there is no
slip velocity between two phases, i.e. u = v, with the latter condition being tied to
the drag term in the momentum equation. The balance equation for M follows from
the Enskog–Boltzmann equation (Saha & Alam 2017; Alam et al. 2019),

P · ∇u+ (P · ∇u)† +
2fdiss(ν)

τvis
ρM =ℵ, (2.3)
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Anisotropy and nonlinear rheology in dense gas–solid suspensions 887 A9-5

where the right-hand side represents the source of the second moment. The first
two terms on the left-hand side of (2.3) represent the shear work, and the third
term represents the viscous dissipation that incorporates many-body hydrodynamic
interactions (Tsao & Koch 1995; Sangani et al. 1996; Koch & Sangani 1999);
τvis = m/3πµgσ is the viscous relaxation time of a particle. The hydrodynamic
contribution to the particle-phase stress tensor (Batchelor 1970; Hinch 1977; Nott &
Brady 1994) has been neglected since this is expected to have negligible effect in
moderate-to-high Stokes-number suspensions as discussed in our recent work (Alam
et al. 2019). It has been established (Lhuillier 2009; Nott, Guazzelli & Pouliquen
2011) that the hydrodynamic interactions result in a net force on the particle phase
that can be decomposed into two terms in the particle-phase momentum equation: (i)
an inter-phase drag term (∝ u− v) and (ii) the divergence of the hydrodynamic stress
(∇ · Ph); both terms would vanish under homogeneous shear flow. Moreover, from
a comparison of transport coefficients based on the present theory with simulation
(with and without hydrodynamic interactions) data, Alam et al. (2019) showed that
the hydrodynamic stress does not have a discernible influence on the predictions of
transport coefficients up to a Stokes number of approximately St ∼ O(1), but the
theory was found to be deficient at St→ 0 since the viscous scaling of the stress
with the shear rate was not recovered. Therefore, for the general validity of the
present theory over the whole range of Stokes numbers including the limit of St→ 0,
the hydrodynamic stress (Ph) should be incorporated in (2.3). A phenomenological
form of Ph, including normal-stress differences, has been suggested by Nott & Brady
(1994), and we leave this issue to a future work.

Neglecting hydrodynamic stress, therefore, the particle-phase stress tensor, P=Pk
+

Pc
= [Pαβ], is composed of the kinetic stress

Pk
= ρM, (2.4)

with M being given by (2.2), and the collisional stress (Jenkins & Richman 1985; Saha
& Alam 2016)

Pc
≡ Θ(mC)

= −
mσ 3

2

∫∫∫
g·k>0

(C′1 −C1)k
∫ 1

0
f (2)(c1, x−ωσk, c2, x+ σk−ωσk)

× (k · g) dω dk dc1 dc2, (2.5)

where k= (x2− x1)/|x2− x1| is the unit contact vector between two colliding particles
and g = c1 − c2 is their relative velocity before collision. In (2.5), f (2)(·) is the two-
body distribution function for which the molecular chaos ansatz,

f (2)(·)= g0(ν)f (·)f (·), (2.6)

is adopted, implying that there are no velocity correlations but the density correlations
are accounted for via the radial distribution function g0(ν), which is nothing but the
contact value of the pair correlation function. The expression for g0(ν) is taken to be
of the form,

g0(ν)=
2− ν

2 (1− ν)3
, (2.7)

that holds up to the freezing-point volume fraction ν = νf ≈ 0.5, and other corrected
expressions are available for higher densities of ν > 0.5.
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887 A9-6 S. Saha and M. Alam

An expression for the hindrance function (i.e. the effective dissipation/drag
coefficient, Jackson (2000)) fdiss(ν) in (2.3) is taken from Sangani et al. (1996),

fdiss(ν, λg, · · ·)= k1(ν)− νg0(ν) ln εm, (2.8)

where

k1(ν)= 1+
3
√

2

√
ν +

135
64
ν ln ν + 11.26ν(1− 5.1ν + 16.57ν2

− 21.77ν3), (2.9)

and εmσ ≈ 9.76λg is the lubrication cutoff length scale (i.e. the minimum separation
between two spheres below which the non-continuum effects dominate) and λg is the
mean free path of gas molecules.

The right-hand side of (2.3) represents the source of the second moment of velocity
fluctuations whose integral expression is given by (Jenkins & Richman 1985; Saha &
Alam 2016; Alam et al. 2019),

ℵ(mCC)=
mσ 2

2

∫∫∫
g·k>0

1CCf (2)(c1, x− σk, c2, x)(k · g) dk dc1dc2,

(2.10)

where 1ψ = (ψ ′1 +ψ
′

2 −ψ1 −ψ2). It is assumed that

ℵ≡ℵ
is
+ℵ

qs, (2.11)

where the superscripts qs and is stand for the quenched and ignited states, respectively;
this implies that the second-moment source has contributions due to the ignited
(variance-driven collisions) and quenched (shear-induced collisions) states (Tsao &
Koch 1995; Saha & Alam 2017) that are evaluated in §§ 2.1.1 and 2.1.2, respectively.

2.1.1. Second-moment source in the ignited state: τcol� τvis

In the ignited state, the particles move around randomly without being much
influenced by the interstitial fluid and most of the collisions are variance driven,
which mimics the state of the rapid granular gas (Goldhirsch 2003). For this case,
the single-particle distribution function is assumed to be an anisotropic Maxwellian
(Goldreich & Tremaine 1978; Shukhman 1984; Araki & Tremaine 1986; Jenkins &
Richman 1988; Richman 1989; Lutsko 2004; Saha & Alam 2014, 2016, 2017; Vié,
Doisneau & Massot 2015; Alam & Saha 2017; Kong et al. 2017; Alam et al. 2019),

f (c, x, t)=
n

(8π3|M|)1/2
exp

(
−

1
2

C ·M−1
·C
)
, (2.12)

with |M| = det(M), that follows from the maximum entropy principle (Saha & Alam
2017).

The integral expression for the collisional source of the second moment (2.10) can
be decomposed as (Chou & Richman 1998; Saha & Alam 2016; Alam et al. 2019)

ℵ
is
= A+ Ê + Ĝ+Θ ·W + (Θ ·W )† , (2.13)

where W is the mean vorticity tensor as defined in (2.1) and Θ is the collisional part
(2.5) of the particle stress tensor. With molecular chaos ansatz (2.6) along with (2.12),
the expression for (2.5) simplifies to (Saha & Alam 2016)

Θ =
3(1+ e)ρνg0(ν)

π3/2

∫
kk(k ·M · k)G(χ) dk, (2.14)
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Anisotropy and nonlinear rheology in dense gas–solid suspensions 887 A9-7

where

k=


cos
(
θ + φ +

π

4

)
sin ϕ

sin
(
θ + φ +

π

4

)
sin ϕ

cos ϕ

 (2.15)

is the contact vector and the integral (2.14) is evaluated over dk= sin ϕ dϕ dθ , with
the limits of the integrations being θ ∈ (0, 2π) and ϕ ∈ (0,π). The integral expressions
for A and two traceless tensors Ê and Ĝ in (2.13) are given by

A=−
6(1− e2)ρνg0(ν)

σπ3/2

∫
kk(k ·M · k)3/2F(χ) dk, (2.16a)

Ê =−
12(1+ e)ρνg0

σπ3/2

∫
(kj+ jk)(k ·M · j)(k ·M · k)1/2F(χ) dk, (2.16b)

Ĝ=
6(1+ e)ρνg0

π3/2

∫
(kj+ jk)[(k ·M · k)(k · D · j)− (k · M̂ · j)(k · D · k)]G(χ) dk.

(2.16c)

In (2.16b)–(2.16c), j is a unit vector perpendicular to the contact vector k that lies in
the plane formed by g and k such that

j=
1
√

2


cos ϕ cos

(
θ + φ +

π

4

)
− sin

(
θ + φ +

π

4

)
cos ϕ sin

(
θ + φ +

π

4

)
+ cos

(
θ + φ +

π

4

)
− sin ϕ

 . (2.17)

The integrands of (2.14), (2.16a)–(2.16c) contain the following two analytic functions
(Araki & Tremaine 1986; Jenkins & Richman 1988; Saha & Alam 2014):

F(χ)≡−
√

π
(

3
2χ + χ

3
)

erfc(χ)+ (1+ χ 2) exp(−χ 2)
ν→0
= 1, (2.18a)

G(χ)≡
√

π

(
1
2
+ χ 2

)
erfc(χ)− χ exp(−χ 2)

ν→0
=

√
π

2
, (2.18b)

where

χ(R, η, φ, λ; θ, ϕ)≡
σ(k · ∇u · k)
2
√

k ·M · k
=

2R sin2 ϕ cos(2φ + 2θ)
(1− η sin2 ϕ cos 2θ + λ2(3 sin2 ϕ − 2))1/2

(2.19)

is a dimensionless function that vanishes in the dilute limit, i.e. χ(ν → 0) = 0. In
(2.19), we have introduced

R=
γ̇ σ

8
√

T̃
≡
vsh

vth
(2.20)

as the dimensionless shear rate, or, the Savage–Jeffrey parameter (Savage & Jeffrey
1981) which can be thought as the ratio between the shear velocity (vsh = γ̇ σ ) and
the thermal velocity (vth ∝

√

T̃). The analytical procedure to evaluate the integrals
(2.14), (2.16a)–(2.16c) is detailed in appendix A (in the supplementary material).

2.1.2. Second-moment source in the quenched sate: τvis� τcol

Unlike in the ignited state, the collisions in the quenched state are mainly shear
induced with some occasional variance-driven collisions and the particles relax back
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887 A9-8 S. Saha and M. Alam

quickly to the local fluid velocity after such collisions since the viscous relaxation
time is much smaller than the collision time τvis � τcol. The velocity distribution
function in the quenched state is taken to be a delta function (Tsao & Koch 1995)

f (c, x, t)= nδ(C), (2.21)

which is a solution of the Boltzmann equation. Using (2.21), the second-order
collisional source term in the quenched state can be evaluated as (Saha & Alam
2017)

ℵ
qs
αβ = −ργ̇

3σ 2 3(1+ e)2νg0(ν)

2π

∫
kxky<0

(kxky)
3kαkβ dk,

= ρpγ̇
3σ 2 (1+ e)2ν2g0(ν)

16



512
315π

−
16
35

0

−
16
35

512
315π

0

0 0
128

315π

 . (2.22)

2.2. Combined ignited and quenched states and the second-moment balance
For the homogeneous shear flow (2.1) with its second moment given by (2.2) and
using (2.13) and (2.22), the second-moment balance (2.3) simplifies to

ρMkβuα,k + ρMkαuβ,k +ΘkβDαk +ΘkαDβk +
2γ̇
Std
ρMαβ = Γαβ +ℵ

qs
αβ, (2.23)

where Γαβ = Aαβ + Êαβ + Ĝαβ . The tensorial equation (2.23) represents a system of
four independent equations,

−2ρT γ̇ η cos 2φ + γ̇ Θxy +
2γ̇
Std
ρT(1+ λ2

+ η sin 2φ)= Axx + Êxx + Ĝxx

+
32

315π
(1+ e)2ρνg0γ̇ σ

2, (2.24a)

γ̇ Θxy +
2γ̇
Std
ρT(1+ λ2

− η sin 2φ)= Ayy + Êyy + Ĝyy +
32

315π
(1+ e)2ρνg0γ̇ σ

2, (2.24b)

2γ̇
Std
ρT(1− 2λ2)= Azz + Êzz + Ĝzz +

8
315π

(1+ e)2ρνg0γ̇
3σ 2, (2.24c)

ρT γ̇ (1+ λ2
− η sin 2φ)+

γ̇

2
(Θxx +Θyy)−

2γ̇
Std
ρTη cos 2φ = Axy + Êxy + Ĝxy

−
1
35
(1+ e)2ρνg0γ̇

3σ 2, (2.24d)

where we have introduced a density-corrected Stokes number (Sangani et al. 1996;
Alam et al. 2019)

Std =
St

fdiss(ν)
, (2.25)

with fdiss(ν) being given by (2.8); note that Std→ St as ν→ 0.

2.2.1. Ordering ansatz
In appendix A in the supplementary material, we outline the procedure to evaluate

all elliptic integrals Θαβ (2.14), Aαβ (2.16a), Êαβ (2.16b) and Ĝαβ (2.16c) in the
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original (x, y, z) coordinate frame, and provide their algebraic expressions, up to the
Burnett order, i.e. the second order in O(ηiλjRk sinl 2φ), with i+ j+ k+ l 6 2. For a
dilute granular gas under homogeneous shear flow, it can be shown that the following
scaling relations hold:

η, λ, sin 2φ, R/ν ∼
√

1− e, (2.26)

and therefore the shear-rate scales like γ̇ ∼R/ν ∼ η∼ λ∼ sin 2φ, see (C 22)–(C 23) in
§ C.3 (in the supplementary material).

To decompose the second-moment balance (2.23) at different orders in the shear
rate, our classification of second (Burnett), third (super-Burnett) and fourth (super-
super-Burnett) orders is based on the scaling relations (2.26), with the effective small
parameter being ε =

√
1− e. The above classification will also be used in deriving

constitutive relations at Burnett order (§ 3) and beyond (§ 4).

2.2.2. Second-moment balance at Burnett order
Substituting the Burnett-order expressions for (Θαβ, Aαβ, Êαβ, Ĝαβ) into (2.24a)–

(2.24d), we obtain the following set of four independent equations (in dimensionless
form):

−2Tη cos 2φ
{

1−
2
35
(1+ e)(5− 9e)νg0

}
+

2
Std

T(1+ λ2
+ η sin 2φ)=−

2(1+ e)νg0T3/2

35
√

π

×{70(1− e)+ (13− 9e)η2
+ 42(3− e)(λ2

+ η sin 2φ)} +
12(1+ e)(1+ 3e)νg0

√
T

35
√

π

+

[
128(1+ e)2νg0

315π

]
, (2.27a)

4
35
(1+ e)(5− 9e)νg0Tη cos 2φ +

2
Std

T(1+ λ2
− η sin 2φ)=−

2(1+ e)νg0T3/2

35
√

π

×{70(1− e)+ (13− 9e)η2
+ 42(3− e)(λ2

− η sin 2φ)} +
12(1+ e)(1+ 3e)νg0

√
T

35
√

π

+

[
128(1+ e)2νg0

315π

]
, (2.27b)

12
35
(1+ e)2νg0Tη cos 2φ +

2
Std

T(1− 2λ2)=−
2(1+ e)νg0T3/2

35
√

π

×
{

70(1− e)− (5+ 3e)η2
− 84(3− e)λ2

}
+

4(1+ e)(1+ 3e)νg0
√

T
35
√

π

+

[
32(1+ e)2νg0

315π

]
, (2.27c)

T(1+ λ2
− η sin 2φ)−

2
Std

Tη cos 2φ =
12(1+ e)(3− e)νg0T3/2

5
√

π
η cos 2φ

+
2
5
νg0(1+ e)(1− 3e)T −

[
4(1+ e)2νg0

35

]
. (2.27d)
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In (2.27), we have made temperature dimensionless via

T∗ =
T̃

(γ̇ σ/2)2
, (2.28)

(henceforth we will remove the superscript ∗ to denote dimensionless temperature T)
which is tied to the dimensionless shear rate R (2.20) via the following relation

R2
=

1
16T

. (2.29)

Equation (2.27) is the finite-density correction of the second-moment balance of
Saha & Alam (2017) who analysed a ‘dilute’ gas–solid suspension by combining
both ignited and quenched state contributions in the second-moment source. The last
term on the right-hand side (within braces) in each equation of (2.27) represents
the contributions from the quenched state; the removal of the Stokes-number (Std)
dependent terms from (2.27) yields the second-moment balance for the rapid granular
flow.

The solution of (2.27) is sought for η, φ, λ and T for specified values of (i) the
particle volume fraction (ν), (ii) the restitution coefficient (e) and (iii) the Stokes
number (St or Std). In §§ 3.1 and 3.2 we show that (2.27) can be tackled analytically,
leading to closed-form Burnett-order constitutive relations as discussed in § 3.3.

3. Results for combined ignited and quenched states: granular temperature and
non-Newtonian rheology

3.1. Solution for granular temperature and the phase diagram of co-existing states
Despite the apparent complexity of the system of equations (2.27), we found that it
can be reduced to a single equation to determine granular temperature,

G(ξ)≡
10∑

i=0

ai(ν, e, Std)ξ
i
= 0, (3.1)

which is a tenth-degree polynomial in ξ =
√

T; the explicit expressions of the
individual coefficients ai(ν, e, Std) are provided in appendix B (in the supplementary
material). Equation (3.1) has been solved numerically for specified values of (ν, e, Std).
Below we will compare our analytical theory with simulation data – the simulation
technique is based on DSMC method which is described in Alam et al. (2019), and
the related algorithmic details can be found in Montanero & Santos (1997) and Gupta
& Alam (2017).

The solution of (3.1) as a function of particle volume fraction is shown in
figure 2(a) for a Stokes number of St = 7 with restitution coefficient e = 0.9; the
corresponding variations of the density-corrected Stokes number Std (= St/fdiss(ν),
equation (2.25)) with ν is displayed in the inset. It is clear from figure 2(a) that there
are three distinct solutions for T in the dilute limit ν 6 0.015: (i) the upper branch
(high temperature, Tis) corresponds to the ignited state that spans the whole range
of density, (ii) the lower branch (low temperature, Tqs) corresponds to the quenched
state and (iii) the intermediate branch (Tqs < Tus < Tis) represents an unstable state.
The theoretical predictions for both Tis and Tqs (denoted by lines) in figure 2(a) agree
excellently with the present simulation data (marked by diamond symbols) over the
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FIGURE 2. (a) Variation of granular temperature with particle volume fraction (ν) at
a Stokes number of St = 7; the restitution coefficient is e = 0.9; the inset displays
the variation of the density-corrected Stokes number Std = St/fdiss(ν), (2.25), with ν. (b)
Variation of

√
T with Std for a dilute suspension with ν = 5× 10−4 and e= 1. The solid

lines represent the present theory and the diamond symbols refer to present simulation
data obtained using the DSMC method (Alam et al. 2019); the dashed lines and the filled
circles in panel (b) are theoretical and simulation results, respectively, of Tsao & Koch
(1995).

whole range of ν. While the temperature decreases with increasing density on the
ignited branch (the blue line in figure 2a), it increases on the quenched branch (the
magenta line in figure 2a) in the same limit, up to the limit point where the unstable
and quenched branches meet each other. Overall, the inclusion of excluded-volume
effects retains the solution multiplicity (Tis, Tus, Tqs) in the dilute limit (Tsao &
Koch 1995; Saha & Alam 2017) and, as we shall demonstrate later, there exists an
upper bound on the volume fraction (ν = νc) above which a unique high-temperature
(T = Tis) ignited-state solution survives.

For parameter values of figure 2(a) with ν = 2 × 10−4 (i.e. in the bistable
regime), figure 3 displays how the ignited or quenched states can be reached in
simulations, depending on initial conditions. When the simulation is prepared to
start with a high/low temperature (Tinitial > Tis, or, Tinitial ∼ Tqs), the final equilibrium
state corresponds to the ignited/quenched state, see the upper and lower solid lines,
respectively, in figure 3 – this overall picture is similar to that shown in figure 1.
However, an initial state with an intermediate temperature Tqs � Tinitial � Tis can
evolve in time to result in accessing either the ignited (the dashed line in main
panel) or the quenched (the dot-dash line in inset) state. In particular, the dashed
line in figure 3 indicates that the temperature drops sharply at γ̇ t ∼ 200, implying
that the system is trying to reach the Q-state; but the stochasticity inherent in DSMC
simulations brings the temperature up quickly, which continues to increase with time,
eventually reaching the I-state. On the other hand, with an initial temperature ‘almost’
identical to the initial state for the dashed line in figure 3, its inset indicates that the
system eventually settles to the Q-state.

Focussing on the dilute regime of figure 2(a), the Stokes-number dependence
of granular temperature is shown in figure 2(b) for a particle volume fraction of
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FIGURE 3. Temporal evolution of granular temperature, leading to ignited/quenched states,
depending on various initial conditions – see the text in § 3.1 for details. Parameter values
are ν = 0.0002, St= 7 and e= 0.9.

ν = 5 × 10−4 with e = 1; while the numerical solution of (3.1) is denoted by
the solid line, the dashed line corresponds to the theory of Tsao & Koch (1995).
For a quantitative comparison, the DSMC simulation data are also superimposed
as filled circles (Tsao & Koch 1995) and open diamonds (present simulation)
in figure 2(b). Clearly, the present theory, with dense-gas corrections along with
anisotropic Maxwellian distribution function, provides a better agreement for the
quenched-state temperature Tqs with the simulation data. In particular, the critical
Stokes number (Stc2) for the limit point of ‘quenched→ignited’ transition, marked
by an upward arrow in figure 2(b), is well predicted by the present theory – this is
despite the fact that this transition occurs in a dilute (ν <0.02, see panel a) suspension.
The critical Stokes number (Stc1) for the limit point of ‘ignited→quenched’ transition,
marked by a downward arrow in figure 2(b), is also well predicted by the present
theory as well as by Tsao & Koch (1995) and Saha & Alam (2017) for the parameter
values mentioned. These two critical Stokes numbers (Stc1 and Stc2) are determined
analytically in §§ 3.1.1 and 3.1.2, respectively.

3.1.1. Ignited-to-quenched transition: Stc1

Referring to figure 2(b), the critical Stokes number Std = Stc1
d for ‘ignited-to-

quenched’ transition provides a lower bound for the existence of the ignited state, the
quenched state is the only admissible solution at St < Stc1

d and, by definition, ξ � 1
along this limit point. With the latter assumption and considering only leading-order
terms in (3.1), we arrive at the following quadratic equation

aSt4
d + bSt2

d + c= 0, (3.2)

to determine Stc1
d ; the coefficients of (3.2) are given in § B.1 (in the supplementary

material). The solution of (3.2) is marked in figure 4(a) as a red surface in the three-
dimensional (Std, ν, e) space. This critical surface T(Stc1

d , ν, e) represents the loci of
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FIGURE 4. The master phase diagram in (ν, e, Std) space, delineating the regions of
existence of the (i) ignited and (ii) quenched states and (iii) their coexistence (I+Q). The
ignited and quenched states exist to the right and left, respectively, of the ‘blue’ and
‘red’ surfaces; these critical surfaces are determined analytically using ordering analysis
in §§ 3.1.1 and 3.1.2 respectively. The phase diagram for purely elastic collisions (e= 1)
is shown in panel (b), where the predictions from the works of Saha & Alam (2017)
(dotted line), Tsao & Koch (1995) (dashed line) and Sangani et al. (1996) (dot–dashed
line) are also superimposed. The filled circles represent DSMC simulation results of Tsao
& Koch (1995); the solitary diamond symbol represents the present data for ν = 5× 10−4

as measured from figure 2(b). Panel (c) represents the projection of panel (a) at e= 0.5.
The ‘star’ symbols in panels (b,c) represent the ‘exact’ phase boundaries obtained from
the numerical solution of (3.1).
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the upper limit point of figure 2(b) where the unstable and ignited solution branches
meet; to the left of this surface, the solution belongs to the quenched state.

3.1.2. Quenched-to-ignited transition: Stc2

The critical Stokes number Stc2
d for ‘quenched-to-ignited’ transition (i.e. the lower

limit point in figure 2b) represents an upper bound for the existence of the quenched
state; the quenched and the unstable branches meet at this limit point on which we
must have ξ ∼O(1). Using this argument and applying an ordering analysis on each
term of (3.1), we obtain

G(ξc)≈ a4ξ
4
+ a3ξ

3
+ a2ξ

2
+ a1ξ = 0= a4ξ

3
+ a3ξ

2
+ a2ξ + a1 = 0, (3.3a)

dG
dξ
(ξc)≈ 3a4ξ

2
+ 2a3ξ + a2 = 0, (3.3b)

at leading order, where

a4 =−6890625(13− 9e)(1+ e)(107+ 193e)π7/2St5
dνg0,

a3 = 5788125000(13− 9e)π4St2
d,

a2 =−165375000(13− 9e)(1+ e)(1+ 3e)π7/2St5
dνg0,

a1 =−196000000(13− 9e)(1+ e)2π3St5
dνg0.


(3.4)

The solution of (3.3b) is

ξc =

2
[
140
√

π+
√

2
√

9800π− (1+ e)2(1+ 3e)(107+ 193e)St6
dν

2g2
0

]
(1+ e)(107+ 193e)St3νg0

, (3.5)

which represents the critical temperature for the ‘quenched-to-ignited’ transition. Now,
under the assumption St3

dνg0� 1 with
√

1− x≈ 1− x/2, (3.5) simplifies to

ξc =
39200π−

︷ ︸︸ ︷
(1+ e)2(1+ 3e)(107+ 193e)St6

dν
2g2

0

70
√

π(1+ e)(107+ 193e)St3
dνg0

. (3.6)

The over-braced term in (3.6) is the finite-density higher-order correction over our
previous work (Saha & Alam 2017), and removing this term along with the limit of
g0(ν → 0)→ 1 yields an expression for this critical temperature ξc = 560

√
π/(1 +

e)(107 + 193e)St3ν, which is identical to the dilute-limit solution of Saha & Alam
(2017).

On substituting (3.6) into (3.3a), we obtain

2(1+ e)4(107+ 193e)2(St3
dνg0)

3
+

︷ ︸︸ ︷
945π(1+ e)2(1+ 3e)(107+ 193e)(St3

dνg0)
2

− 6174000π2
= 0. (3.7)

The solution of (3.7) is plotted as a blue surface in figure 4(a) and it provides a
measure of the upper bound for the quenched state to exist in the (Std, ν, e)-space.
Above this critical surface, the ignited state is the only feasible solution and both the
states can co-exist below this surface.
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Tsao & Koch (1995) St3ν ≈ 3.23 (dashed line)
Sangani et al. (1996) St2ν ≈ 0.96 (dot-dashed line)
Saha & Alam (2017) St3ν ≈ 2.77 (dotted line), equation (3.9)
Present work St3ν ≈ 2.07, equation (3.8)
Present work St3ν ≈ 1.77 (solid line), equation (3.7)

TABLE 1. Summary of predictions for Stc2(e= 1) from different theories; see
figure 4(b,c) for line types representing different theories.

In figure 4(a), the blue surface determining Stc2
d (ν, e) meets the red surface

determining Stc1
d (ν, e) at some density yielding a critical curve which marks the

point of transition between multiple and unique solutions. It is clear that this limiting
curve is a sharply decreasing function of inelasticity (i.e. increasing function of e).
The loci of two limit points in the (Std, ν)-plane can be identified in figures 4(b) and
4(c), respectively, for e= 1 and e= 0.5. The predictions from the works of Tsao &
Koch (1995) (dashed line), Sangani et al. (1996) (dot-dashed line) and Saha & Alam
(2017) (dotted line) are also superimposed in panel (b) for a quantitative comparison
with the present theory. Note that the DSMC data of Tsao & Koch (1995) are marked
as filled circles and those of the present simulation are marked by the diamond symbol
(as obtained from figure 2b). Figure 4(b) confirms that the present theory predicts
St3

dν ≈ 2.07 (for e= 1) which is closest to the simulation result (Tsao & Koch 1995).
On the other hand, all previous works (including Saha & Alam (2017)) are unable
to provide a quantitative agreement for Stc2 . For example, the inclusion of dense-gas
effects in the Grad-moment theory of Sangani et al. (1996) grossly over-predicts the
simulation data for Stc2 as seen from the right-most dot-dashed line in figure 4(b) –
in fact, Sangani et al.’s (1996) theory deviates more from the related dilute theory
of Tsao & Koch (1995). To conclude, the present theory significantly improves the
bound on Stc2 and yields the closest agreement with simulation as confirmed by the
solid lines in figure 4(b,c).

The differences between the present theory and our previous work on dilute
suspensions (Saha & Alam 2017) can be understood by considering the over-braced
term in (3.7) that represents the finite-density effects appearing beyond the leading
order. With the assumption St3

dνg0� 1, the second term of (3.7) dominates over the
first term, yielding an equation for the critical surface as

(Stc2
d )

3νcg0 =

(
1234800π

189(1+ e)2(1+ 3e)(107+ 193e)

)1/2

. (3.8)

On the other hand, removing the over-braced term from (3.7), we get

(Stc2)3νcg0 =

(
3087000π2

(1+ e)4(107+ 193e)2

)1/3

, (3.9)

which coincides with the expression for Stc2 of Saha & Alam (2017) for a dilute
suspension. Therefore, the inclusion of finite-density effects makes (3.7) singular,
resulting in different expressions (3.8) and (3.9) for the ‘quenched-to-ignited’
transition surface. The underlying quantitative differences can be ascertained from
table 1, which summarizes different theoretical predictions for Stc2 at e= 1. Note that
the numerical solution of (3.7) provides a more accurate prediction for Stc2 than the
analytical solution (3.8), as confirmed from a comparison with the simulation data in
figure 4(b,c).
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FIGURE 5. Co-existence of ignited (high temperature) and quenched (low temperature)
states in particle simulations of gas–solid suspensions: time evolution of the granular
temperature (

√
T) for effective Stokes numbers of Std = 9 and 10; the particle volume

fraction is ν = 5× 10−4 and the restitution coefficient is e= 1. Two plateaus of low and
high temperatures refer to ‘quenched’ and ‘ignited’ states, respectively.

3.1.3. Traversing through the co-existence region of ignited and quenched states
Figure 5 displays the co-existence of high- and low-temperature states as the

system evolves from a low-temperature state in DSMC simulations of a sheared
dilute gas–solid suspension; the particle volume fraction is ν = 5 × 10−4 and the
restitution coefficient is e= 1; two Stokes numbers (St = 9 and 10) are chosen from
the co-existence region of figure 4(b). Each curve in figure 5 is characterized by two
plateaus: after a brief transient period, the system settles into a low-temperature state,
lives there over a time period of γ̇ t∼O(20) and then jumps into a high-temperature
state and lives there subsequently. Clearly, the system has two stable states: the high-
and low-temperature states correspond to ‘ignited’ and ‘quenched’ states (Tsao &
Koch 1995), respectively. It is seen that, at smaller values of St (i.e. closer to the left
boundary of the co-existence region in figure 4), the system spends more time in the
quenched state before it transits to the ignited state (due to inherent stochasticity in
DSMC simulations). The temperatures corresponding to the two plateaus in figure 5
can be mapped to our theoretical predictions shown in figure 2(b).

The phase coexistence depicted in figure 5 can be understood by constructing a free-
energy-like quantity having the shape of a ‘double-well’ potential, one referring to the
quenched state and the other to the ignited state. Both potential wells would survive
in the co-existence region of the phase diagram in figure 4, and the relative depth of
each well is a function of (Std, ν, e) in the present context.

3.2. Solution for the second-moment anisotropy (η, φ, λ2)
The solution for the non-coaxiality angle can be obtained by subtracting (2.27b) from
(2.27a) and is given by,
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cot 2φ =
12(3− e)(1+ e)νg0

√
T

5
√

π
+

2
Std
. (3.10)

Once the granular temperature (T) and the non-coaxiality angle (φ) are determined
from (3.1) and (3.10), respectively, the remaining equations of (2.27) can be
manipulated to yield closed-form solutions for two other anisotropy parameters
(η, λ2). Note that the effect of the gas phase on φ occurs explicitly via the second
term in (3.10); however, the quenched-state terms (ℵqs

αβ) do not appear in (3.10), but
their effects occur implicitly via T in (3.1).

The temperature anisotropy η satisfies a quadratic equation b2η
2
+ b1η + b0 = 0,

where

b2 =
3(1− e2)

5
√

π
νg0T3/2, (3.11a)

b1 =−
(
1− 2

5(1+ e)(1− 3e)νg0
)

T cos 2φ, (3.11b)

b0 =
3T
Std
+

6(1− e2)
√

π
νg0T3/2

−
16

35π
(1+ e)2νg0 −

2(1+ e)(1+ 3e)
5
√

π
νg0

√
T. (3.11c)

The solution for η is

η
e6=1
= −

b1

2b2
−

1
b2

√
b2

1 − 4b0b2, (3.12a)

e=1
= −

b0

b1
, (3.12b)

and the second expression (3.12 b) holds strictly for a gas–solid suspension of
elastically colliding (e = 1) particles with Std < ∞; the latter constraint is needed
since T diverges in the limit of dry granular flows, Std→∞, with e= 1. Lastly, the
solution for λ2 can be simplified to yield

λ2
=

η

sin 2φ
−

4
35
(1+ e)2νg0T−1

−

(
1−

2
5
(1+ e)(1− 3e)νg0

)
, (3.13)

and the dimensionless excess temperature is

Tex

T
def
=

T − Tz

T
= 2λ2. (3.14)

Based on the solutions given in (3.10)–(3.14), the density dependences of η, φ and
λ2 are displayed in figures 6(a), 6(b) and 6(c), respectively; the Stokes number is
set to St = 7 and the restitution coefficient is e = 0.9, as in figure 2(a). Excellent
agreement with the simulation data is found for all three anisotropy parameters on
both the ignited and quenched branches over the whole range of density (ν 6 0.5).
Note that the quenched-state solution is highly anisotropic compared to its ignited-state
counterpart since

(η, φ, λ2)quenched > (η, φ, λ
2)ignited, (3.15)

as confirmed in figure 6. On the ignited branch, however, the variations of (η, φ, λ2)
with density are found to be non-monotonic, with the respective maxima occurring
at the limit point of ‘ignited-to-quenched’ transition. Recall that the shear-induced
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FIGURE 6. Same as figure 2(a), but for the variations of the second-moment anisotropy
parameters: (a) the shear-plane temperature anisotropy η, (b) the non-coaxiality angle φ (in
degrees) and (c) the excess temperature along the vorticity direction λ2. Parameter values
are St= 7 and e= 0.9.
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FIGURE 7. Variations of (a,d) shear-plane temperature anisotropy η, (b,e) the non-
coaxiality angle φ and (c,f ) the excess temperature Tex

z /T = 2λ2 with Stokes number Std.
Parameter values are ν = 5× 10−4 and (a–c) e= 1 and (d–f ) e= 0.9 (dotted line) and 0.5
(dashed line, and the diamonds denote the present simulation data).

collisions are responsible for the origin of the second moment in the quenched state
in which the particles largely follow the fluid motion. Such shear-driven particle
collisions can occur only along preferred directions, resulting in a highly anisotropic
second-moment tensor compared to its ignited counterpart, see (3.15).

Focussing on the co-existence regime of figure 6, we show the St-dependence of
(η, φ, λ2) in figure 7 for a particle volume fraction of ν = 5× 10−4 (as in figure 2b),
with the restitution coefficient being set to e = 1 in (a–c) and e = (0.5, 0.9) in
(d–f ). It is seen that while the second-moment anisotropy increases with increasing
Std on the quenched branch, it decreases sharply on the ignited branch; overall

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1069


Anisotropy and nonlinear rheology in dense gas–solid suspensions 887 A9-19

there is excellent agreement of theoretical predictions (3.10)–(3.14) with the present
simulation data over a range of Std for both elastic (a–c) and inelastic particles
(d–f ). Comparing the dashed and dotted lines in figure 7(d–f ) for e = 0.5 and 0.9,
respectively, we find that the inelasticity markedly increases the values of (η, φ, λ2)
on the ignited branch. Note that the anisotropy of the quenched solution is hardly
affected by inelasticity, which is expected since the origin of the quenched solution
is tied to shear-induced collisions.

3.3. Burnett-order stress tensor and the transport coefficients
Since we have retained terms up to second order in the shear rate and three anisotropy
parameters in the second-moment balance (2.27), the stress tensor and the related
transport coefficients should be evaluated at the Burnett order. Retaining terms up to
the second order O(ηiλjRk sinl 2φ, i + j + k + l 6 2), the diagonal elements of the
dimensionless stress tensor,

P∗ =
P̃

ρpν(γ̇ σ/2)2
, (3.16)

have the following form

P∗xx = T
[
(1+ λ2

+ η sin 2φ)

+
2(1+ e)νg0

35

{
35+ 14λ2

+ 14η sin 2φ + 96R2
+

48
√

π
ηR cos 2φ

}]
, (3.17a)

P∗yy = T
[
(1+ λ2

− η sin 2φ)

+
2(1+ e)νg0

35

{
35+ 14λ2

− 14η sin 2φ + 96R2
+

48
√

π
ηR cos 2φ

}]
, (3.17b)

P∗zz = T
[
(1− 2λ2)+

2(1+ e)νg0

35

{
35− 28λ2

+ 32R2
+

16
√

π
ηR cos 2φ

}]
, (3.17c)

which depend on four invariants of the second-moment tensor M ,

η≡ η(ν, e, St), φ ≡ φ(ν, e, St), λ≡ λ(ν, e, St), R≡ R(ν, e, St) (3.18a−d)

that have been evaluated in §§ 3.1 and 3.2. Recall that R = γ̇ σ /8
√

T̃ ≡ 1/4
√

T is
the dimensionless shear rate and T = T̃/(γ̇ σ/2)2 ≡ T(ν, e, St) is the dimensionless
temperature. The related fourth-order, O(ηiλjRk sinl 2φ, i+ j+ k+ l 6 4), expressions
for Pαβ are given in (A 22)–(A 24) of § A.1 (in the supplementary material) that will
be used in § 4.

By summing (3.17a)–(3.17c), the expression for the particle-phase pressure (in
dimensionless form) is found as

p=
1
3

Pαα = T

1+ 2(1+ e)νg0 +
64(1+ e)νg0

15

(
1+

1
2
√

π

η

R
cos 2φ

)
R2︸ ︷︷ ︸
 . (3.19)

The first two terms represent the Navier–Stokes-order pressure of a dense gas,

pNS = T[1+ 2(1+ e)νg0], (3.20)
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while the under-braced terms in (3.19) are second order in the shear rate, O(R2),
representing its Burnett-order contribution

p(II) =
4(1+ e)νg0

15

(
1+

1
2
√

π

η

R
cos 2φ

)
, (3.21)

such that p= pNS + p(II) + · · · . It must be noted that the effect of the gas phase on
pNS remains implicit via the Stokes dependence of granular temperature T=T(ν, e, St).
Note further that the functional form of the kinetic pressure (p̃k

= ρ̃T̃) remains the
same at all orders, the Burnett-order contributions appear explicitly in the collisional
component (pc) of pressure.

3.3.1. Shear stress and the particle-phase shear viscosity
Retaining terms up to the third order O(ηiλjRk sinl 2φ, i + j + k + l 6 3), the

dimensionless shear stress can be written as

P∗xy =
P̃xy

ρpνγ̇ 2(σ/2)2
= −η cos 2φT −

4(1+ e)νg0T
5
√

π

[
R
{

8+
√

π
η cos 2φ

R

}
+

4
21

R3

{
32−

η2

R2
(2+ cos 4φ)+ 12

λ2

R2

}
︸ ︷︷ ︸

]
, (3.22)

where the under-braced terms belong to the third (super-Burnett) order that must be
included to evaluate the shear viscosity at the Burnett order. Note that the even-order
terms do not contribute to shear stress, and since (3.22) contains terms up to the super-
Burnett order, the neglected terms in (3.22) belong to fifth order and beyond.

The dimensionless shear viscosity of the particle phase, up to Burnett order, can be
obtained from (3.22),

µ
def
= −

P̃xy/γ̇

ρpνγ̇ (σ/2)2
≡−P∗xy

=

( η
4R

cos 2φ
)√

T +
4(1+ e)νg0

√
T

5
√

π

[(
2+
√

π

4

(η
R

cos 2φ
))

+
R2

21

{
32−

η2

R2
(2+ cos 4φ)+ 12

λ2

R2

}]
. (3.23)

While the first term in (3.23) represents the kinetic part of viscosity, the remaining
g0-dependent terms represent the collisional viscosity. This (3.23) is the Burnett-order
expression for the particle-phase shear viscosity of a moderately dense gas–solid
suspension valid up to second order in the shear rate; the NS-order viscosity follows
by removing the O(R2) term from (3.23). Note that the effects of the gas phase
and the shear-driven collisions are implicit in (3.23) via the St-dependence of the
anisotropy parameters (η, φ, λ2), as clarified in (3.18) and figures 6–7.

3.3.2. Normal-stress differences and their origin
On subtracting (3.17b) from (3.17a), we obtain the expression for the (dimension-

less) first normal-stress difference as

N1 = Pxx − Pyy = 2η sin 2φ
{

1+ 4
5(1+ e)νg0

}
T. (3.24)
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Note that N1 → 0 in the limit of vanishing anisotropy, (η, φ)→ 0, of the second-
moment tensor on the shear plane. Therefore the origin of the first normal-stress
difference is tied to the shear-plane anisotropy of M . According to the present theory,
N1 is positive and maximal in a dilute suspension (ν→ 0), but vanishes in the dense
limit (ν → νmax) since (η, φ)→ 0 in the latter limit. These overall findings mimic
those in a ‘dry’ granular (St→∞) suspension (Saha & Alam 2016).

The expression for the (dimensionless) second normal-stress difference is given by

N2 = Pyy − Pzz =
(
3λ2
− η sin 2φ

)
T

+
4(1+ e)νg0

35

[
32
(

1+
1

2
√

π

η

R
cos 2φ

)
R2
+ 21λ2

− 7η sin 2φ
]

T, (3.25)

with the first and second terms representing its kinetic and collisional components,
respectively. It is clear that the kinetic part of N2, which dominates in the dilute limit,
is zero when (η, φ, λ2)→ 0 that corresponds to an isotropic second-moment tensor, or,
when 3λ2

=η sin 2φ. On the other hand, even if the second-moment tensor is isotropic,
i.e. (η, φ, λ2)→ 0, (3.25) yields

N2 =
8(1+ e)νg0

35

(
1+

1
2
√

π

η

R
cos 2φ

)
> 0. (3.26)

A closer look at (3.17b)–(3.17c) reveals that the Burnett-order collisional anisotropy
is responsible for finite (and positive) values of N2 in a dense granular suspension.

3.3.3. Collisional dissipation at Burnett order
Under homogeneous shearing, the non-zero elements of the source of the second-

moment tensor (2.13) have the following expressions:

ℵxx = Axx + Êxx + Ĝxx + γ̇ Θxy, (3.27a)

ℵyy = Ayy + Êyy + Ĝyy − γ̇ Θxy, (3.27b)

ℵzz = Azz + Êzz + Ĝzz, (3.27c)

ℵxy = Axy + Êxy + Ĝxy +
γ̇

2

(
Θyy −Θxx

)
. (3.27d)

The algebraic expressions for these quantities, as functions of (ν, e, T; η, φ, λ2) up to
the Burnett order, are provided in appendix A (in the supplementary material).

The rate of collisional dissipation per unit volume is given by

D=−
1
2
ℵαα =−

1
2

Aαα =
3(1− e2)ρνg0T3/2

σπ3/2

(
H30

003 +H12
003

)
≡DNS +D(II), (3.28a)

where

DNS =
12(1− e2)ρνg0T3/2

√
πσ

(3.29)

is its Navier–Stokes-order expression, which coincides with the well-known expression
in the literature (Jenkins & Richman 1985), and its second-order contribution is

D(II) =
6(1− e2)ρνg0T3/2

5
√

πσ

[
η2
+ 8R2

{
4+
√

π
(η

R
cos 2φ

)}]
. (3.30)

It is interesting to note in (3.30) that the Burnett-order contribution to inelastic
dissipation depends on the the shear-plane anisotropies (η, φ) but not on the excess
temperature (λ2); the effect of λ2 on D appears at the quartic order in the shear rate
(i.e. super–super–Burnett order).
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FIGURE 8. Variations of the particle-phase (a) shear viscosity µ, (b) pressure p and the
scaled (c) first (N1 = N1/p) and (d) second (N2 = N2/p) normal-stress differences with
particle volume fraction (ν) for e = 0.9 and Stokes number St = 7. The solid lines are
present theoretical predictions (§ 3.3) and the symbols denote present simulation data.

3.4. Comparison of Burnett-order transport coefficients with simulation and their
scalings with Stokes number

Figure 8 displays the density variations of (a) the shear viscosity (µ, (3.23)), (b) the
pressure (p, (3.19)) and (c,d) the ‘scaled’ first and second normal-stress differences,
(N1 = N1/p, (3.24) and N2 = N2/p, (3.25), both scaled by mean pressure) for a
Stokes number of St = 7 and a restitution coefficient of e = 0.9. In each panel, the
solid lines represent the theoretical predictions from the combined ‘ignited–quenched’
theory of § 3.3 and the symbols denote the present simulation data obtained using
the DSMC method (Alam et al. 2019). For each field in figure 8, three different
solution branches are found below a critical density of νc≈ 0.015 for these parameter
values – the magenta and blue lines correspond to the stable ‘quenched’ and ‘ignited’
states, respectively, whereas the red line correspond to the intermediate unstable
branch. Overall, there is an excellent agreement between theory and simulation for
all rheological fields in figure 8 including the density range over which the hysteresis
is found. Figures 8(a) and 8(b) clarify that the density dependences of both viscosity
(panel a) and pressure (panel b) mirror that of the granular temperature discussed in
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FIGURE 9. Variations of (a,d) shear viscosity (µ) (3.23), and the (b,e) first (N1 = N1/p)
(3.24) and (c,f ) second (N2 = N2/p) (3.25) normal-stress differences. The solid lines
represent theoretical predictions and the symbols represent DSMC data; the quenched and
ignited branches are marked by Q and I, respectively. The particle volume fraction is
ν = 5× 10−4 and the restitution coefficients are (a–c) e= 1 (solid line) and (d–f ) e= 0.9
(dotted line) and e= 0.5 (dashed line and the diamonds denote present simulation data).

figure 2(a); this is expected since µ ∝
√

T and p ∝ T . Therefore, in the co-existing
regime, the states of ‘quenched’, ‘unstable’ and ‘ignited’, correspond to very small,
intermediate and large values, respectively, of granular temperature, viscosity and
pressure. On the other hand, figures 8(c) and 8(d) indicate that both normal-stress
differences are large and small on the quenched and ignited branches, respectively
– this implies that the quenched solutions are highly anisotropic (compared to their
ignited counterparts) as characterized in figure 6 in terms of their second-moment
anisotropy parameters (η, φ, λ2).

On the quenched branch in figure 8(c,d), both N1 and N2 are maximal in the dilute
limit and decrease slowly with increasing ν before the limit point is reached, beyond
which only ignited solution exists. The first normal-stress difference on the ignited
state varies non-monotonically with density, see figure 8(c) – N is

1 is maximal at the
limit point density (ν= νc) and decreases with increasing and decreasing density about
νc. On the other hand, the ignited state N2 in figure 8(d) shows some interesting
behaviour – N is

2 is negative in the dilute limit and is a slowing decreasing function
of ν, but changes its behaviour at the limit point ν = νc and becomes an increasing
function of ν beyond ν > νc and thereafter undergoes a sign change at some finite
density and increases up to a density of ν∼ 0.3 and then decreases again but remains
positive in the dense limit. The related simulation data in figure 8(d) confirm this
complex dependence of N is

2 on density – note that the agreement between simulation
and theory is qualitative for N is

2 .
Figure 9(a–f ) displays the St-dependence of transport coefficients (µ, N1, N2)

covering the hysteretic/bistable regime; the parameter values are the same as in
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figure 7. We find excellent agreement between the Burnett-order theory and the
simulation data for all three transport coefficients. The scaling of the particle-phase
viscosity with Stokes number in figure 9(a,d) can be explained from our previous
work (Saha & Alam 2017) on dilute gas–solid suspensions,

µis
∝ Stα, µqs

∝ St2 and µus
∝ St−7, (3.31a−c)

with α = 1 and 0 for e = 1 and e < 1, respectively, and the superscript ‘us’ refers
to the solution on the unstable state. It is clear that the viscosity increases with
increasing St for both ignited and quenched states, but decreases on the unstable
branch in the same limit. In particular, the asymptotic value of the dimensionless
µis at St→∞ is independent of St for inelastic particles but increases linearly with
St for elastically colliding particles. Both can be understood from the shear-rate
dependence of temperature that can be determined from the energy balance equation.
While the shear work term (µγ̇ 2

∝

√

T̃ γ̇ 2) balances (i) the viscous dissipation
(Dvis ∝ T̃/τvis) for a suspension of elastic particles, leading to the quartic dependence
of temperature on the shear rate (T̃ ∝ γ̇ 4), it balances (ii) the collisional dissipation
term (Dinel∝ (1− e2)T̃3/2) for inelastic particles, resulting in the quadratic dependence
of T̃ ∝ γ̇ 2. Since the ignited-state viscosity behaves like µis

∝

√

T̃ , its Stokes-number
dependence as predicted in (3.31) is confirmed in figure 9(a,d).

Now, to clarify the dependence of two normal-stress differences as depicted in
figure 9(b,c,e,f ), we focus on their asymptotic behaviour at St ∼ 1 (i.e. on the
quenched branch) and at St→∞ (i.e. on the ignited branch). Recall that the quenched
state and the solution multiplicity occur in a dilute suspension (ν < 0.02) of elastic
or inelastic (e 6 1) particles at Stokes numbers of St 6 O(10). Therefore, restricting
ourselves to the dilute limit, the second-moment balance (2.23) in the quenched state
is given by

Pαkuβ,k + Pβkuα,k +
2γ̇
St

Pαβ =ℵ
qs
αβ ≡

(1+ e)2νγ̇
4



512
315π

−
16
35

0

−
16
35

512
315π

0

0 0
128

315π

 , (3.32)

where we have neglected the collisional stress (Θαβ = 0) and the collisional source
term due to the ignited state (i.e. ℵis

αβ = 0). Equation (3.32) admits analytical solution,
yielding closed-form expressions for the non-zero elements of the dimensionless stress
tensor,

Pxx =
32(1+ e)2νSt3

315π

(
1+

9π

16St
+

2
St2

)
, Pyy =

64(1+ e)2νSt
315π

= 4Pzz, (3.33a,b)

Pxy =−
2(1+ e)2νSt

35

(
1+

16
9π

St
)
. (3.34)

It is clear from (3.33) that both (Pxx−Pyy) and (Pyy−Pzz) are positive in the quenched
state as confirmed in figure 9(b,c,e,f ). The expressions for scaled first and second
normal-stress differences are given by

N qs
1 =

Pxx − Pyy

p
=

3
(

1+
9π

16St

)
(

1+
9π

16St
+

9
2St2

) ≈(1−
9

2St2

)
, (3.35)
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N qs
2 =

Pyy − Pzz

p
=

1

2
(

1+
π

16
St+

1
9

St2

) , (3.36)

and therefore N qs
1 increases but N qs

2 decreases with increasing St, also confirmed in
figure 9(b,c,e,f ). Equations (3.35)–(3.36) suggest that both normal-stress differences
are independent of ν and e in the dilute limit of the quenched state, which is
confirmed in figure 8(c,d) (see the quenched branch at ν→ 0). Note that the weak
variations of N qs

1 and N qs
2 with increasing ν in figures 8(c,d) are due to the omission

of collisional terms in our analysis of the second-moment balance (3.32).
Lastly, to clarify the St-dependence of N1 and N2 on the ignited branch in

figure 9(b,c,e,f ), we solved the dilute limit of the second-moment balance (2.23)
(i.e. with ℵαβ = ℵ

is
αβ) analytically. The resulting expressions for two normal-stress

differences on the ignited branch, with O(St−1) corrections, can be written as

N is
1 =

3

{
1
St
+

2(1− e2)ν
√

T
√

π

}
{

1
St
+

3(1+ e)(11− 3e)ν
√

T
10
√

π

}

=
20(1− e)
(11− 3e)

[
1+

√
π(13+ 11e)

6(1− e2)(11− 3e)νSt
√

T
+O

(
1

St2

)]
, (3.37)

N is
2 = −

9(1+ e)(3− e)ν
√

T
35
√

π

×

{
1
St
+

2(1− e2)ν
√

T
√

π

}
{

1
St
+

6(1+ e)(3− e)ν
√

T
5
√

π

}{
1
St
+

3(1+ e)(11− 3e)ν
√

T
10
√

π

}

= −
10(1− e)

7(11− 3e)

[
1−

√
π(8− 45e+ 13e2)

3(1− e2)(3− e)(11− 3e)νSt
√

T
+O

(
1

St2

)]
. (3.38)

Therefore, N is
1 > 0 and N is

2 < 0 in the ignited state and both decrease in magnitude
with increasing St as confirmed in figure 9(b,c,e,f ). Note in figure 9( f ) that there exist
quantitative differences for the (Burnett-order) prediction of the second normal-stress
difference on the ignited branch for highly dissipative particles (at e= 0.5 and smaller
values of e) – this disagreement seems to persist even at Std = O(50). The latter
may be attributed to non-negligible super-Burnett-order terms becoming dominant for
highly dissipative collisions for the ignited-state solution. We address this issue in the
following section.

4. Approximate theory for Std� 1 and the ignited state: up to super-super-Burnett
order
Here we outline a super-Burnett-order theory only for the ignited state (Std � 1)

of finite-density gas–solid suspensions by deriving explicit solutions up to the
super-super-Burnett order O(γ̇ 4)– this problem has been tackled numerically in
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our recent work (Alam et al. 2019). It must be noted that the Burnett-order solution
of the combined ignited–quenched states (described in § 3) was sought in the (x, y, z)
coordinate frame as was done for the case of ‘dilute’ suspensions (Saha & Alam
2017); essentially, we had to numerically determine the granular temperature from
a tenth-order polynomial (§ 3.1) as a function of (ν, e, Std) and the second-moment
anisotropy parameters (η, φ, λ2) were given by closed-form expressions (§ 3.2).
However, removing the quenched-state contributions makes the second-moment
equations simpler and the analysis is then carried out in the principal-axes frame (Saha
& Alam 2016; Alam et al. 2019) which helps to determine T from a second-order
polynomial. In § 4.1 we will derive this exact Burnett-order, O(γ̇ 2), solution for
the ignited state; the higher-order (up to O(γ̇ 4)) solutions are then determined via a
regular perturbation around its exact second-order solution. Lastly, in §§ 4.1.1 and 4.4,
we shall demonstrate that super-super-Burnett-order solutions are needed for better
quantitative predictions of the rheology for the dilute-to-dense suspensions of highly
inelastic (e� 1) particles.

4.1. Exact solution of second-moment balance at Burnett order
We transform the second-moment balance (2.23) for the ignited state to the principal-
axes frame (Alam et al. 2019),

ρM ′ · (D′ +W ′)+ ρ(M ′ · (D′ +W ′))† +Θ ′ · D′ + (Θ ′ · D′)† +
2γ̇
Std
ρM ′ = Γ ′, (4.1)

where Γ ′ = A′ + Ê ′ + Ĝ′ and the primed tensors are related to their bare counterparts
via the planar rotation matrix R(ϑ)= [|M1〉, |M2〉, |M3〉],

(M, D,W ,Θ, Γ )
R(ϑ)
−→ (M ′, D′,W ′,Θ ′, Γ ′). (4.2)

Here, ϑ = φ + π/4, with φ being the ‘non-coaxilaity’ angle between the principal
directions of D and M . In other words, the unprimed and primed quantities are
evaluated in the original (x, y, z) coordinate frame and (x′, y′, z′) coordinate frame,
respectively, where x′, y′ and z′ are directed along |M1〉, |M2〉 and |M3〉, representing
the ‘principal-axes’ frame. For example, the strain-rate and vorticity tensors are

D
R(ϑ)
−→ D′ =

γ̇

2

 cos 2φ − sin 2φ 0
− sin 2φ − cos 2φ 0

0 0 0

 6= D, W ′ =W , (4.3)

respectively, in the principal-axes frame and the second-moment tensor,

M ′ ≡ diag(1+ λ2
− η, 1+ λ2

+ η, 1− 2λ2)T, (4.4)

becomes a diagonal matrix. The integral expressions for (Θ ′, A′, Ê ′, Ĝ′) are obtained
from (2.14), (2.16a), (2.16b) and (2.16c) in a similar fashion. Unlike Alam et al.
(2019), who solved (4.1) numerically (i.e. retaining terms of all orders), we follow
an analytical approach to solve it up to fourth order (super-super-Burnett order) in
the shear rate.

The algebraic forms of the second-moment balance (4.1) are written down in (C 5)–
(C 8) in appendix C (in the supplementary material) by retaining terms up to fourth
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order in the shear rate O(ηiλjRk sinl 2φ), with i+ j+ k+ l6 4. It’s Burnett- or second-
order O(ηiλjRk sinl 2φ), with i+ j+ k+ l6 2, version can be obtained from (C5)–(C8),

20
√

π

[
1+

4
5
(1+ e)νg0︸ ︷︷ ︸

]
ηR cos 2φ + 128(1+ e)νg0R2︸ ︷︷ ︸

−3(1− e2)νg0(10+ η2
+ 32R2

+ 8
√

πηR cos 2φ︸ ︷︷ ︸)− 60
√

πR
Std

= 0, (4.5a)

35
√

πηR cos 2φ + (1+ e)νg0 [ 32(1+ 3e)R2
− 8
√

π(4− 3e)ηR cos 2φ︸ ︷︷ ︸
−3(3− e)(η2

+ 21λ2) ] −
210
√

πλ2R
Std

= 0, (4.5b)

5
√

πR cos 2φ − (1+ e)νg0

[
3(3− e)η+ 2(1− 3e)

√
πR cos 2φ︸ ︷︷ ︸

]
−

10
√

πηR
Std

= 0, (4.5c)

5(η− sin 2φ)+ 2(1+ e)(1− 3e)νg0 sin(2φ)︸ ︷︷ ︸= 0. (4.5d)

The under-braced terms in (4.5a–d) represent excluded-volume or dense-gas corrections,
and removing them along with g0(ν→ 0)→ 1 yields the second-moment balance for
a ‘dilute’ (ν→ 0) suspension. In the following we will provide the exact solution of
(4.5a–d) that holds for ν > 0 and also identify its dilute-limit solution.

Let us introduce the following quantity

RSt =
R

νg0Std
∝
(σ/τvis)
√

T
, (4.6)

which can be called as the density- and Stokes-corrected shear rate. Despite the
nonlinearities (in terms of η, λ, sin φ and R) of (4,5a–d), we found that (4.5a–d) can
be rearranged to yield a quartic equation for RSt,

800π(1+ e)(1+ 3e)(4+ St2
d)St2

dν
2g2

0R4
St

+
[
20
√

π
{

25π(12+ St2
d)+ 40π(1+ e)(1− 3e)St2

dνg0

− 8(1+ e)2
(
12(1+ 3e)(3− e)+ (1− 3e)2π

)
St2

dν
2g2

0

}]
R3

St

+
[
288(1+ e)3(1+ 3e)(3− e)2St2

dν
2g2

0

+ 3π(1+ e)(11− 3e)(5− 2(1+ e)(1− 3e)νg0)
2St2

d

− 750π(1− e2)St2
d − 600π(1+ e)(23− 11e)

]
R2

St

− 180
√

π(1+ e)2(3− e)(19− 13e)RSt − 270(1+ e)2(1− e2)(3− e)2 = 0. (4.7)

For specified values of ν, e and Std, (4.7) can be solved, yielding an explicit solution
for the dimensionless effective shear rate R(ν, e, Std).

For a dilute suspension (ν→ 0), the quartic and cubic terms in (4.7) vanish and
the resulting quadratic equation has only one positive root RSt. To check whether this
dilute solution branch continues to hold at all densities, we truncate (4.7) at quadratic
order,

aStR2
St − 60

√
π(1+ e)(3− e)(19− 13e)RSt − 90(1+ e)(1− e2)(3− e)2 = 0, (4.8)
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where

aSt = 96(1+ e)2(1+ 3e)(3− e)2St2
dν

2g2
0 +π(11− 3e)(5− 2(1+ e)(1− 3e)νg0)

2St2
d

− 250π(1− e)St2
d − 200π(23− 11e) (4.9a)

ν→0
≡ 25π[(1+ 7e)St2

− 8(23− 11e)]. (4.9b)

Equation (4.8) has the following positive root,

RSt =
30
√

π(1+ e)(3− e)(19− 13e)
aSt

[
1+

√
1+

(1− e)
10π(19− 13e)2

aSt

]
(4.10a)

ν→0
≡

3(1+ e)(3− e)
[
2(19− 3e)+

√
2{5(1− e)(1+ 7e)St2 − 6(3− e)(11− 17e)}

]
5
√

π{(1+ 7e)St2 − 8(23− 11e)}
,

(4.10b)

and hence (4.10a) is a continuation of its dilute analogue (4.10b). From a comparison
of (4.10a) with the numerical solution of (4.7) for different (ν, e, Std), we found that
(4.10a) provides a very good approximation for nearly elastic particles (e ∼ 1) over
all Std and ν, but its prediction deteriorates for highly dissipative particles (e� 1) at
higher densities when Std 6 O(50).

Once RSt is calculated from (4.7) (or, its approximation from (4.10a)) for specified
values of (ν, e, Std), the anisotropy parameters are explicitly given by

η2
=

30(1− e2)+ 60
√

πRSt − 32(1+ e)(1+ 3e)St2
dν

2g2
0R2

St

3(1+ e)(11− 3e)+ 40
√

πRSt

ν→0
≡

30(1− e2)+ 60
√

πRSt

3(1+ e)(11− 3e)+ 40
√

πRSt
,

φ =
1
2

sin−1

[
5η

5− 2(1+ e)(1− 3e)νg0

]
ν→0
≡

1
2

sin−1(η),

λ2
=

1
28
{

3(1+ e)(3− e)+ 10
√

πRSt
}

×
[
(1+ e){70(1− e)− 32(1+ 3e)ν2g2

0St2
dR2

St − (5+ 3e)η2
}

+140
√

πRSt − 24
√

π(1+ e)2ν2g2
0St2

dR2
St

(η
R

cos 2φ
)]

ν→0
≡

70(1− e2)− (1+ e)(5+ 3e)η2
+ 140

√
πRSt

28
{

10
√

πRSt + 3(1+ e)(3− e)
} .



(4.11)

Having found the exact Burnet-order solution (4.7), (4.11), we went on to determine
the higher-order (i.e. up to O(γ̇ 4), super-super-Burnett-order) solutions for (R, η, φ,λ2).
This has been accomplished by solving the second-moment balance (4.1), truncated at
O(γ̇ 3) and O(γ̇ 4), perturbatively around its exact Burnet-order solution (4.7), (4.11) –
the related details are provided in § C.2 (in the supplementary material).

4.1.1. Quantitative accuracy of Burnett-order temperature
Figure 10(a–c) displays a detailed comparison of the Burnett-order granular

temperature (RBurnett) obtained from (4.7), denoted by the blue dashed lines, with
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FIGURE 10. (a–c) Variations of the dimensionless shear rate R (equation (2.20)) with (a)
particle volume fraction ν at Std = 20 and e = 0.9, (b) restitution coefficient e at Std =

20 and ν = 0.2 and (c) effective Stokes number Std at ν = 0.2 and e = 0.5; the blue
dashed and red dot-dashed lines correspond to the Burnett (equation (4.7)) and super-super-
Burnett (equations (C9), (C13) in § C.2 in the supplementary material) order solutions,
respectively; the solid line is the exact numerical solution of the second-moment balance.
(d–f ) Quality factor of analytical solution, RQ

=RBurnett/RexNum (blue dashed line) and RQ
=

RssBurnett/RexNum (red dot-dashed line), with parameter values as in (a–c).

its super-super-Burnett-order counterpart (RssBurnett, see § C.2 in the supplementary
material), denoted by red dot-dashed lines, and its exact numerical (RexNum) solution
(Alam et al. 2019) denoted by the solid line. It is clear that retaining the fourth-order
terms in the second-moment balance yields a better quantitative agreement with its
exact numerical solution for the whole range of parameters (ν, e, St).

To ascertain the quantitative accuracy of the analytical/perturbative solutions (at
different order in the shear rate), we plot the ‘quality factor’

RQ
=

Rα
RexNum

, where α =Burnett, ssBurnett, (4.12)

in figure 10(d–f ), with parameter values as in figure 10(a–c). It is clear from
figure 10(d) that the Burnett-order solution (RBurnett) provides an accuracy of RQ< 5 %
over the whole range of density if the particle collisions are nearly elastic (e=0.9) and
the Stokes number is moderate or large (Std > 20). On the other hand, figure 10(e,f )
indicates that the super-super-Burnett-order solution (RssBurnett) is needed to achieve
an accuracy of RQ < 5 % if the particles are highly dissipative (i.e. for e < 0.8, see
figure 10e) and/or the Stokes number is small (i.e. for Std < 5, see figure 10f ), while
the deviation of the Burnett-order temperature could be more than 20 % at e < 0.5
and Std < 5 compared to its exact solution.

In §§ 4.2 and 4.3, we derive explicit expressions for (i) shear viscosity, (ii) pressure
and (iii) two normal-stress differences by retaining terms up to fourth order in the
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shear rate. The relative importance of such higher-order terms in the above transport
coefficients as well as on the anisotropy ((η, φ, λ2), (4.11)) of the second-moment
tensor will be assessed in § 4.4.

4.2. Particle-phase shear viscosity: from super-Burnett to Navier–Stokes order
Recall from § 3.3.1 that the Burnett-order viscosity has been derived in (3.23). Since
we are interested to evaluate the quartic-order viscosity, we need to consider the
quintic-order O(ηiλjRk sinl 2φ, i + j + k + l 6 5) shear stress Pxy = P̃xy/ρpνU2

R, with
UR = γ̇ σ /2, which is given by (A 25) in § A.1 in the supplementary material.

The dimensionless shear viscosity, µ = −P̃xy/ρpνU2
R ≡ µ

k
+ µc, consists of (i) a

kinetic part given by

µk
=

(
η cos 2φ

R

) √
T

4
, (4.13)

and (ii) a collisional contribution

µc
=
(1+ e)νg0

√
T

105
√

π

[
21
(

8+
√

π
η cos 2φ

R

)
+ 4R2

(
32+ 12

λ2

R2
−
η2

R2
(2+ cos 4φ)

)
+

R4

143

{
−5120+ 15

η2

R2

(
64− 5

η2

R2

)
(3+ 2 cos 4φ)

+ 52
λ2

R2

(
−128− 33

λ2

R2
+ 12 (2+ cos 4φ)

η2

R2

)}]
. (4.14)

Note that the terms proportional to R2 and R4 in (4.14) represent contributions
at Burnett and super-super-Burnett order, respectively. It should be noted that the
functional form of (4.14) remains exactly the same as that for a dry granular gas
(Saha & Alam 2016) (their equation (5.5)), but the gas-phase dependence of (4.14)
comes via the St-dependence of second-moment invariants (η, φ, λ2, R) as found in
(4.7) and (4.11).

4.2.1. Burnett-order viscosity and its dilute limit
The Burnett-order viscosity µBurnett follows from (4.13)–(4.14) by retaining terms up

to O(R2). At this order, the expression for η cos 2φ/R is given by

η

R
cos 2φ =

√
π{5− 2(1+ e)(1− 3e)νg0} cos2 2φ
3(1+ e)(3− e)νg0 + 10

√
πνg0RSt

. (4.15)

Therefore, the Burnett-order shear viscosity of a finite-density gas–solid suspension is
completely determined once RSt, η, φ and λ are evaluated from (4.10a) and (4.11).

Considering the dilute (ν→ 0) limit, (4.15) can be further simplified to

lim
ν→0

(η
R

cos 2φ
)
=

5
√

π cos2 2φ
3(1+ e)(3− e)ν + 10

√
πνRSt

=
5
√

π{3(1+ e)(1+ 7e)− 20
√

πRSt}

{3ν(1+ e)(3− e)+ 10
√

πνRSt}{3(1+ e)(11− 3e)+ 40
√

πRSt}

(4.16)
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which, along with (4.13), yields the particle-phase shear viscosity of a dilute
suspension:

lim
ν→0

µBurnett =

√
T

4
5
√

π{3(1+ e)(1+ 7e)− 20
√

πRSt}

{3ν(1+ e)(3− e)+ 10
√

πνRSt}{3(1+ e)(11− 3e)+ 40
√

πRSt}
.

(4.17)
Removing the gas-phase dependent terms (∝RSt) from (4.17), we obtain the Burnett-

order viscosity of a dilute granular gas (St→∞),

lim
ν→0

µ
gran
Burnett ≡ lim

ν→0
RSt→0

µBurnett =
5
√

π
√

T
12ν(1+ e)(3− e)

(
1+ 7e
11− 3e

)
. (4.18)

Note that the dry granular limit (St→∞) corresponds to RSt ∼ (R/St) ∼ 1/
√

aSt ∼

1/St → 0, which follows from (4.9a)–(4.10a). It is straightforward to verify
that although RSt vanishes for dry granular flows, the dimensionless shear rate
(Savage–Jeffrey parameter)

R≡
γ̇ σ

8
√

T̃
∼

Std
√

aSt
∼

Std

Std

Std→∞
−−−→O(1) (4.19)

remains finite, yielding a finite temperature in a sheared granular fluid.

4.2.2. Navier–Stokes-order viscosity and its dilute limit
At NS order, the non-coaxiality angle (as well as all anisotropy parameters of M)

vanishes φ→ 0, and hence from (4.15) we have

η

R
cos(2φ)

φ=0
−−→

√
π{5+ 2(1+ e)(3e− 1)νg0}

3(1+ e)(3− e)νg0 + 10
√

πνg0RSt
, (4.20)

in which the contributions from the interstitial fluid appears through RSt in the
denominator. Substituting (4.20) into (4.13)–(4.14) and retaining only linear O(R)
terms, we obtain the NS-order viscosity of a gas–solid suspension

µNS =

(
1+

4(1+ e)νg0

5

)
µk

NS +
8(1+ e)νg0

√
T

5
√

π
, (4.21)

where

µk
NS =

√
π{5− 2(1+ e)(1− 3e)νg0}

√
T

4νg0{3(1+ e)(3− e)+ 10
√

πRSt}
(4.22)

is its kinetic component. The expressions (4.21)–(4.22) hold at finite density and finite
Stokes number, with RSt being evaluated from the granular energy equation that holds
at Navier–Stokes order.

As a further check, the dry granular limit Std→∞ of (4.20) is considered for which
we have

η

R
cos(2φ)

φ=0
−−−→
Std→∞

√
π{5+ 2(1+ e)(3e− 1)νg0}

3(1+ e)(3− e)νg0
, (4.23)
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and therefore (4.21) becomes

µ
gran
NS =

√
T
[

5
√

π

12(1+ e)(3− e)νg0

(
1+

2(1+ e)(3e− 1)
5

νg0

)(
1+

4(1+ e)
5

νg0

)
+

8(1+ e)
5
√

π
νg0

]
. (4.24)

Equation (4.24) is the well-known expression for the shear viscosity of a dry granular
gas at finite density (Jenkins & Richman 1985), with its dilute counterpart [= µk,
(4.22)] being given by

lim
ν→0

µ
gran
NS =

5
√

π
√

T
12(1+ e)(3− e)ν

. (4.25)

The equivalence between the Burnett-order viscosity (4.18) and its NS-order
counterpart (4.25) of a dilute granular gas can be established by considering an
expansion of (4.18) in terms of ε = (1− e)→ 0,

lim
ν→0
ε→0

µ
gran
Burnett = lim

ε→0

5
√

π
√

T
12ν(1+ e)(3− e)

(
1+ 7e

11− 3e

)
≈

5
√

π
√

T
12ν(1+ e)(3− e)

, (4.26)

which coincides with (4.25).

4.2.3. Comparison with previous work
Note that the Burnett- and higher-order viscosity (4.13)–(4.14) of a gas–solid

suspension has been derived for the first time, which reduces to (4.21)–(4.22) at
the NS order that contains an explicit dependence on the Stokes number (i.e. the
gas-phase effects). It is appropriate to compare our expression with that of Garzo
et al. (2012) who determined the NS-order viscosity for a moderately dense gas–solid
suspension. They used a Langevin-type model to incorporate gas-phase effects
in the Enskog–Boltzmann equation. Employing the Chapman–Enskog expansion
(around the homogeneous cooling state) and retaining terms up to linear order in the
gradients of the hydrodynamic fields (i.e. at Navier–Stokes order), their expression
for dimensionless shear viscosity is given by

µ =

(
1+

4
5
νg0(1+ e)

)
µk
+

8
5
√

π
νg0(1+ e)

(
1−

a2

16

)√
T

a2→0
=

(
1+

4
5
νg0(1+ e)

)
µk
+

8
5
√

π
νg0(1+ e)

√
T, (4.27)

which is identical to our expression (4.21). Note that in Garzo et al.’s (2012) theory,

a2 =
16(1− e)(1− 2e2)

81− 17e+ 30(1− e)e2
(4.28)

is the fourth cumulant which is deemed to be small and is not incorporated in the
present theory. Their expression for the kinetic viscosity is

µk
=

T
{

1−
2
5
(1+ e)(1− 3e)νg0

}
2

5
√

π
νg0(1+ e)

{
6(3− e)

(
1+

7a2

16

)
− 5(1− e)

(
1+

3a2

16

)}
√

T +
1

Std
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a2→0
=

√
π {5− 2(1+ e)(1− 3e)νg0}

√
T

12νg0(1+ e)(3− e) {1− 5(1− e)/6(3− e)} +
5
√

π

Std

√
T

=

√
π {5− 2(1+ e)(1− 3e)νg0}

√
T

12νg0(1+ e)(3− e) {1− 5(1− e)/6(3− e)} + 20
√

πνg0RSt
, (4.29)

where RSt has been defined in (4.6). The second term (∝ RSt) in the denominator of
(4.29) differs from that in our expression (4.22) by a factor of 2. On the other hand,
the term under the braces in the denominator of (4.29) is an order-one quantity and
hence this term along with the expression in the numerator match with those in (4.22).

The slight difference between (4.22) and (4.29) may be attributed to the underlying
assumptions in two theories. For example, while the leading distribution function in
the Chapman–Enskog formalism is an isotropic Maxwellian, our expression (4.21)–
(4.22) has been derived from an anisotropic Maxwellian distribution function.

4.3. Pressure and the normal-stress differences up to super-super-Burnett order
The fourth-order expression for the (dimensionless) pressure is

p= pNS + p(II) + p(IV), (4.30)

where pNS and p(II) are given by (3.20) and (3.21), respectively, with its super-super-
Burnett contribution being given by

p(IV) =
(1+ e)νg0

315
√

π

[(
3η2
− 12λ2

− 32ν2g2
0St2

dR2
St

) η
R

cos 2φ
]
. (4.31)

Note that RSt is calculated from (4.10a), η2 and λ2 from (4.11) and η cos 2φ/R from
(4.15).

4.3.1. First and second normal-stress differences
The first normal-stress difference (N1 = Pxx − Pyy) can be decomposed as

N1 = Nk
1 +Nc

1, (4.32)

with its kinetic and collisional contributions (in dimensionless form), respectively, up
to super-super-Burnett order O(ηiλjRk sinl 2φ, i+ j+ k+ l 6 4), given by

Nk
1 = 2η sin 2φT =

[
5

8(5− 2(1+ e)(1− 3e)νg0)

]
η2

R2
, (4.33a)

Nc
1 =

4(1+ e)νg0

5

[
1−

8
21
√

π

(η
R

cos 2φ
)

R2

]
Nk

1, (4.33b)

where η2 is given by (4.11) and η cos 2φ/R by (4.15). Note that the first and second
terms in (4.33b) are of second and fourth order in the shear rate, respectively.

Similarly, the expression for the second normal-stress difference (N2=Pyy−Pzz) can
be written as

N2 = Nk
2 +Nc

2, (4.34)
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with its kinetic and collisional components at O(ηiλjRk sinl 2φ, i+ j+ k+ l6 4) being
given by

Nk
2 = [3λ

2
− η sin 2φ]T = 3Tλ2

−
Nk

1

2
, (4.35a)

Nc
2 =

4(1+ e)νg0

5

[( ν
14
+Nk

2

)
+

1
21
√

π

(η
R

cos 2φ
)

×

{ ν
88
(66+ 6η2

− 64ν2g2
0R2

St − 33λ2)+ 4R2Nk
1

}]
. (4.35b)

For a dilute (ν→ 0) suspension, the scaled first and second normal-stress differences
are given by

N1 =
N1

p
=

60{(1− e2)+ 2
√

πRSt}

{3(1+ e)(11− 3e)+ 40
√

πRSt}
, (4.36)

N2 =
N2

p
=

210(1− e2)+ 420
√

πRSt − {280
√

πRSt + (1+ e)(267− 75e)}η2

28{3(1+ e)(3− e)+ 10
√

πRSt}
, (4.37)

with RSt and η2 given in (4.10b) and (4.11), respectively. After dropping the
St-dependent terms from (4.36)–(4.37), we obtain

N1=
20(1− e)
(11− 3e)

, N2=−
10(1− e)
7(11− 3e)

and N1=−14N2≡−O (10N2) , (4.38a−c)

which represent the Burnett-order approximations of two normal-stress differences
for a dilute granular (St → ∞) gas. Therefore the first and second normal-stress
differences are of opposite signs at ν → 0, and N1 is an order-of-magnitude larger
than that of N2 in dilute gas–solid suspensions.

It is interesting to note that (4.35a) can be rewritten as

Nk
1

2
+Nk

2 = 3Tλ2, (4.39)

which implies that a linear combination of the kinetic part of the first and second
normal-stress differences can be expressed in terms of the excess temperature
along the vorticity direction. Therefore the second-moment anisotropy along the
vorticity direction is responsible for the kinetic part of both normal-stress differences.
Interestingly, a similar combination like (4.39) has been used (instead of N2), along
with N1, to tie two normal-stress differences with related (contact/fabric) anisotropies
in dense Stokesian suspensions (Zarraga, Hill & Leighton 2000; Giusteri & Seto
2018). However, such a linear combination of two normal stresses, depending only
on the anisotropies along the vorticity direction, is not apparent for their collisional
components (i.e. Nc

1/2 + Nc
2 6= f (λ)) in the present theory. It is anticipated that

the analysis of the collisional stress tensor (Pc) in terms of its invariants in the
principal-axis frame is likely to bring out a similar relation like (4.39) for the
collisional component of the normal-stress differences which would hold in the dense
regime. The above analogy indicates a way forward for a possible unified description
of the rheology of ultra-dense suspensions with present theoretical effort – this is
relegated to a future work.
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FIGURE 11. Variations of anisotropy parameters (η, φ, λ2) of the second-moment tensor
for a Stokes number of Std= 20. The upper set of 3 curves represents solutions at e= 0.5
and the lower ones e= 0.9; see the text for details.

4.4. Assessment of higher-order solutions
Figure 11 shows the density variations of (a) the shear-plane anisotropy η, (b) the
no-coaxiality angle φ and (c) the excess temperature along the vorticity direction (λ2)

for two values of the restitution coefficient e= 0.5 (upper curves) and e= 0.9 (lower
curves) for a moderate value of the Stokes number Std = 20. In each panel, the solid
line represents the exact numerical solution of the second-balance equation, whereas
the dashed and dot-dashed lines denote its second-/Burnett-order (equation (4.11))
and fourth-order (equation (C9) in § C.2 in the supplementary material) solutions,
respectively. It is seen that while the three solutions agree closely with each other at
e = 0.9, the second-order solution deteriorates considerably over the whole range of
density for highly dissipative collisions (e= 0.5).

Now, we assess the accuracy of the higher-order solutions for transport coefficients
(µ, p, N1=N1/p and N2=N2/p) that have been obtained by substituting the second-
and fourth-order solutions for (η, φ, λ2, R) into the expressions of the respective
transport coefficient. For example, the expressions for the shear viscosity and its
kinetic (4.13) and collisional (4.14) parts can be rewritten as

µk
=

︷ ︸︸ ︷
µk

NS + µ
k
(II)︸ ︷︷ ︸+µk

(IV) + · · · ,

µc
=

︷ ︸︸ ︷
µc

NS + µ
c
(II)︸ ︷︷ ︸+µc

(IV) + · · · ,

µ=µk
+µc
=
︷ ︸︸ ︷
µNS + µ(II)︸ ︷︷ ︸+µ(IV) + · · · ,


(4.40)

where µNS is the Navier–Stokes-order viscosity, with µ(II) and µ(IV) being its second-
and fourth-order corrections, respectively, in the shear rate. The ‘under-braced’ and
‘over-braced’ terms in (4.40) will henceforth be called the Burnett- (second-order) and
super-super-Burnett-order (fourth-order) viscosity, respectively. The pressure (p= pk

+

pc) and the first (N1=N k
1 +N c

1 ) and second (N2=N k
2 +N c

2 ) normal-stress differences
can be decomposed in a similar fashion.

Figure 12 displays the density variations of the shear viscosity, the pressure and
their kinetic and collisional components. It is seen that the Burnett-order solutions
for (µ, µk, µc) and (p, pk, pc) are almost indistinguishable from their exact numerical
values at small dissipation (e=0.9); moreover, this agreement seems to hold uniformly
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FIGURE 12. Comparison for shear viscosity (a–c) and pressure (d–f ) between the ‘Burnett-
order’ analytical solution (blue dashed lines), fourth-order perturbation solution (red dot-
dashed lines) and the ‘exact’ numerical solution (black solid lines). The symbols (circles
and squares) denote DSMC data – see Alam et al. (2019) for details on the simulation
methodology. The effective Stokes number is Std = 20, with e= 0.9 (the upper set of 3
curves in each panel) and e= 0.5 (lower curves).
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FIGURE 13. Quality factor of the second-order solution (blue dashed lines) and fourth-
order solution (red dot-dashed line) for the shear viscosity (4.41).

over the whole range of density at Std = 20. On the other hand, retaining the fourth-
order terms yields a better agreement for both µ and p at large dissipations (e= 0.5).
The above statement is further verified in figure 13 where we show the quality factor
for the shear viscosity,

µQ
=

µα

µexNum
, where α =Burnett, ssBurnett, (4.41)

at different orders, where µexNum refers to the shear viscosity calculated by numerically
solving the second-moment balance equations (the variations of the quality factor for
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FIGURE 14. Same as figure 12 but for the scaled normal-stress differences: N1 = N1/p
(a–c) and N2 =N2/p (d–f ). The effective Stokes number is Std = 20.

pressure looks similar, not shown). It is clear that the improved quantitative accuracy
of the higher-order solution holds over a large range of (ν, e, Std). For example,
the Burnett-order viscosity deviates from its actual numerical value (which closely
matches with DSMC simulation data, see Alam et al. (2019)) by approximately 15 %
at Std = 100 and 20 % at Std = 10 (the blue dashed line in figure 13c), while its
super-super-Burnett-order counterpart (the red dot-dashed line in figure 13c) yields an
accuracy of approximately 1 % even at Std = 5.

The ability of the fourth-order solution to quantitatively predict p and µ at any
density also holds for both first and second normal-stress differences and their kinetic
and collisional parts, see figure 14(a–f ) for Std = 20. In particular, the Burnett-order
solution fairs poorly for N2 in both dilute and dense limits for e= 0.5 as confirmed
by the blue dashed curves in figure 14(d–f ). Note that the sign reversal of N2 at a
finite density (ν ∼ 0.1) is well predicted by both second- and fourth-order solutions.
The above overall agreement improves with increasing Stokes number (not shown).
Based on the comparisons in figures 11–14 we conclude that the fourth-order solution
would be required for the quantitative prediction of transport coefficients of gas–solid
suspensions of highly dissipative particles (e� 1) at any density even for moderate
values of the Stokes number Std >O(10).

Collectively, figures 14(a–f ), 8(c,d) and 9(b–c,e–f ) confirm that both normal-stress
differences (N1 and N2) are accurately predicted by the present theory over a wide
range of (ν, e, St). In fact, the previous kinetic-theory-based rheological models
(Jenkins & Richman 1985; Tsao & Koch 1995; Sangani et al. 1996) have often been
criticised for their inability to correctly predict normal-stress differences in particulate
suspensions. For example, recent theoretical predictions (Suzuki & Hayakawa 2019)
of N1 and N2 for a dense non-Brownian suspension seem to be at odds with
experiments and simulations, even with regard to their signs (Guazzelli & Pouliquen
2018). Some of the related issues are discussed in § 5.2.
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5. Discussion: an extremum principle and the general validity
5.1. Ignited–quenched transition and an extremum principle

Here, we identify a possible selection criterion for the ignited–quenched transition in
terms of an extremum principle based on an entropy-like function – this rationalizes
similar ideas advocated in Saha & Alam (2017). Since the ignited–quenched transition
occurs in a dilute suspension (ν < 0.02) at St 6O(10), we will present results only in
the dilute regime but our analysis also holds at finite densities.

Let us estimate the viscous dissipation using the following expression,

Σ̃(ν, γ̇ )=

∫ γ̇

0
P̃eff

xy dγ̇ =
∫ γ̇

0
µ̃eff (ν, γ̇ = 0)γ̇ dγ̇ +

∫ γ̇

0
µ̃p(ν, γ̇ )γ̇ dγ̇ , (5.1)

where P̃eff
xy = µ̃eff (ν, γ̇ )γ̇ is the effective shear stress and

µ̃eff (ν, γ̇ )= µ̃eff (ν, γ̇ = 0)+ µ̃p(ν, γ̇ ) (5.2)

is the effective viscosity of the suspension. The first term in (5.1) represents the
contribution from the well-known Einstein–Batchelor viscosity (Batchelor & Green
1972) for a Stokesian suspension,

µ̃eff (ν, γ̇ = 0)=µg(1+ 2.5ν + α2ν
2)+O(ν3), (5.3)

with α2 ≈ 6.25, and the second term represents its contribution due to the particle-
phase viscosity µ̃p(ν, γ̇ ) at finite shear rate (γ̇ > 0). For example, the shear-induced
particle-phase viscosity in the quenched state (Tsao & Koch 1995; Saha & Alam 2017)
is given by

µ̃p(ν, γ̇ )= µ̃
qs(ν, γ̇ )≡µg

(1+ e)2

2
ν2

(
32St
35π
+

18
35

)
St2
∝ γ̇ 2, (5.4)

that appears at quadratic order in both γ̇ and ν – the expression (5.4) follows from the
corresponding shear stress in (3.34). A similar expression for the ignited-state viscosity
can be derived, for example, by evaluating (3.23) on the ignited state. Recall from
figure 9(a,d) that µis

�µqs, and therefore the gas-phase viscosity makes a negligible
contribution to the effective viscosity of an ignited suspension.

Using µg as the reference viscosity and τvis as the time scale, the dimensionless
form of (5.1) can be written as

Σ(ν, St)=
Σ̃(ν, γ̇ )

(µg/τ
2
vis)
=

∫ St

0
µp(ν, γ̇ )St dSt+Σ0(ν, St), (5.5)

where µp(ν, St)= µ̃p/µg = (9νSt/2)µ, with µ being evaluated from (3.23) and

Σ0(ν, St)=
∫ St

0
µeff (ν, γ̇ = 0)St dSt= 1

2(1+ 2.5ν + 6.25ν2)St2. (5.6)

Figure 15(a) displays the variation of Σ , (5.5), with St, for parameter values of
ν = 0.0005 and e= 0.5 as in figure 9(d). The corresponding variation of the effective
shear stress in dimensionless form,

Peff
xy =

P̃eff
xy

µg/τvis
≡µeff St, (5.7)
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FIGURE 15. Variations of (a) effective viscous dissipation Σ , (5.5), (b) effective shear
stress (5.7) (main panel) and particle-phase shear stress (inset), (c) Σβ , (5.8) and (d)
dynamic friction (5.9) with Stokes number. Parameter values are ν= 5× 10−4 and e= 0.5
as in figure 9(d).

with µeff given in (5.2), is shown in the main panel of figure 15(b), while its inset
displays the particle-phase shear stress Pxy = µp(ν, St)St. In the inset of figure 15(b),
the upper (ignited) and lower (quenched) branches (on which µp increases with
increasing St, i.e. shear thickening) are stable, whereas its middle branch (on which
µp decreases with increasing St, i.e. the shear-thinning branch) is unstable. Returning
to figure 15(a), the upper-most envelope of Σ represents the stable solution, and both
ignited and quenched states coexist with each other at the intersection point marked
by a circle. The above coexistence point gets translated into a vertical dashed line in
figure 15(b) by virtue of the equal-area rule in the (Pxy, St) plane. Interestingly, an
analogy can be drawn with Maxwell’s equal-area rule (Callen 1985) which is used to
identify the isotherm in the gas–liquid co-existence region by equating the chemical
potential, and in this case too an extremum (minimization) principle holds for the
chemical potential. For the present problem, a maximization principle holds for the
effective viscous dissipation Σ(γ̇ ), (5.1), which behaves like a ‘Massieu’ or ‘entropy’
function (Callen 1985) since the supremum of Σ(γ̇ ) corresponds to the ‘selected’
branch among three coexisting solutions as confirmed in figure 15(a).
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It should be noted that the choice of (5.1) is not unique and depends on the quantity
whose solution multiplicity is being probed. For example, as discussed in Saha &
Alam (2017), a similar integral quantity, defined via

Σ̃β(ν, γ̇ )=

∫ γ̇

0
βd(ν, γ̇ ) dγ̇ , (5.8)

can be constructed based on the ‘dynamic’ friction (the ratio between the shear stress
and pressure in the particle phase) of the suspension,

βd(ν, γ̇ )=−
Pxy

p
. (5.9)

With parameter values as in figure 15(a,b), the variations of Σβ = Σ̃βτvis and βd are
plotted in figures 15(c) and 15(d), respectively. Figure 15(d) indicates that the dynamic
friction decreases with increasing St on both quenched and unstable branches, while
its value increases slightly in the same limit on the ignited branch. It is clear from
figure 15(c) that the supremum of Σβ(γ̇ ), (5.8), corresponds to the selected branch
and hence Σβ(γ̇ ) acts like a entropy-like function too, similar to the case of viscous
dissipation Σ , (5.1), as depicted in figure 15(a).

The above analysis confirms that a maximization principle is operative in identifying
the transition location from the ignited to quenched states and vice versa for both
viscosity and dynamic friction. It is conceivable that a more general form of the
entropy-like function including all field variables and constitutive quantities can
be constructed for the present problem for which (5.1) and (5.8) are subsets.
The identification of such a generalized Massieu function may require a stability
analysis of the underlying moment equations for the sheared suspension subject to
homogeneous deformation.

5.2. General validity of nonlinear constitutive relations: non-perturbative versus
perturbative theories

Recall that the present constitutive relations were obtained under the assumption of
homogeneous shearing with no gradients in hydrodynamic fields (i.e. ∇(ν, T, γ̇ )= 0).
Here, we discuss the range of validity of these constitutive relations by drawing
upon our previous works on dry granular fluids (Saha & Alam 2014, 2016; Alam
& Saha 2017) and gas–solid suspensions (Saha & Alam 2017; Alam et al. 2019).
Figures 1–3 of Alam et al. (2019) demonstrated that (i) the standard Grad-moment
expansion (Grad 1949) (such as in Sangani et al. (1996), Tsao & Koch (1995) and
Jenkins & Richman (1985)) and (ii) the Chapman–Enskog expansion (Chapman &
Cowling 1970) (such as in Garzo et al. (2012) and Sela & Goldhirsch (1998)) lead
to transport coefficients that are quantitatively (and, in some cases, qualitatively)
incorrect at St < 50 and e < 0.9 at any density. Moreover, figure 12(b,c) of Saha &
Alam (2017) clarified that a Burnett-order theory based on Grad-moment expansion
fares poorly for N2 (at all e) and µ (for e < 0.7) even for a dilute gas–solid
suspension. On both counts, the present theory, based on anisotropic Maxwellian
distribution function, provided quantitative agreement over a wide range of particle
volume fractions (ν6 0.5) up to a Stokes number of St> 1 for all e6 1. One possible
reason for the failure of Chapman–Enskog-type methods at large inelasticity and small
Stokes numbers can be tied to fact that the Chapman–Enskog perturbation series is
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divergent (Santos, Brey & Dufty 1986), and adding successive higher-order terms
do not lead to a better approximation for such asymptotic series (Rongali & Alam
2018a,b) as one moves far away from the equilibrium state. In contrast to standard
Chapman–Enskog-type expansions, the present method, based on an anisotropic
Maxwellian distribution function and with the assumptions laid out in § 2.1, is
‘non-perturbative’ since there is no expansion in small parameters which makes it
exact under homogeneous shearing conditions, yielding nonlinear constitutive relations
that are accurate at arbitrary shear rates.

The present theory is expected to provide good agreement with molecular dynamics
(MD) simulations too, as long as the system size is small such that the density
inhomogeneities are inhibited. For example, figure 14(a,b) in Saha & Alam (2017)
shows excellent agreement between the MD data and the present theory for both N1
and N2 even up to a restitution coefficient of e= 0.3 for a sheared dry granular fluid
(St→∞); on the other hand, the super-Burnett-order theory of Sela & Goldhirsch
(1998), based on Chapman–Enskog expansion, is quantitatively inferior for both N1
(for e < 0.7) and N2 (for all e). A related issue is the possible impact of particle
clustering (density inhomogeneities) that can occur in MD simulations of sheared
granular suspensions when the system size is large. In inhomogeneous systems,
the local shear rate would differ between particle-rich and particle-depleted regions,
which clearly violates the present assumption of homogeneous shearing, and the ‘bulk’
transport coefficients calculated from such systems are expected to differ from present
predictions. However, for inhomogeneous shear flows in the presence of particle
clustering, one should calculate ‘local’ transport coefficients by pre-specifying values
of control parameters (ν, e, St and the local gradients of hydrodynamic fields) with
bin-wise averaging of the MD data. Such local transport coefficients can be compared
with the present theory. To treat density inhomogeneities explicitly, the present theory
needs to be extended to inhomogeneous shear flows with ∇(ν, T, γ̇ ) 6= 0 – this is a
non-trivial exercise, but the related route has been outlined in Saha & Alam (2014)
for a dilute granular gas.

Another issue that deserves further attention is the hindrance/dissipation coefficient
fdiss(ν), (2.8) that we have adopted in the second-moment equation – this is strictly
valid for zero particle Reynolds number (Rep= 0) suspensions. The effect of finite Rep

on the ignited-state rheology was analysed briefly by Alam et al. (2019) based on a
modified drag function of Verberg & Koch (2006), and their results indicate that the
particle-phase transport coefficients (µ, N1 and N2) are hardly affected at Rep 6O(1),
but quantitative differences were found when the particle Reynolds number is larger
Rep > 10. In this regard, some recent works on gas–solid suspensions (Rubinstein
et al. 2017), based on lattice-Boltzmann and particle-level simulations, have suggested
modified drag laws that take care of particle clustering and are expected to be valid for
a wider range of control parameters. Such modified drag laws may be used to derive
expressions for the hindrance coefficient (2.8) which can then be incorporated in the
present theory for further analyses. Clearly, there are several important issues that can
be addressed even within the present scope of homogeneous shear flow following a
bottom-up approach.

6. Conclusions and outlook

The present theoretical analysis was built around our previous works on dilute
(Saha & Alam 2017) and dense (Alam et al. 2019) suspensions, with a focus on
obtaining closed-form expressions for granular temperature and nonlinear transport
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coefficients in the Burnett and super-Burnett regimes of homogeneously sheared
gas–solid suspensions over the whole range of density. In addition to providing a
Burnett-order theory for the ignited–quenched state of gas–solid suspensions, the
super-Burnett regime was also analysed analytically for the ignited state in the
second part of this paper. The resulting analytical expressions for the Burnett- and
super-Burnett-order transport coefficients of finite-density gas–solid suspensions were
derived for the first time in this work. One goal of the latter theory was to assess
the importance of the super-Burnett-order terms for the transport coefficients.

The central quantity of the present analysis is the second-moment tensor of
fluctuation velocity M = 〈CC〉, which was assumed to be anisotropic with its trace
being the granular temperature T of the suspension. The anisotropy of M was
characterized in terms of (i) the temperature anisotropy (η∼ Tx − Ty, where Ti= 〈C2

i 〉

is the granular temperature along the ith direction) on the shear plane, (ii) the excess
temperature in the vorticity direction (λ2

∼ T − Tz) and (iii) the non-coaxiality angle
(φ) between the principal directions of M and the strain-rate tensor D. For the
homogeneous shear flow, the theoretical analysis boiled down to solving the balance
equation for M in which the shear work and viscous dissipation (due to hydrodynamic
interactions that includes a lubrication cutoff) balance the sources of second moment:
the latter quantity was assumed to consist of variance-driven (ignited-state) and
shear-induced (quenched-state) collisions.

For the combined ignited–quenched states, the second-moment balance equation,
truncated at the Burnett order, was solved analytically for (η, φ, λ2, T) in terms of
the particle volume fraction (ν), the restitution coefficient (e) and the Stokes number
(St). The phase diagram was constructed in the (St, ν, e)-plane, demarcating the
regions of (i) ignited, (ii) quenched and (ii) co-existing ignited–quenched states. It
was shown that the incorporation of excluded-volume effects significantly improves
the predictions of critical parameters for the ‘quenched-to-ignited’ transition, even
though the related critical particle volume fraction is very small (νc < 0.02). The
Burnett-order expressions for transport coefficients were derived and compared with
particle-simulation data, yielding quantitative agreements over a wide range of (St, ν)
including the bistable regime.

The collisional dissipation due to inelastic particles (e < 1) becomes increasingly
important in high Stokes-number suspensions, for which it was shown that the
Burnett-order constitutive relations are not adequate for a quantitative agreement
of transport coefficients over the whole range of e. To overcome this defect, an
approximate super-super-Burnett-order theory was developed for the ignited state
(St � 1) of sheared dense gas–solid suspensions in the second part of this paper.
The analysis was carried out in the principal-axis frame, and an exact Burnett-order
solution of the second-moment balance was uncovered and the related super-Burnett-
and super-super-Burnett-order solutions were derived via a regular perturbation
expansion over the corresponding exact Burnett-order solution. The closed-form
expressions for transport coefficients (the shear viscosity and the first and second
normal-stress differences) were subsequently provided. The explicit dependence on
St of the Navier–Stokes-order shear viscosity was deciphered from its Burnett-order
expression and compared with the existing literature. It was demonstrated that the
super-super-Burnett-order terms must be retained for a better quantitative agreement
of transport coefficients over the whole range of density for gas–solid suspensions
of highly dissipative particles (e� 1), while the Burnett-order solutions are adequate
only for nearly elastic particles (e≈ 1).

In the immediate future, the presently derived super-Burnett-order solutions will be
used as a base state to derive accurate constitutive relations for inhomogeneous shear
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flows. For example, the constitutive relations for the third-moment and the anisotropic
conductivity tensors for suspensions can now be derived following our previous work
on two-dimensional granular shear flow (Saha & Alam 2014). The complete set of
nonlinear partial differential equations must be supplemented with boundary conditions
that remain to be derived. The resulting nonlinear hydrodynamic theory should be
tested for well posedness (Birkhoff 1954; Joseph & Saut 1990; Goddard & Alam
1999) before using it to analyse specific time-dependent boundary value problems
of practical interest. Another way forward would be to identify canonical steady,
inhomogeneous problems on gas–solid suspensions (Jackson 2000) and ascertain the
predictions of the present theory (along with phenomenological boundary conditions)
for extended hydrodynamic fields. On a broader perspective, an accurate and consistent
beyond-Navier–Stokes-order hydrodynamic theory for particulate suspensions can
serve as a foundation to derive ‘lower-order’ NS-type models with nonlinear (and
tensorial) transport coefficients having finite normal-stress and normal conductivity
differences (Alam & Saha, 2019, unpublished) via centre-manifold-type projection
techniques – this remains the next goal of our work.
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