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High-speed turbulent flows with shock waves are characterized by high localized
surface heat transfer rates. Computational predictions are often inaccurate due to
the limitations in modelling of the unclosed turbulent energy flux in the highly
non-equilibrium regions of shock interaction. In this paper, we investigate the turbulent
energy flux generated when homogeneous isotropic turbulence passes through a
nominally normal shock wave. We use linear interaction analysis where the incoming
turbulence is idealized as being composed of a collection of two-dimensional planar
vorticity waves, and the shock wave is taken to be a discontinuity. The nature of the
postshock turbulent energy flux is predicted to be strongly dependent on the angle of
incidence of the incoming waves. The energy flux correlation is also decomposed into
its vortical, entropy and acoustic contributions to understand its rapid non-monotonic
variation behind the shock. Three-dimensional statistics, calculated by integrating
two-dimensional results over a prescribed upstream energy spectrum, are compared
with available data from direct numerical simulations. A detailed budget of the
governing equation is also considered in order to gain insight into the underlying
physics.
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1. Introduction
The interaction with a shock wave can drastically alter the characteristics of

turbulence. Compression by the shock decreases the turbulent length and time scales,
and also amplifies the kinetic energy and vorticity fluctuations of the turbulence.
The temperature jump across a shock leads to higher viscosity and thus enhanced
turbulent dissipation downstream of the shock. Shock–turbulence interaction often
generates a large amount of acoustic energy. Due to their strong directional character,
shock waves impart significant anisotropy to the turbulence field.

Shock–turbulence interaction is of practical interest in many high-speed flows.
It is at the heart of shock/boundary-layer interaction, which occurs in applications
ranging from transonic to hypersonic Mach numbers. Postshock turbulence levels
determine the extent of flow separation and the associated pressure and heat loads
in such interactions. Shock/boundary-layer interactions in rocket nozzles often lead
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to unsteady side loads. They can also alter the effectiveness of control surfaces and
engine intakes. Enhanced turbulent mixing due to shock waves can be beneficial in
supersonic combustors.

Engineering predictions of shock/boundary-layer interaction (SBLI) in practical
configurations rely on the Reynolds-averaged Navier–Stokes (RANS) approach.
Conventional turbulence models, like the k–ε and k–ω models, often give inaccurate
predictions of wall pressure, separation size and wall heat flux (Roy & Blottner
2001). This is primarily because of the underlying gradient diffusion hypothesis
that fails in rapidly distorted mean flow such as shock waves. Improvements like
those in the realizable k–ε models (Thivet et al. 2001), stress-limited k–ω model
(Wilcox 2008) and the SST model (Menter 1994) address some of these limitations.
In addition, several physics-based turbulence models have been proposed specifically
for shock-dominated flows. Sinha, Mahesh & Candler (2003) model the damping
effect of shock oscillations on the turbulence kinetic energy in the k–ε framework. In
a subsequent work, Veera & Sinha (2009) model the effect of upstream temperature
fluctuations on amplification of turbulence kinetic energy. The evolution of transverse
vorticity fluctuations and the effect of baroclinic torques on amplification of enstrophy
is studied by Sinha (2012). This led to an accurate model equation for the turbulent
dissipation rate across a shock wave.

Much of the enhanced modelling is focused on Reynolds stresses, turbulence kinetic
energy (TKE) and its dissipation rate. They have a direct bearing on the fluid dynamic
aspects of the interaction, and hence lead to better prediction of the separation bubble
size, the shock structure and the surface pressure distribution. Improvements in the
overall flow topology in the interaction region can result in some limited improvement
in the prediction of surface heat flux as well (Pasha & Sinha 2012). However, there
is very little work directly in the area of heat transfer in shock-dominated flows, and
specifically in understanding how the interaction with a shock wave alters the internal
energy transport in a turbulent flow. The current work is a step in this direction.

The turbulent heat transfer is given by either the turbulent enthalpy flux ũ′′j h′′ or the
turbulent energy flux ũ′′j e′′, where uj is the velocity in the jth direction, h is the specific
enthalpy and e is the specific internal energy of the gas. The tilde represents Favre
averaging and the corresponding fluctuations are marked by double primes. The energy
flux correlation represents the transport of internal energy by velocity fluctuations in
a turbulent flow. It is traditionally modelled in terms of mean temperature gradient
and a turbulent conductivity, which is related to the eddy viscosity via a turbulent
Prandtl number PrT . A value of PrT = 1 can be derived from the strong Reynolds
analogy proposed by Morkovin (1962). In practice, a constant value of PrT = 0.89
gives satisfactory results in flat-plate boundary-layer flows and is often used in SBLI
applications.

Mahesh, Lele & Moin (1997) show that the strong Reynolds analogy is not valid
across a shock wave and thus the assumption of a constant PrT may not be applicable
to shock-dominated flows. A variable PrT model proposed by Xiao et al. (2007) is
found to improve SBLI results. Similar models are proposed by Sommer, So &
Zhang (1993), Brinckman, Calhoon & Dash (2007) and Goldberg et al. (2010). In
another work, Bowersox (2009) presents the exact transport equation for the turbulent
energy flux, and simplifies it to get an algebraic model in terms of gradients in mean
quantities. The model is independent of the turbulent Prandtl number, but is limited
to zero-pressure-gradient boundary layers. To the best of our knowledge, there is
no direct study of turbulent energy flux, its governing equations and the underlying
physics in shock-dominated flows.
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Turbulent energy flux across a shock 115

The presence of a shock wave can significantly alter the energy transport in a
turbulent flow. For example, shock impingement on a boundary layer can result in up
to 400 % increase in the surface heat flux (Schulein 2006). The turbulent heat flux
generated by the shock wave is possibly a key factor that results in the dramatically
increased surface heating rate. The direction of the turbulent heat flux relative to
the shock wave and the inclination of the shock with respect to the wall are other
factors that may influence the surface heat flux. It is therefore important to know
the magnitude and sign of the turbulent energy flux in the postshock flow, and the
physical parameters that govern these quantities. A knowledge of the underlying
physics and their characteristic scaling is crucial to developing advanced turbulence
models for accurate prediction of heat flux.

In this paper, we study the evolution of the turbulent energy flux in a canonical
shock–turbulence interaction (STI), where homogeneous isotropic turbulence passes
through a nominally normal shock wave. The mean flow is one-dimensional and
steady, and is therefore uniform upstream and downstream of the time-averaged
shock wave. This is a fundamental problem that isolates the effect of a shock
wave on turbulence. It eliminates other effects like boundary-layer gradients, flow
separation, shear layer attachment and streamline curvature, which are present in
SBLI flows. In spite of the geometrical simplicity, the model problem exhibits a
range of physical effects. These include turbulence anisotropy, generation of acoustic
waves, baroclinic torques and unsteady shock oscillations. The availability of direct
numerical simulation (DNS) data and theoretical results makes it an ideal problem in
which to study the underlying physics. Physical insights obtained in this canonical
problem have proved useful in developing advanced turbulence models for SBLI
application; see, for example, Sinha (2012).

Different aspects of shock/homogeneous-turbulence interaction have been studied
using DNS. In an early work, Lee, Lele & Moin (1993) report enhancement of TKE
across weak shock waves. Lee, Lele & Moin (1997) further show the effect of shock
strength on the amplification of turbulence. Mahesh et al. (1997) study the influence
of upstream temperature fluctuations on amplification of TKE, vorticity variances and
thermodynamic fluctuations. In a more recent work, Larsson & Lele (2009) simulate
canonical STI for a large range of mean Mach numbers and turbulent Mach numbers,
and study the evolution of Reynolds stresses and the Kolmogorov length scale across
the shock. Larsson, Bermejo-Moreno & Lele (2013) consider additional DNS cases
with varying Reynolds number and investigate turbulence anisotropy behind the shock.
A similar DNS study is reported by Ryu & Livescu (2014), where high-resolution
simulations are used to resolve the shock structure in canonical STI. As expected, all
DNS data are limited to low values of Reynolds number, and have significant viscous
effects.

Shock/homogeneous-turbulence interaction is also amenable to theoretical analysis
such as rapid distortion theory (Durbin & Zeman 1992; Jacquin, Cambon & Blin
1993; Cambon, Coleman & Mansour 1993) and linear interaction analysis (Mahesh
et al. 1997; Fabre, Jacquin & Sesterhenn 2001; Wouchuk, de Lira & Velikovich
2009). The latter approach, originally proposed by Ribner (1953, 1954) and Moore
(1954), assumes the shock to be a discontinuity. A linear framework is used for
small-amplitude disturbances, and viscous effects are neglected in the limit of infinite
Reynolds number. In spite of the discrepancies in Reynolds number, the results of
linear interaction analysis (LIA) have been routinely compared with DNS data, and
found to match the amplification of TKE and enstrophy for a range of shock strengths
(Sinha 2012; Larsson et al. 2013). The theory also predicts the rapid variation of
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Reynolds stresses behind the shock, but fails to match the downstream anisotropy
observed in the simulations (Larsson et al. 2013). In their recent work, Ryu &
Livescu (2014) find that the downstream DNS statistics converge to the LIA solutions
as the turbulent Mach number becomes very small, even at low values of Reynolds
number.

Reynolds-averaged Navier–Stokes studies of canonical shock–turbulence interaction
focus mostly on the amplification of TKE (Sinha et al. 2003; Veera & Sinha 2009)
and its dissipation rate (Sinha 2012). Amplification and anisotropy of Reynolds stress
have also been investigated (Griffond, Soulard & Souffland 1993). The majority of the
work uses LIA solutions and DNS data as either a benchmark for model evaluation
or limiting cases for model development. In some cases, detailed analysis of the
LIA results has been used to study unclosed source terms in the turbulence model
equations. Closure approximations based on the LIA results have led to advanced
turbulence models for shock-dominated flows. Most notable is the shock-unsteadiness
model proposed by Sinha et al. (2003), mentioned earlier. Here, modelling the
damping effect caused by the turbulence-induced shock oscillations results in a
close match of TKE prediction with DNS. The shock-unsteadiness modification
was implemented in commonly used one- and two-equation turbulence models and
applied to SBLI flows. Results show significant improvement in predicting the
separation bubble size, wall shear stress and surface pressure distribution. The model
improvements are found to be consistent for different geometric configurations (Sinha,
Mahesh & Candler 2005; Pasha & Sinha 2008) with varying shock angles, at both
supersonic and hypersonic Mach numbers (Pasha & Sinha 2012).

In the context of heat transfer, the current work investigates the evolution of
the streamwise turbulent energy flux at a normal shock. The correlation represents
transfer of energy in the shock-normal direction, and can directly influence the
surface heat flux in SBLI, depending on the inclination of the shock wave. We
consider arguably the simplest interaction, where the upstream disturbance field is
purely vortical, without any thermodynamic fluctuations, and use LIA to study the
generation of the turbulent energy flux at the shock wave. In this approach, the
upstream turbulence field is represented as a collection of two-dimensional plane
waves of varying intensity, wavenumber and frequency. Each planar disturbance wave
interacts independently with the shock wave, and generates a set of downstream
fluctuations. The upstream and downstream disturbances are characterized in terms
of acoustic, entropy and vortical modes (Kovasznay 1953). The amplitudes and
wavenumbers of the downstream waves are calculated by solving the linearized Euler
equations behind the shock, with the linearized Rankine–Hugoniot relations applied
across the shock wave. A superposition of the downstream waves, for a chosen
upstream energy spectrum, gives the turbulence statistics behind the shock wave.

As a starting point, we study the elementary interaction of a single planar
vortical wave with a normal shock. The effects of upstream mean flow Mach
number and the wave’s angle of incidence on the turbulent energy flux are
investigated. Three-dimensional statistics, computed by integrating the single-wave
contributions, are analysed for varying shock strengths. The energy flux correlation
is also decomposed into its vortical, entropy and acoustic components to explain
its behaviour downstream of the shock wave. A detailed description of the LIA
procedure, along with physical interpretation of the key concepts, is presented in
§ 2. The results pertaining to two-dimensional single-wave interaction and those for
the three-dimensional spectrum upstream of the shock are described in §§ 3 and 4,
respectively. The linear theory results for three-dimensional turbulence are compared
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Uniform mean flow

Distorted shock

Incoming turbulence

Shock

Acoustic
wave
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vorticity wave
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(a) (b)

FIGURE 1. Flow description. (a) Schematic showing a normal shock wave distorted upon
interaction with turbulent fluctuations. (b) A single vortical wave interacts with a shock
to yield acoustic, vorticity and entropy waves downstream of the shock.

with DNS data for canonical STI in § 5. The DNS data are further analysed to
compute the budget of the transport equation for the turbulent energy flux in order to
elucidate the dominant physical mechanisms behind a shock wave. Finally, the key
observations from this work are stated in § 6.

2. Formulation of the problem
A steady, one-dimensional, uniform mean flow is considered through a normal

shock as shown in figure 1(a). The flow upstream of the shock carries a purely
vortical turbulence, which is homogeneous and isotropic in nature. This turbulence
can be viewed as a superposition of two-dimensional planar waves (Fourier modes)
with varying wavenumbers and frequencies. The heart of the theoretical analysis,
invented by Ribner (1953, 1954) and Moore (1954), and often referred to as ‘linear
interaction analysis’, is the mathematical description of a planar wave interacting
with a normal shock. The procedure adopted here follows the work of Mahesh,
Lele & Moin (1996), and the parts that are directly relevant to the current work are
presented for completeness. An alternative compact formulation of LIA is presented by
Fabre et al. (2001).

Linear interaction analysis is based on the twin assumptions of linearized and
inviscid evolution of disturbances. In order for LIA to accurately model reality (or
DNS results), these assumptions must be satisfied both exactly at the shock and in the
postshock adjustment and downstream convection regions. It is qualitatively clear that
LIA should become more accurate for decreased Mt (weaker turbulence), increased
M1 (stronger shock, making the turbulence a weaker perturbation) and increased
Reynolds number (decreased viscous effects). Ryu & Livescu (2014) argue that the
deviation from the LIA limit can be quantified by the ratio

δ

η
' 7.69

Mt

M1 − 1
1√
Reλ

, (2.1)

where δ is the estimated laminar shock thickness, η is the estimated Kolmogorov
length scale and Reλ is the Reynolds number based on the Taylor microscale.
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They then show how DNS results converge towards the LIA predictions as δ/η
is reduced. This parameter measures the separation in length scales between the
shock and the smallest turbulence eddies, and thus should be relevant to whether the
LIA assumptions are satisfied at the shock. One should note that δ/η is inherently
a very conservative estimate: it is plausible that a sufficient condition is that δ is
smaller than some fraction of the integral scale or a similar measure of the eddies
that carry the energy (rather than the smallest eddies). In that spirit, i.e., assuming
that the LIA assumptions are likely to be satisfied at the shock, Larsson et al. (2013)
focus on the viscous effects behind the shock as the main violation of the LIA
assumptions, and approximately remove the viscous effects by extrapolating back to
the mean shock location. They then find excellent agreement between LIA and DNS
for the amplification of the turbulence kinetic energy even at relatively high values
of δ/η (and relatively strong turbulence) once the viscous decay behind the shock is
compensated for. This suggests that the viscous effects may be more important than
the nonlinear effects, at least in the context of the amplification of turbulence kinetic
energy.

The question of which parameter best describes the validity of LIA is still open.
In the context of the present study, the main point is that LIA can be expected to
be reasonably accurate, but that we should expect discrepancies between the LIA and
DNS due to the substantial viscous effects in the latter.

2.1. An elemental two-dimensional vorticity wave
A single representative vortical wave upstream of the shock is shown in figure 1(b).
This wave is characterized by a wavenumber k, an angle of incidence ψ and a
complex amplitude Av. The velocity fluctuations in the x and y directions (shown in
the figure) are given by

u′1
U1
= Av sinψ exp[ik(x cosψ + y sinψ −U1t cosψ)], (2.2a)

v′1
U1
=−Av cosψ exp[ik(x cosψ + y sinψ −U1t cosψ)], (2.2b)

where U1 is the mean velocity upstream of the shock wave. The thermodynamic
fluctuations p′1, ρ ′1 and T ′1, corresponding to pressure, density and temperature, are
assumed to be identically zero. Upon interaction, the shock distorts from its mean
position; the unsteady distorted shock wave is given by ξ(y, t). The temporal derivative
of the shock deviation ξt represents the local streamwise velocity of the shock wave,
and the transverse derivative ξy describes the angular distortion of the shock (see
Sinha (2012) for further details).

The wave amplitudes are assumed to be small in magnitude as compared to
the changes in the mean flow quantities across the shock. The interaction of the
waves with the shock and their downstream evolution is therefore studied in a linear
framework. Furthermore, viscous effects are neglected, and the shock is modelled
as a discontinuity. The linearized Rankine–Hugoniot conditions are used to relate
the shock-upstream (subscript 1) disturbances to the shock-downstream (subscript 2)
values as

u′2 − ξt

U1
= B

u′1 − ξt

U1
,

v′2
U1
= v′1

U1
+ Eξy,

ρ ′2
ρ2
=C

u′1 − ξt

U1
,

p′2
p2
=D

u′1 − ξt

U1
, (2.3a−d)
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Turbulent energy flux across a shock 119

where B, C, D and E are functions of upstream mean flow Mach number M1 and the
ratio of specific heats γ of the gas, and are described in appendix A. Throughout this
work, the value of γ is taken as 1.4.

The disturbance behind the shock consists of a refracted vortical wave, an entropy
wave and an acoustic wave (figure 1b). The vorticity and the entropy wave are
stationary with respect to the mean flow downstream of the shock. The acoustic wave
propagates at the speed of sound relative to the mean flow. The associated streamwise
velocity and temperature fluctuations take the form

u′2
U1
= Av{F̃ exp(ĩkx)+ G̃ exp(ikrx cosψ)} exp[ik(y sinψ −U1t cosψ)], (2.4a)

T ′2
T2
= Av

{
γ − 1
γ

K̃ exp(ĩkx)− Q̃ exp(ikrx cosψ)
}

exp[ik(y sinψ −U1t cosψ)]. (2.4b)

The wavenumber in the shock-transverse direction and the frequency match those
of the upstream wave, whereas the x-direction wavenumber is modified across the
shock. The complex coefficients F̃ and K̃ (representing the amplitude and phase)
correspond to the acoustic mode, while G̃ and Q̃ correspond to the vortical and
entropy modes, respectively. The mean density ratio across the shock is given by r
and the x-component of the acoustic-mode wavenumber is k̃.

Similar expressions can be written for other postshock variables and the instanta-
neous shock speed. For example,

ξt

U1
= AvL̃ exp[ik(y sinψ −U1t cosψ)], (2.5)

where L̃ is the associated complex amplitude. The downstream solution can be
obtained by substituting the fluctuating variables in the governing equations (linearized
Euler and linearized Rankine–Hugoniot) and solving the resulting algebraic equations.
This yields the values of the complex amplitudes; details are provided in appendix A.

2.2. Postshock acoustic field
The characteristics of the downstream acoustic field are determined by the wavenumber
k̃ obtained as part of the solution procedure. The acoustic waves propagate with a
constant amplitude (for real k̃) or decay with streamwise distance (for complex k̃).
The nature of the acoustic waves is crucial to the interaction; this can most easily
be understood by adopting a coordinate transformation suggested by Ribner (1953),
in which the unsteady interaction of a plane vorticity wave with a normal shock is
transformed into an equivalent steady interaction of the disturbance wave with an
oblique shock. This is achieved by adding a mean velocity component such that the
total mean velocity is in the direction parallel to the incoming wavefronts, as shown
in figure 2. In the transformed problem, the shock wave makes an angle ψ with the
upstream mean flow, and the flow downstream of the shock can be either subsonic or
supersonic depending on the value of ψ . The nature of the acoustic field will change
dramatically between these cases.

For small angles ψ (for a fixed M1), the flow behind the shock is supersonic in
the transformed problem. The acoustic waves generated downstream of the shock
propagate radially at the speed of sound while they are convected by the local fluid
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Wavefronts

Transform

Upstream vorticity
wave

Shock wave

k
k

y

x

y

x

(a) (b)

FIGURE 2. An unsteady problem of an upstream vorticity wave interacting with a normal
shock, transformed into a steady interaction with an oblique shock.

Coalescing
acoustic
wavesAcoustic

wavefront

(a) (b) (c)

FIGURE 3. The acoustic wave patterns downstream of the shock in the transformed
coordinate system for three upstream wave angles: (a) ψ < ψc (propagating regime),
(b) ψ =ψc (critical angle) and (c) ψ >ψc (decaying regime).

velocity. A conical pattern of the downstream disturbance is thus formed, as sketched
in figure 3(a), and the common tangent to the circular wave patterns represents
the wavefront of the acoustic disturbance. The two-dimensional planar wavefronts
propagate with a constant amplitude in the downstream region. This qualitative
behaviour is termed the ‘propagating regime’.

For large values of ψ , the flow downstream of the shock is subsonic in the
transformed problem. The acoustic waves generated at the shock expand radially
outwards at sonic speed while being convected subsonically; this is sketched in
figure 3(c). The ever expanding circles do not add up along a common tangent, and
the amplitude of the acoustic wave decays with distance from the shock. This regime
is therefore termed the ‘decaying regime’.

For every upstream Mach number M1, there exists a critical angle ψ =ψc for which
the downstream transformed flow is sonic. Geometrically, this is given as (Ribner
1953)

ψc = tan−1

(
rM2√
1−M2

2

)
, (2.6)
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30 60 900

0
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10
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20

Propagating regime Decaying
regime

FIGURE 4. Amplitude of shock speed plotted as a function of upstream wave angle ψ
(in degrees) for the case of M1 = 3. The amplitude is normalized by the upstream mean
velocity and |Av|.

where M2 is the downstream Mach number in the original unsteady (i.e., normal
shock) problem. The acoustic waves at the critical angle are sketched in figure 3(b).
For such a case, the pressure wave patterns not only propagate radially outward at
the speed of sound but are also convected at that speed. The downstream acoustic
disturbances therefore accumulate at the shock, leading to high values of downstream
fluctuations, including local shock speed and distortion. See, for example, figure 4
plotted for M1 = 3, where the amplitude of the shock speed reaches a peak value
as ψ approaches the critical angle. It is to be noted that, for such high values of
fluctuations in the vicinity of ψc, the linear assumptions may not hold, and the
theoretical predictions may be inaccurate (Mahesh et al. 1996).

2.3. Near-field/far-field distinction

Figure 5 shows the variation of streamwise Reynolds stress u′2 and internal energy
variance e′2 for a single-wave interaction with a Mach 1.5 shock wave. The turbulent
correlations are computed as u′2= u′u′∗ and e′2= c2

v T ′T ′∗ using (2.2) for the upstream
flow and (2.4) along with the complex coefficients given in appendix A for the
downstream field. Here, * indicates complex conjugate and cv = R/(γ − 1) is the
specific heat of the gas at constant volume. Conventional Reynolds averaging is used,
instead of Favre averaging for compressible flows, because the difference between
the two is negligible in the linear framework.

The LIA results plotted in figure 5 are normalized as per Mahesh et al. (1997). The
velocity fluctuations, both upstream and downstream, and the shock speed are non-
dimensionalized by the upstream mean velocity U1. The thermodynamic fluctuations
downstream of the shock are non-dimensionalized by the respective mean values in the
postshock flow. The specific gas constant R is used to non-dimensionalize the specific
heats. Further, the magnitude of the downstream fluctuations and the shock speed are
proportional to the amplitude of the upstream vortical wave (see, for example, (2.5)).
The correlations plotted in figure 5 are therefore normalized by the turbulence kinetic
energy upstream of the shock wave. The same is true for the turbulent energy flux and
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FIGURE 5. Variation of u′2 (solid) and e′2 (dashed) with streamwise distance for M1 =
1.5 and upstream angle of incidence (a) ψ = 45◦ (propagating regime) and (b) ψ =
75◦ (decaying regime). In the propagating regime, u′2 oscillates about a mean value
(dash-dotted). The velocity fluctuations are normalized by the upstream mean velocity and
the energy fluctuations are normalized by the product of downstream mean temperature
and the specific gas constant R. All correlations are further normalized by the upstream
TKE.

other quantities presented in the following sections. In the absence of a physical shock
thickness in LIA, the preshock disturbance wavelength 2π/k serves as the governing
characteristic length. This is used to normalize the streamwise coordinate in figure 5
and other subsequent figures.

The upstream field is purely vortical and results in a uniform u′u′ prior to the shock,
located at x = 0. In the absence of thermodynamic fluctuations, e′e′ is identically
zero in the upstream flow. The downstream Reynolds stress has contributions from
the refracted vortical wave and the acoustic wave generated at the shock. The two
components have different wavenumbers and their correlation exhibits a sinusoidal
variation in the downstream flow. This can be seen prominently in figure 5(a), where
ψ = 45◦, and the interaction lies in the propagating regime. The downstream waves
propagate at a constant amplitude, and the postshock state remains unchanged far away
from the shock (in the linear and inviscid framework). The internal energy variance
also shows a sinusoidal trend, but with a relatively small amplitude, behind the shock.

The data plotted in figure 5(b) correspond to ψ = 75◦, which lies in the decaying
regime. The Reynolds stress in this case shows a rapid non-monotonic variation from
a low positive value (at x= 0) to a high asymptotic level beyond x'π/k. This trend
is due to the streamwise decay in acoustic energy generated at the shock, with the
far-field contribution to the Reynolds stress primarily from the vorticity mode; see
Mahesh et al. (1997) for further details. The amplitudes and correlations obtained
immediately behind the shock (taken as a discontinuity) are identified as the near field.
By comparison, the far field is defined as the asymptotic value obtained away from
the shock at distances where the acoustic mode has become negligible in magnitude.
We note that the e′e′ correlation takes a high near-field value just across the shock
and decays exponentially to a low far-field value, once again due to the decay of the
acoustic part of the internal energy fluctuations.

Homogeneous isotropic turbulence is a collection of two-dimensional waves with
all possible orientations, and this will always include modes in the decaying regime.
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FIGURE 6. Streamwise variation of u′e′ generated by a planar vortical wave interacting
with a normal shock: (a) propagating regime, M1= 1.5, and (b) decaying regime, M1= 3.
Normalization is as described in figure 5.

Therefore, the distinction between the near field and the far field must be made
for three-dimensional turbulence as well. It is important to consider the distinction
between the near field and the far field in the context of realistic applications. More
specifically, one should ask the question whether the near-field results are important
or not in a shock/boundary-layer interaction? The rapid near-field variations are seen
over a streamwise extent of about π/k behind the shock. For three-dimensional
turbulence, this implies a distance of approximately half the size of the largest scales,
which are of the order of the boundary-layer thickness. As a consequence, it is
plausible that the near-field effects behind the shock are important in determining
the postshock relaxation and reattachment, as well as the heat transfer rates in this
region, in a typical shock/boundary-layer interaction. We therefore analyse both the
near- and far-field values of the turbulent energy flux in the present study.

3. Single-wave interaction results
A normalized expression for the turbulent energy flux is given by

u′2e′2 =
(

1
γ − 1

)
1

U1T2

[
u′2T ′∗2 + T ′2u′∗2

]
2(TKE1/U2

1)
, (3.1)

where the expressions for u′2 and T ′2 are given in (2.4), and TKE1 represents the shock-
upstream turbulence kinetic energy. Unless specified otherwise, all values of turbulent
energy flux described in this work are normalized in this manner.

Figure 6(a) shows the streamwise variation of the turbulent energy flux for plane
wave disturbances incident at 45◦ and 60◦ on a Mach 1.5 normal shock wave. The
energy flux values upstream of the shock are identically zero, as expected for a
purely vortical disturbance field interacting with a shock wave. Both cases are in the
propagating regime (ψ <ψc for M1 = 1.5), and the energy flux correlation shows no
streamwise decay. The qualitative trend is similar to that presented in figure 5(a). For
the lower angle of incidence of 45◦, the downstream energy flux varies sinusoidally
about a small positive mean, with the highest positive value obtained at the shock
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wave. The postshock value attained at x= 0 is the near-field energy flux correlation.
For the 60◦ case, the correlation has peak negative value at the shock wave, and it
oscillates about a negative mean far-field value. The sign of the correlation determines
the direction of internal energy transfer due to turbulent mixing. Positive values of
near-field u′2e′2 indicate energy transfer away from the shock, as in the case of
ψ = 45◦. By comparison, a negative turbulent energy flux, for ψ = 60◦, implies that
the turbulent energy transfer is back towards the shock wave.

The turbulent energy flux generated by interactions in the decaying regime is shown
in figure 6(b). The data correspond to angles of incidence of 70◦ and 80◦ for an
upstream Mach number of 3, where a stronger shock wave generates much higher
energy flux values than those in figure 6(a). For ψ = 70◦, the correlation starts with
a negative near-field value just across the shock, then shows a rapid increase to a
positive peak followed by a non-monotonic decay to an asymptotic far-field value.
We note that the net energy transport in the shock-normal direction is proportional
to the streamwise derivative of the turbulent energy flux. Decaying interactions yield
a high gradient in u′e′ behind the shock, which can lead to a rapid redistribution of
the postshock energy in this region. This is in contrast to the energy flux generated
by interactions in the propagating regime, where the sinusoidal variation of u′e′ about
a mean value results in zero net transport of energy over a wavelength.

The variation of the turbulent energy flux for ψ = 80◦ is similar to that described
above. The correlation has a higher peak value followed by a relatively higher
far-field level compared to that at the lower angle of incidence. Unlike the 70◦ case,
u′e′ is positive immediately behind the shock for the 80◦ interaction. Thus, the energy
flux correlation takes distinct positive and negative values in the near field and far
field for the different cases presented above. Its magnitude also changes significantly
depending on the strength of the shock wave and the angle of incidence of the
upstream disturbance wave. In the subsequent part, we study the variations in u′e′
over the entire ψ range for varying M1. The wave patterns generated at the shock
and their contribution towards the energy flux correlation, both in the near field and
the far field, are presented in detail.

3.1. Near-field analysis
Figure 7(a) shows the near-field values of the turbulent energy flux for a range of
upstream Mach numbers and angles of incidence. The critical angle ψc, given by (2.6),
is plotted as a function of M1, and peak negative values of the turbulent energy flux
are observed in the vicinity of this curve (darker shade). This is because of the high
values of the velocity and the temperature fluctuations generated by interactions at the
critical angle, as discussed in the previous section.

The zone of negative correlation is bounded by the ψz curve in the propagating
regime and by the ψo curve in the decaying regime. The flow physics at the angles
of incidence ψz and ψo is described subsequently. The unshaded part of the M1–ψ
domain in figure 7(a) corresponds to positive u′2e′2 immediately behind the shock. A
few representative contour lines are plotted for reference, and it is noted that the
positive values of the energy flux are much smaller in magnitude than the peak
negative values obtained at the critical angle of incidence.

The variation of the energy flux correlation with Mach number is plotted for three
representative values of the angle of incidence in figure 7(b). This corresponds to the
data extracted along lines with ψ = constant in figure 7(a). The case with ψ = 45◦

shows positive turbulent energy flux for the entire range of Mach numbers, with u′2e′2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.236


Turbulent energy flux across a shock 125

1.3

1.8

1.3

0.5

0.5

0

30

60

90

0

–14

–7

1 3 5 7 1 3 5 7 9

2

4

0

–2

–4

(a) (b)

FIGURE 7. Near-field turbulent energy flux generated by a single-wave interaction.
(a) Contours of u′2e′2 across the M1–ψ domain, with negative correlation shown in
greyscale. The critical angle ψc separating the propagating and decaying regimes is plotted
along with the angles ψz and ψo, for which the correlation is zero in the propagating
and decaying regimes, respectively. (b) Variation of near-field u′2e′2 for three representative
angles of incidence. Normalization is as described in figure 5.

reaching an asymptotic value at high Mach numbers. The energy flux correlation takes
vanishingly small values in the limit M1→ 1, as negligible temperature fluctuations
are generated across a very weak shock wave. For the case ψ = 60◦, the energy
flux correlation is negative for relatively weak shocks (M1 < 2.25) and increases to
a positive limiting value as M1→∞. Both ψ = 45◦ and ψ = 60◦ are lower than the
least value of ψc ∼ 61◦ (obtained at Mach 1.5) and therefore lie in the propagating
regime for all Mach numbers.

The near-field turbulent energy flux for ψ = 75◦ plotted in figure 7(b) shows large
negative values in the vicinity of Mach 1. This is because of the fact that the critical
angle ψc equals 75◦ for M1 = 1.04, and a large negative value of u′2e′2 = −4.77 is
obtained at this Mach number. The magnitude of correlation then drops rapidly to
zero in the limit M1 → 1. Note that the 75◦ interactions for M1 > 1.04 lie in the
decaying regime, and both positive and negative turbulent energy flux values are
generated depending on the mean flow Mach number. Negative u′2e′2 correlation is
confined to Mach numbers below 3 and positive values are obtained for stronger
shock waves.

3.1.1. Nature of fluctuations in the propagating regime
Consider a plane vorticity wave incident at 45◦ on a Mach 1.5 shock wave. For this

case, LIA predicts that all three downstream waves (vorticity, entropy and acoustic)
are in phase with each other and with the upstream vorticity wave. The downstream
disturbances such as u′2 and e′2, with contributions from the three modes, are also in
phase with the upstream streamwise fluctuation u′1. This can be seen in figure 8(a),
where u′1 is plotted along with u′2 and e′2 as a function of time in the immediate
vicinity (x= 0) of the instantaneous shock wave. For this interaction, the correlation
u′2e′2 is positive, as both the constitutive fluctuations are in phase.

Figure 8(b) plots the LIA solution for the fluctuations at x = 0 for ψ = 60◦ and
M1 = 1.5. In this case, the velocity fluctuations, u′2 and u′1, are in phase with each
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FIGURE 8. Near-field variation of the fluctuating variables with time: u′1 (solid), u′2
(dashed) and e′2 (dash-dotted). (a) ψ = 45◦, (b) ψ = 60◦ and (c) ψ = 70◦ for the case
of M1 = 1.5, and (d) ψ = ψ◦ = 76.3◦ at M1 = 3. Velocity fluctuations are normalized by
the upstream mean velocity and energy fluctuation is normalized by the downstream mean
temperature and R. All fluctuations are normalized by |Av|.

other, but e′2 has an opposite phase to the velocity fluctuations. Thus, the correlation
u′2e′2 takes a negative value with the constituting fluctuations having a phase difference
of π. Note that the postshock u′ and e′ fluctuations are exactly in opposite phase
for all propagating interactions with ψ >ψz, whereas the downstream fluctuations are
in phase for lower angles of incidence (ψ < ψz). The ψz curve in the M1–ψ plot
in figure 7(a) thus demarcates the single-wave interactions that generate positive and
negative energy flux correlations in the propagating regime.

Interestingly, plane wave vortical disturbances incident on a shock at an angle of
ψz generate vanishingly small energy flux downstream. For this unique angle ψz, it is
found that the shock oscillations are in phase with the upstream velocity fluctuations,
and the instantaneous shock speed matches the fluctuating streamwise velocity (ξt =
u′1). Thus, there are no apparent streamwise disturbances in the flow relative to the
unsteady shock, and the shock-normal velocity fluctuations pass unchanged through
the shock wave (u′1 = u′2). The vorticity wave refracts through the shock and there
is a change in the transverse velocity fluctuations. No acoustic or entropy waves are
generated behind the shock for this case of ψ =ψz, resulting in a zero value of u′2e′2.
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An analytical expression for ψz can be obtained by equating the expressions for the
shock speed and the streamwise velocity fluctuation just ahead of the shock. Equations
(2.2a) and (2.5) thus yield for x= 0

sinψ = L̃. (3.2)

The full expression for L̃ is provided in (A 2). In the current limiting case of ψ =ψz

with α = 0 and β = tanψ/(γM2
2r2), the expression for L̃ reduces to

L̃= −cosψ − βD sinψ + rB cosψ
E tanψ − βD− r(1− B) cotψ

. (3.3)

Substituting the above expression in (3.2) results in

E tan2 ψz = r− 1, (3.4)

which simplifies to
ψz = tan−1√r. (3.5)

Thus, ψz is a function of the mean density ratio across the shock wave, which in
turn depends on the upstream mean flow Mach number and the ratio of specific heats.
It starts from a value of 45◦ for M1 = 1 and asymptotes to a value close to ψc in
the limit of M1→∞ (see figure 7a). Thus, a vorticity wave incident at angles less
than 45◦ generates positive u′2e′2 behind the shock for all Mach numbers. Also, in the
hypersonic limit, almost all the waves in the propagating regime, except for a small
range near ψc, result in a positive energy flux correlation in the near field.

The temporal variation of u′2 and e′2 plotted in figure 8 provides further insight into
the energy transfer taking place immediately behind the shock wave. The data for
ψ = 45◦ show that positive streamwise velocity fluctuations are concurrent with locally
higher internal energy, thus resulting in an energy transfer in the positive x direction,
i.e. away from the shock wave. For the angle of incidence of 60◦, on the other hand,
higher streamwise velocity transports locally cooler fluid, with negative internal energy
fluctuation, in the positive x direction. This is equivalent to an effective turbulent
energy flux back towards the shock wave. For the special case of ψz without any
entropy and acoustic waves generated at the shock, the downstream internal energy
is uniform and the velocity fluctuations have no effect on the energy transport in the
shock-normal direction.

3.1.2. Nature of fluctuations in the decaying regime
Figure 8(c) plots u′1, u′2 and e′2 at the shock as a function of time for ψ = 70◦ at

Mach 1.5, which lies in the decaying regime. In this case, the downstream velocity
fluctuation appears to lag behind its upstream counterpart, while the postshock internal
energy fluctuations lead the upstream wave. The energy flux correlation is given by

u′2e′2 = |u′2||e′2| cos φue, (3.6)

where φue is the phase difference between the near-field streamwise velocity and
the internal energy fluctuations. The variation of cos φue with the upstream angle of
incidence is plotted in figure 9 for two Mach numbers. In the propagating regime,
the velocity and energy fluctuations are either in phase (ψ < ψz) or exactly in
opposite phase (ψ > ψz). By comparison, the phase difference φue, for interactions
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FIGURE 9. Cosine of the phase difference between near-field u′2 and e′2 for an upstream
Mach number of M1 = 1.5 (solid) and M1 = 3 (dashed) as a function of upstream wave
angle (in degrees).

in the decaying regime, varies continuously over a range of values. For the case of
M1 = 1.5, when the angle of incidence is increased beyond ψc, the phase difference
decreases from π to reach a minimum value before increasing back to π for ψ = 90◦.
The correlation u′2e′2 is negative for all decaying interactions at this Mach number
(see figure 7a), and this is true for relatively weak shocks (M1 < 2.2).

At higher Mach numbers, the correlation switches back from negative to positive
values at a high upstream angle of incidence. This can be seen for the case of
M1 = 3, where the phase difference φue crosses π/2 at an angle of incidence of
ψo, and decreases further to zero at ψ = 90◦. The disturbance waves plotted for
ψ = ψo = 76.3◦ at M1 = 3 in figure 8(d) show this effect clearly. The nodes in the
downstream velocity wave in this case coincide with the peaks in the internal energy
wave, and vice versa. The near-field energy flux correlation thus vanishes, in spite of
the large internal energy fluctuations generated by the shock. This is unlike the angle
of incidence of ψz in the propagating regime, where a zero energy flux is caused by
the fact that no energy fluctuations are generated at the shock wave.

At the critical angle of incidence, the near-field turbulent energy flux is negative
for all Mach numbers. For this case, the complex coefficients used in defining the
postshock streamwise velocity and temperature fluctuations, namely F̃, G̃, K̃ and Q̃,
given by (A 6), have the following form

F̃= D
γ r

sinψc, G̃=
(

2− B− D
γ r

)
sinψc,

K̃ =−D sinψc, Q̃=
(

D
γ
−C

)
sinψc,

 (3.7)

where the Rankine–Hugoniot coefficients are given in (A 1), and ψc can be calculated
from (2.6) for a given upstream mean flow Mach number. The near-field value of the
u′2e′2 correlation, thus computed, is plotted for a range of upstream Mach numbers
in figure 10 and it shows a non-monotonic behaviour leading to a limiting value for
M1→∞.
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FIGURE 10. Near-field peak negative turbulent energy flux generated by single-wave
interaction at the critical angle, plotted as a function of upstream Mach number.
Normalization is as described in figure 5.
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FIGURE 11. Far-field turbulent energy flux correlation obtained for varying upstream
Mach number and angle of incidence of the wave. Normalization is as described in
figure 5.

3.2. Far-field analysis

The far-field values of the turbulent energy flux obtained from LIA applied to single
plane waves interacting with a normal shock are plotted in figure 11. As earlier,
the shaded part of the M1–ψ domain indicates the region of negative u′2e′2, and the
positive values are shown using representative contour lines. The critical angle ψc is
also shown, with ψ <ψc representing the propagating regime. The far-field value of
u′2e′2 for a wave in the propagating regime is taken as the mean value about which
the sinusoidal variation exists. This is based on the fact that the oscillating part of
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FIGURE 12. Modal decomposition of u′2e′2 for the case of M1= 2. (a) ψ = 75◦ (decaying
regime) and (b) ψ = 45◦ (propagating regime). Normalization is as described in figure 5.

the correlation gets statistically cancelled in the far field for a collection of waves
representing a turbulence field.

The far-field results are qualitatively similar to the near-field energy flux plotted
in figure 7(a). Peak negative values of the turbulent energy flux are obtained in
the vicinity of the ψc curve, but the correlation is lower in magnitude than the
corresponding near-field value. In the propagating regime, interactions with ψ < ψz
result in positive u′e′ in the far field, similar to the near-field trend; the correlation
magnitudes are once again smaller than the near-field levels. By comparison, high
positive values of the far-field u′e′ are obtained in the decaying regime, with the
largest energy flux generated for interactions at 90◦ incidence for any given Mach
number.

Figure 12 shows a Kovasznay mode decomposition of the energy flux correlation for
a single-wave interaction with a Mach 2 shock wave. As per (2.4), the streamwise
velocity u′2 has contributions from the acoustic and the vortical waves, and e′2
has contributions from the acoustic and the entropy waves. Thus, the energy flux
correlation can be decomposed into four parts:

u′2e′2 =
(
u′2e′2

)
aa +

(
u′2e′2

)
ae +

(
u′2e′2

)
va +

(
u′2e′2

)
ve , (3.8)

where subscripts aa, ae, va and ve correspond to acoustic–acoustic, acoustic–entropy,
vortical–acoustic and vortical–entropy components, respectively, and they are given by

(
u′2e′2

)
aa =

1
2γ
(F̃K̃∗ + K̃F̃∗) exp[i(k̃− k̃∗)x], (3.9a)

(
u′2e′2

)
ae =

−1
2(γ − 1)

[F̃Q̃∗ exp[i(k̃− kr cosψ)x] + Q̃F̃∗ exp[i(kr cosψ − k̃∗)x]], (3.9b)

(
u′2e′2

)
va =

1
2γ
[K̃G̃∗ exp[i(k̃− kr cosψ)x] + G̃K̃∗ exp[i(kr cosψ − k̃∗)x]], (3.9c)

(
u′2e′2

)
ve =

−1
2(γ − 1)

[
G̃Q̃∗ + Q̃G̃∗

]
. (3.9d)
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The streamwise variation of the four components of the energy flux correlation is
shown in figure 12(a) for the decaying interaction with ψ = 75◦. The vortical–acoustic
component takes high values just behind the shock, while the acoustic–entropy and
acoustic–acoustic components of u′2e′2 attain large negative values in the near field.
All three components with a contribution from the acoustic mode decay to negligible
values in the far field. By comparison, the vortical–entropy component takes a
constant positive value in the downstream flow. The far-field energy flux correlation
generated at the shock thus equals the non-zero vortical–entropy component. As
earlier, the positive vortical–entropy contribution to u′2e′2 implies energy transfer away
from the shock, but a zero gradient in the streamwise direction suggests that there is
no net build-up of internal energy due to this effect. On the other hand, the rapidly
varying acoustic components of the turbulent energy flux can result in a local energy
accumulation or depletion behind the shock wave.

The modal decomposition of the turbulent energy flux for a propagating interaction
at ψ = 45◦ is shown in figure 12(b). In this case, the vortical–entropy and the
acoustic–acoustic components are both constant and positive in the downstream
region. The sum of these two components yields the far-field value of u′2e′2. The
vortical–acoustic and acoustic–entropy components exhibit a sinusoidal variation
about a zero mean, and therefore do not contribute to the far-field value. Note that
the vortical–entropy component is the dominant contributor to the far-field energy
flux; its value is substantially lower in this case than that in the interaction at ψ = 75◦.

4. Three-dimensional isotropic spectrum

An expression for the downstream u′2e′2 for a three-dimensional isotropic spectrum
of planar waves can be written as

(u′2e′2)3D = 4π

∫ π/2

0

∫ ∞
0
(u′2e′2)2D k2 sinψ dk dψ, (4.1)

where (u′2e′2)2D is the correlation obtained for a two-dimensional planar wave. Using
(2.4), the above equation can be written as

(u′2e′2)3D = 4π

∫ π/2

0

∫ ∞
0

[
Z̃1 + Z̃4

2γ
− Z̃2 + Z̃3

2(γ − 1)

]
|Av|2k2 sinψ dψ dk, (4.2)

where

Z̃1 = (F̃K̃∗ + F̃∗K̃) exp [i(k̃− k̃∗)x],
Z̃2 = G̃Q̃∗ + G̃∗Q̃,

Z̃3 = F̃Q̃∗ exp [i(k̃− kr cosψ)x] + F̃∗Q̃ exp [−i(k̃∗ − kr cosψ)x],
Z̃4 = G̃K̃∗ exp [−i(k̃∗ − kr cosψ)x] + G̃∗K̃ exp [i(k̃− kr cosψ)x].


(4.3)

The coefficients F̃, K̃, G̃ and Q̃ are functions of ψ , γ and M1, and are independent
of the wavenumber k and k̃. The spatial inhomogeneity in the turbulent energy flux is
therefore due to the exponential terms in the above expression. These represent either
the sinusoidal variation of the energy flux correlation about the far-field mean value
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FIGURE 13. Turbulent energy flux along the streamwise direction for a three-dimensional
isotropic spectrum of planar waves interacting with a shock of strength M1= 2 (spectrum
1: solid, spectrum 2: dashed, spectrum 3: dash-dotted). Normalization is as described in
figure 5.

or an exponential decay behind the shock wave. At x = 0, the inhomogeneous parts
drop out, such that the terms Z̃1, Z̃2, Z̃3 and Z̃4 are independent of the wavenumber
and the integral can be split into two parts,

(u′2e′2)3D =
∫ π/2

0

[
1

2γ
(Z̃1 + Z̃4)− 1

2(γ − 1)
(Z̃2 + Z̃3)

]
sinψ dψ

∫ ∞
0

E(k) dk, (4.4)

where the amplitude of the upstream velocity disturbance |Av| is written in terms of
the three-dimensional energy spectrum E(k) as

|Av|2 = E(k)
4πk2

. (4.5)

The turbulent energy flux immediately behind the shock thus depends only on the
integral of the energy spectrum, which is equivalent to twice the turbulence kinetic
energy in the upstream flow. Further downstream, the inhomogeneous part of (4.2)
decays exponentially with streamwise distance from the shock for ψ >ψc, i.e. plane
wave interactions in the decaying regime. For interactions in the propagating regime
(ψ < ψc), on the other hand, the integral of the inhomogeneous terms exhibits an
algebraic decay away from the shock, as the constituent acoustic and vorticity/entropy
waves travel at different speeds; see, for example, Griffond (2005). The far-field value
of the energy flux correlation thus consists of only the homogeneous part, and is
independent of the shape of the upstream spectrum specified in the problem. This is
true for any second-order correlation, and is mentioned by Mahesh et al. (1995) for
the turbulence kinetic energy generated by the interaction of a field of acoustic waves
with a normal shock.

On the other hand, the peak positive turbulent energy flux generated by the shock is
sensitive to the shape of the spectrum. Figure 13 shows the data computed using three
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Spectrum 3

FIGURE 14. The energy distribution for varying wavenumbers shown for spectrum 1
(Mahesh et al. 1996), spectrum 2 (Larsson et al. 2013) and spectrum 3 (von Karman
spectrum).

spectra, namely, a low-Reynolds-number spectrum taken from Mahesh et al. (1996),

spectrum 1: E(k)∼
(

k
k0

)4

e−2(k/k0)
2
, (4.6)

the spectrum obtained from the DNS data of Larsson et al. (2013) at Reλ = 75,

spectrum 2: E(k)∼ (k/k0)
4[

(k/k0)
4 + 0.32

]1.29 , (4.7)

and the von Karman spectrum (Pope 2000) given by

spectrum 3: E(k)∼ (k/k0)
2[

(k/k0)
2 + (5/6)]11/6 , (4.8)

where k0 represents the wavenumber corresponding to the peak energy level. The
shapes of the spectra are shown in figure 14, where the area under each curve is
normalized to unity. The DNS spectrum is comparable to the von Karman spectrum
in terms of its peak energy at k0 ∼ 4 and the energy at high wavenumbers. By
comparison, the low-Re spectrum is devoid of high-wavenumber content.

The streamwise variations of the turbulent energy flux for Mach 2 are qualitatively
similar for the three spectra. Spectrum 1 yields a higher peak energy flux, possibly
because of higher energy over a limited range of wavenumbers, as compared to the
other two spectra. The results for the von Karman spectrum are practically identical
to those obtained using the DNS spectrum. It is therefore used for further analysis
and comparison with the DNS data.

The three-dimensional near-field and far-field values of the turbulent energy flux are
plotted as a function of the upstream Mach number in figure 15. The near-field values
are positive at high Mach numbers, where the majority of the planar waves interacting
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FIGURE 15. The near-field (dashed) and far-field (solid) u′2e′2 for a three-dimensional
isotropic spectrum for varying upstream Mach numbers. Also shown is the variation of
the vortical–entropy component (dash dotted) of u′2e′2. Normalization is as described in
figure 5.

with the shock generate positive energy flux correlation. Only a small fraction of the
waves, incident close to ψc, result in negative correlation (see figure 7a). For low
Mach numbers, angles of incidence exceeding ψz result in negative energy flux behind
the shock. The higher angles of incidence have a larger contribution to the spectrum
integral due to the sinψ factor in (4.1). The near-field turbulent energy flux computed
for the three-dimensional spectrum, therefore, takes negative values for M1 < 2.7. The
correlation reaches its minimum value close to Mach 1, and vanishes in the limit
M1→ 1, being physically consistent for interactions with very weak shock waves.

The far-field turbulent energy flux is positive except for a small range 1<M1< 1.2,
and it is significantly higher than the near-field value for all Mach numbers. The
far-field correlation is close to the three-dimensional vortical–entropy component
plotted in figure 15. The contribution from the acoustic mode is negative, and
it accounts for the difference between the far-field and near-field values of the
correlation. Downstream of the shock, the acoustic components decay to negligible
values within a distance of about one wavelength, corresponding to the most energetic
wavenumber (see figure 16a). The variation of the three-dimensional turbulent energy
flux with the streamwise distance shown here is qualitatively similar to the decaying
single-wave interaction shown in figure 12(a). The transient peak, however, is less
pronounced in the three-dimensional result, possibly because of averaging over a
large number of planar wave interactions with different wavelengths.

Comparison of the streamwise variation of the turbulent energy flux at two Mach
numbers (figure 16a,b) brings out some key differences. Immediately behind the
shock, the acoustic components of the turbulent energy flux have large magnitude in
the Mach 1.5 interactions, whereas the vortical–entropy component is dominant at
Mach 3.5. The three acoustic terms give a net negative contribution to the energy
flux, and their magnitudes are comparable at both the Mach numbers. On the other
hand, the significantly higher positive vortical–entropy component at M1 = 3.5 results
in a positive near-field value of u′2e′2. Also, note that the transient peak is absent in
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FIGURE 16. Variation of u′2e′2 along the streamwise direction for a three-dimensional
isotropic spectrum with upstream Mach number (a) M1 = 1.50 and (b) M1 = 3.50. Also
shown are the four components of u′2e′2 as per (3.8). Normalization is as described in
figure 5.

the Mach 3.5 interaction, resulting in a monotonic rise from a low near-field value
to the far-field asymptotic level. Further, there is a small non-zero acoustic–acoustic
contribution to the turbulent energy flux at high Mach numbers, and it is reflected in
the difference between the far-field value and the vortical–entropy component plotted
in figure 15.

The three-dimensional results show some of the same physical trends observed in
the single-wave interactions. These include the high gradient in u′e′ in the acoustic-
adjustment region behind the shock, which can cause a dip in the total energy. The
mean energy conservation equation downstream of a steady one-dimensional shock
wave can be written as

ρ u
∂E
∂x
= ∂

∂x
(p u)− γ ∂

∂x

(
ρ u′e′

)+ other terms, (4.9)

neglecting the difference between Reynolds and Favre averaging. Here, E is the total
mean energy of the gas (sum of the mean internal energy, the mean kinetic energy
and the turbulence kinetic energy); p, u and ρ are the mean pressure, velocity and
density, respectively. A decrease in u′e′ with distance from the shock can thus locally
increase E, and vice versa. A local peak in u′e′ could imply a possible dip in the total
energy of the flow, all other factors being constant. It is shown that the high-gradient
and non-monotonic behaviour of the turbulent energy flux is due to the decay of the
acoustic contributions in the energy flux correlation. The turbulence kinetic energy
behind the shock also shows a similar qualitative behaviour, once again due to the
decay of acoustic disturbances generated at the shock (Mahesh et al. 1997).

5. Comparison with DNS data
In this section, the theoretical LIA results obtained for the three-dimensional

interaction are compared with the DNS data of Larsson et al. (2013). The cases
considered are listed in table 1, and range from low supersonic Mach numbers to
hypersonic values. The turbulent Mach number Mt = √Rkk/ã and Reλ are listed
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M1 Mt Reλ δ/η Rkk/(2U2
1) k0Lε Ar X

1.28 0.15 38 0.69 7.3× 10−3 3.9 0.030 3.8× 10−3

1.28 0.22 39 0.97 7.3× 10−3 3.9 0.042 7.6× 10−3

1.28 0.26 38 1.15 7.3× 10−3 4.0 0.051 1.1× 10−2

1.28 0.31 38 1.34 7.3× 10−3 3.8 0.057 1.6× 10−2

1.50 0.15 38 0.38 5.3× 10−3 3.9 0.036 3.8× 10−3

1.50 0.22 39 0.53 5.3× 10−3 4.3 0.048 6.9× 10−3

1.50 0.31 39 0.75 5.3× 10−3 4.1 0.066 1.6× 10−2

1.50 0.37 39 0.91 5.3× 10−3 4.2 0.079 2.4× 10−2

1.87 0.22 39 0.31 6.9× 10−3 3.8 0.059 6.7× 10−3

1.87 0.31 39 0.43 6.9× 10−3 4.0 0.082 1.5× 10−2

2.50 0.22 40 0.18 4.0× 10−3 4.3 0.083 7.0× 10−3

3.50 0.16 40 0.07 2.1× 10−3 4.1 0.080 3.5× 10−3

3.50 0.23 41 0.10 2.1× 10−3 4.3 0.111 6.4× 10−3

4.70 0.23 42 0.07 1.2× 10−3 4.3 0.138 6.4× 10−3

6.00 0.23 42 0.05 0.7× 10−3 4.4 0.193 7.5× 10−3

1.50 0.14 73 0.26 4.7× 10−3 3.0 0.032 2.1× 10−3

3.50 0.15 74 0.05 0.9× 10−3 2.9 0.076 2.0× 10−3

TABLE 1. The DNS cases from Larsson et al. (2013) used in the present study. The
values correspond to the location immediately upstream of the mean shock wave. The
ratio of shock thickness δ to Kolmogorov length scale η obtained by using (2.1) is given.
The wavenumber k0 associated with the peak energy is used to normalize the dissipation
length scale Lε . Ar (calculated using (B 5)) denotes the amplitude ratio of the upstream
entropy wave and the upstream vorticity wave. X represents the ratio of the upstream
turbulence kinetic energy associated with the acoustic fluctuations to the total turbulence
kinetic energy present upstream of the shock.

for each interaction, where Rkk is twice the turbulence kinetic energy and ã is the
Favre-averaged speed of sound. Table 1 also lists the estimated ratio of the laminar
shock thickness to the Kolmogorov scale δ/η, which was suggested by Ryu & Livescu
(2014) to describe the deviation away from the ideal LIA limit. This ratio is less than
1.4 for all cases considered here, and much less than that for most cases. For this
range of δ/η values, Ryu & Livescu (2014) found their DNS to operate in a regime
converging towards the LIA result, but with some effects of either nonlinearity or
(more plausibly) viscous decay behind the shock. The same conclusion was reached
in Larsson et al. (2013), where the DNS cases used here were found to agree well
with LIA, but with clear viscous effects. This sets the context for our comparison
between LIA and DNS in this section.

Figure 17(a) compares the peak turbulent energy flux behind the shock wave
obtained from LIA and DNS for a range of upstream Mach numbers. Note that the
peak LIA value is identical to the asymptotic far-field u′2e′2 for high Mach numbers.
In accordance with the normalization employed for LIA, the energy flux correlation
obtained from DNS is normalized by the upstream mean velocity U1, the downstream
mean temperature T2, the specific gas constant R and the turbulence kinetic energy
just upstream of the shock wave. We compare the DNS data for the Favre-correlation
ũ′′e′′ with the theoretical results for u′e′ obtained from LIA. There is negligible
difference between the two averaging procedures when computed using the DNS
data sets.
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FIGURE 17. Variation of u′2e′2 with upstream Mach number as per LIA (lines) and DNS
(symbols). (a) DNS data correspond to Mt = 0.22 and Reλ = 40. (b) Magnified view
highlighting the effect of Mt on the peak DNS u′2e′2 for three Mach numbers (M1 = 1.27
(circle), 1.50 (gradient) and 1.87 (square)) at Reλ = 40. Normalization is as described in
figure 5.

The variation of the peak turbulent energy flux with Mach number follows identical
trends in DNS and LIA. There is also a good quantitative match at low Mach numbers.
All the DNS data plotted in the figure correspond to a value of Mt = 0.22, and the
effect of varying upstream Mt on the postshock statistics is discussed subsequently.
Both DNS and LIA yield a finite limiting value of the normalized turbulent energy
flux at high Mach numbers, i.e.

lim
M1→∞

u′2e′2 = const., (5.1)

which implies that the dimensional turbulent energy flux is proportional to the
upstream mean velocity and the postshock mean temperature. The asymptotic
value of the turbulent energy flux at high Mach number therefore scales as M3

1
for a fixed upstream temperature T1 (as U1 = M1

√
γRT1 and T2/T1 ∝ M2

1 for
M1 → ∞). This is consistent with the linear inviscid formulation of LIA, where
the temperature fluctuations T ′2 are proportional to the mean temperature T2 and all
velocity fluctuations, including u′2, scale with U1. Thus, the peak turbulent energy flux
obtained from DNS follows a high-Mach-number scaling as per the linear inviscid
framework. The data are, however, about 25 % lower in magnitude than the LIA
prediction.

Figure 17(b) shows the effect of turbulent Mach number Mt on the peak values
of the energy flux behind the shock wave. The DNS peak turbulent energy flux
approaches the LIA prediction as the upstream turbulence intensity decreases for
three upstream Mach numbers, M1 = 1.28, 1.5 and 1.87. A similar trend is also
observed at M1 = 3.5 (data not shown). This is in consonance with the results
presented by Ryu & Livescu (2014), where postshock (streamwise and transverse)
Reynolds stresses are found to match LIA results in the limit of Mt→ 0, even at low
Reynolds numbers.

We next compare the streamwise variation of the turbulent energy flux obtained
from DNS and LIA in figure 18. The Mach number of the interaction is 1.5 and DNS
data corresponding to two Reynolds numbers are used for comparison. The shock is
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FIGURE 18. Streamwise variation of the turbulent energy flux for M1 = 1.50 from LIA
(lines) and (M1,Mt)= (1.50, 0.15) from DNS (lines with symbols). The effect of Reynolds
number is also shown with Reλ = 40 (circle) and Reλ = 75 (square). x= 0 represents the
center of the mean shock thickness, and the vertical lines near x= 0 represent the region
of mean shock thickness. Normalization is as described in figure 5.

located at x= 0 with the two vertical lines representing the region of DNS unsteady
shock movement. The streamwise distance is normalized by the dissipation length
scale Lε , calculated just upstream of the shock as

Lε = (Rkk/2)3/2/ε, (5.2)

where ε is the turbulence dissipation rate, and the values of k0Lε are listed in
table 1. In the absence of viscous dissipation in the linear theory, the most energetic
wavenumber (k0) in the upstream turbulence is used to obtain the characteristic length.
It is converted to an equivalent dissipation length scale for LIA using the value of
k0 Lε ≈ 3–4 obtained in the DNS study (Larsson et al. 2013).

DNS data at both Reλ = 40 and 75 have large negative values of the turbulent
energy flux in the region of the unsteady shock wave. Starting from negative values
at the shock, the energy flux correlation increases to peak positive values just behind
the shock. The DNS trend is thus qualitatively similar to the variation of the energy
flux obtained from the linear theory. This, along with the comparison of the peak
values described earlier, indicates that LIA is possibly capturing some of the key
physical processes involved in the generation of turbulent energy flux at the shock
wave. Following the positive peak, the DNS energy flux reduces to low values
away from the shock that are far below the far-field asymptotic u′e′ predicted by
the linear inviscid theory. This is because of the fact that LIA is based on inviscid
approximations, while there are considerable viscous effects in the DNS computations
performed at relatively low Reynolds numbers. Increasing the Reynolds number in
the DNS, however, results in the data approaching the LIA predictions that are
representative of the limit of infinite Reynolds number.

The case with higher Reynolds number has a slight dip in the peak positive u′e′
as compared to the corresponding value for lower Reynolds number. This could be
attributed to the fact that the Reλ=75 case has a broader spectrum than the simulation
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at lower Reynolds number. Reduction of the peak energy flux for a spectrum with
energy distributed over a wider range of scales has been reported in figure 13. We
also note that the streamwise locations of the peak turbulent energy flux for the
two Reynolds numbers are close to each other, when normalized by the dissipation
length scale. This is not the case when the Kolmogorov length scale is used for
normalization. The close match in the value of the peak energy flux as well as its
location for the two different Reynolds numbers highlights the fact that the near-field
energy flux is governed by large-scale inviscid processes. We further investigate the
physical mechanisms responsible for the postshock u′e′ variation by studying the
budget of its transport equation in § 5.2.

It is interesting to note that the peak energy flux values are obtained not at the
shock, but in the acoustic adjustment region behind the shock wave. Conventional
models based on the gradient hypothesis are insensitive to this phenomenon, and
respond only to the shock gradient. Outside the shock wave, they switch to the local
temperature gradient in the downstream flow. The results reported here show that
this may be grossly inadequate, as the primary effect of the shock wave on heat
transfer is via the peak turbulent energy flux following the shock wave. This region
scales with the integral length scale of the disturbance field, representative of the
large-scale turbulent motion. It may therefore be important to predict this phenomenon
in realistic flows. Most conventional models are based on a local formulation for the
turbulent heat flux vector, with no downstream influence of the shock wave. A few
advanced models based on transport equations for the energy flux correlation and
related quantities (Xiao et al. 2007) may be able to introduce this effect.

5.1. Effect of upstream thermodynamic fluctuations
The LIA model used here assumes a purely vortical incoming turbulence field, but
the more realistic situation (both in canonical DNS and in realistic flows) is to have
a mixture of vortical, acoustic and entropy fluctuations. The purpose of this section is
to roughly estimate the importance of these additional effects.

5.1.1. Upstream entropy mode
Larsson & Lele (2009) report small but finite pressure, temperature and density

fluctuations upstream of the shock, with magnitudes

ρ ′rms

ρ1M2
t

= 0.44± 0.01,
p′rms

γ p1M2
t

= 0.39± 0.02,
T ′rms

(γ − 1)T1M2
t

= 0.38± 0.02,

(5.3a−c)
for the majority of the cases listed in table 1. The entropy fluctuations in the DNS
are found to be of magnitude

s′rms

cpM2
t

= 0.1± 0.01, (5.4)

where cp is the specific heat at constant pressure. Entropy fluctuations are modeled in
the linearized density field in LIA, and thus we use the amplitude ρ ′rms,LIA= s′rmsρ1/cp
to model the entropy fluctuations in the LIA (with details given in appendix B). While
the phase difference between the vortical and entropy modes could be extracted from
DNS, in this particular flow configuration that phase difference has no physical
meaning and is solely an artefact of the inflow condition. However, in many realistic
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FIGURE 19. Streamwise variation of turbulent energy flux for M1= 3.50 from LIA (solid
line), LIA with added upstream entropy fluctuations with φr = 0◦ and φr = 180◦ (dashed
lines) and DNS (line with symbols) at (M1,Mt,Reλ)= (3.50,0.16,40). The amplitude ratio
Ar for the upstream entropy case is provided in table 1. x= 0 represents the center of the
mean shock thickness, and the vertical lines near x= 0 represent the region of mean shock
thickness. Normalization is as described in figure 5.

flows, most notably in boundary layers, there is a specific favored correlation between
these modes. In light of this, we consider a whole range of phase angles and focus
on the bounding cases.

In figure 19, we compare the streamwise turbulent energy flux generated from
a pure vorticity interaction with a case having finite upstream entropy fluctuations.
The results are for M1 = 3.50, and two cases of upstream entropy fluctuations are
considered, with phase angle φr = 0◦ and 180◦, for the same amplitude. Other angles
have also been studied to confirm that the above two values of φr are the extreme
bounds. The figure also shows the DNS data for M1 = 3.5, Mt = 0.16 and Reλ = 40.
A value of φr = 0 corresponds to a negative correlation between the velocity and
energy fluctuations upstream of the shock. Such an upstream correlation yields a
value of the downstream turbulent energy flux that is closer to the DNS data. For
this φr, an increase in the amplitude ratio Ar (increase in the relative magnitude of
the upstream entropy wave) further reduces the value of the turbulent energy flux.
Upstream velocity and energy fluctuations that are in phase (φr = 180◦) have an
amplifying effect on the turbulent energy flux correlation; a similar amplification is
observed for the downstream energy variance as well (data not shown here) when
φr = 180◦. The case shown here is for a single Mach number but the trends are
similar for other Mach numbers as well.

5.1.2. Upstream acoustic mode
The acoustic and vorticity modes upstream of the shock travel at different speeds

and are not correlated to each other. Therefore, the turbulent energy flux generated by
a combined field of acoustic and vorticity modes can be studied by first analysing the
independent interaction of acoustic waves with the shock. The procedure is similar to
that of vorticity waves interacting with the shock and is given elaborately in Moore
(1954) and Mahesh et al. (1996). The necessary details are provided in appendix C.
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FIGURE 20. LIA results for streamwise variation of the turbulent energy flux with
upstream disturbance field as (a) purely acoustic fluctuations, (b) purely vortical (solid)
and combined acoustic/vortical (dashed) at M1= 3.50, where the relative amplitude of the
acoustic field is the estimated upper bound for the DNS case at (Mt, Reλ) = (0.16, 40).
Normalization is as described in figure 5.

Figure 20(a) plots the streamwise variation of the shock-normal turbulent energy
flux when a purely acoustic field interacts with a shock wave (located at x= 0). The
turbulent energy flux is normalized by the upstream turbulence kinetic energy of
the acoustic disturbances, and the streamwise distance is normalized using the most
energetic wavenumber k0 in the upstream turbulence. We see a monotonic decay in
the energy flux correlation at low Mach numbers (M1 = 1.2), and a non-monotonic
variation for higher Mach numbers. Similar behaviour was reported by Mahesh
et al. (1995) in the streamwise variation of downstream TKE for the pure acoustic
interaction. As earlier, the rapid variation in the turbulent energy flux near the shock
can be attributed to the decaying acoustic waves generated at the shock wave. The
far-field value of the correlation is largely due to the entropy and vorticity modes, and
its magnitude increases upon increasing the upstream Mach number. The normalized
turbulent energy flux is found to be of order 1 in the near field, and is comparable in
magnitude to that in the case of vorticity waves interacting with a shock (figure 16).

The turbulent energy flux generated by the combined interaction of the vortical and
acoustic fields is given by

u′2e′2
TKEtotal

= u′2e′2vort + u′2e′2ac

TKEvort + TKEac
, (5.5)

where subscript vort is associated with the correlations obtained from the pure vortical
interaction, and subscript ac corresponds to the pure acoustic interaction, both studied
independently. The above equation can be written as

u′2e′2
TKEtotal

= (1− X)
u′2e′2vort

TKEvort
+ X

u′2e′2ac

TKEac
, (5.6)

where X represents the ratio of dilatational turbulence kinetic energy associated with
the acoustic mode to the total turbulence kinetic energy in the combined vortical–
acoustic turbulence. This is similar to the form used by Mahesh et al. (1995) to study
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the effect of a combined field of vorticity and acoustic disturbances on the TKE
evolution behind a shock wave.

It is not trivial to extract the value of X from the DNS data, since a Helmholtz
decomposition is complicated by the non-periodic shock-normal direction. An upper
bound on X can be found by assuming that the upstream pressure fluctuations have
contributions solely from the acoustic mode, for which (Mahesh et al. 1995)

TKEac

U2
1
= 1

2

(
1
γM1

)2 p′21
p2

1

, (5.7)

where the pressure variance p′21 just before the shock is taken from the DNS data,
as per (5.3). Since the pressure fluctuations in reality also have a hydrodynamic
contribution (the pseudo-sound, from the vortical fluctuations; see Ristorcelli &
Blaisdell (1997)), this formula clearly overestimates TKEac. For the DNS cases in
this study, we find the bound X . 10−3 to 10−2 as given in table 1.

Figure 20(b) shows the streamwise variation of the turbulent energy flux values
when the upstream turbulence has a combination of vortical and acoustic disturbances.
The results correspond to a Mach number of 3.5, and the combined interaction results
are obtained by using (5.6). The turbulent Mach number is 0.16 and it gives a value
of X = 3.5 × 10−3. The turbulent energy flux obtained for the combined interaction
is almost identical to that for the purely vortical disturbances upstream of the shock
wave. The upstream acoustic mode has negligible effect, and this is primarily because
of the low value of the ratio of dilatational to total turbulence kinetic energy. This may
not be the case for flows with a significant acoustic mode contribution, i.e. dilatational
velocity field, upstream of the shock. Examples include turbulent free shear layers and
their interaction with shock waves, in practical applications like underexpanded jets.

Furthermore, high-speed boundary layers are known to have significant entropy
fluctuations in addition to a vortical disturbance field. As per Morkovin’s hypothesis,
the ratio of temperature to velocity fluctuations scales as the square of the mean
flow Mach number. The sign of the velocity–temperature correlation is also known
to strongly influence shock–turbulence interaction (Veera & Sinha 2009). Negative
correlation yields higher TKE amplification at the shock compared to that in the case
of positively correlated vorticity–entropy disturbances in the upstream flow (Mahesh
et al. 1997). Velocity and temperature fluctuations in high-speed boundary layers are
usually negatively correlated, but the correlation may be positive for highly cooled
walls. These can have a significant effect on the turbulent energy flux generated by a
shock wave. The presence of mean shear and shock curvature in realistic flows can
introduce additional effects not considered in this work.

5.2. Transport equation for turbulent energy flux
We next investigate the physical processes that influence the turbulent energy flux
behind a shock wave by computing the budget of its transport equation. We start with
the instantaneous momentum and energy conservation equations given by

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj)=− ∂p

∂xi
+ ∂τij

∂xj
, (5.8)

∂

∂t
(ρe)+ ∂

∂xj
(ρeuj)=−p

∂ui

∂xi
− ∂qj

∂xj
+ τij

∂ui

∂xj
, (5.9)
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where τij is the viscous stress tensor and qj is the heat conduction flux given by qj=
−κ∂T/∂xj, κ being the conductivity of the fluid. In this section, for the sake of brevity,
we use tensor notation to denote the terms. Subscripts 1, 2 and 3, wherever applicable,
correspond to x, y and z directions, respectively. The first and second terms on the
right-hand side of (5.9) represent the pressure–dilatation and conduction mechanisms,
while the third term represents viscous dissipation. A moment of (5.8) with e′′ can be
added to a moment of (5.9) with u′′ and then Reynolds-averaged to yield a transport
equation for ρu′′e′′. Details are provided in Hanifi et al. (1999).

For the canonical case under consideration, ∂f /∂y = ∂f /∂z = 0, where f is any
mean quantity. The gradient of the mean quantity along the streamwise direction is
negligible away from the shock, i.e. ∂f /∂x≈ 0. Also, the averaged turbulent statistics
are steady and one-dimensional, which yields ∂g/∂t = ∂g/∂y = ∂g/∂z = 0 for any
turbulent correlation g. The governing equation for the streamwise energy flux thus
reduces to

ρũ
∂

∂x
ũ′′e′′ = e′′

∂τ1j

∂xj︸ ︷︷ ︸
Vis. diffusion

and dissipation

− e′′
∂p
∂x︸ ︷︷ ︸

Press.–energy

− pu′′
∂u′′j
∂xj︸ ︷︷ ︸

Pressure–dilatation.

− u′′
∂qj

∂xj︸ ︷︷ ︸
Conduction

+ u′′τjk
∂u′′j
∂xk︸ ︷︷ ︸

Vis. dissipation

− ∂

∂x
ρe′′u′′u′′︸ ︷︷ ︸

Turbulent transp.

. (5.10)

The first two terms on the right-hand side are the correlation of the viscous stress
and the pressure gradient with internal energy fluctuation. The former represents
the viscous diffusion and dissipation mechanism, while the latter corresponds to
the pressure–energy effect. The third, fourth and fifth terms are correlation of
pressure–dilatation, heat conduction and viscous dissipation with the streamwise
velocity fluctuation. The last term represents the turbulent transport of the energy flux
correlation.

5.2.1. Budget using DNS data
The budget of the above transport equation is computed for the case of (M1,Mt,Reλ)
= (1.5, 0.15, 40), and the data are presented in figure 21(a). A total of 120 flow-field
realizations at different instants of time are used to compute the time-averaged
turbulence statistics, and statistical convergence is checked for. It is found that the
pressure–energy and pressure–dilatation terms identified in (5.10) are the major
contributors to the evolution of ũ′′e′′. The viscous diffusion and dissipation terms, as
well as the conduction and turbulent transport terms, are comparatively negligible,
and are not shown in the figure. The difference between the left- and right-hand sides
of the transport equation is shown as an error in figure 21 (thin solid line around
zero). It has a negligible value outside the region of mean shock thickness where the
DNS results are compared with linear theory.

The pressure–energy term has a peak positive contribution close to the shock and
drops to low values in the far field. The pressure–dilatation term also has a peak
positive contribution at the shock; it attains a minimum (negative) value behind the
shock before decaying to zero. The convection term (left-hand side) in (5.10) is
a resultant of the pressure–energy and pressure–dilatation contributions. It takes a
positive value in the near field, which corresponds to a rapid increase in the energy
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FIGURE 21. Budget of the transport equation for the turbulent energy flux from DNS data
(symbols) and LIA (lines) corresponding to (a) (M1, Mt, Reλ) = (1.5, 0.15, 40) and (b)
(M1, Mt, Reλ) = (3.5, 0.15, 40). The vertical line near x/Lε = 0 (dashed) represents the
end of the region of mean shock thickness. The error in the DNS budget is also shown
(thin solid line around zero). Normalization is as described in figure 5.

flux behind the shock. The zero-crossing of the term on the left-hand side corresponds
to the peak positive u′2e′2. Subsequent negative values of the convection term indicate
a decay of the correlation to low levels in the far field.

The pressure–dilatation term in the energy conservation equation (5.9) represents
the work done by pressure forces in compressing/expanding the gas. A locally high
pressure associated with negative dilatation, such that p(∂u′′i /∂xi)<0, increases internal
energy. How this increase in the energy is transferred by turbulent velocity fluctuations
is governed by the term pu′′(∂u′′j /∂xj) in the turbulent energy flux equation (5.10).
The fact that the correlation is negative implies that the internal energy fluctuations
generated by the pressure–dilatation work are convected, on average, in the negative
x-direction. It therefore contributes as a negative source term in the transport equation
for turbulent energy flux. The pressure–dilatation term can be split into two parts
based on the mean and the fluctuating pressure as

pu′′
∂u′′j
∂xj
= pu′′

∂u′′j
∂xj
+ p′u′′

∂u′′j
∂xj

. (5.11)

The major contribution to the budget is from the first part, which is proportional to
the mean pressure downstream of the shock. The second part, involving a higher-order
correlation, is comparatively small in magnitude. The pressure–dilatation effect on the
turbulent energy flux is therefore determined primarily by the correlation u′′(∂u′′j /∂xj).
The data show that positive velocity fluctuations are associated with local expansion of
the fluid element. Similarly, lower streamwise velocity is statistically correlated with
locally compressed fluid. The correlation u′′(∂u′′j /∂xj) can be expanded as

u′′
∂u′′j
∂xj
= ∂

∂x
u′′2

2
+ u′′

∂v′′

∂y
+ u′′

∂w′′

∂x
, (5.12)
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where the first term on the right-hand side can be argued to be positive in the acoustic-
adjustment region behind the shock. It represents the build-up of streamwise Reynolds
stress as a result of the acoustic decay, and can be seen clearly in figure 5(b).

The physics behind the pressure–energy term in (5.10) can be elucidated as follows.
A pressure gradient in a flow can accelerate or decelerate a fluid element. A locally
negative pressure gradient would generate positive streamwise velocity fluctuations,
all other factors being constant. This, when correlated with locally high internal
energy (e′′ > 0), would contribute to a positive turbulent energy flux. The region
(0 < x/Lε < 1) considered for the budget calculation is dominated by the acoustic
mode. The thermodynamic fluctuations can therefore be assumed to be approximately
isentropic, i.e., p′/(γ p) ' T ′/((γ − 1)T), such that the pressure–energy term can be
written as

− e′′
∂p′

∂x
=−cvT ′

∂p′

∂x
=− 1

γ ρ

∂

∂x

(
p′2

2

)
, (5.13)

once again neglecting the differences between Favre and Reynolds averaging. Large
pressure fluctuations are generated by interactions at high angles of incidence. In the
decaying regime, the pressure variance decreases exponentially to small values within
one integral length scale. The pressure–energy source term shows identical trends,
suggesting that it is dominated by the acoustic mode.

5.2.2. Linear inviscid approximations
A transport equation for the turbulent energy flux in the linear inviscid framework

can be derived from the linearized Euler equations given by

∂u′

∂t
+ u

∂u′

∂x
=− 1

ρ

∂p′

∂x
,

∂e′

∂t
+ u

∂e′

∂x
=− p

ρ

(
∂u′j
∂xj

)
,

 (5.14)

where the viscous and conduction effects have been neglected in line with the LIA
assumptions, and the higher-order terms are also assumed to be small. A transport
equation for the turbulent energy flux can be derived from the above equations using
the steps outlined earlier for the derivation of (5.10):

ρ u
∂

∂x
u′e′ =− e′

∂p′

∂x︸ ︷︷ ︸
Press.–energy

− pu′
∂u′j
∂xj
.︸ ︷︷ ︸

Pressure–dilatation

(5.15)

The two terms on the right-hand side are the pressure–energy and pressure–dilatation
terms, which are almost identical to their counterparts in (5.10). Again, the differences
due to Favre and Reynolds fluctuations are found to be minimal from the DNS data.
The viscous, conduction and turbulent transport terms seen in (5.10) are absent here
due to the linear inviscid assumptions.

Using LIA, we plot the budget of (5.15) in figure 21(a) for the region downstream
of the shock corresponding to the case of M1= 1.5. We use the von Karman spectrum
(4.8) to compute the budget. We observe no substantial difference when the DNS
spectrum (4.7) is used instead. There is a good qualitative as well as quantitative
match with DNS. The pressure–energy term shows a similar variation to its DNS
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counterpart, assuming a high positive value just behind the shock and monotonically
decreasing to negligible levels downstream. The dilatation term from LIA also shows
a trend similar to that observed in the DNS data, with a slightly higher negative peak.
As a result, the convective term (left-hand side) has a more pronounced negative peak
in LIA than in DNS.

The budget of the u′e′ transport equation for Mach 3.5 (in figure 21b) shows the
same qualitative trends as the budget for the lower Mach number. The magnitude of
the terms, however, is significantly larger and they lead to a higher postshock turbulent
energy flux. We also find that the convection and pressure–energy terms in DNS take
identical negative values beyond x/Lε= 0.5, while the pressure–dilatation term is close
to zero. The LIA data match the DNS pressure–dilatation term closely. The linear
theory also reproduces the qualitative trends observed in the DNS budget, except for
the convection term. The DNS data show a prominent zero-crossing of the left-hand
side, which corresponds to the peak u′e′ at x/Lε ' 0.12. The LIA prediction for this
case has no noticeable peak in the postshock energy flux profile, as noted earlier.
The trends in the DNS budget shown in figure 21 continue further downstream up
to x/Lε ∼ 2, beyond which budget data are not available. In particular, the pressure–
energy and pressure–dilatation terms have dominant contributions, although with lower
magnitudes than those in the figure, and the viscous diffusion/dissipation as well as
the conduction terms are relatively small.

5.3. Integrated budget
The cumulative contribution of each of the mechanisms to the value of the turbulent
energy flux in the region downstream of the shock can be found by integrating the
transport equation, as carried out for Reynolds stresses in Larsson et al. (2013). The
integrated form of (5.10) can be written as(

ũ′′2e′′2
)

x
=
(

ũ′′2e′′2
)
ς=x∗
+ 1
ρũ

[∫ x

ς=x∗
(Press.–energy) dς +

∫ x

ς=x∗
(Press.–dil.) dς

]
+ 1
ρũ

[∫ x

ς=x∗
(Remainder) dς

]
. (5.16)

Here, ς = x∗ indicates the point where the mean shock thickness ends (the vertical
line at x/Lε = 0.16 and 0.06 in figure 21a,b). The remainder in the above equation
represents the terms that make relatively smaller contributions to the budget, for
example the viscous dissipation and conduction terms. The budget of (5.16) computed
using the DNS data is plotted in figure 22 (symbols) for Mach 1.5 and Mach 3.5. A
similar integrated budget of (5.15) computed using LIA for the two Mach numbers
is shown for comparison (lines).

The pressure–dilatation term has a negative cumulative effect and it saturates to
a constant level due to the vanishingly small magnitude of the source term away
from the shock. There is a fairly good match between the LIA and DNS values of
the integrated pressure–dilatation term at both Mach numbers. On the other hand,
the pressure–energy term has a positive cumulative contribution, with DNS assuming
a lower value than the corresponding LIA result. The integrated effect reaches
a peak value behind the shock and decreases further downstream, indicating that
the pressure–energy term is negative in the far field. The slope of the integrated
pressure–energy term matches the decay rate of the DNS turbulent energy flux
away from the shock. This trend is more prominent at the higher Mach number,
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FIGURE 22. Integrated budget of the transport equation for the turbulent energy flux from
DNS (symbols) and LIA (lines) corresponding to (a) (M1, Mt, Reλ)= (1.5, 0.15, 40) and
(b) (M1, Mt, Reλ)= (3.5, 0.15, 40). The vertical line at x/L= 0 (dashed) represents the
end of the mean shock thickness. Normalization is as described in figure 5.

and implies that the pressure–energy mechanism is primarily responsible for the
discrepancy between LIA and DNS in the far field.

The budget data show that the modelling of the u′e′ transport equation should
focus on the dominant effects of the pressure–energy and pressure–dilatation terms,
and can neglect the smaller effects of viscosity and nonlinear turbulence–turbulence
interactions. The linear inviscid theory captures these inviscid phenomena and can
be exploited for developing closure models for the source terms. A similar approach
was employed for the study of the amplification of turbulence kinetic energy across a
shock wave (Sinha et al. 2003). The linear inviscid mechanism of shock-unsteadiness
damping was found to play a key role and was modelled based on LIA data. The
shock-unsteadiness model was subsequently incorporated into one- and two-equation
turbulence models, and successfully applied to shock/boundary-layer interactions;
see, for example, Pasha & Sinha (2012). Note that LIA is able to match the
pressure–dilatation effect in the budget of u′e′ transport equation. The pressure–energy
term is systematically overpredicted, the discrepancy increasing with Mach number,
and a suitable correction to the LIA-based closure model may be required.

6. Summary
This paper presents a detailed study of the turbulent energy flux generated across a

shock wave using linear interaction analysis and direct simulation data. The canonical
interaction of homogeneous isotropic turbulence with a nominally normal shock wave
is considered, and a purely vortical disturbance field is assumed upstream of the shock.
We focus on the streamwise component of the turbulent energy flux and investigate
the physics governing its magnitude and direction relative to the shock wave. In the
framework of the linear theory, the upstream disturbance field is Fourier-decomposed
into two-dimensional planar vorticity waves, each of which interacts independently
with the shock.

The elementary interaction of individual vorticity waves provide fundamental
understanding about the turbulent energy flux generated at the shock wave. The energy
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flux correlation is a strong function of the shock strength and the angle of incidence
of the upstream disturbance wave. At low Mach numbers, the majority of the waves
yield negative u′e′ in the near field, which implies energy transfer back towards
the shock wave. The trend is opposite at high Mach numbers, where the near-field
turbulent energy transfer is mostly directed away from the shock. Vorticity waves
incident at small angles relative to the shock wave lead to propagating disturbances,
with slowly varying turbulent energy flux behind the shock. On the other hand, plane
wave interactions at high angles of incidence result in rapid postshock variation of
u′e′. Starting from a low near-field level, the correlation increases to a positive peak
value, because of the decay of the negatively correlated acoustic-mode contributions.

Three-dimensional statistics computed by superposition of the individual single-wave
solutions also show a rapid variation of the turbulent energy flux. It occurs in the
acoustic-adjustment region behind the shock, and is identical to the trends observed in
DNS data for a range of shock strength, turbulent Mach number and Reynolds number
based on Taylor microscale. The downstream turbulent energy flux in DNS attains a
peak positive value followed by a decay to low levels far away from the shock. In
the absence of viscous effects, the linear theory predicts high asymptotic values of
the energy flux in the far field. The far-field correlation is primarily composed of
the vortical and entropy components of the disturbance field, while the near field is
dominated by the acoustic mode generated at the shock wave. A budget computed
using DNS data shows that the peak value of the energy flux correlation is governed
by the pressure–energy and pressure–dilatation source terms in the u′e′ transport
equation. These are dominated by the acoustic mode, which is linear and inviscid
in nature, and are reproduced well by linear interaction analysis. There is negligible
effect of viscous and nonlinear terms in the transport equation on the overall budget.

The effect of entropy and acoustic disturbances in the incoming turbulence on the
postshock turbulent heat flux is estimated using LIA. The focus is on estimating the
magnitudes of these effects rather than the exact values, since different realistic flows
have varying levels and correlations among the different disturbances. Despite clearly
overestimating the amount of acoustic waves present in the DNS, LIA still suggests
that the influence of these acoustic waves on the postshock turbulent heat flux is
minimal. The entropy disturbances, on the other hand, are shown to potentially affect
the postshock heat flux by about 10 % for the specific DNS case assessed here; this
case had almost isentropic incoming turbulence, and thus the effect should be larger
in flows with significant entropy disturbances, such as boundary-layer flows.

Overall, the linear theory is able to predict the peak turbulent heat flux in the DNS
for weak shocks, and the Mach number scaling of u′e′ in the hypersonic limit. There
is also a qualitative match between LIA and DNS data for the entire range of shock
strengths. In addition, LIA is able to capture the dominant acoustic mechanism in the
budget that is responsible for the rapid postshock variation of the turbulent energy
flux. Advanced physics-based turbulence models can thus be developed based on the
linear inviscid theory to predict the peak positive turbulent energy flux behind a shock
wave. When applied to shock/boundary-layer interaction, the positive values of the
energy flux correlation would imply turbulent transfer of internal energy away from
the shock. For cases where an oblique shock is inclined towards the wall, this can add
significantly to the wall heat transfer rate. Examples include the reattachment shock in
a compression corner interaction. Furthermore, the peak energy flux correlation occurs
within one integral length scale of the downstream flow. This corresponds to about one
boundary-layer thickness past the reattachment point, which is often the region with
highest heat transfer to the wall.
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Appendix A. Interaction of a vortical wave with normal shock

We present the details of linear interaction analysis applied to a vortical disturbance
interacting with a normal shock. The development closely follows the work of
Mahesh et al. (1996) and is reproduced here for completeness. In the linear inviscid
framework, the shock-downstream variables are related to the shock-upstream values
via the linearized Rankine–Hugoniot equations given in (2.3), and the expressions for
the coefficients are

B= (γ − 1)M2
1 − 2

(γ + 1)M2
1
, C= 4

(γ − 1)M2
1 + 2

,

D= 4γM2
1

2γM2
1 − (γ − 1)

, E= 2(M2
1 − 1)

(γ + 1)M2
1
.

 (A 1)

The planar waveforms for the velocity fluctuations in the region upstream of the
shock are given in (2.2) and the velocity and temperature fluctuations downstream
of the shock are given in (2.4). In order to solve for the postshock fluctuations, the
downstream planar waveforms are substituted in the linearized Rankine–Hugoniot and
linearized Euler equations to yield the values of the associated complex amplitudes.
The solution obtained for the complex amplitude L̃ associated with the shock speed
(2.5) is given by

L̃= −cosψ − βD sinψ − rαD cosψ + Br cosψ
E tanψ − βD− r(1− B+ αD) cotψ

, (A 2)

where

α = 1
γM2

2r

[
kr

r cosψ − kr

]
, β = 1

γM2
2r

[
sinψ

r cosψ − kr

]
. (A 3a,b)

Here, M2 is the mean flow Mach number downstream of the shock, and kr = k̃/k
is the ratio of the streamwise wavenumber of the downstream acoustic wave to the
wavenumber of the upstream vorticity wave. The nature of the acoustic wavenumber
k̃ varies based on the angle of incidence of the upstream vorticity wave relative to the
critical angle ψc given by (2.6). For 0<ψ <ψc, k̃ is real and is given by

k̃
k
= U1

U2

M2

1−M2
2

[
−M2 cosψ + sinψ

√
cot2 ψ − U2

2

U2
1

(
1

M2
2
− 1
)]

. (A 4)
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For ψc < ψ < π/2, k̃ is complex (k̃ = k̃r + ĩki), and its real and imaginary parts are
given by

k̃r

k
=−U1

U2

M2
2

1−M2
2

cosψ,

k̃i

k
= U1

U2

M2

1−M2
2

sinψ

√
U2

2

U2
1

(
1

M2
2
− 1
)
− cot2 ψ.

 (A 5)

The complex coefficients corresponding to the downstream velocity and temperature
fluctuations (see (2.4)) can be expressed in terms of L̃ as

F̃= αD(sinψ − L̃), (A 6a)

G̃= B sinψ + L̃(1− B)− F̃, (A 6b)

K̃ =D(sinψ − L̃), (A 6c)

Q̃=C(sinψ − L̃)− K̃/γ . (A 6d)

Using the above complex amplitudes, the velocity and temperature fluctuations at any
given point in the shock-downstream region can be defined, and the turbulent energy
flux can thus be calculated using (3.1), which is written again as

u′2e′2 =
(

1
γ − 1

)
1

U1T2

[
u′2T ′∗2 + T ′2u′∗2

]
2(TKE1/U2

1)
. (A 7)

This corresponds to a single planar wave upstream of the shock wave. The three-
dimensional value of turbulent energy flux can be obtained by integrating the incoming
fluctuation over all the wavenumbers and angles of incidence for a specified upstream
energy spectrum as shown in (A 8), which is same as (4.1) and is reproduced here for
quick reference:

(u′2e′2)3D = 4π

∫ π/2

0

∫ ∞
0
(u′2e′2)2D k2 sinψ dk dψ. (A 8)

The turbulent energy flux is normalized by the upstream turbulence kinetic energy
TKE1 as shown in (A 7). In a two-dimensional wave problem,

TKE1 = 1
2

[
u′21 + v′21

]
= |Av|

2

2
U2

1, (A 9)

where u′21 = u′1u′1
∗ and v′21 = v′1v′1∗; subscript 1 corresponds to shock-upstream and ∗

indicates complex conjugate, with the expressions for u′1 and v′1 given in (2.2). In
the case of three-dimensional interaction, the expression for shock-upstream turbulence
kinetic energy is given by (Mahesh et al. 1996)

TKE1 = 4πU2
1

∫ π/2

0

∫ ∞
0

E(k) sinψ dk dψ, (A 10)

where E(k) is the three-dimensional energy spectrum tensor given by (4.8).
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Appendix B. Interaction of a vorticity–entropy wave with a normal shock
For a vorticity–entropy wave interacting with a normal shock, the upstream velocity

fluctuations have the planar waveforms as given in (2.2). The upstream pressure
fluctuations are identically zero and the upstream temperature and density fluctuations
have the planar waveform as

T ′1
T1
=−ρ

′
1

ρ1
=−Ae exp[ik(x cosψ + y sinψ −U1t cosψ)], (B 1)

where Ae represents the complex amplitude for the upstream entropy wave. The
formulation is identical to that presented in Mahesh et al. (1996) and is reproduced
here for completeness. The linearized Rankine–Hugoniot equations relating the
fluctuations upstream and downstream of the shock can be expressed as

u′2 − ξt

U1
= B

u′1 − ξt

U1
+ B̌

T ′1
T1
,

v′2
U1
= v′1

U1
+ Eξy,

ρ ′2
ρ2
=C

u′1 − ξt

U1
+ Č

T ′1
T1
,

p′2
p2
=D

u′1 − ξt

U1
+ Ď

T ′1
T1
,


(B 2)

where B, C, D and E are given by (A 1), and B̌, Č and Ď are given as

B̌= 2
(γ + 1)M2

1
, Č=− (γ − 1)M2

1 + 4
(γ − 1)M2

1 + 2
, Ď=− 2γM2

1

2γM2
1 − (γ − 1)

. (B 3a−c)

The expression for the complex amplitude L̃ taking into account the upstream entropy
fluctuations can be written as

L̃=
−cosψ − β

(
D sinψ − Ď

Ae

Av

)
+ r cotψ

[
−α

(
D sinψ−Ď

Ae

Av

)
+ B sinψ− B̌

Ae

Av

]
E tanψ − βD− r cotψ(1− B+ αD)

,

(B 4)
where α and β are given by (A 3). The ratio Ae/Av can be expressed as Ar exp(iφr),
where Ar and φr represent the amplitude ratio and the phase difference, respectively,
between the upstream entropy and vorticity waves:

Ar =
√
ρ ′21 /ρ1√

TKE1/U1
, φr = cos−1

 u′1ρ
′
1√

u′21

√
ρ ′21

 . (B 5a,b)

The values of Ar obtained for each of the DNS cases are shown in table 1. The
complex amplitudes that govern the velocity and temperature fluctuations are given
by F̃, G̃, K̃ and Q̃ as given by (2.4), and these can be expressed in terms of L̃ as

F̃= αD(sinψ − L̃)− αĎ
Ae

Av
, (B 6a)
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Downstream
acoustic wave

Shock

Acoustic wave

Fluid at rest

U V

y

FIGURE 23. A single acoustic wave in a stationary gas interacts with a shock wave
moving with a velocity V to generate all three waves (acoustic, entropy and vorticity).

G̃= B sinψ + L̃(1− B)− F̃− B̌
Ae

Av
, (B 6b)

K̃ =D(sinψ − L̃)− Ď
Ae

Av
, (B 6c)

Q̃=C(sinψ − L̃)− K̃
γ
− Č

Ae

Av
. (B 6d)

The energy flux correlation can then be obtained using (A 7) and (A 8).

Appendix C. Interaction of an acoustic wave with normal shock
Moore (1954) considered a shock moving with a velocity V into a stationary gas

having an acoustic wave; a schematic is shown in figure 23. All three modes (acoustic,
entropy and vorticity) are generated downstream of the shock, and the amplitude and
phase of the downstream waves are functions of the angle of incidence and shock
strength. In an alternative frame of reference, this configuration is similar to the
one considered in the current study, where a mean flow convecting the disturbance
interacts with a stationary shock wave. The development follows the work of Moore
(1954) and all the essential steps required to obtain the results in § 5.1 are given
below.

In the frame of reference x1–y (figure 23) attached to the fluid at rest, the upstream
acoustic waveforms can be represented as

u′1
V
=−cosψ

γM1
Ap exp[ik1(x1 cosψ − y sinψ + a1t)], (C 1a)

T ′1
T1
= γ − 1

γ
Ap exp[ik1(x1 cosψ − y sinψ + a1t)], (C 1b)

where u′1 is the streamwise velocity fluctuation in the stationary gas, V represents the
mean shock velocity and T ′1 is the temperature fluctuation; a1 and T1 represent the
mean speed of sound and temperature, respectively, in the gas which is stationary in
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the mean; ψ represents the angle of incidence of the upstream acoustic wave with
respect to the shock-normal direction, and k1 is the corresponding wavenumber; Ap is
the amplitude of the acoustic wave and M1 = V/a1 is the Mach number of the shock
wave.

The downstream acoustic field could be either decaying or propagating in nature
depending on the angle of the incident acoustic wave. The critical angles ψcl and ψcu
are obtained as the roots of the following equation (Moore 1954):(a2

V

)2 −
(

1− U
V

)2

=
(

cotψ + a1

V
cscψ

)2
, (C 2)

where a2 and U are the postshock mean speed of sound and mean velocity,
respectively. For upstream angles of incidence in the range 06ψ <ψcl or ψcu<ψ 6π,
the downstream acoustic wave has a propagating nature, and for ψcl < ψ < ψcu, the
acoustic wave decays exponentially.

The linearized Rankine–Hugoniot conditions are now given as

ξt − u′2
V
= B

ξt − u′1
V
+ B̂

p′1
P1
,

v′2
V
= v

′
1

V
− U

V
ξy,

T ′2
T2
= (D−C)

ξt − u′1
V
+ (D̂− Ĉ)

p′1
p1
,

 (C 3)

where the terms B, C and D are as defined in (A 1). The coefficients due to the
acoustic fluctuations are given as follows:

B̂=
(
γ − 1
γ + 1

)
2
γM2

1
, Ĉ= 1

γ

(
1− 2 (γ − 1)

2+ (γ − 1)M2
1

)
, D̂= 2M2

1 − (γ − 1)
2γM2

1 − (γ − 1)
.

(C 4a−c)

The solutions for the downstream waveforms in the propagating regime (0 6 ψ1 <
ψcl or ψcu <ψ1 6π) are given by

1
Ap

u′2
V
= F̃ exp(ik2ηa)+ G̃ exp(ik1ηv), (C 5a)

1
Ap

T ′2
T2
= γ − 1

γ
K̃ exp(ik2ηa)− Q̃ exp(ik1ηv), (C 5b)

where the arguments of the vorticity/entropy waveform (ηv) and the acoustic waveform
(ηa) are defined as

ηa = αx2 + βy+ a2t,

ηv = cosψ + 1/M1

1− r
x2 − y sinψ.

 (C 6)

The above downstream expressions are written in a frame of reference that moves with
a mean velocity U such that the x2 axis is stationary with respect to the mean flow
downstream of the shock; k2 is the corresponding downstream wavenumber.

The complex coefficients K̃ and F̃ correspond to the acoustic mode, G̃ corresponds
to the vortical mode and Q̃ represents the contribution from the entropy mode.
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The expressions for α, β, K̃, F̃, G̃ and Q̃ are provided below; they are functions of
the upstream Mach number and the angle of incidence.

L̃=− m
γM1

×

[
1+ γ + 1

4
M1

m

(
3− γ
γ + 1

+ γ − 1
2

r
)]

χ + γ + 1
4

[
1− 2

γ − 1
γ + 1

n
σ
− nσ

1− r

]
(1− r)

1+ χ − γ + 1
4

r
(

1+ σ 2

1− r

) ,

(C 7)

K̃ =D
(

L̃+ m
γM1

)
+ D̂, Q̃=C

(
L̃+ m

γM1

)
+ Ĉ− K̃

γ
, (C 8a,b)

F̃=− a2

γV
K̃α, G̃= L̃− F̃− B

(
L̃+ m

γM1

)
− B̂, (C 9a,b)

where
l= sinψ, m= cosψ, n= tanψ, (C 10a−c)

r= 2
γ + 1

(
1− 1

M2
1

)
,
(a2

V

)2 = (1− r)
(

1+ γ − 1
2

r
)
, σ = n (1− r)

1+ 1
M1m

,

(C 11a−c)

χ =
[

1− r (γ + 1)
(
1+ σ 2

)
2+ (γ − 1) r

]1/2

, α = 1
1− r

[
λ2

λ1

(
m+ 1

M1

)
− a2

V

]
, β =−l

λ2

λ1
,

(C 12a−c)

m
λ2

λ1
=m

k1

k2
=

a2

V

(
1+ 1

M1m

)
(

1+ 1
M1m

)2

+ n2 (1− r)2

1+

√√√√√√√1− r
1+ n2 (1− r)2

/(
1+ 1

M1m

)2

1− γ − 1
γ + 1

(1− r)

 .
(C 13)

The solutions for the fluctuations in the decaying regime, i.e. ψcl < ψ < ψcu, are
given as

1
Ap

u′2
V
= F̃(1)Φ(1) + F̃(2)Φ(2) +

(
G̃(1) + iG̃(2)

)
exp(ik1ηv), (C 14a)

1
Ap

T ′2
T2
= γ − 1

γ

(
K̃(1)Φ(1) + K̃(2)Φ(2)

)
+
(

Q̃(1) + iQ̃(2)

)
exp(ik1ηv), (C 14b)
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where ηv is as defined before and the expressions for Φ(1) and Φ(2) are

Φ(1) = exp(k1ζ ) exp(ik1ηd),

Φ(2) = i exp(k1ζ ) exp(ik1ηd),

}
(C 15)

where the arguments ζ and ηd are given by

ζ = d(x2 − (V −U)t), ηd = (αx2 + βy+ cVt). (C 16a,b)

The coefficients K̃(α) and F̃(α) correspond to the acoustic mode, G̃(α) to the vorticity
mode, and Q̃(α) represents the entropy mode. The expressions for these amplitudes
along with those for c, d, α and β are provided below.

L̃(1) =
h1h2 −

(
m
γM1
+ D̂

D

)
h2

3

h2
2 + h2

3
, L̃(2) = h3

h1 +
(

m
γM1
+ D̂

D

)
h2

h2
2 + h2

3
,

F̃(1) = h4

(
L̃(1) + m

γM1
+ D̂

D

)
− h5L̃(2),

F̃(2) = h5

(
L̃(1) + m

γM1
+ D̂

D

)
+ h4L̃(2),

K̃(1) =D
(

L̃(1) + m
γM1

)
+ D̂, K̃(2) =DL̃(2),

Q̃(1) =C
(

L̃(1) + m
γM1

)
+ Ĉ− K̃(1)

γ
, Q̃(2) =CL̃(2) − K̃(2)

γ
,

G̃(1) = L̃(1) − F̃(1) − B
(

L̃(1) + m
γM1

)
− B̂, G̃(2) = L̃(2) (1− B)− F̃(2),



(C 17)

where

h1 =−1− r
r

1
σ

[
l

γM1
+
(

m
γM1

B+ B̂
)

1
σ

]
, h2 = 1− 1− r

r
1− B
σ 2

,

h3 =−4d (1− r) /lσ
2+ (γ − 1) r

, h4 = 4
γ + 1

σ 2

1+ σ 2
, h5 = 2rdσ (1− r)

l
(
1+ σ 2

) V2

a2
2
,

c= m+ 1/M1

1− V2 (1− r)2 /a2
2

, α =−V2

a2
2
(1− r) c, β =−l,

d=
√
α2 + l2 − V2c2/a2

2

1− V2(1− r)2/a2
2
,


(C 18)

with l, m, n and σ being the same as in the propagating regime.
The normalized turbulent energy flux generated downstream of the shock can be

written as

u′2e′2 =
(

1
γ − 1

)
1

VT2

[
u′2T ′∗2 + T ′2u′∗2

]
2(TKE1/V2)

, (C 19)
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where the velocity fluctuation is normalized by the mean shock speed V , which is
identical to the upstream mean flow velocity relative to the shock. The temperature
fluctuation is normalized by the downstream mean temperature T2, and cv is
normalized by R. Here, * indicates complex conjugate.

Mahesh et al. (1995) extend the two-dimensional analysis by Moore (1954) to study
a field of acoustic waves interacting with a shock. In the linear inviscid framework, the
postshock statistics are computed by superimposing single-wave results for a specified
isotropic energy spectrum upstream of the shock wave. The value of downstream u′2e′2
for a three-dimensional isotropic spectrum of planar waves can be written as

(u′2e′2)3D = 2π

∫ π

0

∫ ∞
0
(u′2e′2)2D k2 sinψ dk dψ, (C 20)

where (u′2e′2)2D is the correlation obtained for a two-dimensional planar wave.
Computations of the three-dimensional statistics require the spectrum of pressure
fluctuations ahead of the shock, which is related to the three-dimensional energy
spectrum E(k) as

|p̂1|2(k)
p2

1

=
(
γM1

V

)2 E(k)
4πk2

, (C 21)

with the expression for E(k) taken as per the von Karman spectrum given in (4.8).
Further details are provided in Mahesh et al. (1995).

REFERENCES

BOWERSOX, R. D. W. 2009 Extension of equilibrium turbulent heat flux models to high-speed shear
flows. J. Fluid Mech. 633, 61–70.

BRINCKMAN, K. W., CALHOON, W. H. JR & DASH, S. M. 2007 Scalar fluctuation modeling for
high-speed aeropropulsive flows. AIAA J. 45 (5), 1036–1046.

CAMBON, C., COLEMAN, G. N. & MANSOUR, N. N. 1993 Rapid distortion analysis and direct
simulation of compressible homogeneous turbulence at finite Mach number. J. Fluid Mech.
257, 641–665.

DURBIN, P. A. & ZEMAN, O. 1992 Rapid distortion theory for homogeneous compressed turbulence
with application to modeling. J. Fluid Mech. 242, 349–370.

FABRE, D., JACQUIN, L. & SESTERHENN, J. 2001 Linear interaction of a cylindrical entropy spot
with a shock. Phys. Fluids 13 (8), 2403–2422.

GOLDBERG, U. C., PALANISWAMY, S., BATTEN, P. & GUPTA, V. 2010 Variable turbulent Schmidt
and Prandtl number modeling. Engng Appl. Comput. Fluid Mech. 4, 511–520.

GRIFFOND, J. 2005 Linear interaction analysis applied to a mixture of two perfect gases. Phys.
Fluids 17, 086101.

GRIFFOND, J., SOULARD, O. & SOUFFLAND, D. 1993 Reynolds stress model fitted to match linear
interaction analysis predictions. Phys. Scr. T142, 014059.

HANIFI, A. E., ALFREDSSON, P. H., JOHANSSON, A. V. & HENNINGSON, D. S. 1999 Transition,
Turbulence and Combustion Modelling, ERCOFTAC Series.

JACQUIN, L., CAMBON, C. & BLIN, E. 1993 Turbulence amplification by a shock wave and rapid
distortion theory. Phys. Fluids. A 5, 2539–2550.

KOVASZNAY, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657–674.
LARSSON, J., BERMEJO-MORENO, I. & LELE, S. K. 2013 Reynolds- and Mach number effects in

canonical shock-turbulence interaction. J. Fluid Mech. 717, 293–321.
LARSSON, J. & LELE, S. K. 2009 Direct numerical simulation of canonical shock-turbulence

interaction. Phys. Fluids 21, 126101.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.236


Turbulent energy flux across a shock 157

LEE, S., LELE, S. K. & MOIN, P. 1993 Direct numerical simulation of isotropic turbulence interacting
with a weak shock wave. J. Fluid Mech. 251, 533–562.

LEE, S., LELE, S. K. & MOIN, P. 1997 Interaction of isotropic turbulence with shock waves: effect
of shock strength. J. Fluid Mech. 340, 225–247.

MAHESH, K., LEE, S., LELE, S. K. & MOIN, P. 1995 The interaction of an isotropic field of acoustic
waves with a shock wave. J. Fluid Mech. 300, 383–407.

MAHESH, K., LELE, S. K. & MOIN, P. 1996 The interaction of a shock wave with a turbulent
shear flow, Tech. Rep. 69. Thermosciences Division, Department of Mechanical Engineering,
Stanford University, Stanford, CA.

MAHESH, K., LELE, S. K. & MOIN, P. 1997 The influence of entropy fluctuations on the interaction
of turbulence with a shock wave. J. Fluid Mech. 334, 353–379.

MENTER, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications.
AIAA J. 32 (8), 1598–1605.

MOORE, F. K. 1954 Unsteady oblique interaction of a shock wave with a plane disturbances, NACA
Tech. Rep. 1165.

MORKOVIN, M. V. 1962 Effects of compressibility on turbulent flows. In Mécanique de la Turbulence
(ed. A. Favre), pp. 367–380. CNRS.

PASHA, A. A. & SINHA, K. 2008 Shock-unsteadiness model applied to oblique shock-wave/turbulent
boundary-layer interaction. Intl J. Comput. Fluid Dyn. 22 (8), 569–582.

PASHA, A. A. & SINHA, K. 2012 Shock-unsteadiness model applied to hypersonic shock-
wave/turbulent boundary-layer interactions. J. Propul. Power 28 (1), 46–60.

POPE, S. B. 2000 Turbulent Flows. Cambridge University Press.
RIBNER, H. S. 1953 Convection of a pattern of vorticity through a shock wave, NACA Tech. Rep.

TN-2864.
RIBNER, H. S. 1954 Shock-turbulence interaction and the generation of noise, NACA Tech. Rep.

1233.
RISTORCELLI, J. R. & BLAISDELL, G. A. 1997 Consistent initial conditions for the DNS of

compressible turbulence. Phys. Fluids 9 (1), 4–6.
ROY, C. J. & BLOTTNER, F. G. 2001 Review and assessment of turbulence models for hypersonic

flows. Prog. Aerosp. Sci. 42 (7), 469–530.
RYU, J. & LIVESCU, D. 2014 Turbulence structure behind the shock in canonical shock-vortical

turbulence interaction. J. Fluid Mech. 756, R1.
SCHULEIN, E. 2006 Optical skin friction measurements in short-duration facilities. AIAA J. 44,

1732–1741.
SINHA, K. 2012 Evolution of enstrophy in shock/homogeneous turbulence interaction. J. Fluid Mech.

707, 74–110.
SINHA, K., MAHESH, K. & CANDLER, G. V. 2003 Modeling shock-unsteadiness in shock-turbulence

interaction. Phys. Fluids 15, 2290–2297.
SINHA, K., MAHESH, K. & CANDLER, G. V. 2005 Modeling the effect of shock unsteadiness in

shock-wave/turbulent boundary-layer interactions. AIAA J. 43 (3), 586–594.
SOMMER, T. P., SO, R. M. C. & ZHANG, H. S. 1993 Near-wall variable-Prandtl-number turbulence

model for compressible flows. AIAA J. 31 (1), 27–35.
THIVET, F., KNIGHT, D. D., ZHELTOVODOV, A. A. & MAKSIMOV, A. I. 2001 Importance of

limiting the turbulent stresses to predict 3D shock-wave/boundary-layer interactions. In 23rd
International Symposium on Shock Waves, Ft. Worth, TX, Paper No. 2761, p. 7.

VEERA, V. K. & SINHA, K. 2009 Modelling the effect of upstream temperature fluctuations on
shock/homogeneous turbulence interaction. Phys. Fluids 21, 025101.

WILCOX, D. C. 2008 Formulation of the k–ω turbulence model revisited. AIAA J. 46 (11), 2823–2838.
WOUCHUK, J. G., DE LIRA, C. HUETE RUIZ & VELIKOVICH, A. L. 2009 Analytical linear theory

for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Phys.
Rev. E 79, 066315.

XIAO, X., HASSAN, H. A., EDWARDS, J. R. & GAFFNEY, R. L. JR. 2007 Role of turbulent Prandtl
numbers on heat flux at hypersonic Mach numbers. AIAA J. 45 (4), 806–813.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

23
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.236

	Turbulent energy flux generated by shock/homogeneous-turbulence interaction
	Introduction
	Formulation of the problem
	An elemental two-dimensional vorticity wave
	Postshock acoustic field
	Near-field/far-field distinction

	Single-wave interaction results
	Near-field analysis
	Nature of fluctuations in the propagating regime
	Nature of fluctuations in the decaying regime

	Far-field analysis

	Three-dimensional isotropic spectrum
	Comparison with DNS data
	Effect of upstream thermodynamic fluctuations
	Upstream entropy mode
	Upstream acoustic mode

	Transport equation for turbulent energy flux
	Budget using DNS data
	Linear inviscid approximations

	Integrated budget

	Summary
	Acknowledgements
	Appendix A. Interaction of a vortical wave with normal shock
	Appendix B. Interaction of a vorticity–entropy wave with a normal shock
	Appendix C. Interaction of an acoustic wave with normal shock
	References




