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ABSTRACT

This paper presents analytical representations for an optimal insurance con-
tract under distortion risk measure and in the presence of model uncertainty.
We incorporate ambiguity aversion and distortion risk measure through the
model of Robert and Therond [(2014) ASTIN Bulletin: The Journal of the IAA,
44(2), 277–302.] as per the framework of Klibanoff et al. [(2005) A smooth
model of decision making under ambiguity. Econometrica, 73(6), 1849–1892.].
Explicit optimal insurance indemnity functions are derived when the decision
maker (DM) applies Value-at-Risk as risk measure and is ambiguous about the
loss distribution. Our results show that: (1) under model uncertainty, ambiguity
aversion results in a distorted probability distribution over the set of possible
models with a bias in favor of the model which yields a larger risk; (2) a more
ambiguity-averse DM would demand more insurance coverage; (3) for a given
budget, uncertainties about the loss distribution result in higher risk level for
the DM.
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1. INTRODUCTION

Insurance is an important tool for risk-averse individuals to hedge risks of
financial losses. The optimal forms of insurance contracts have been stud-
ied extensively in the insurance and economics literature. Classical results
include those developed in Borch (1960a,b), which established that stop-loss
contracts are optimal for a decision maker (DM), in the sense that the DM’s
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risk (measured by the variance of potential losses) is minimized. Arrow (1963)
showed that the stop-loss contracts maximize the expected utility (EU) of a
risk-averse DM. More recently, it was shown that stop-loss contracts and their
variants are in general optimal when the risk of the DM is measured by more
modern risk measures, such as the distortion risk measures. See, for instance,
Cui et al. (2013), Assa (2015), and Boonen et al. (2016).

In practice, both the DM and insurer face some ambiguity (uncertainty)
about the distribution of their potential losses. It has been well documented
that an individual’s decision making is affected by such ambiguity. Ellsberg’s
classic paper (Ellsberg, 1961) revealed that, for events that involve gains, indi-
viduals prefer lotteries with well-specified probabilities over ones with ambigu-
ous probabilities unless the probability of winning is very small. Hogarth and
Kunreuther (1989) found that if consumers estimate the probability of an acci-
dent as low, but are ambiguous about such estimates, they will be willing to buy
insurance at prices considerably above the actuarial value. Kunreuther et al.
(1993, 1995) found that when insurance underwriters and actuaries are ambigu-
ity averse, premiums are significantly higher for risks when there is ambiguity
regarding the occurrence probability of loss events and/or uncertainty about
the magnitude of the resulting losses.

Several classical models for ambiguity aversion have been proposed in
the literature, including the maxmin EU model of Gilboa and Schmeidler
(1989), the Choquet integral (of the utility function) with respect to a capacity
(Schmeidler, 1989), and the α-maxmin EU model of Ghirardato et al. (2004).
These models addressed the Ellsberg’s paradox from different perspectives and
were applied widely in the literature. Recently, Klibanoff et al. (2005) proposed
the smooth ambiguity model, which is also known as the Klibanoff-Marinacci-
Mukerji (KMM) model. The KMM model is very flexible and parsimonious.
It captures a full range of ambiguity attitudes and most importantly it achieves
a separation between ambiguity and ambiguity attitude (Klibanoff et al., 2005,
2012). By applying the KMM model, Alary et al. (2013) concluded that ambi-
guity aversion raises the demands for self-insurance and insurance coverage,
while it reduces the demands for self-protection. Gollier (2014) examined the
characteristics of the optimal insurance contract under ambiguous loss dis-
tribution and linear transaction costs. He showed that the optimal contract
depends upon the nature of the uncertainty. In particular, if the set of possible
prior distributions can be ranked according to the monotone likelihood ratio
order, the optimal contract contains a disappearing deductible.

This paper considers the scenario of an ambiguity-averse DM seeking the
optimal insurance contract that minimizes its risk level according to some dis-
tortion risk measure. Asimit et al. (2017) considered such a problem from the
point of view of robust control. They focused on Value-at-Risk (VaR) and
Conditional Value-at-Risk-based risk measures and applied the worst-case sce-
nario and worst-case regret models to determine the “robust” optimal polices.
We take a different approach in this paper. Inspired by Robert and Therond
(2014), we impose the KMM ambiguity model to distortion risk measures,
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which enables us to assess risk and ambiguity aversion separately and to incor-
porate a variety of ambiguity aversion levels, for example, the nonambiguous,
ambiguity-neutral, and the worst-case scenarios. In addition, our model can be
extended to the case when the two parties have different levels of ambiguity
aversion.

The contributions of this paper are three-fold. First, we provide a character-
ization of the optimal insurance contract for the distortion-risk-measure-based
model under ambiguity aversion. The representation demonstrates that ambi-
guity aversion distorts the DM’s prior belief about the probability weights
assigned to the candidate distributions, which results in higher demand for the
insurance protection. This conclusion concurs with the results in Alary et al.
(2013) and Gollier (2014).

Second, we derive the explicit indemnity function under VaR when the
DM is ambiguous between two candidate loss distributions. To the best of
our knowledge, such an explicit representation is novel. More importantly, the
results provide important practical insights to the problem.

Third, we analyze and quantify the cost of model uncertainties to a DM.
Our results illustrate that: (1) the demand for insurance coverage increases with
the level of ambiguity aversion; (2) for a given budget, uncertainties about the
distribution of underlying losses result in higher risk level for the DM.

The remainder of this paper is structured as follows: Section 2 sets up the
model and main problem of interest. Section 3 solves the optimization problem
and discusses in detail the special cases of nonambiguous, ambiguity-neutral,
and extreme ambiguity-averse DMs. Section 4 derives the explicit formula for
the optimal insurance policy in the highly practical two-state VaR case. The
results also give additional insights on our theoretical results in Section 3.
Section 5 illustrates the main results of this paper using numerical examples,
which reveals the effect of the ambiguity aversion on the optimal insurance
design, as well as the resulting risk levels of the DM. Section 6 concludes.

2. PROBLEM SETUP

Suppose that a DM faces a random loss X with range [0,M]. The DM knows
that the distribution of X belongs to a family of distributions M= {Fθ , θ ∈
�}, where for simplicity it is assumed that � = {1, .., n}. However, the true
distribution, denoted by FX = FθT , where θT ∈ �, is unknown to the DM.
Consequently, the DM assigns a subjective probability αθ to the distribution
Fθ with

∑
θ∈� αθ = 1, where the values of αθ could be determined by experience

or some expert opinions.
In order to hedge the risk X , the DM considers purchasing an insurance

contract, which is characterized by the pair (I(X ), π (I(X ))), where I(X ) is
the indemnity function that specifies the indemnification received by the DM,
whereas π (I(X )) is the insurance premium charged by the insurer.
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As per the vast literature on optimal insurance within the risk minimization
framework, the DM’s goal is to minimize the risk as measured by a distortion
risk measure. For an arbitrary nonnegative random variable Y , the distortion
risk measure is defined as:

Hg(Y )=
∫ M

0
g (SY (x)) dx,

where g(·) is a distortion function with g(0)= 0, g(1)= 1 and SY (·) is the
survival function of Y .

In our context, the DM does not know the distribution of losses exactly,
but has enough evidence to believe that the true distribution of losses is not
an actual mixture, that is, Sm(x)=∑n

i=1 αiSi(x). Rather, the true distribution
is one of the elements in M. However, exactly which one is true remains
unknown to the DM. Therefore, the DM assigns weight αi to the ith possible
distribution based on some personal experiences or expert opinions.

We treat ambiguity aversion along the line of Robert and Therond (2014).
Specifically, we incorporate the DM’s level of ambiguity aversion into the
aversion to mean-preserving spreads (see, e.g., Yaari (1987)) via an increas-
ing convex function φ(·) by considering the following risk measure under
uncertainty:

H̃g,φ(X )= φ−1

(
n∑
i=1

αi
(
φ
(
Hg,Fi (X )

)))
, (2.1)

where Hg,Fi (X ) denote the risk measure of X with distribution Fi. Note that by
Jensen’s inequality, we have

H̃g,φ(X )≥
n∑
i=1

αiHg,Fi (X).

Formula (2.1) allows us to separate the aversion to mean-preserving
spreads that is measured by the distortion risk measure Hg,Fi (·) and the ambi-
guity aversion which is modeled by the function φ. The function φ provides
a flexible approach to model the level of ambiguity aversion. For exam-
ple, suppose φ(x)= eax, where a> 0 (Robert and Therond, 2014). Then the
parameter a captures the level of ambiguity aversion. Given candidate distri-
butions {Fi}i=1,2,...,n ∈M and the corresponding distortion risk measures Hi =∫ M
0 g(Si(x))dx, then

lim
a→0

φ−1

(
n∑
i=1

αiφ(Hi)

)
= lim

a→0

log
(∑n

i=1 αieaHi
)

a
=

n∑
i=1

αiHi,

which indicates that the DM is ambiguity-neutral. On the other hand,
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lim
a→∞ φ−1

(
n∑
i=1

αiφ(Hi)

)
= lim

a→∞
log

(∑n
i=1 αieaHi

)
a

=max{H1,H2, . . . ,Hn},

which indicates that the DM is extremely ambiguity averse and only considers
the most adverse opinion. This extreme ambiguity aversion case was studied in
Asimit et al. (2017, 2019) and Liu et al. (2020).

Generally, the insurer is also uncertain of the loss distribution. However, to
keep the presentation simple, we assume that the insurer believes that the dis-
tribution of the random loss X is given by Q(·), which may or may not belong
to the set M. Further, we assume that the insurer applies the expectation
premium principle so that the insurance premium is given by

π (I(X )) = (1+ ξ )EQ(I(X )), (2.2)

where ξ ≥ 0 is the safety loading factor.
In addition, we assume that the set of admissible indemnity functions is

given by

C :=
{
I : [0,M]→ [0,M]

∣∣∣∣∣ I(0)= 0, 0≤ I(x)≤ x for x ∈ [0,M]

and 0≤ I(y)− I(x)≤ y− x for y≥ x

}
.

With the indemnity function I ∈ C, both the insured’s and insurer’s payments
are nondecreasing w.r.t x, which alleviates the potential problems arising from
the “moral hazard.” Any function I ∈ C is 1-Lipschitz continuous and admits
the following integral representation

I(x)=
∫ x

0
η(t)dt,

where the function η(t) ∈ [0, 1] is called the marginal indemnity function
(Zhuang et al., 2016). To facilitate our presentation, we define the following
set of admissible marginal indemnity functions:

C ′ :=
{
η(·)

∣∣∣ η(x) ∈ [0, 1] is continuous almost everywhere for x ∈ [0,M]
}
.

In summary, the DM’s objective is to minimize its risk while accounting for
ambiguity aversion on the distribution of losses as measured by (2.1) by choos-
ing an optimal insurance indemnity function. We assume that the maximum
premium the DM is willing to spend is π0. Then, the DM’s objective can be
mathematically formulated as:

Problem 1 (Main problem).

minI∈C
∑n

i=1 αiφ
(
Hg,Fi (X − I(X )+ π(I(X )))

)
, (2.3)

s.t. π(I(X ))≤ π0. (2.4)
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In (2.3), the term Hg,Fi (X − I(X )+ π(I(X ))) denotes the risk of DM’s retained
loss if the underlying loss X follows the distribution Fi.

In the next section, we provide general solution to Problem 1 and then
study some special cases in detail. All proofs in the paper can be found in the
appendices.

3. OPTIMAL INSURANCE CONTRACTS

We begin with the general case.

3.1. The general solution

Based on the Lemma 2.1 of Cheung and Lo (2017), an integral representation
of Hg,Fi (I(X )) for arbitrary I ∈ C is

Hg,Fi (I(X ))=
∫ M

0
g (Si(x)) η(x)dx, (3.1)

where η(x)= I ′(x). In addition, the premium can also be written in integral
form

π(I(X ))=
∫ M

0
(1+ ξ )SQ(x)η(x)dx.

Utilizing the comonotonic additivity of the distortion risk measure and the
integral representation (3.1), the term Hg,Fi (X − I(X )+ π(I(X ))) on the right-
hand side of (2.3) becomes

Hg,Fi (X − I(X )+ π(I(X )))=Hg,Fi (X )−Hg,Fi (I(X ))+ π(I(X )),

=Hg,Fi (X )−
∫ M

0
g(Si(x))η(x)dx

+ (1+ ξ )
∫ M

0
SQ(x)η(x)dx,

=Hg,Fi (X )+
∫ M

0
hi(x)η(x)dx,

where hi(x)= (1+ ξ )SQ(x)− g(Si(x)) for i= 1, 2, . . . , n. Roughly speaking, hi is
the marginal net cost (premium minus the risk) of the insurance contract. Then
the main problem can be rewritten as follows.

Problem 2 (Second form of Problem 1).

minη∈C′
∑n

i=1 αiφ
(
Hg,Fi (X )+ ∫ M

0 hi(x)η(x)dx
)
, (3.2)

s.t. (1+ ξ )
∫ M
0 SQ(x)η(x)dx≤ π0. (3.3)
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To guarantee the uniqueness of the solution, throughout this paper we
assume φ′′(·)> 0. The main result for this section is given below.

Proposition 3.1. The optimal marginal indemnity function η∗ that solves
Problem 2 is characterized by

η∗(x; λ)= 1Dλ
(x)+ γ (x) · 1Eλ

(x), (3.4)

where γ (x) is an arbitrary function such that η∗(x; λ) ∈ C ′ and the sets Dλ and Eλ

are defined as

Dλ =
{
x
∣∣ K(x)< 0

}
, (3.5)

Eλ =
{
x
∣∣ K(x)= 0

}
, (3.6)

with

K(x)= λ(1+ ξ )SQ(x)+
n∑
i=1

αihi(x)φ′
(
Hg,Fi (X )+

∫ M

0
hi(x)η∗(x; λ)dx

)
. (3.7)

In addition, λ ≥ 0 is the so-called Karush–Kuhn–Tucker (KKT) multiplier that
satisfies (

(1+ ξ )
∫ M

0
SQ(x)η∗(x; λ)dx− π0

)
≤ 0, (3.8)

and

λ

(
(1+ ξ )

∫ M

0
SQ(x)η∗(x; λ)dx− π0

)
= 0. (3.9)

Note that the form of the optimal marginal indemnity function η∗(x; λ) pro-
vided in (3.4) is generally implicit since the sets Dλ and Eλ are both determined
by η∗(x; λ) itself. However, in a very important case when the DM is ambiguity-
neutral, for example, when φ(x)= x, (3.4) becomes explicit and can be easily
calculated. Due to its importance, we discuss it in detail as follows.

For an ambiguity-neutral DM, φ(x)= x. Then Problem 2 becomes the
following.

Problem 3 (An ambiguity-neutral problem).

min
η∈C′

n∑
i=1

αi

(
Hg,Fi (X )+

∫ M

0
hi(x)η(x)dx

)
,

s.t. (1+ ξ )
∫ M

0
SQ(x)η(x)dx≤ π0.

(3.10)

We have the following.
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Corollary 3.1. The solution to Problem 3 is given by η(x; λ, α1, . . . , αn), where

η(x; λ, α1, . . . , αn)= 1D̃λ
(x)+ γ (x) · 1Ẽλ

(x), (3.11)

with

D̃λ =
{
x
∣∣ K̃(x)< 0

}
, (3.12)

Ẽλ =
{
x
∣∣ K̃(x)= 0

}
, (3.13)

and

K̃(x)= λ(1+ ξ )SQ(x)+
n∑
i=1

αihi(x). (3.14)

The parameter λ is obtained using the KKT conditions. Particularly, if π0 ≥
(1+ ξ )EQ[X ], then the budget constraint is always satisfied and λ = 0. If (1+
ξ )EQ[X ]> π0 ≥ 0, then for each (α1, . . . , αn) ∈A, there exists a λ ∈R such that
the budget constraint is satisfied.

In the next result, we show that Problem 2 for an ambiguity-averse DM
can be solved via the solution for Problem 3 for an ambiguity-neutral DM.
The proof for it is provided in Appendix C.

Proposition 3.2. Let η(x; λ̃, α̃1, . . . , α̃n) denote the solution to Problem 3 when
the subjective probability weights are given by (α̃1, . . . , α̃n). Then the solution to
the infinite-dimension Problem 2 can be obtained by solving the finite-dimension
problem:

min
(α̃1,...,α̃n)∈A

V (α̃1, . . . , α̃n), (3.15)

where

V (α̃1, . . . , α̃n)=
n∑
i=1

αiφ

(
Hg,Fi (X )+

∫ M

0
hi(x)η(x; λ̃, α̃1, . . . , α̃n)dx

)
, (3.16)

and

A=
{
(α̃1, . . . , α̃n)

∣∣∣ α̃1, . . . , α̃n ≥ 0,
n∑
i=1

α̃i = 1
}
.

Remark 3.1. Let α̃
∗ = (α̃∗

1 , . . . , α̃
∗
n ) solve (3.15). Then, the effect of ambiguity

aversion function φ on the DM can be seen as a distortion of the subjective belief
from the original weights (α1, . . . , αn) to (α̃∗

1 , . . . , α̃
∗
n ).
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Moreover, Equation (C4) in the proof indicates that

α̃∗
i > αi � φ′ (Hg,Fi (X − I∗(X )+ π(I(X )))

)
>

n∑
j=1

αjφ
′ (Hg,Fj (X − I∗(X )+ π(I(X )))

)
.

It illustrates that an ambiguity-averse DM would put more subjective weights
on less favorable distributions in evaluating insurance policies. This leads to
higher demand for insurance coverage. This point will be echoed in the numerical
examples in Section 5.

This result echoes Equations (8) and (9) in Gollier (2014) in an EU-
maximization framework.

Remark 3.2. The solution to the budget-free version of Problem 2, that is,
solving (3.2) without the constraint (3.3), could be derived straightforwardly
with Proposition 3.1. This optimal solution, denoted by η∗(x; 0), can be derived
implicitly from the representation (3.4) by setting λ = 0. Without the budget
constraint, we can derive the global optimal indemnity function η∗(x; 0) and the
corresponding budget level π∗

0 = (1+ ξ )
∫ M
0 SQ(x)η∗(x; 0)dx.

Remark 3.3. The KKT conditions (3.8) and (3.9) in fact indicate the following
procedure to deal with the problem with budget constraint π0. We first solve
the budget-free problem as in Remark 3.2 by setting λ = 0. If the resultant pre-
mium (1+ ξ )

∫ M
0 SQ(x)η∗(x; 0)dx≤ π0, then η∗(x; 0) is the required solution. If

(1+ ξ )
∫ M
0 SQ(x)η∗(x; 0)dx> π0, then as indicated by (3.9), we seek a λ > 0 such

that (1+ ξ )
∫ M
0 SQ(x)η∗(x; λ)dx= π0. This procedure is followed in all numerical

examples.

Remark 3.4. For a DMwho nonambiguously assumes that the loss distribution is,
say, F1, the optimal indemnity function can be easily obtained by setting α1 = 1
in Corollary 3.1. Note that F1 may be different from FQ, which is assumed by
the insurer. Thus, the problem becomes a special case of a more general optimal
insurance problem with heterogeneous beliefs, which was studied, for example,
by Boonen (2016) and Boonen and Ghossoub (2019). In particular, Boonen and
Ghossoub (2019) considered one insurer and multiple reinsurers who have differ-
ent distributional assumptions. For comparison, we note that this paper assumes
that there is only one insured and one insurer. However, in our model, the insured
has several candidate loss distributions and is uncertain about which one is true.

3.2. The worst case

An extreme ambiguity-averse DMwould only consider the worst-case scenario
(e.g., a→ ∞ when φ(x)= eax). This situation is related to robust insurance,
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which has been studied in the literature by, for example, Asimit et al. (2017).
Similar to Equation (2.4) of Asimit et al. (2017), if only the worst case is
considered, we need to solve the following:

Problem 4 (Worst-case scenario).

min
I∈C

max
i∈{1,2,...,n}

Hg,Fi (X − I(X )+ π(I(X ))),

s.t. π(I(X ))≤ π0.
(3.17)

The solution to Problem 4 can be obtained via Proposition 3.2 by setting
φ(x)= eax and letting a approach infinity. However, it is not possible to pro-
vide explicit solution this way. Thus, we next obtain it through establishing a
connection between the solutions to Problems 4 and 3 directly.

First note that for arbitrary I ∈ C and (α1, . . . , αn) ∈A, we have:

max
i∈{1,2,...,n}

Hg,Fi (X − I(X )+ π)≥
n∑
i=1

αiHg,Fi (X − I(X )+ π),

which naturally leads to

max
i∈{1,2,...,n}

Hg,Fi (X − I(X )+ π)≥ max
(α1,...,αn)∈A

n∑
i=1

αiHg,Fi (X − I(X )+ π). (3.18)

In addition, since for each i,

Hg,Fi (X − I(X )+ π)≤ max
(α1,...,αn)∈A

n∑
i=1

αiHg,Fi (X − I(X )+ π),

we also have

max
i∈{1,2,...,n}

Hg,Fi (X − I(X )+ π)≤ max
(α1,...,αn)∈A

n∑
i=1

αiHg,Fi (X − I(X )+ π). (3.19)

Combining inequalities (3.18) and (3.19), we can reformulate Problem 4 as
follows.

Problem 4a (Second form of Problem 4).

min
I∈C

max
(α1,...,αn)∈A

n∑
i=1

αiHg,Fi (X − I(X )+ π(I(X ))),

s.t. π(I(X ))≤ π0.

To proceed, we need to present here the well-known minimax Theorem
proposed by Fan (1953).
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Lemma 3.1 (Minimax Theorem). Let �1 be a compact convex Hausdorff topo-
logical vector space and �2 be a convex set. IfH is a real-valued function defined
on �1 × �2 such that

• ξ1 →H(ξ1, ξ2) is convex and lower-semicontinuous on �1 for each ξ2 ∈ �2;
• ξ2 →H(ξ1, ξ2) is concave on �2 for each ξ1 ∈ �1,

then

min
ξ1∈�1

max
ξ2∈�2

H(ξ1, ξ2)=max
ξ2∈�2

min
ξ1∈�1

H(ξ1, ξ2).

It is easy to check that both C and A are convex sets. With Arzelà–Ascoli the-
orem, the set C ′ is also compact (see also Liu et al. (2020)). With the integral
representation of the objective function, one can see

∑n
i=1 αiHg,Fi (X − I(X )+

π) is linear in both (α1. . . . , αn) and I(x). Thereby all the requirements for
applying the Lemma 3.1 are met. Then Problem 4a can be written as follows:

Problem 4b (Third form of Problem 4).

max
(α1,...,αn)∈A

min
I∈C

n∑
i=1

αiHg,Fi (X − I(X )+ π(I(X ))),

s.t. π(I(X ))≤ π0.

Since the minimization part of Problem 4b has the same format as Problem 3,
its solution is obtained in Corollary 3.1. Thus, Problem 4b becomes as follows:

Problem 4c (Fourth form of Problem 4).

max
(α1,...,αn)∈A

V (α1, . . . , αn),

where

V (α1, . . . , αn)=
n∑
i=1

αi

(
Hg,Fi (X )+

∫ M

0
hi(x)η(x; λ, α1, . . . , αn)dx

)
.

We then have the following corollary.

Corollary 3.2. The optimal marginal indemnity function that solves Problem 4
has the same form as the solution to Problem 3, but with a different set of
subjective weights (α∗

1 , . . . , α
∗
n ), which are obtained by solving Problem 4c.

Remark 3.5. The worst-case analysis here is very similar to that of Birghila and
Pflug (2019), in which the authors discussed a model with infinite candidate dis-
tributions and applied the saddle point in Sion’s minimax theory to derive the
characterization of optimal solution. However, in that paper, the methodology to
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determine the saddle point, or more precisely F∗ in their Proposition 3.1, is not
provided. Our paper focuses on a model with finite candidate distributions, and
the “saddle point” is obtained through optimizing α1, . . . , αn in Problem 4c.

4. THE OPTIMAL INSURANCE CONTRACT WITH VAR

In this section, we examine a special albeit important case when the candidate
distributions of the loss X belong to the setM= {F1, F2}, which were assigned
probability weight α and 1− α by the DM. The DM applies VaR as the risk
measure. Specifically, VaR is defined as

VaRβ(X )= inf {x ∈ [0,M] | FX (x)≥ β},
with the corresponding distortion function given by gβ(t)= 1[1−β,1](t). We
denote b1 = F−1

1 (β), b2 = F−1
2 (β) and assume that b1 < b2. As shown in the fol-

lowing derivation, for this case, we can directly apply Proposition 3.2 to obtain
the optimal indemnity function for an ambiguity-averse DM. Thus we will
present the general solution first and then discuss the special cases of decisions
for nonambiguous, ambiguous-neutral, and extreme ambiguous DM.

4.1. The general solution for the VaR case

We begin with the following general result for an ambiguity-averse DM.

Proposition 4.1. If there are two candidate distributions and VaR is the risk
measure, the solution to Problem 1 is given by

I∗(x)= (x∧ b1 − x∗
1)+ + (x∧ b2 − x∗

2)+,

for some values x∗
1 ∈ [0, b1] and x∗

2 ∈ [b1, b2].

The proof of the proposition is given in Appendix C. We next determined
the values of x∗

1 and x
∗
2. We first present the results when the budget constraint

is not binding and then those for the binding case.

Scenario A: The budget constraint is not binding
In this case, the KKT multiplier is zero. Then the two roots of

Equation (D1) are given by

x1 = F−1
Q

(
ξ

1+ ξ

)
, x2 = F−1

Q

(
ξ + α̃

1+ ξ

)
.

Since x1 is fixed and x2 has a one-to-one relation with α̃, we next determine
optimal value of x2. In terms of x2, the objective function V in Proposition 3.2
can be rewritten as:
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Ṽ (x2)= αφ

(
x1 +C + (1+ ξ )

∫ b2

x2

SQ(x)dx
)

+ (1− α)φ
(
x2 + x1 − b1 +C + (1+ ξ )

∫ b2

x2

SQ(x)dx
)
,

where C = (1+ ξ )
∫ b1
x1
SQ(x)dx is a constant. Since φ(·) is a strictly increasing

convex function, it is easy to check that Ṽ ′′(x2)> 0 and we have the following
results:

• Case 1: If SQ(b1)≤ 1−α

1+ξ
, then

Ṽ ′(b1)= φ′
(
x1 +C + (1+ ξ )

∫ b2

b1

SQ(x)dx
) {

1− α − (1+ ξ )SQ(b1)
}≥ 0,

and the function Ṽ (x2) reaches its minimum at x2 = b1. In this case, x∗
1 = x1 ∧

b1, where x1 ∧ b1 =min(x1, b1) and x∗
2 = b1. Therefore, the optimal marginal

indemnity function is given by

η∗(x)= 1(x∗
1,b1)

(x)+ 1(b1,b2)(x)= 1(x∗
1,b2)

(x).

The corresponding optimal indemnity function is

I∗(x)= (
x∧ b2 − x∗

1

)
+ .

• Case 2: If SQ(b2)≥ 1−α

1+ξ
· φ′(x1+C+b2−b1)

αφ′(x1+C)+(1−α)φ′(x1+C+b2−b1) , then

Ṽ ′(b2)= −α(1+ ξ )φ′(x1 +C)SQ(b2)+ (1− α)φ′(x1 +C

+ b2 − b1)
{
1− (1+ ξ )SQ(b2)

}≤ 0.

Thereby the function Ṽ (x2) reaches its minimum at x∗
2 = b2. Thus the optimal

indemnity function is

I∗(x)= (x∧ b1 − x∗
1)+.

• Case 3: If SQ(b1)> 1−α

1+ξ
and SQ(b2)< 1−α

1+ξ
· φ′(x1+C+b2−b1)

αφ′(x1+C)+(1−α)φ′(x1+C+b2−b1) , then

there exists a x∗
2 ∈ (b1, b2) such that Ṽ ′(x∗

2)= 0. The obtained optimal indem-
nity function is

I∗(x)= (x∧ b1 − x∗
1)+ + (x∧ b2 − x∗

2)+.

Scenario B: The budget constraint is binding
If the indemnity function found above results in premium exceeding π0, one

needs to identify a KKT multiplier such that η∗(x; λ̃, α̃) satisfies

(1+ ξ )
∫ M

0
SQ(x)η∗(x; λ̃, α̃)dx= π0,
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which due to Equation (D2) becomes∫ b1

x1

SQ(x)dx+
∫ b2

x2

SQ(x)dx= π0

1+ ξ
. (4.1)

Hence we may treat x1 as an implicit function of x2 and write

x1 = τ (x2).

In addition, differentiating both sides of (4.1) yields

τ ′(x2)= −SQ(x2)/SQ(x1).
In terms of x2, the objective function V in Proposition 3.2 can be rewritten as:

Ṽ (x2)= αφ (τ (x2)+ π0) + (1− α)φ (τ (x2)+ π0 + x2 − b1).

It is easy to check that Ṽ ′′(x2)> 0, thus Ṽ (x2) is strictly convex and admits
one unique minimum point on [b1, b2]. The minimum point is determined as
follows:

• Case 1: Ṽ ′(b1)≥ 0
– if (1+ ξ )

∫ b2
b1
SQ(x)dx≤ π0, x∗

1 = τ (b1) and x∗
2 = b1;

– if (1+ ξ )
∫ b2
b1
SQ(x)dx> π0, x∗

1 = b1 and x∗
2 is the solution to (1+

ξ )
∫ b2
x2
SQ(x)dx= π0.

• Case 2: Ṽ ′(b2)≤ 0
– if (1+ ξ )

∫ b1
0 SQ(x)dx≥ π0, x∗

1 = τ (b2) and x∗
2 = b2;

– if (1+ ξ )
∫ b1
0 SQ(x)dx< π0, x∗

1 = 0 and x∗
2 solves

∫ b1
0 SQ(x)dx+∫ b2

x2
SQ(x)dx= π0

1+ξ
.

• Case 3: Ṽ ′(b1)< 0 and Ṽ ′(b2)> 0
There exists a x̂2 ∈ (b1, b2) such that V ′(x2)

∣∣
x2=x̂2 = 0.

– if
∫ b1
0 SQ(x)dx+ ∫ b2

x̂2
SQ(x)dx≤ π0

1+ξ
, x∗

1 = 0 and x∗
2 solves

∫ b1
0 SQ(x)dx+∫ b2

x2
SQ(x)dx= π0

1+ξ
.

– if
∫ b2
x̂2
SQ(x)dx≥ π0

1+ξ
, x∗

1 = b1 and x∗
2 solves (1+ ξ )

∫ b2
x2
SQ(x)dx= π0.

– if
∫ b1
0 SQ(x)dx+ ∫ b2

x̂2
SQ(x)dx> π0

1+ξ
and

∫ b2
x̂2
SQ(x)dx< π0

1+ξ
, x∗

1 = τ (x̂2) and
x∗
2 = x̂2.

The rest of this section applies these results to the ambiguity-neutral,
nonambiguous, and worst-case problems.

4.2. Nonambiguous case

When the DM is certain that the distribution of the underlying loss is, say, F1,
then α = 1. By (D1), we have
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FIGURE 1: The optimal indemnity function I∗
NA(x) when F1 is the distribution of X .

x1 = F−1
Q

(
1− 1

(1+ λ)(1+ ξ )

)
, (4.2)

and x2 →M. The parameter λ satisfies λ((1+ ξ )
∫ M
0 SQ(x)η∗(x; λ)dx

− π0)= 0.
Applying Proposition 4.1, we obtain the optimal indemnity function:

I∗
NA(x)=

(
x∧ b1 − x∗

1

)
+ , (4.3)

where x∗
1 = x1 ∧ b1. Figure 1 illustrates the function I∗

NA(x).
The value of λ depends on whether the budget constraint is binding. The

derivation is a special case of Scenario A and B in Section 4.1, so the details are
omitted here. We note that this result is well known in the literature. See, for
example, Cai et al. (2008).

4.3. The ambiguity-neutral case

When the DM is ambiguity-neutral, φ(x)= x, we have

x1 = F−1
Q

(
1− 1

(1+ λ)(1+ ξ )

)
, (4.4)

and

x2 = F−1
Q

(
1− 1− α

(1+ λ)(1+ ξ )

)
, (4.5)

where λ is determined by the KKT conditions.
Applying Proposition 4.1, the optimal indemnity function is given by

I∗
AN(x)=

(
x∧ b1 − x∗

1

)
+ + (

x∧ b2 − x∗
2

)
+ , (4.6)
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FIGURE 2: The optimal indemnity function I∗
AN (x) when b1 ≤ x2 ≤ b2.

where x∗
1 = x1 ∧ b1 and x∗

2 =max (x2, b1)∧ b2. Figure 2 illustrates the function
I∗
AN(x). Again, the determination of the KKT multiplier λ is a special case of
the discussions in Section 4.1 and therefore omitted here.

Remark 4.1. In all cases, the optimal indemnity function provides coverage for the
losses in the layer [x∗

1, b1] and [x
∗
2, b2] for some values x

∗
1 ∈ [0, b1] and x∗

2 ∈ [b1, b2].
The two attachment points x∗

1 and x
∗
2 depend on the safety loading factor, the

budget, as well as the ambiguity aversion level. Particularly, when the DM is
ambiguity-neutral and there is no budget constraint, some observations for the
optimal indemnity function are presented below:

• By (4.4), if 1
1+ξ

< SQ(b1), then x∗
1 = b1 and no coverage in the layer [0, b1] is

purchased;
• By (4.5), when 1−α

1+ξ
< SQ(b2), then x∗

2 = b2 and no coverage in the layer [b1, b2]
is purchased;

• If 1
1+ξ

< SQ(b1) and SQ(b2)< 1−α

1+ξ
, no coverage in the layer [0, b1] is purchased,

but some coverage in the layer [b1, b2] is purchased.

Intuitively, losses in the layer [0, b1] contribute to the VaR under both distri-
bution F1 and F2, while losses in the layer [b1, b2] contribute to the VaR under F2

only, which was assigned a subjective probability of 1− α to be true. Therefore, as
shown in the first two bullet points above, in making the decision on insurance pol-
icy, the DM compares the inverse of the risk loading in the premium 1

1+ξ
(inverse

price) weighted by the subjective probability assigned (1= α + 1− α for layer
[0, b1], and 1− α for layer [b1, b2]) with the corresponding survival probability.
If the weighted inverse price is too low (price too high) relative to the survival
probability, then no coverage is purchased.

Notice that in no cases coverage will be purchased for losses above b2, because
they do not contribute to the VaR under either distributional assumptions of the
underlying loss X.
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4.4. The worst case

Nowwe seek the solution for the most ambiguity-averse DM, who only consid-
ers the worst-case scenario. As stated in Corollary 3.2, the form of the optimal
marginal indemnity function is the same as that in Section 4.3. However, we
need to determine the value of α∗ as in Problem 4c.

Referring to (4.5), there is a one-to-one relationship between α and x2.
Therefore, to solve Problem 4c, we next determine the optimal value x∗

2 over
[b1, b2] instead of α∗ over [0, 1].

We first consider the budget-free case so that λ = 0. Define C = (1+
ξ )
∫ b1
x1
SQ(x)dx and considering the distortion function of VaR and the form

of I∗
AN , Problem 4c can be written as

max
α∈[0,1]

α

(
x1 +C + (1+ ξ )

∫ b2

x2

SQ(x)dx
)

+ (1− α)
(
x2 + x1 − b1 +C + (1+ ξ )

∫ b2

x2

SQ(x)dx
)
. (4.7)

Applying the relationship x2 = F−1
Q

(
ξ+α

1+ξ

)
, this is equivalent to

max
x2∈[b1,b2]

V (x2), (4.8)

where

V (x2)= (1+ ξ )SQ(x2)(x2 − b1)+ x1 +C + (1+ ξ )
∫ b2

x2

SQ(x)dx.

Since

V ′(x2)= (1+ ξ )S′
Q(x2)(x2 − b1)≤ 0,

the function V (x2) reaches its maximum at x∗
2 = b1. Thereby the optimal

indemnity function is

I∗
WC(x)= (x∧ b1 − x1)+ + (x∧ b2 − b1)+ = (x∧ b2 − x1)+.

This result is intuitive. The DM purchases full coverage for the losses in layer
[b1, b2] because the worst case is considered (see Figure 3(a)).

The premium corresponding to the optimal marginal indemnity function
I∗
WC(x) is (1+ ξ )

∫ b2
x1
SQ(x)dx. If this premium level exceeds the budget level

π0, one needs a KKT coefficient λ such that x2 = F−1
Q

(
1− 1−α

(1+λ)(1+ξ )

)
and the

budget constraints is binding. That is,∫ b1

x1

SQ(x)dx+
∫ b2

x2

SQ(x)dx= π0

1+ ξ
, (4.9)
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based on which we write x1 as an implicit function of x2, that is, x1 = τ (x2). In
this case, Problem 4c can be written as

maxα∈[0,1] α
(
b1 − I∗

AN(b1)+ π0

)+ (1− α)
(
b2 − I∗

AN(b2)+ π0

)
,

=⇒ maxα∈[0,1] α (b1 − (b1 − x1)+ π0) + (1− α) (b2 − (b2 − x2 + b1 − x1)+ π0),
=⇒ maxα∈[0,1] (1− α)(x2 − b1)+ x1 + π0.

Since x2 = F−1
Q

(
1− 1−α

(1+λ)(1+ξ )

)
, we have 1− α = (1+ λ)(1+ ξ )SQ(x2). Then the

above problem is further equivalent to

max
x2∈[b1,b2]

V (x2),

where

V (x2)= (1+ λ)(1+ ξ )SQ(x2)(x2 − b1)+ τ (x2),

where x1 is expressed as a function of x2 through (4.9).
It can be verified that

τ ′(x2)= −SQ(x2)/SQ(x1)= −(1+ λ)(1+ ξ )SQ(x2),

and

V ′(x2)= (1+ ξ )S′
Q(x2)(x2 − b1)≤ 0.

As such, we have the following.

• If (1+ ξ )
∫ b2
b1
SQ(x)dx≥ π0, then

I∗
WC(x)= (x∧ b2 − x∗

2)+,

where x∗
2 solves (1+ ξ )

∫ b2
x2
SQ(x)dx= π0.

• If (1+ ξ )
∫ b2
b1
SQ(x)dx< π0, then

I∗
WC(x)= (x∧ b2 − τ (b1))+.

The solution shows that the DM always choose to purchase coverage for
the loss in the layer [b1, b2] as much as budget allows (see Figure 3(b)).

5. NUMERICAL ILLUSTRATIONS

This section provides numerical examples based on the following setting.
The DM has the following two exponential distributions as candidates for

the underlying losses:

F1(x)= 1− e− x
1000 , x≥ 0,
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(a) (b)

FIGURE 3: The optimal indemnity function I∗
WC(x).

and

F2(x)= 1− e− x
2500 , x≥ 0,

which were assigned weights α = 0.995 and 1− α = 0.005 respectively. Assume
that the DM is ambiguity averse in the sense of KMMmodel with the function

φ(t)= eat,

where a reflects its ambiguity aversion level. Moreover, the DM uses VaR0.9(·)
as its risk measure.

The insurer assumes that the underlying losses follow an exponential
distribution with the survival function

SQ(x)= e− x
2000 ,

and charge premium according to the expectation principle

π(I(X ))= 1.5 ·EQ[I(X )].

In the following two subsections, we first derive the exact form of the opti-
mal indemnity function, then we illustrate the impacts of model uncertainty to
an ambiguity-averse DM.

5.1. The optimal indemnity function

This section illustrates how the DM’s ambiguity aversion level and the budget-
constraints affect the optimal indemnity function.

5.1.1. Budget-free case
When there is no budget constraint, as per Section 4 the optimal indemnity
function takes the form

I∗(x)= (x∧ b1 − x∗
1)+ + (x∧ b2 − x∗

2)+,
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FIGURE 4: The optimal indemnity function for the budget-free case.

where b1 = 2303 and b2 = 5757, and the values of x∗
1 and x

∗
2 are determined by

the ambiguity aversion parameter a.
Figure 4 displays these indemnity functions. One can see that when the

DM gets more ambiguity averse, more insurance coverage is purchased. For
an extreme ambiguous-averse DM (a= 0.5), all losses in the layer (b1, b2) are
covered. This result coincides with the worst-case scenario. Notice that no cov-
erage is purchased for the loss x> b2, since losses beyond b2 do not contribute
to the DM’s VaR.

5.1.2. Budget-constrained case
In this section, we assume that the DM has budget π0 = 700, which is
about 1/4 of the premium if the largest coverage is purchased. Based on the
analysis done in Section 4, one needs to figure out the optimal x1 and x2
subject to

∫ b1

x1

SQ(x)dx+
∫ b2

x2

SQ(x)dx= π0

1+ ξ
.

The optimal indemnity functions are exhibited in Figure 5(a). It shows that as
the DM becomes more ambiguity averse, it would like to sacrifice the cover-
age of small losses for more coverage of large losses. Figure 5(b) shows the
optimal indemnity functions for an ambiguity-averse DM with a= 0.0002 but
with different budget level. It indicates that if a larger budget is available, more
coverage for both small and large losses are purchased.
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FIGURE 5: (a) The optimal indemnity functions for different ambiguity aversion levels in the presence of
budget constraint; (b) The optimal indemnity functions for different budget levels.

5.2. Analyzing suboptimality of the insurance contracts

In the previous sections, we have derived the optimal insurance contract for an
ambiguity-averse DM when exact information of the distribution of underly-
ing losses is unknown (ambiguous). By construction, these insurance contracts
are optimal in the sense of minimizing the DM’s risk based on Problem 1.
However, these contracts are not optimal in the general sense as they are not
derived based on the true distribution of losses. In real life, our model could be
interpreted as the following: the true loss distribution (θ0) is an element in M
which can be learnt (with extra cost) but the DM decides to act ambiguously
(suboptimally). One natural question is what is the cost to the DM (either in
terms of extra budget or extra risk) of acting ambiguously. From a practical
perspective, DMs may wonder whether they should spend extra resources to
get a better sense (estimate) of θ0. If the cost of acting ambiguously is not high,
then it may not be worth learning more about θ0. Such analysis sheds light on
the benefits of learning more about the distribution of losses.

The suboptimal analysis originates from the financial literature, see Liu
and Pan (2003) for a pioneer use in portfolio optimization, and more recently
Branger et al. (2013) and Escobar et al. (2015). The type of analysis and frame-
work proposed here shed light on the financial implications of using suboptimal
contracts, therefore helping the DM to better understand and measure the
influence of its prior belief.

5.2.1. Measuring the cost of suboptimality
In this section we provide a mathematical framework to measure the impact
of applying a suboptimal contract. For simplicity of presentation , we assume
there are two DMs where DM 1 knows exactly that the true loss distribution is
Fj where j could be 1 or 2, while DM 2 only knows that the true loss distribution
belongs to the setM.
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FIGURE 6: The surface plots of DM1(I∗
DM2, π0)−DM1(I∗

DM1, π0) with different α: (a) α = 0.995; (b) α = 0.9.

With a fixed budget π0, DM 1 selects I∗
DM1 which solves

min
I∈C

DM1(I , π0)=Hg,Fj (X − I(X )+ π(I)) s.t. π(I)≤ π0, (5.1)

and the DM 2 selects I∗
DM2 which solves

min
I∈C

DM2(I , π0)=
n∑
i=1

αiφ
(
Hg,Fi (X − I(X )+ π(I))

)
s.t. π(I)≤ π0. (5.2)

As Fj is indeed the true distribution, the lowest risk level is DM1(I∗
DM1, π0).

Herein, one can compare the risk level DM1(I∗
DM2, π0) and DM1(I∗

DM1, π0)
to see how unfavorable it is by choosing the suboptimal indemnity function
I∗
DM2. It is worth mentioning that the risks compared here could be of practical
sense. For example, the obtained risks by using the VaR and TVaR are usually
referred to as standards of the regulatory capital. In that case, the differ-
ence DM1(I∗

DM2, π0)−DM1(I∗
DM1, π0) could be read as the extra/unnecessary

regulatory capital.
Specifically, we consider α = 0.995 and 0.9 to examine the influence of prior

belief. As either F1 or F2 could be true, both cases are investigated.
Figure 6 shows the surface plots of the difference in risk, DM1(I∗

DM2, π0)−
DM1(I∗

DM1, π0), that the DM 2 has to bear under the different budgets and
ambiguity aversion levels. Several observations could be concluded below.

• In all cases, with the same budget level, DM 2, who does not have the exact
loss distribution, will bear more risk.

• If F1 (the less severe distribution) is the true distribution, then the difference
is increasing w.r.t a. This is as expected because a higher ambiguity aversion
level would distort the DM’s belief more. This results in giving more weights
to F2, which is the wrong distribution.

• If F2 is true, the difference is decreasing w.r.t a. This is because a more
ambiguity-averse DM will give more weights to the more severe distribution
F2, which happens to be true in this case.
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• When α changes from 0.995 to 0.9, the red surface apparently moves upward
while the green surface moves downward. This change is also anticipated. If
the DM 2 initially puts more weights to F2, the extra risk it needs to bear
is lower when the true loss distribution is F2. In contrast, DM 2 has to bear
more extra risk if F1 is the true loss distribution.

All these findings show that an ambiguity-averse DM would more or less bear
some additional risk in an uncertain environment.

6. CONCLUDING REMARKS AND FUTURE RESEARCH

As one of the most recent developments in modeling the preference under
ambiguity, the KMM model has drawn significant interest in both theoret-
ical and practical fields. A study of the distortion risk measures within the
framework of KMM model has been conducted by Robert and Therond
(2014). This paper builds on the work of Robert and Therond (2014) and
studies the design of optimal insurance contract under model uncertainty for
an ambiguity-averse DM.

We show that the optimal indemnity functions could be characterized
through a simple application of the calculus of variation. However, the explicit
solution does not exist for the general case. Nevertheless, the form of the
optimal indemnity functions indicates that the solution is indeed that of the
ambiguity-neutral case but with distorted preassigned probabilities for the
candidate distributions. This finding enables us to translate the original infinite-
dimensional optimization problem to a tractable finite-dimensional one. As
an important specific example, we provide detailed analysis for a two-state
VaR problem. In addition, our numerical examples illustrate the potential
impacts of model uncertainty and ambiguity aversion on the optimal insurance
contract.

This paper is limited to the condition of finite candidate distributions. It
would be meaningful to extend our results to the case with infinite candidate
distributions in the future.
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APPENDIX A. PROOF OF PROPOSITION 3.1

We apply the calculus of variation. Suppose that the solution to Problem 2 is η∗ and consider
its perturbation

ηε(x)= (1− ε)η∗(x)+ εη(x),

where ε ∈ (0, 1), η(x) ∈ C′, and
∫M
0 SQ(x)η(x)dx≤ π0.

Let

V (ε)=
n∑
i=1

αiφ

(
Hg,Fi (X )+

∫ M

0
hi(x)ηε(x)dx

)
.

Due to the assumption φ′′(·)> 0, the necessary and sufficient condition for η∗ to be optimal
is:

V ′(ε)
∣∣
ε=0 ≥ 0, (A1)
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which can be further simplified to be

∫ M

0

{ n∑
i=1

αihi(x)φ′
(
Hg,Fi (X )+

∫ M

0
hi(x)η∗(x)dx

)}
η(x)dx,

≥
∫ M

0

{ n∑
i=1

αihi(x)φ′
(
Hg,Fi (X )+

∫ M

0
hi(x)η∗(x)dx

)}
η∗(x)dx.

The inequality above indicates that η∗ can be obtained through solving the following
problem:

min
η∈C′

∫ M

0

{ n∑
i=1

αihi(x)φ′
(
Hg,Fi (X )+

∫ M

0
hi(x)η∗(x)dx

)}
η(x)dx,

s.t. (1+ ξ )
∫ M

0
SQ(x)η(x)dx≤ π0, ξ ≥ 0.

(A2)

Therefore, the solution to Problem 2 can be obtained by applying the KKT conditions
to (A2), which yields:

min
η∈C′

∫ M

0
K(x)η(x)dx, (A3)

where

K(x)= λ(1+ ξ )SQ(x)+
n∑
i=1

αihi(x)φ′
(
Hg,Fi (X )+

∫ M

0
hi(x)η∗(x)dx

)
.

The integral in (A3) could be minimized through minimizing the integrand K(x)η(x)
pointwisely (see, e.g., Ludkovski and Young (2009) for similar discussions). In particular,
since η(x) is bounded by [0, 1], the solution to (A3) is given by

• η∗(x)= 1 if K(x)< 0;
• η∗(x)= γ (x) is an arbitrary function in C′, if K(x)= 0;
• η∗(x)= 0 if K(x)> 0;. �

APPENDIX B. PROOF OF COROLLARY 3.1

The form of the optimal indemnity function is obvious from Proposition 3.1. We next show
the existence of λ ≥ 0 such that the budget constraint is satisfied. First, as shown in Remark
3.2, let η∗(x; 0, α1, · · · , αn) solve (3.2) without the constraint (3.3) and let the corresponding
budget level be π∗

0 = (1+ ξ )
∫M
0 SQ(x)η∗(x; 0, α1, · · · , αn)dx. Then if π∗

0 ≤ π0, we take λ = 0.
If π∗

0 > π0, we next show that there exists a λ > 0 such that the premium of the optimal policy

π∗
λ = (1+ ξ )

∫M
0 SQ(x)η∗(x; λ, α1, · · · , αn)dx= π0.

First, from (3.12) and (3.13), we can see that for λ1 ≥ λ2, D̃λ1 ⊆ D̃λ2 , D̃λ1 ∪ Ẽλ1 ⊆ D̃λ2 ∪
Ẽλ2 . Therefore, η

∗(x, λ, α1, . . . , αn) is decreasing w.r.t λ.
Second, when λ ↓ 0, η∗(x, λ, α1, . . . , αn) ↑ η∗(x, 0, α1, . . . , αn) for each x ∈ [0,M]; simi-

larly if λ → +∞, Dλ ∪Eλ ↓ ∅, then η∗(x, λ, α1, . . . , αn) ↓ 0 for each x ∈ [0,M].
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Third, if {λm}m=1,2,... → λ0, then {η∗(x, λm, α1, . . . , αn)}m=1,2,... converges to
η∗(x, λ0, α1, . . . , αn) pointwisely. Thus we can apply Lebesgue’s Dominated Convergence
Theorem to conclude that,

lim
m→∞

∫ M

0
SQ(x)η∗(x, λm, α1, . . . , αn)dx=

∫ M

0
SQ(x)η∗(x, λ0, α1, . . . , αn)dx.

In other words, the integral
∫M
0 SQ(x)η∗(x, λ, α1, . . . , αn)dx is continuous w.r.t λ.

Based on the above three points, we conclude that there exists a λ ≥ 0 such that the
budget constraint,

∫M
0 SQ(x)η∗(x, λ, α1, . . . , αn)dx≤ π0 is satisfied. �

APPENDIX C. PROOF OF PROPOSITION 3.2:

First note that the sets Dλ and Eλ in Equations (3.5) and (3.6) can be rewritten as

D
λ̃

=
{
x | x ∈ [0,M], (1+ λ̃)(1+ ξ )SQ(x)<

n∑
i=1

α̃ig(Si(x))

}
, (C1)

E
λ̃

=
{
x | x ∈ [0,M], (1+ λ̃)(1+ ξ )SQ(x)=

n∑
i=1

α̃ig(Si(x))

}
, (C2)

where

λ̃ = λ∑n
i=1 αiφ′

(
Hg,Fi (X )+ ∫M

0 hi(x)η∗(x; λ)dx
) , (C3)

α̃i =
αiφ

′
(
Hg,Fi (X )+ ∫M

0 hi(x)η∗(x; λ)dx
)

∑n
i=1 αiφ′

(
Hg,Fi (X )+ ∫M

0 hi(x)η∗(x; λ)dx
) , i= 1, 2, . . . , n. (C4)

Therefore, for any function η(x, λ) that has the form (3.4) to (3.7), there corresponding
to it exists a function η(x; λ̃, α̃1, . . . , α̃n) that has the form (3.11) to (3.14). Therefore, finding
the solution to problem 2, η∗(x, λ), is equivalent to finding the solution to problem (3.15).

�

APPENDIX D. PROOF OF PROPOSITION 4.1

In this case, the function K̃(x) in Corollary 3.1 becomes

(1+ λ̃)(1+ ξ )SQ(x)− α̃gβ (S1(x)) − (1− α̃)gβ (S2(x))

=

⎧⎪⎨
⎪⎩
(1+ λ̃)(1+ ξ )SQ(x)− 1, x ∈ [0, b1],

(1+ λ̃)(1+ ξ )SQ(x)− (1− α̃), x ∈ (b1, b2],

(1+ λ̃)(1+ ξ )SQ(x), x ∈ (b2,M],

(D1)

which is shown in the illustrative Figure D.1.
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FIGURE D.1: The shape of function K̃(x).

As indicated in Figure D.1, we let x1 and x2 denote the roots of the first two equations
in (D1), disregarding the bounds for x. Then the optimal contract takes the form

η(x)=1(x1,b1)(x)+1(x2,b2)(x), (D2)

with the understanding that (x, b)= ∅ for x> b. Note that the values of roots x1 and x2
depend on the value of α̃. Therefore, determining the optimal value of α̃ in Proposition 3.2
is equivalent to determining the optimal values of x1 and x2, which we denote by x∗

1 and x
∗
2.
�
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