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Measurements of turbulent diffusion in
uniformly sheared flow
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The diffusion of a plume of dye in uniformly sheared turbulent flow in a water tunnel
was investigated using simultaneous stereoscopic particle image velocimetry (SPIV)
and planar laser-induced fluorescence (PLIF). Maps of the mean concentration and the
turbulent concentration fluxes in planes normal to the plume axis were constructed,
from which all components of the second-order turbulent diffusivity tensor were
determined for the first time. Good agreement between the corresponding apparent
and true diffusivities was observed. The turbulent diffusivity tensor was found to
have strong off-diagonal components, whereas the streamwise component appeared
to be counter-gradient. The different terms in the advection–diffusion equation were
estimated from the measurements and their relative significance was discussed. All
observed phenomena were explained by physical arguments and the results were
compared to previous ones.

Key words: homogeneous turbulence, turbulent mixing

1. Introduction
Turbulent diffusion is the process of spreading and mixing of admixtures by

turbulent motions. It is the essential mechanism that drives dispersal of pollutants in
the environment, mixing in industrial processes, and chemical reactions in diverse
systems. Although turbulent diffusion has been studied extensively for a long time,
its analysis for engineering purposes is still based on crude models and is mostly
concerned with the prediction of the mean concentration of the admixture (Roberts
& Webster 2002).

The exact governing equation for the mean concentration C of an admixture
released passively in a turbulent flow is the Reynolds-averaged advection–diffusion
equation

∂C
∂t
+ Ui

∂C
∂xi︸ ︷︷ ︸

advection

= γ
∂2C
∂xi∂xi︸ ︷︷ ︸

molecular diffusion

+ ∂(−cui)

∂xi︸ ︷︷ ︸
turbulent diffusion

, (1.1)

where Ui is the mean velocity vector, γ is the molecular diffusivity, and cui is
the concentration–velocity covariance or turbulent mass flux vector. Even if the
mean velocity field were specified, this equation would be open in C. One type of
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closure is possible by the use of a model for the turbulent mass flux vector in terms
of C. The most commonly used model is the first-order gradient transport model
(Arya 1999)

− cui =Dij
∂C
∂xj
, (1.2)

where Dij is the turbulent, or ‘eddy’, diffusivity tensor, which has nine components,
the values of which depend on the turbulent field. The gradient transport model
is based on the assumptions that the macroscopic characteristic lengthscale of the
scalar is much greater than that of the transporting mechanism (i.e. the turbulence)
and that the flow properties are approximately homogeneous over the turbulence
lengthscale (Corrsin 1975). Despite the fact that these assumptions are not satisfied
in most cases of interest, the gradient transport model is known to provide fairly
accurate predictions in a variety of situations (Sreenivasan, Tavoularis & Corrsin
1982). Application of (1.2) requires empirical knowledge of all nine components
of Dij. However, measurements of these components are quite scarce, due to the
difficulty of measuring simultaneously the local magnitudes and directions of both
the mean concentration gradient and the turbulent mass flux vector. Theoretical
expressions relating Dij to turbulent characteristics have also been suggested; these
will be discussed in following sections. Some models simplify the turbulent diffusivity
tensor by assuming that it is diagonal or isotropic, but the use of such simplified
models in shear flows is known to introduce additional errors.

The objective of the present work is to study turbulent diffusion in a shear
flow generated in the laboratory and specifically to measure all components of
the turbulent diffusivity tensor in this flow. The scalar property that has been
measured is the concentration of dye in a plume released nearly passively from
a thin tube in uniformly sheared flow (USF). The statistical properties of the velocity
and scalar concentration fields were measured simultaneously on cross-sectional
planes using stereoscopic particle image velocimetry (SPIV) and planar laser-induced
fluorescence (PLIF). Thus, two-dimensional maps of the turbulent velocities and
scalar concentration were obtained, as well as maps of the three concentration–velocity
covariances; from these maps, the values of all components of the turbulent diffusivity
tensor were determined directly by fitting (1.2) to the data. This is the first time all
nine components of the turbulent diffusivity tensor have been determined together
experimentally. This article will also present comparisons of the experimental results
to theoretical estimates of the turbulent diffusivities.

2. Literature on turbulent diffusion
The study of turbulent diffusion originated with the work of Taylor (1921), who

considered the one-dimensional motion of an individual fluid particle released from
a fixed point in stationary isotropic turbulent flow, neglecting molecular diffusion. He
demonstrated that the variance of an ensemble of particle displacements following time
t from their release should depend only on the turbulence properties as

X2(t)= 2v2

∫ t

0
(t− ξ)R(ξ)dξ, (2.1)

where v represents the Lagrangian velocity fluctuations and R(ξ) is the Lagrangian
correlation coefficient. Taylor further identified two regimes of diffusion which would
occur in the limits of short t and long t, known as the turbulent convection and
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490 C. Vanderwel and S. Tavoularis

turbulent diffusion regimes (Anand & Pope 1985). In these regimes, (2.1) would be
simplified as, respectively,

X2(t)≈ v2t2, for t�T , (2.2)
X2(t)≈ 2v2T t, for T � t, (2.3)

where T is the Lagrangian integral timescale of the turbulence. It follows that the
rate of dispersion, defined as

1
2

dX2(t)
dt
= v2

∫ t

0
R(ξ)dξ, (2.4)

has the following limits for the near- and far-field regimes:

1
2

dX2(t)
dt
≈ v2t, for t�T , (2.5)

1
2

dX2(t)
dt
≈ v2T , for T � t. (2.6)

This implies that the rate of dispersion would be zero at the moment of particle
release, would initially increase linearly with dispersion time, and would eventually
reach an asymptote which would depend only on the Lagrangian integral timescale of
the turbulence and the variance of the Lagrangian velocity fluctuations.

A theoretical analysis of three-dimensional turbulent diffusion was first presented
by Batchelor (1949), who defined a three-dimensional diffusion coefficient tensor
(dXiXj/dt)/2 in terms of the mean Lagrangian displacement tensor XiXj(t) of a
particle transported by homogeneous turbulence. He further demonstrated that, in
homogeneous, non-sheared turbulence and for a Gaussian particle displacement
distribution, (dXiXj/dt)/2 would be equal to the turbulent diffusivity tensor Dij, as
defined in (1.2). Batchelor also showed that, in isotropic turbulence, Dij would be
proportional to the identity tensor (Kronecker’s delta); as in Taylor’s theory, the
magnitudes of the components of Dij would increase with dispersion time and would
eventually reach asymptotes that depend only on the Lagrangian integral timescales
of the turbulence Tij and the intensities of the Lagrangian velocity fluctuations.

Riley & Corrsin (1974) expanded Batchelor’s analysis for homogeneous turbulent
shear flow and noted that the normal diffusivities were unequal and that some of the
cross-diffusivities were not zero. As with the theories of Taylor and Batchelor, the
magnitudes of the turbulent diffusivities were shown to depend on the Lagrangian
integral timescales of the turbulence Tij and the intensities of the Lagrangian velocity
fluctuations. Corrsin (1975) suggested that the asymptotic values of the turbulent
diffusivities could be estimated from Eulerian properties, as surrogates for their
Lagrangian counterparts, for example as D22≈ u′22 T11. Additional theoretical arguments
have been made by Tavoularis & Corrsin (1985), Rogers, Mansour & Reynolds (1989)
and Younis, Speziale & Clark (2005) to derive asymptotic expressions for the turbulent
diffusivity tensor components in shear flows. These theories will be revisited in § 5.4.

A classical approach for measuring turbulent diffusion in the laboratory or in
the environment is to relate the rate of growth of puffs and plumes generated in
the turbulent flow to an apparent turbulent diffusivity. The plume generated by a
continuously emitting source may be considered as the result of superposition of
clouds emitted successively by an instantaneous source. For a plume of particles
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emitted from a point source in a turbulent flow with a uniform mean velocity U1 in
the x1 direction, the apparent diffusivities in the two normal directions x2 and x3 are
defined as

K2 = U1

2
dσ 2

2

dx1
, K3 = U1

2
dσ 2

3

dx1
, (2.7a,b)

where σ2 and σ3 are the corresponding characteristic plume widths. If, and only if,
the streamwise dispersion were negligible, the apparent plume diffusivities K2 and K3

would be equivalent to the diffusion coefficients 1
2 dX2

2/dt and 1
2 dX2

3/dt (Arya 1999),
and thus to D22 and D33.

Further assuming that the two apparent turbulent diffusivities are uniform in space
and equal to each other (K2 = K3 = K) leads to the well-known Gaussian plume
formula (Arya 1999) for the mean concentration of a continuous plume in uniform
mean flow

C= Q
4πKx1

exp
[
−U1

(
x2

2 + x2
3

4Kx1

)]
. (2.8)

According to this solution, the maximum concentration of the plume would decay as
x−1

1 and the plume width would grow as x0.5
1 .

Examples of investigations of turbulent diffusion in the environment include early
observations of anti-aircraft shell-bursts (Roberts 1923; Sutton 1932) and plumes
of lycopodium spores released in the atmosphere (Hay & Pasquill 1959) and dyes
released in a lake (Csanady 1963). Examples of relevant laboratory studies include
investigations of diffusion behind a line source in grid turbulence (Warhaft 1984;
Anand & Pope 1985; Stapountzis et al. 1986), a line source in USF (Tavoularis &
Corrsin 1981; Karnik & Tavoularis 1989), a line source in channel flow (Lepore &
Mydlarski 2011), a point source in USF (Nakamura et al. 1986), and a point source
in channel flow (Webster, Rahman & Dasi 2003; Rahman & Webster 2005). In these
actual turbulent flows, the turbulent kinetic energy and lengthscale would generally
evolve downstream and so would the diffusivities of superimposed scalar plumes. As
a result, (2.8) would not be applicable and the plume growth rate would be expected
to deviate from the previously mentioned power law. Experimental studies of plumes
in grid turbulence and shear flows have found that the plume widths followed power
laws but with powers different from the theoretical value of 0.5. This discrepancy
between the simplified solutions and actual turbulent flows highlights the need for
further studies of turbulent diffusion and refined turbulent diffusion models.

Individual components of the turbulent diffusivity tensor, as defined by (1.2),
can be calculated from measurements of corresponding mean scalar derivatives and
velocity–scalar covariances. Most experimental studies that report such results have
taken them at locations where the scalar gradient was nearly aligned with one of the
physical mean flow axes. Tavoularis & Corrsin (1981) examined a case in which a
uniform mean scalar gradient was superimposed on USF, with both gradients in the
x2 direction, and measured D12/D22 ≈−2.2. Tavoularis & Corrsin (1985) examined a
variant of this case, in which the mean scalar gradient was in the x3 direction, and
found D33/D22 ≈ 1.6. Karnik & Tavoularis (1989) studied the plume of a line source
in USF, where the mean scalar gradient was nearly aligned with the x2 direction and
reported that D12/D22 ≈−2.0 and D22/(u′2L11,1)≈ 0.1.

The literature includes several measurements of scalar turbulent diffusivities in
various inhomogeneous shear flows, as for example in turbulent jets (Lemoine, Wolff
& Lebouche 1996; Borg, Bolinder & Fuchs 2001; Chang & Cowen 2002). In general,
such diffusivities were determined from mean scalar and turbulent scalar flux profiles
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Rotameter
with valve

Pressurized
dye reservoir Flow separator

Dye injection tube Guide wires

PLIF camera

SPIV cameras

Shear generator
Laser

x2

x1

x3U1

FIGURE 1. Sketch of the experimental apparatus and main instrumentation in the water
tunnel test section.

in a single direction, with no consideration given to the possible three-dimensionality
of the mean scalar field and the turbulence inhomogeneity. In consequence, it seems
plausible that such scalar diffusivities would depend on the orientation, as well as
location, of the data profiles used and, indeed, Borg et al. (2001) found drastically
different diffusivity values in the radial and axial directions in a jet. Consequently,
scalar diffusivity measurements in inhomogeneous shear flows are deemed to be
specific to particular flow geometries and experimental conditions and should not be
considered for general use in other turbulent flows.

A review of past literature has identified no measurements of all components of the
turbulent diffusivity tensor that were taken at the same time in the same flow. The
present study aims at filling this gap in the literature.

3. Apparatus and experimental procedures
The experiments were conducted in a free-surface, recirculating water tunnel, having

a test section with a width of 0.53 m, a length of approximately 4 m, and filled to
a depth of 0.46 m (figure 1). USF was generated by a perforated plate of varying
solidity (‘shear generator’), inserted at the entrance to the test section and followed
by an array of parallel plates spaced by a distance L= 25.4 mm (‘flow separator’).

A neutrally buoyant aqueous solution of Rhodamine 6G fluorescent dye with a
concentration CS = 0.3 mg l−1 was injected into the flow through a fine tube having
a tip with an inner diameter of 1.83 mm and a wall thickness of 0.15 mm. To
minimize its disturbance to the flow, the tube was inserted in the stream through
the flow separator and was aligned with the flow section centreline so that the
dye was discharged at approximately 2 m downstream of the flow separator, where
the turbulence structure of the USF was fully developed. The injection tube was
tethered by 50 µm thick guide wires, and was free of any movement or vibrations.
The dye solution was contained in a reservoir that was pressurized by compressed
air through a pressure regulator. The dye solution flow rate through the injection
tube was measured by a rotameter and adjusted with a built-in needle valve so that
injection created the least possible flow disturbance. The optimal flow rate was found
to be Q = 0.97 ± 0.05 ml s−1 (see appendix). The dye molecular diffusivity was
taken to be γ = (4.0± 0.3)× 10−4 mm2 s−1 (Gendron, Avaltroni & Wilkinson 2008),
which corresponds to a Schmidt number Sc ≡ ν/γ = 2500 ± 300. Rhodamine 6G
has an absorption peak at 525 nm, which is close to the emission wavelength of the
Nd:YAG laser (532 nm); it also has an emission peak at 554 nm (Würth et al. 2012),
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Turbulent diffusion in shear flow 493

which is sufficiently different from the laser emission peak for this substance to be
well suited for PLIF measurements. The camera used to measure the fluorescence
was fitted with an optical long-pass filter with a sharp cutoff at 540 nm, so as to
be sensitive only to the fluorescence emitted by the dye and to block essentially all
incident light produced by the laser and ambient light. Dye solutions were prepared
by mixing Rhodamine 6G powder (A&C American Chemicals Ltd, CAS: 989-38-8,
Montreal, Canada) with distilled water.

Velocity and concentration measurements were taken simultaneously in cross-
sections of the flow normal to the streamwise direction, that were illuminated by a
light sheet created from the output of a Nd:YAG pulsed laser. Velocity measurements
were performed using a two-camera SPIV system (LaVision GmbH, FlowMaster
Stereo-PIV, Göttingen, Germany). Concentration measurements were obtained using
a third camera (PCO AG, pco.edge, Kelheim, Germany), which had a capacity of
5.5 MP, a pixel depth of 16 bits, and was synchronized with the SPIV system and
the laser pulse triggering circuit. All cameras were fitted with Scheimpflug adapters,
so that the entire measurement plane would be in focus, although viewed by the
camera at an inclination. Liquid prisms were used to eliminate horizontal astigmatism
that would have been introduced in the images if the cameras had viewed the flow at
an inclination of 45◦ with respect to the glass wall (Prasad & Jensen 1995; Adrian
& Westerweel 2011). The field of view of the measurements was rectangular with
an approximately 120 mm vertical side and a 200 mm horizontal side. The fields
of view of the three cameras were carefully aligned using a two-sided calibration
target (LaVision GmbH, calibration plate no. 22), which was mounted in the image
plane before the experiment. Images of the calibration plate taken with each camera
were then processed by the software provided by the manufacturer (LaVision GmbH,
DaVis 7.2) to create image mapping functions that ensured that the three images
were coincident. The mapping functions were then fine-tuned using a self-calibration
process applied to images of particles illuminated by the laser sheet taken with each
camera, in order to correct for any misalignment between the laser sheet and the
calibration target. Following this calibration, the average misalignment of the cameras
was estimated to be 3.4 pixels, which corresponds to approximately 0.2 mm in the
field of view.

Measurements were obtained in five cross-sectional planes, located at dimensionless
distances from the source equal to x1/L= 5, 12, 20, 28, and 35. The in-plane spatial
resolutions of the measured velocity and concentration fields were, respectively, one
vector per 1.15 mm × 1.15 mm flow area and one scalar sample per 0.05 mm ×
0.05 mm area. The cross-sectional profile of the laser intensity had approximately
the shape of a Gaussian distribution with a standard deviation of 1 mm, which,
considering the 45◦ viewing angle, corresponds to a resolution along the line of
sight of the camera of approximately 2.8 mm. The time delay between pulses for
each SPIV measurement was 1500 µs. During the interval between the two pulses, a
particle travelling with the centreline flow velocity of 0.18 m s−1 would be displaced
by a streamwise distance of 0.27 mm, which satisfies well the SPIV requirement
of being much smaller than the laser sheet thickness. Pulse-to-pulse laser power
fluctuations had a standard deviation of approximately 3 %, which was deemed to be
acceptable for PLIF measurements. Concentration and velocity measurements were
sampled at a rate of 2 Hz. Ensemble averages were calculated from 500 samples
acquired at each of the positions x1/L = 5, 12, and 20, and from 1000 samples at
x1/L = 28 and 35. Differences between plume widths computed by averaging 500
samples at x1/L= 28 and 35 and those computed by averaging 1000 samples had a
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standard deviation of 3 %, which is deemed to be sufficiently small for considering
averages of 500 samples to be essentially convergent.

The concentration C of dye measured by each diode (i.e. each pixel) of the camera
was determined as a linear function of the radiant power flux emitted by the dye (‘the
fluorescence’) in the plane of the laser sheet. The coefficients in this function were
determined independently for each pixel of the camera from a calibration measurement
in a small calibration tank, placed in situ and filled with a dye solution having a
uniform concentration Ccal=0.075 mg l−1. Pixel-by-pixel calibration accounted for the
effects of spatial variation in the laser sheet and optical components, lens vignette, and
any pixel-to-pixel offsets or gain variations in the camera.

Concentration measurement errors and uncertainties in a slender plume using
PLIF are the subject of a separate publication (Vanderwel & Tavoularis 2014a). In
that work we quantified several hitherto disregarded sources of error, which may
potentially contaminate significantly fluorescent dye concentration measurements by
PLIF. One source of error is secondary fluorescence, which is the result of the
absorption and re-emission of primary fluorescence by dye both within and outside
the laser sheet. Secondary fluorescence was at least one, and usually two or more,
orders of magnitude weaker than the primary fluorescence emitted by the dye excited
by the laser sheet, but its contributions to the recorded radiation power flux were
sufficient to bias both the calibration and the instantaneous concentration maps, if
they had remained unaccounted for. We derived and applied novel methods to remove
the effects of secondary fluorescence from the camera calibration results and the
instantaneous concentration maps and also devised an effective procedure to identify
the boundaries of the in-sheet dye regions in the instantaneous concentration maps.
We further demonstrated that secondary fluorescence had a very weak effect on the
measurement of concentration fluctuations and so we are confident that the bulk of
results presented in this article are insensitive to this undesirable input. Another source
of uncertainty, which applies to PLIF measurements in all flows but is exacerbated in
very slender plumes, is the fact that dye concentration is not uniform along the entire
thickness of the laser sheet, but part of the fluid across this sheet may sometimes
contain little or no dye. This effect would bias negatively instantaneous concentration
measurements that were based on calibration of the camera in a fluid with a uniform
concentration. We have analysed this effect and demonstrated that such bias would be
negligible for distances from the source beyond x1/L≈ 20. We also found that both
secondary fluorescence and dye-non-uniformity had negligible effects on the values
of the plume width, lengthscales and turbulent diffusivities reported in this article.

4. Results
4.1. The velocity field

The USF and its turbulence structure in the same facility have been documented
previously by Vanderwel & Tavoularis (2011), to be referred to as VT in the
remainder of this article. New velocity measurements were taken on transverse planes
at several streamwise locations in the plume. The origin of coordinates is set at the
centre of the injection tube exit face (figure 1), and the term ‘centreline’ refers to the
x1 axis. The mean centreline velocity Uc and the mean velocity gradient dU1/dx2 in
the undisturbed flow were essentially constant. Vertical profiles of the mean velocity
and the velocity standard deviation in the (x1, x2) plane are presented in figure 2. Near
the exit of the dye injector, the mean and turbulent velocities were slightly disturbed;
however, further downstream the mean velocity profile became nearly linear and the
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FIGURE 2. Transverse profiles of (a) the mean streamwise velocity in the plume
(solid line), together with the linear function Uc + x2dU1/dx2 (dashed line), and (b) the
r.m.s. turbulent velocity components in the plume (u′1/Uc: solid line, u′2/Uc: dotted line,
and u′3/Uc: dashed line); x3/L= 0.
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0.02
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FIGURE 3. Streamwise development of the r.m.s. velocity fluctuations compared to LDV
measurements from Vanderwel & Tavoularis (2011) (VT).

turbulence became nearly transversely homogeneous, in agreement with the VT results
and those in other USF studies. Specifically, for x1/L= 20, 28, and 35, measurements
of the mean velocity deviated from the fitted lines by less than 2.5 % in the field of
view and measurements of the root-mean-square (r.m.s.) turbulent velocity components
had a standard deviation of approximately 5 %; these deviations are in line with the
observations of VT in fully developed USF and are sufficiently small for the flow to
be considered as nearly homogeneous. The streamwise evolutions of the normalized
r.m.s. turbulent velocities are plotted in figure 3, together with those reported by VT
at a slightly lower water tunnel speed. It is noted that the uncertainty in the VT
measurements was measurably lower than the present one, because VT took averages
over long time histories of laser Doppler velocimetry (LDV) signals. Near the exit
of the dye injector, the turbulent velocities appear to be slightly stronger than the
VT values; however, at the other locations the corresponding measurements were
comparable.

The average turbulent kinetic energy k was essentially the same as that measured
by VT, which justifies the use of the kinetic energy dissipation rate ε values reported
by VT for the present flow as well. In USF, the turbulent kinetic energy grows
exponentially from an effective origin far upstream of the plume origin. Table 1
summarizes parameters of interest at x1/L = 35. In this table, the turbulence
anisotropies are defined as mij = uiuj/2k − δij/3, where δij is Kronecker’s delta;
L11,1 is the streamwise integral lengthscale; λ11 is the streamwise Taylor microscale,
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FIGURE 4. Measured autocorrelation functions on the (x2, x3) plane, at x1/L= 28.

Uc = 0.18 m s−1 dU1/dx2 = 0.59 s−1

k= 86 mm2 s−2 ε = 7.6 mm2 s−3

m11 = 0.12 m22 =−0.12
m33 =−0.01 m12 =−0.11

L11,1 = 30.5 mm λ11 = 17 mm
η= 0.6 mm ηB = 0.012 mm

S∗ = 13.4 Rλ11 = 150
νT = 58 mm2 s−1

TABLE 1. Measured or estimated mean and turbulence parameters at x1/L= 35.

estimated as λ11 ' (24νk/ε)1/2 (de Souza, Nguyen & Tavoularis 1995); η= (ν3/ε)1/4

is the Kolmogorov microscale; ηB = η/Sc1/2 is the Batchelor microscale; S∗ ≡
(2k/ε)(dU1/dx2) is the shear rate parameter; Reλ11 = u′1λ11/ν is the turbulence
Reynolds number; and νT ≡ −u1u2/(dU1/dx2) is the turbulent viscosity, which grew
to the reported value from a value that was 41 % lower at x1 = 0.

4.2. Velocity integral lengthscales
Theoretical models of turbulent diffusion make use of various integral lengthscales of
the turbulent fluctuations. Previous measurements in USF have been mainly limited
to the streamwise lengthscales of different velocity components, obtained from single-
point laser-Doppler or hot-wire time histories with the use of Taylor’s approximation
(e.g. Tavoularis & Corrsin 1981; VT). However, it is the transverse lengthscale of the
transverse velocity, and the corresponding spanwise scale, that are relevant to transport
and diffusion, and these scales are not easily measurable by laser-Doppler and hot-
wire anemometries. The current SPIV measurements provide an excellent opportunity
to measure directly the transverse and spanwise velocity autocorrelation functions and
integral lengthscales. The measured components of the autocorrelation function tensor,
defined as

Rαα,β(r)= uα(xβ)uα(xβ + r)

u2
α(xβ)

, (4.1)

are presented in figure 4. These were computed from SPIV images on the (x2, x3)

plane. The corresponding integral lengthscales were calculated by integrating the
corresponding autocorrelation functions up to their first zero-crossing (O’Neill et al.
2004). Additional lengthscales were calculated from planar PIV (PPIV) measurements
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FIGURE 5. (a,b) Representative maps of the normalized instantaneous concentration
C/(CS A) at x1/L= 28, with a blown-up view of part of (a) also showing superimposed an
in-plane velocity vector map; (c) map of the normalized mean concentration C/(CS A), also
at x1/L = 28, with isocontours of the fitted two-dimensional Gaussian function indicated
by ellipses.

in the (x1, x2) plane. The integral lengthscales were found to grow downstream;
however, within the reported range of the plume, they only changed by approximately
5–10 %. The average value of L11,1 was approximately 1.2L, in agreement with the
LDV measurements of VT. The average ratios of the measured integral lengthscales
are summarized in table 2. The values of these scales demonstrate a strong anisotropy
of the turbulence in the energy-containing range.

4.3. The concentration field
Two representative instantaneous concentration maps are presented in figure 5(a,b); in
one case (figure 5a), the blown-up part also shows the in-plane velocity vector map,
which, as mentioned previously, had a spatial resolution that was much lower than that
of the concentration. The maps clearly show the presence of mushroom-type patterns,
which are evidence of horseshoe vortices in the USF (see VT). The plume was
observed to meander significantly within the field of view (Vanderwel & Tavoularis
2014b), with the result that large portions of the instantaneous maps had zero
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FIGURE 6. Transverse profiles of (a) the intermittency factor, (b) the normalized mean
concentration, and (c) the normalized standard deviation of the concentration fluctuations.

L11,2

L11,1

L11,3

L11,1

L22,1

L11,1

L22,2

L11,1

L22,3

L11,1

L33,1

L11,1

L33,2

L11,1

L33,3

L11,1

SPIV 0.54 0.39 — 0.55 0.31 — 0.30 0.49
PPIV 0.51 — 0.58 0.60 — — — —

TABLE 2. Average ratios of the integral lengthscales.

concentration, whereas the areas coincident with the dye plume had relatively high
concentrations that often exceeded the peak time-averaged concentration on that plane
by a factor of 20. The intermittency of the local concentration can be measured by
the intermittency factor γc, which is defined as the fraction of time during which the
concentration was non-zero (Wilson, Robins & Fackrell 1985). Close to the plume
source, at x1/L = 5, the intermittency on the plume axis was moderate, as the peak
value of γc was approximately 0.4. However, for x1/L> 12, the peak γc remained low,
at approximately 0.23; in this range, the transverse profile of the intermittency factor
was self-similar and had an essentially Gaussian shape (see figure 6a). Strong scalar
intermittency is specific to the present plume, which is relatively slender and also
contains a dye with an extremely small molecular diffusivity. These specific conditions
differentiate the present configuration from thermal plumes in wind tunnels (e.g.
Tavoularis & Corrsin 1981; Karnik & Tavoularis 1989; Lepore & Mydlarski 2011).

The values at each pixel of all recorded instantaneous concentration maps were
averaged to produce the corresponding mean concentration maps. It was found
that, away from regions containing dyed water, the measured concentration was
approximately 2.5× 10−4CS, which was deemed to be the background concentration
‘noise’ level. Each mean concentration map was fitted by a two-dimensional Gaussian
function

C
CS
= A exp

[
−(x2 −µ2)

2

2σ 2
2
− (x3 −µ3)

2

2σ 2
3

]
, (4.2)

where A is a dimensionless amplitude, µ2 and µ3 are the transverse and spanwise
coordinates of the mean plume axis, and σ 2

2 and σ 2
3 are the corresponding second

central moments of the concentration distribution; all these parameters are functions
of streamwise location x1. The parameters A, µ2, µ3, σ2 and σ3 were determined using
the MATLAB Curve Fitting Toolbox (MathWorks, Natick, MA, USA) as those that
resulted in the best fit to the mean concentrations measured at each pixel. The curve
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FIGURE 7. (a) Streamwise evolutions of the half-widths σ2 and σ3 of the mean
concentration maps and the half-widths σ ′2 and σ ′3 of the corresponding standard deviation
maps; all widths have been normalized by L; a dashed line indicates the power law
0.072[(x1 − x0)/L]0.75 and a dotted line indicates the power law 0.098[(x1 − x0)/L]0.75.
(b) Streamwise evolutions of A and A′, which are, respectively, the dimensionless
amplitudes of the Gaussian fits to the mean concentration maps and the corresponding
standard deviation maps; a dashed line indicates the fitted power law A = 0.18
[(x1 − x0)/L]−1.4 and a dotted line indicates A′ = 0.15[(x1 − x0)/L]−1.0; in all cases the
virtual origin was x0 = 2.0L.

fitting used an iterative least-squares algorithm (Trust-Region Reflective Newton)
starting from the initial guesses A= 0.01, σ2 = 10, σ3 = 10, µ2 = 0, and µ3 = 0 and
restricting the parameters A, σ2, and σ3 to positive values. A representative mean
concentration map C/CS is provided in figure 5(c), together with isocontours of the
fitted two-dimensional Gaussian function. Figure 6(b) shows normalized transverse
profiles of the mean concentration. This figure clearly shows that the concentration
noise was very small compared to the peak mean value. Moreover, it is evident that
the mean concentration distribution could be fitted fairly well by Gaussian functions
at all measurement planes, with the possible exception of the case at x1/L= 5, where
the measured concentration peak slightly exceeded the Gaussian value, presumably
due to persistence of injection effects.

The standard deviations c′ of the concentration values at each pixel of all maps
recorded on each plane were also calculated and fitted by Gaussian functions as

c′

CS
= A′ exp

[
−(x2 −µ′2)2

2σ ′22
− (x3 −µ′3)2

2σ ′23

]
, (4.3)

where the parameters A′, µ′2, µ′3, σ ′2 and σ ′3 were determined as those that created the
best fits to the measured c′ at every pixel, using the same least-squares algorithm as
for the mean concentration maps and starting with the same initial guesses. Transverse
profiles of the normalized c′ are presented in figure 6(c), which makes it evident that
Gaussian fits were fairly good at all locations.

In the following, σ2 and σ3 will be referred to, respectively, as the transverse
and spanwise half-widths of the mean concentration map. Similarly, σ ′2 and σ ′3
will be referred to, respectively, as the transverse and spanwise half-widths of the
concentration fluctuation map (i.e. of c′). The streamwise evolutions of the various
plume half-widths are shown in figure 7(a). The half-widths of the fluctuation
maps were greater than those of the corresponding mean maps. All half-widths
grew monotonically downstream and could be fitted by power laws, with powers
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equal to 0.75. The spanwise half-widths were consistently larger than the transverse
ones, with σ3/σ2 and σ ′3/σ

′
2≈ 1.25. This difference is attributed to the fact that u′3> u′2

in USF.
The fitted amplitudes A and A′ are plotted in figure 7(b). Both amplitudes decreased

as the plume spread, following the power laws A = 0.18[(x1 − x0)/L]−1.4 and
A′ = 0.15[(x1 − x0)/L]−1.0, with the same virtual origin of x0 = 2.0L. The decrease
in the mean concentration indicates that the plume is being mixed with free-stream
fluid, whereas the decrease in the standard deviation indicates that the plume tends
to become more homogeneous (Webster et al. 2003). The variation of the ratio A′/A
depends on the evolution of the intermittency factor, as can be demonstrated by the
following idealized analysis. Consider a binary signal with values 0 and 1, as an
idealized model of the concentration variation in the present plume. The probability
distribution of such a signal, known as the Bernoulli distribution, has a mean equal to
γc and a standard deviation equal to

√
γc(1− γc). For γc < 0.5, the standard deviation

of the binary random variable would always exceed its mean, in conformity with
our observation in the plume. Furthermore, as the intermittency factor decreases, the
mean of the binary random variable would decrease at a faster rate than its standard
deviation, which is also consistent with the increasing ratio A′/A along the axis of
the plume, where the peak γc decreased from 0.4 to 0.23 between x1/L= 5 and 12.

The estimated displacements of the transverse plume axis position µ2 and µ′2
increased gradually to a few millimetres above the x1 axis far downstream of the
source. In view of the slight streamline displacement due to boundary layer growth
on the water tunnel bottom, the uncertainty in alignment of the measurement planes
at different downstream positions and the effect of finite population of samples used
for calculating these values, it would be unwise to attach much significance to this
observation. For this reason, we will refrain from claiming that a systematic effect
of the mean shear is to displace the plume axis in the direction of the mean velocity
gradient, even slightly so. It is noted that Tavoularis & Corrsin (1981), Nakamura
et al. (1986) and Karnik & Tavoularis (1989) reported that their plume axes drifted
towards the lower velocity region of their USF; all these displacements were also
relatively small. The estimated displacements of the spanwise plume axis position
µ3 and µ′3 were also found to reach values of a few millimetres far downstream. In
conformity with the previous discussion, we will also attribute this to uncertainties
and not to a systematic asymmetry in the flow.

4.4. Concentration–velocity correlations
The covariances of the concentration and the velocity components were calculated
following resampling of the SPIV measurements to the same grid as the PLIF
ones. Interpolated values in the velocity field were determined by cubic spline
interpolation of the values at neighbouring grid points, implemented using the
scientific computation package MATLAB. As the spatial resolution of the velocity
field was comparable to the Kolmogorov lengthscale of the flow, velocity changes
between measurement points would be relatively small, which justifies interpolation
between grid points; moreover, we found that maps of the concentration–velocity
covariance were insensitive to the choice of interpolation scheme.

Because of the extremely strong concentration intermittency in the current plume,
all correlation coefficients of the concentration had lower magnitudes compared with
those obtained in flows with more homogeneous scalar fields. Following Wilson et al.
(1985), we defined the mean conditional concentration CP as the average of only
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FIGURE 8. Transverse profiles of the velocity–concentration correlation coefficients
corrected by the local intermittency factor γc, compared with corrected measurements from
Karnik & Tavoularis (1989) in a thermal plume at x1/L= 24 (•), 48 (◦), 84 (4).

non-zero values. This implies that the mean conditional concentration is related to the
mean concentration as

CP = 1
γc

C. (4.4)

By extending this relationship to concentration fluctuations, we may estimate a
conditional concentration–velocity correlation coefficient as

[
cuα
c′u′α

]

P

≈ 1
γc

cuα
c′u′α

. (4.5)

When comparing flows with vastly different scalar intermittencies, it seems more
appropriate to compare conditional rather than conventional values. Transverse profiles
of the correlation coefficients cuα/c′u′α, corrected by the local intermittency factor γc,
are presented in figure 8. For x1/L> 20, the profiles were self-similar, and appeared
to be essentially linear. Unlike conventional correlation coefficients, the conditional
ones in the present plume are in good agreement with measurements in a much
less intermittent thermal plume (Karnik & Tavoularis 1989), which were corrected
assuming that their plume had an intermittency factor of 1 on the plume centreline,
approached zero at the plume edges, and also followed a Gaussian profile. In general,
cu1/c′u′1 and cu2/c′u′2 had opposite signs, and reversed sign near the plume axis.
Lastly, we note that while the profiles of cu2/c′u′2 were nearly symmetric, the profiles
of cu1/c′u′1 all had slightly lower magnitudes in the lower half of the plume than
in the upper half; this difference is associated with the presence of counter-gradient
streamwise diffusion and will be discussed in detail in § 5.5.

4.5. Estimates of turbulent diffusivities
In the present experiments, cross-sectional maps of all components of the turbulent
mass flux vector −cui were obtained following resampling and interpolation of the
SPIV measurements to the same grid as the PLIF ones. Cross-sectional maps of
all components of the mean concentration gradient ∂C/∂xi were also independently
determined by analytical differentiation of (4.2). This permitted the calculation of all
nine components of the turbulent diffusivity tensor Dij as those values that resulted
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FIGURE 9. (Colour online) (a–c) Maps of the calculated mean concentration derivatives
at x1/L = 28, normalized by CS/L and (d–f ) maps of −cui measurements at x1/L = 28,
normalized by CSUc. Black lines mark contours of the corresponding components of
Dij∂C/∂xj, also normalized by CSUc; the symbols + and − indicate regions with positive
and negative values. (g–i) Cross-sections of the −cui maps with profiles of the appropriate
individual terms of Dij(∂C/∂xj) and their sums, all normalized by CSUc.

in the best fit between the left- and right-hand sides of (1.2) over each set of
corresponding maps. The cross-components D13, D23, D31 and D32 should vanish
because of the symmetry of the Reynolds stress tensor and the scalar field about
the (x1, x3) plane. Moreover, preliminary calculations confirmed that the effects of
these components were indeed negligible in the present flow. Consequently, these
diffusivities were set to zero before calculating the other components.

Representative maps of the calculated mean scalar derivatives at x1/L = 28 are
presented in figure 9(a–c) and figure 9(d–f ) shows representative maps of scalar flux
measurements, together with contours of the corresponding components of Dij∂C/∂xj.
Figure 9(g–i) shows cross-sections of the scalar flux maps, together with profiles of
the appropriate individual terms of Dij∂C/∂xj and their sums, which demonstrate that
(1.2) was consistent with all measurements.

The streamwise evolution of the estimated D22 is plotted in figure 10(a), whereas
figure 10(d–g) shows the evolutions of the ratios of the remaining non-zero
diffusivities and D22. It may be seen that there is considerable uncertainty in these
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FIGURE 10. (a) The estimated turbulent diffusivity D22/UcL (symbols) and the apparent
diffusivity K2/UcL (solid line); (b) D22/u′2L11,1 (symbols) and its estimated asymptote
(dotted line), with L11,1 ≈ L22,2/0.55; (c) estimates of the turbulent Schmidt number
ScT = νT/D22 and the apparent Schmidt number νT/K2 (solid line); (d–g) ratios of the
turbulent diffusivities (symbols) and their estimated asymptotes (dotted lines); • and F
indicate diffusivities estimated from (1.2) and (4.6), respectively.

results, much of which is attributed to the uncertainty in the estimated streamwise
scalar derivative.

Secondary estimates of the turbulent diffusivities were obtained by assuming that
gradient transport also applies to third-order concentration–velocity covariances, as
(Karnik & Tavoularis 1989)

− c2ui =Dij
∂c′2

∂xj
, (4.6)

and estimating maps of ∂c′2/∂xj by analytical differentiation of (4.3). These estimates,
obtained as the best fits of maps of −c2ui to sets of maps of ∂c′2/∂xj, have also
been plotted in figure 10. It can be seen that the two estimates of each diffusivity
are generally close to each other, although it may be noted that the latter estimates
have higher uncertainty than the former ones.

The turbulent Schmidt number ScT ≡ νT/D22 decreased along the plume (see
figure 10c) and approached an asymptote of approximately 1.3 for x1/L > 28. This
value is somewhat larger than the value of 1.1 measured by Tavoularis & Corrsin
(1981) and the conventional value near unity (Pope 2000).

The apparent diffusivities K2 and K3 were calculated by differentiating the power
laws fitted to the corresponding half-widths, according to (2.7). This operation also
provided power laws for K2 and K3, as, for example, K2/(UcL)=0.0025[(x1− x0)/L]0.5,
where, as previously, the virtual origin was set as x0 = 2.0L. The apparent diffusivity
ratio was K3/K2= (σ3/σ2)

2= 1.56. The evolution of the transverse apparent diffusivity
K2/(UcL), plotted in figure 10(a), is fairly consistent with the measured values of
D22/(UcL), although it tends to slightly overshoot the measurements in the far field.
Similarly, the apparent Schmidt number νT/K2, plotted in figure 10(c), is consistent
with the values determined using D22. Furthermore, the ratio K3/K2 is close to
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measurements of D33/D22, as shown in figure 10(g). These observations support the
use of the apparent diffusivities K2 and K3 as surrogates for the turbulent diffusivities
D22 and D33.

Taylor predicted that the turbulent diffusivity would grow to a state in which
it would depend only on Lagrangian turbulence properties when T � t. For a
continuously released plume in steady flow, this state would be approached at a
downstream distance that would be comparable to the streamwise Lagrangian integral
lengthscale L11. Although we have no measurements of this lengthscale in the
present flow, we can estimate it for USF as L11 = 2L22 (Tavoularis & Corrsin
1985), where L22 is the transverse lengthscale, which in turn can be estimated
as L22 ≈ 1.3L22,2/u′2 (Karnik & Tavoularis 1990). Using these approximations, we
obtained L11≈ 45L, which is slightly higher than the current range of measurements.
Nevertheless our measurements of D22/u′2L11,1 appear to approach a constant value,
in conformity with Taylor’s conjecture. The value of this constant was approximately
0.21 (see figure 10b), which is approximately twice the value reported by Karnik &
Tavoularis (1989).

When normalized by D22, most components of the turbulent diffusivity tensor
appeared to approach asymptotes far downstream of the source (figure 10d–g); the
ratio D11/D22 (figure 10d) seems to be an exception, as it keeps becoming more
negative with increasing downstream distance. The mean values of the ratios for
x1/L> 28 were

Dij

D22
≈


−20 −1.1 0

8 1.0 0
0 0 1.5


 . (4.7)

The presence of non-zero cross-diffusivities and the fact that D11, D22 and D33 had
different values are consequences of the strong anisotropy of the turbulence in USF.
The cross-diffusivities introduce effects of more than one mean scalar derivative to
the each component of the scalar flux vector, a result that is also attributable to shear-
generated anisotropy. One may make the following observations concerning individual
scalar fluxes.

The spanwise flux (−cu3): This property was proportional to the spanwise mean
scalar derivative. Consistent with the fact that u1u3 = u2u3 = 0 in USF,
D31=D32= 0, so −cu3 had no contributions from the transverse and streamwise
mean scalar derivatives. The ratio D33/D22 was approximately 1.5, which is
sufficiently close to the values of the ratios u′23 T33/u′22 T22 and K3/K2 and the
result reported by Tavoularis & Corrsin (1985).

The transverse flux (−cu2): The transverse flux had contributions from both the
transverse and the streamwise mean scalar derivatives, although the contribution
of the transverse derivative dominated, as illustrated in figure 9(h). The value of
D21 appeared to be positive, albeit within considerable uncertainty, as the term
D21∂C/∂x1 was much smaller than D22∂C/∂x2.

The streamwise flux (−cu1): The streamwise flux had contributions from both
the transverse and the streamwise mean scalar derivatives. As illustrated in
figure 9(g), these contributions had, respectively, antisymmetric and symmetric
profiles. The antisymmetric contribution corresponded to D12/D22≈−1.1, which
is consistent in sign but lower in magnitude than the values −2.2 and −2.0,
reported, respectively, by Tavoularis & Corrsin (1981) and Karnik & Tavoularis
(1989). The negative sign of D12 is a consequence of the fact that, in USF, the
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streamwise velocity fluctuations u1 are negatively correlated with the transverse
fluctuations u2 (Tavoularis & Corrsin 1981). Because of the near symmetry of
the transverse mean scalar derivative ∂C/∂x2, its contribution to the streamwise
flux was negligible along the plume axis; therefore, the non-zero values of −cu1
may be attributed to the streamwise mean scalar derivative. Far downstream
of the source, −cu1 > 0 and ∂C/∂x1 < 0 along the plume axis, hence D11
was negative (i.e. counter-gradient). Although |∂C/∂x1| � |∂C/∂x2|, the term
D11∂C/∂x1 in the core of the plume was comparable in magnitude to the peak
values of D12∂C/∂x2, with the result that D11 was an order of magnitude larger
than D12. Because |∂C/∂x1| was small, the magnitude of D11 is subject to more
uncertainty than the other terms, which is why we only report the value of D11
to one significant digit; however, the fact that estimates from both (1.2) and
(4.6) are consistent attests to the accuracy of the measured diffusivities. For
additional discussion concerning the complex shape of −cu1 and the negative
value of D11, see § 5.5.

5. Analysis of the results and discussion
5.1. The plume width

It is noted that our definition of plume width differs from those used by previous
authors; Webster et al. (2003) defined the plume half-width as twice the standard
deviation of the mean concentration profile, whereas Karnik & Tavoularis (1989)
defined it as half the distance between locations with mean concentrations equal
to half the peak value. Therefore, according to the present definition, the transverse
half-widths of the plumes examined by Webster et al. and Karnik & Tavoularis would,
respectively, be equal to 0.5 and 0.85 times the values reported by the corresponding
authors.

The evolution of the half-widths could be fitted by power laws with an exponent of
0.75. This value is equal to the value reported by Webster et al., within the range of
0.55–0.76 reported by Lepore & Mydlarski (2011), and comparable to the value 0.83
fitted by us to the data of Karnik & Tavoularis.

When comparing measurements in the present plume to those from the literature,
it is also important to consider the state of growth of each plume with respect to
the local size of the turbulent eddies which convect and diffuse the scalar field. The
lengthscale ratio σ2/L22,2 may be chosen as a measure of relative plume growth. The
streamwise evolution of this ratio in the present measurements and in the previous
study by Karnik & Tavoularis (1989) is presented in figure 11. As figure 11 illustrates,
our facility permitted the present plume width to grow to values that were comparable
to the transverse integral lengthscale and so the entire plume may be characterized as
slender. This was not the case with the plume studied by Karnik & Tavoularis (1989),
which grew to measurably larger relative thicknesses.

5.2. Scalar fluctuations
All the present profiles of c′ (see figure 7b) were single-peaked, unlike some of
the profiles presented by Warhaft (1984), Karnik & Tavoularis (1989), Rahman &
Webster (2005), and Lepore & Mydlarski (2011), which were double-peaked. Karnik
& Tavoularis attributed the presence of double peaks in the near-source profiles to the
particular shape of the thermal wake of the heated ribbon used, a feature that is absent
in the present experiments. The development of double peaks far downstream of the
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FIGURE 11. Downstream development of the ratio of the plume half-width σ2 and the
transverse turbulent integral lengthscale L22,2: •, present measurements; �, Karnik &
Tavoularis (1989), with L22,2 ≈ 0.55L11,1.

source in the previous studies was attributed to the fact that the peak production
of scalar variance occurs at the inflection points of the mean concentration field,
which are located on either side of the plume centreline. However, for gradient
transport to be effective in producing local fluctuation peaks, the plume width must
be sufficiently large with respect to the integral lengthscale of the flow. The logic
behind this explanation is that, when the plume is large enough for the local scalar
transport to be dominated by eddy motions that are mostly confined to the same
side of the plume, scalar fluctuations would follow gradient transport and so they
would peak at the two inflection points of the mean concentration gradient; on the
other hand, when the plume half-width is small by comparison to the turbulent eddy
mean free path, local transport would be dominated by eddy motions that sweep
across much of or the entire plume and thus smooth off-axis peaks of concentration
fluctuations. This argument, however, is not sufficient to explain entirely the lack of
double peaks in the present plume, whose half-width grew to approximately the size
of the transverse integral lengthscale. An explanation will be given in the following
paragraph.

The present plume differs from the one studied by Warhaft (1984), Karnik &
Tavoularis (1989), and Lepore & Mydlarski (2011) in an important aspect: the former
originated from essentially a point source, whereas the latter originated from a line
source and was two-dimensional on the mean. In a line-source plume, strong scalar
fluctuations would be introduced mainly by transverse motions (i.e. in a direction
parallel to the mean scalar gradient), whereas in a point-source plume, motions in all
directions on a transverse plane may introduce strong scalar fluctuations. Therefore,
if both plumes had the same ratio of σ2/L22,2, the two-dimensional plume would
have a stronger tendency to be double-peaked. One may then speculate that, for a
double-peak c′ to be manifested in a point-source plume, σ2/L22,2 would have to be
much larger than its double-peaking threshold for a line-source plume. The present
plume was clearly far from meeting this condition, which explains the observed
single-peak pattern.

5.3. Estimates of advection and diffusion
In this section, we investigate the terms in the Reynolds-averaged advection–diffusion
equation (1.1). The advection term in (1.1), which in USF is simplified to U1∂C/∂x1,
was calculated by multiplying the local mean velocity by the mean streamwise
concentration derivative, estimated by analytical differentiation of (4.2). The molecular
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FIGURE 12. (Colour online) (a) Maps of the advective flux; (b) maps of the net diffusive
flux in (1.1); (c) transverse profiles of the advective and net diffusive fluxes at x3 = 0;
(d–f ) maps of the individual diffusive flux terms. All results were at x1/L= 28; all fluxes
were normalized by CSUc/L and the symbols + and − indicate map regions with positive
and negative values, respectively.

diffusion term was negligible, as the molecular diffusivity was several orders of
magnitude smaller than the main turbulent diffusivity. To estimate the three turbulent
diffusion terms, we first created smooth maps of −cu1, −cu2 and −cu3 using (4.2)
and (1.2) and the estimated turbulent diffusivities. The streamwise diffusive flux term
−∂cu1/∂x1 was then determined by applying first-order central differencing to data
from five measurement planes. The in-plane diffusive flux terms −∂cu2/∂x2 and
−∂cu3/∂x3 were determined using second-order central differencing. Maps of the
advection term, the three diffusive flux terms, and the net (total) diffusion term are
presented in figure 12.

The estimated maps of the advection and net diffusion terms, which should ideally
balance each other, are in fairly good agreement; this attests to the accuracy of our
results. The net diffusion term appears to have somewhat smaller magnitude than
the advection term (see figure 12c); this difference may be largely attributed to the
uncertainty in the streamwise derivative of the mean concentration. The magnitude of
this discrepancy was comparable to the one in a turbulent jet (Fukushima, Aanen &
Westerweel 2000), which was also attributed to insufficient spatial resolution.

Comparing the maps of the three diffusive flux terms (figure 12d–f ), it is evident
that the spanwise term was essentially symmetric; the transverse term was slightly
asymmetric, as a result of the non-zero value of D21; the streamwise term was
strongly asymmetric, in conformity with the complex shape of −cu1. The transverse
and spanwise diffusive fluxes were nearly equal around the plume axis, but each
became dominant off-axis, in regions in which the corresponding mean concentration
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Tavoularis & Corrsin (1985) Rogers et al. (1989)
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TABLE 3. Theoretical models of the turbulent diffusivities.

derivative was dominant. The streamwise diffusive flux was consistently an order
of magnitude smaller than the other two and made a very small contribution (less
than 5 %) to the net diffusion. This provides justification for disregarding streamwise
diffusion in simplified models, even though the streamwise diffusivity D11 is much
larger than the two other normal diffusivities.

5.4. Comparison of diffusivities to theoretical estimates

Analytical models of the turbulent diffusivity tensor relevant to USF have been
developed by Tavoularis & Corrsin (1985), Rogers et al. (1989), and Younis et al.
(2005), to be referred to as TC, RMR and YSC, respectively. The corresponding
expressions are summarized in table 3, whereas ratios of the predicted diffusivity
values are compared to the present results in table 4. All models assumed that
D31 = D13 = D32 = D23 = 0 by symmetry of the Reynolds stress tensor about the
(x1, x3) plane.

The TC model contains the Lagrangian integral timescales T11 etc. We have no
measurements of these timescales in the present flow, but we used the estimates
T22≈ 1.3L22,2/u′2 (Karnik & Tavoularis 1990) and T12=T21= 4T22, T11= 2T22, and
T33 = T22 (TC), all applicable to USF. The RMR model is very similar to the TC
model; however, the former contains a constant timescale T = 2k/(CDε), in which
CD = 12.6 for the present conditions (CD is specified by RMR as a function mainly
of a Reynolds number and, weakly, of the Prandtl number). The YSC model is more
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TC RMR YSC Present

D22/D22m 3.2 2.3 3.8 1
D11/D22 −10.0 2.8 3.4 −20
D33/D22 1.6 1.6 1.9 1.5
D12/D22 −2.0 −1.9 −1.8 −1.1
D21/D22 0.0 −0.5 −1.5 8

TABLE 4. Theoretical estimates of the turbulent diffusivity ratios; D22m indicates the
measured D22.

complex than either of the other two models, expressing the diffusivities in terms
of relationships that contain four adjustable coefficients, for which YSC recommend
values.

All models predicted values of D22 which were more than double the measured
value; moreover, they all predicted values of the ratio D33/D22 that were close to the
experimental one. The TC prediction of D11/D22 agreed in sign with the measured
ratio although it was smaller in magnitude, whereas the two other models missed
this ratio not only in magnitude, but in sign as well. All models predicted D12/D22
that had the same sign as the measured value but were more than twice as large; in
this respect, the models are in fair agreement with the measurements of Tavoularis &
Corrsin (1981) and Karnik & Tavoularis (1989) who found D12/D22 was −2.2 and
−2.0, respectively. The RMR and YSC models predicted a negative value of D21/D22,
whereas the TC model predicted a value of zero; in this respect, all models differ
from the present measurements of D21/D22, which tended to be positive.

Overall, all models had comparable performances, with the notable exception that
the TC model was the only one to predict correctly the sign of D11. None of the
models predicted accurately the magnitudes of the diffusivities, but predictions and
measurements were of the same order of magnitude. It is noted that all models were
developed and calibrated for air flows, in which the Prandtl/Schmidt numbers were
of order-one, whereas the scalar field in the present experiments had a very high
Schmidt number.

5.5. The streamwise turbulent mass flux and the streamwise turbulent diffusivities
The map of −cu1 (figure 9d) appears to be oddly complex and invites some in-depth
physical scrutiny. For simplicity, let us consider the transverse profile of −cu1, shown
in figure 9(g). We shall explain its shape by the following qualitative discussion, which
makes use of gradient-transport-type arguments, but also takes into consideration the
turbulence structure of USF.

If this profile were entirely the result of transverse gradient transport, it would
have been antisymmetric about the plume axis. In the lower half of the plume, where
∂C/∂x2> 0, c and u2 would tend to be negatively correlated; however, in this USF, u2
and u1 are also negatively correlated, which implies that c and u1 would be positively
correlated. A corresponding argument can be made for the upper half of the plume
to show that c and u1 would be negatively correlated in this region. Using a similar
argument, Tavoularis & Corrsin (1981) explained the observed sign of cu1 in USF
with a uniform mean scalar gradient. This argument explains why D12 in shear flows
would have the same sign as u1u2.

The previous argument is not sufficient to explain the variation of −cu1, because
its profile is obviously not antisymmetric. Nevertheless, −cu1 can be represented
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quite well by the sum of an antisymmetric part and a symmetric part. We will argue
that the symmetric part may be attributed to the streamwise variation of the mean
concentration and the plume growth. The supporting arguments can be best presented
by considering the region near the plume axis, where the symmetric part is strongest
and the antisymmetric part is weak. In this region, ∂C/∂x1 < 0 and conventional
gradient transport with a positive diffusivity D11 would imply that −cu1 < 0 as well.
This is not the case, however, because the symmetric part of −cu1 is strongly positive
around the plume axis, thus necessitating the use of a negative D11. This amounts to
counter-gradient transport and requires further examination.

It was mentioned previously that the present plume half-width was comparable to
the transverse turbulent lengthscale L22,2, which means that the plume was subject to
strong meandering so that fluid parcels from the edges of and outside the plume would
often cross its axis. The value of −cu1 would be dominated by the contributions of
events having simultaneously large fluctuations of u1 and large fluctuations of c. Large
negative fluctuations of c would occur if an eddy originating at the plume edge or
beyond approached the plume axis, as such an eddy would transport a concentration
that would be much lower than the mean near the axis. For an eddy from the edges
of the plume to penetrate to the axis, it must have a strong velocity u2. In USF, such
eddies would typically also have strong u1 with a sign opposite to that of u2. Eddies
from the upper edge would have u2< 0 and u1> 0, i.e. they would originate upstream
of the measurement plane. On the contrary, eddies from the lower edge would have
u2> 0 and u1< 0, i.e. they would originate downstream of the measurement plane. So,
eddies with large c< 0 would sometimes be associated with u1 > 0 and other times
with u1 < 0. How would then a net positive −cu1 be produced near the axis?

We will now demonstrate that the positive −cu1 near the plume axis is the result
of plume growth in size with streamwise distance from the origin, namely the result
of transverse turbulent diffusion itself. In the plume core, ∂C/∂x1 < 0, because the
peak mean concentration decays downstream; on the contrary, ∂C/∂x1 > 0 near the
edges, because the plume spreads outwards. Consequently, upstream eddies crossing
the measurement plane would transport negative c with a magnitude that is larger than
that of downstream eddies, which also transport negative c; thus, the net effect of
mixing would be −cu1 > 0. This explains why D11 was negative and transport was
counter-gradient with respect to the gradient around the plume axis. This apparent
paradox may, however, be resolved by a change of perspective: mass was actually
flowing along the gradient, if one considers the gradient where it matters for −cu1,
namely at the plume edges.

In the previous discussion, we invoked the fact that u1 and u2 are strongly correlated.
In USF, this means that strong downward-bound eddies typically come from upstream
and strong upward-bound eddies come from downstream, namely that the two types of
eddies transport fluid from opposite edges of the plume. However, because the plume
is symmetric, it makes no difference to the value of c whether it comes from the
upper edge or the lower one. Consequently, counter-gradient streamwise transport does
not require the net Reynolds stress to be non-zero, but only that eddies with strong
fluctuations in u1 also have strong u2, which allows them to originate outside of the
plume. In other words, mean shear is not necessary for counter-gradient transport to
arise, but it helps, as it organizes the motion and generates strong coherent structures,
which in the case of USF are horseshoe-shaped vortices (Vanderwel & Tavoularis
2011).

We have so far focused on diffusion in the transverse direction, but there is also
spanwise diffusion. In fact, Vanderwel & Tavoularis (2011) demonstrated that coherent
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structures in USF are not always aligned with the transverse direction, but appear
with a wide range of orientations. In the case of the present plume, strong eddies with
significant spanwise velocity would still transport low-concentration fluid from the
plume edges and beyond, and so they would contribute to counter-gradient transport.
On the other hand, spanwise motions in two-dimensional plumes, such as those
generated by a heated wire, would not encounter edges and so the range of motions
that would contribute to counter-gradient transport would be severely restricted. This
may explain why the transverse profiles of −cu1 measured by Karnik & Tavoularis
(1987) were essentially antisymmetric and free of streamwise diffusion effects.

The scalar used here has a Schmidt number which is more than three orders
of magnitude larger than the Prandtl number of air in heated-flow experiments, so
it seems worthwhile to question whether this difference would play a significant
role in counter-gradient transport. Molecular diffusion would reduce the contrast of
concentration maps and lower concentration peaks, and so it would tend to reduce
differences between concentration values in the core and the edges of the plume.
Nevertheless, such effects would be present in both conventional and counter-gradient
diffusion. In the absence of evidence for the opposite, one may speculate that
counter-gradient diffusion is not subjected to strong Schmidt/Prandtl number effects.

To speculate whether a negative D11 would also appear in a plume in another
flow configuration, one would need to consider whether the plume width would
satisfy the following conditions: first it should be sufficiently narrow in all directions
by comparison to the lengthscale of the energy-containing eddies and second it
should grow sufficiently fast downstream. For example, in the case of a turbulent jet
transporting a scalar in its entirety, the first condition would not be satisfied and so
jets with −cu1 > 0 have not been reported (Fukushima et al. 2000; Webster, Roberts
& Ra’ad 2001). We have reviewed the available literature in search of previous
references to counter-gradient streamwise diffusion, but could not find any. There are,
however, several references dealing with counter-gradient diffusion in the transverse
direction, with which the mean scalar gradient was nearly aligned. Such phenomena
have been observed in atmospheric flows (Deardorff 1966; van Dop & Verver 2001;
de Roode et al. 2004) as well as in the laboratory (Sreenivasan et al. 1982; Veeravalli
& Warhaft 1990; Paranthoën et al. 2004) and in most cases the discrepancy has been
attributed to inhomogeneity.

6. Summary

Simultaneous concentration and velocity maps in the plume of a continuous point
source in uniformly sheared turbulence have been measured. Gradient transport
analysis with a turbulent diffusivity tensor described well the relationship between the
measured turbulent mass flux vector and the mean concentration gradient. For the first
time, all non-vanishing components of the turbulent diffusivity tensor were determined
simultaneously from experimental results. The apparent diffusivities followed the same
trends as the corresponding normal diffusivities on a transverse plane. Sufficiently
downstream of the source, the various components of the turbulent diffusivity
tensor grew at the same rates with distance from the source. Counter-gradient
streamwise diffusion was reported for the first time and was attributed to the
meandering and streamwise spread of the plume. Three previous theoretical models
of turbulent diffusion in shear flows had some qualitative agreement with the present
results, especially the model of Tavoularis & Corrsin (1985), which also predicted
counter-gradient streamwise diffusion.
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FIGURE 13. Solid lines are transverse profiles of the mean streamwise velocity at x1/L=5
and x3= 0 with injector flow rates of (a) 0, (b) 0.78, (c) 0.97, (d) 1.07, (e) 1.25, (f ) 1.37,
and (g) 1.68 ml s−1. Dashed lines represent velocity profiles without the injector. The flow
rate chosen for the present experiments was Q= 0.97 ml s−1.
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Appendix. Determining the optimal flow rate
The optimal flow rate through the injector was determined by comparing the

velocity maps for different injection flow rates in a plane normal to the flow at a
distance of x1/L= 5 from the injector tip; this distance is equal to approximately 70
inner tube diameters. As representative of these velocity maps, we present transverse
profiles of the mean velocity in figure 13. The physical presence of the injection
tube created a region of relative velocity deficit due to the boundary layer that
grew along the tube. At the same time, injection at a velocity higher than the local
value created a local momentum surplus within the injected fluid. Our objective was
to adjust the injection flow rate so that the momentum surplus of the jet would
compensate, as much as possible, for the momentum deficit around the injector,
without introducing significant jet effects which would distort the structure of the
USF. The value Q= 0.97 ml s−1, represented by curve (c) in figure 13, was deemed
to be the optimal one and was used for all reported results.
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