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The separating and reattaching flows and the wake of a finite rectangular plate
are studied by means of direct numerical simulation data. The large amount of
information provided by the numerical approach is exploited here to address the
multi-scale features of the flow and to assess the self-sustaining mechanisms that form
the basis of the main unsteadinesses of the flows. We first analyse the statistically
dominant flow structures by means of three-dimensional spatial correlation functions.
The developed flow is found to be statistically dominated by quasi-streamwise vortices
and streamwise velocity streaks as a result of flow motions induced by hairpin-like
structures. On the other hand, the reverse flow within the separated region is found
to be characterized by spanwise vortices. We then study the spectral properties of
the flow. Given the strongly inhomogeneous nature of the flow, the spectral analysis
has been conducted along two selected streamtraces of the mean velocity field. This
approach allows us to study the spectral evolution of the flow along its paths. Two
well-separated characteristic scales are identified in the near-wall reverse flow and in
the leading-edge shear layer. The first is recognized to represent trains of small-scale
structures triggering the leading-edge shear layer, whereas the second is found to
be related to a very large-scale phenomenon that embraces the entire flow field. A
picture of the self-sustaining mechanisms of the flow is then derived. It is shown that
very-large-scale fluctuations of the pressure field alternate between promoting and
suppressing the reverse flow within the separation region. Driven by these large-scale
dynamics, packages of small-scale motions trigger the leading-edge shear layers,
which in turn created them, alternating in the top and bottom sides of the rectangular
plate with a relatively long period of inversion, thus closing the self-sustaining cycle.

Key words: separated flows, turbulent flows, wakes/jets

1. Introduction

The flow around bluff bodies is recognized to be a rich topic owing to its great
number of applications in natural and engineering sciences and, for this reason, it
has been the subject of many studies over the years. The most evident feature of
such flows is the massive separation of the flow, which gives rise to an oscillatory
motion commonly referred to as Kármán-like vortex shedding. However, from a fluid
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dynamic point of view, different kinds of bluff bodies can be defined. The deeply
studied circular and square cylinders are examples of canonical flows for the analysis
of the flow separation of interest in a plethora of applications. In the case of blunt
bodies, however, in addition to the large wake region typical of bluff bodies, an
interesting phenomenon of flow recirculation may occur, i.e. reattachment to the body
of the separated boundary layer. The behaviour of separating and reattaching flows is
known to be of overwhelming interest for a wide range of engineering applications
such as the aerodynamics of vehicles, trains, long-span bridge decks or high-rise
buildings (Bruno, Salvetti & Ricciardelli 2014). One of the main feature of this
type of flows is the combined presence of small scales, owing to the occurrence
of turbulent motions, and large scales, owing to the phenomena of shedding of
large-scale vortices. These two ranges of scales nonlinearly interact, thus giving
rise to a self-sustained cycle (not to be confused with the well-known near-wall
self-sustaining cycle of fully developed wall-bounded turbulence) where the production
of turbulent fluctuations is embedded in the system rather than being provided by an
external agent. The complete understanding of these multiple interacting phenomena
would be of paramount importance for the correct prediction and control of relevant
issues in applications such as wind loads on buildings and vehicles, vibrations and
acoustic insulation and heat transfer efficiency. Archetypal of these phenomena is
the flow around a finite rectangular blunt plate. Such a flow represents the simplest
kind of separating and reattaching flow, thus allowing for a detailed analysis of the
underlying physical mechanisms, while retaining at the same time the essential flow
features that characterize the more complex geometries of real-world applications.

Many studies on separating and reattaching flows have been carried out in the past.
The general aim is the understanding of the mechanisms behind the main unsteadiness
of the flow. Cherry, Hillier & Latour (1984) reported a detailed experimental study
of the time and length scales developing in the shear layer. An intermittent feature of
the flow is recognized, consisting of the shedding of pseudoperiodic trains of vortical
structures alternating with relatively quiescent phases. Kiya & Sasaki (1983) found
that the low-frequency flapping of the shear layer is accompanied by the enlargement
and shrinkage of the separation bubble. On the basis of these results, Kiya &
Sasaki (1985) also suggested a mathematical model able to predict the reverse-flow
intermittency and the frequency of local-flow reversals. This picture has recently
been confirmed by Tafti & Vanka (1991) both qualitatively and quantitatively. Hence,
two different instabilities are identified: the primary Kelvin–Helmholtz instability of
the leading-edge shear layer and the instability of the entire recirculating bubble
(Sigurdson 1995).

The instability that forms the basis of the shedding of vortices from the leading
edge is conjectured to be the result of a pressure pulse (Nakamura, Ohya & Tsuruta
1991; Naudascher & Wang 1993) in analogy with the impinging shear layer instability
(Rockwell & Naudascher 1979). Vortices that are formed in the leading-edge shear
are convected downstream and, by interacting with the trailing edge, generate a
pressure pulse that triggers the formation of new vortices at the leading-edge itself.
In accordance with this picture, as the streamwise length c of the rectangular plate
is increased, the Strouhal number based on c of the vortex shedding increases in
a stepwise manner, at least for low Reynolds numbers Re < 2000 (Nakamura et al.
1991; Ohya et al. 1992). On the other hand, for higher Reynolds numbers, it has been
shown that the flow exhibits receptivity to perturbations having the same Strouhal
number of the corresponding locked state, thus highlighting that, even if shaded by
a broader spectrum of turbulent fluctuations, the shear layer instability retains its
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features also at high Reynolds numbers (Parker & Welsh 1983; Stokes & Welsh
1986; Mills, Sheridan & Hourigan 2002, 2003; Tan, Thompson & Hourigan 2004;
Liu & Zhang 2015).

From a topological point of view, the above-mentioned mechanisms are characterized
by the presence of well-defined coherent motions. In the very first part of the
leading-edge shear layer, large-scale spanwise vortices appear as a result of
Kelvin–Helmholtz instability. Then, transition to turbulence takes place very quickly.
Indeed, the large-scale spanwise rolls develop into hairpin-like vortices further
downstream (Sasaki & Kiya 1991; Hourigan, Thompson & Tan 2001; Tenaud et al.
2016). As shown by Lasheras & Choi (1988), this three-dimensional pattern is at the
basis of the observed presence of streamwise velocity streaks that result from the
interaction of counter-rotating pairs of streamwise vortices with the mean shear in
analogy with plane free shear layers.

It is worth mentioning that the behaviour of separating and reattaching flows
has also been deeply investigated in the context of aerodynamic bodies, see, e.g.,
Rhie & Chow (1983) and Jones, Sandberg & Sandham (2008). Indeed, under certain
conditions, the flow around wings or blades could exhibit a separation of the boundary
layer. Archetypal of the numerical and experimental study of such separation bubbles
is the separation occurring in a flat boundary layer under the action of an imposed
adverse pressure gradient, see, e.g., Pauley, Moin & Reynolds (1990), Na & Moin
(1998), Alam & Sandham (2000), Spalart & Strelets (2000) and Skote & Henningson
(2002). The relevance of this phenomenon from an applicative point of view is given
by the fact that under certain conditions (Gaster 1969; Horton 1969) a bursting of
the separation bubble may occur thus causing an abrupt stall and a sudden severe
deterioration in wing or blade performance (Lissaman 1983).

Despite the large interest in separating and reattaching flows, there is still a number
of open issues that need to be addressed, especially concerning blunt bluff bodies with
a moderate chord-to-thickness range (3 < c/D < 7), which actually is of interest for
most applications. For these parameters, the impinging shear layer theory developed
by Rockwell & Naudascher (1979) is used to explain the main instabilities of the
flow. However, a complete picture of the self-regenerating turbulent mechanisms is
still missing. Furthermore, to the best of the authors’ knowledge, no direct numerical
simulation (DNS) of the flow around a finite rectangular plate at a sufficiently high
Reynolds number has been performed to date. For these reasons, we report DNS data
of the flow around a finite rectangular plate with chord-to-thickness ratio c/D= 5 and
Reynolds number Re=U∞D/ν = 3000. By means of two-point statistical observables,
we aim at assessing the multiscale features of the flow and the self-sustaining
mechanisms of turbulence in such a flow configuration.

The paper is organized as follows. The details of the simulation are reported in § 2.
The topology of the flow in terms of mean single-point quantities and instantaneous
turbulent structures is shown in §§ 3 and 4. The statistically dominant structures are
described by means of a three-dimensional spatial correlation function in § 5. The
multiscale features of the flow are analysed in § 6 by means of turbulent spectra. The
detailed description of the flow given by the above-mentioned sections is rationalized
in § 7 where the presence of a self-sustaining regeneration cycle of turbulence is
shown. Finally, § 8 closes the work with final comments.

2. Direct numerical simulation
A DNS has been performed to study the flow around a rectangular cylinder. To the

best of the authors’ knowledge, this is the first DNS performed in such a canonical
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flow for a sufficiently high Reynolds number. Indeed, several numerical studies have
been performed in the past, most of them making use of modelling approaches,
see Bruno et al. (2014) for a detailed review of simulations (and also experiments)
performed in such a flow configuration. The only attempt to face the problem via
DNS has been that of Hourigan et al. (2001), but the analysis has been carried
out for very low Reynolds numbers, namely Re = 350, 400 and 500, and a fully
developed turbulent state has not been achieved.

The evolution of the flow is governed by the continuity and momentum equations,

∂ui

∂xi
= 0

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+

1
Re
∂2ui

∂xjxj
,

 (2.1)

where x = x1 (u = u1), y = x2 (v = u2), z = x3 (w = u3) are the streamwise, vertical
and spanwise directions (velocities), p is the pressure field and Re = U∞D/ν is
the Reynolds number with ν the kinematic viscosity, U∞ the free stream velocity
and D the thickness of the plate. The OpenFOAMr finite volume open source
code (Weller, Tabor, Jasak & Fureby 1998) was used to numerically solve the
Navier–Stokes equations (2.1). In particular, equations (2.1) are discretized by means
of a structured Cartesian grid of hexahedral cells. The numerical technique is based on
central spatial interpolation operators of the second order whereas time integration is
performed with a second-order backward Euler implicit scheme. The pressure–velocity
coupling is performed with the pressure-implicit split-operator algorithm (Issa 1986).
Inlet–outlet boundary conditions are imposed in the streamwise direction. The inlet
condition is the free stream velocity U∞. The outlet boundary condition combines
a Neumann/Dirichlet condition. In particular, it imposes a zero gradient when the
flow is pointing outward at the boundary whereas it imposes a zero velocity when
an inward flow is detected. The same boundary condition is imposed in the vertical
direction, the only difference being that in the case of inward flow, the imposed
condition on velocity is U∞ for the streamwise component and zero for the other
two components. Finally, periodic boundary conditions are imposed in the spanwise
direction.

The flow case consists of a rectangular plate whose lengths are (Lx, Ly)= (5D,D),
see figure 1. The considered Reynolds number is Re = 3000. The extent of the
numerical domain is (Dx, Dy, Dz) = (112D, 50D, 5D) and, through the a posteriori
analysis of two-point spatial correlation functions, is found to be large enough to not
interfere with the flow dynamics. The structured Cartesian grid employed is composed
by 1.5×107 volumes. In particular, the number of volumes above the rectangular plate
is (Nx, Nz) = (128, 144). The volume distribution is homogeneous in the spanwise
direction while in the streamwise and vertical directions a geometric progression is
adopted, 1xi= ki−1

x 1x1 and 1yj= kj−1
y 1y1 with kx= 1.06, ky= 1.04, 1x1= 0.004 and

1y1= 0.004. This approach is used to obtain higher resolution levels in the near-wall
leading- and trailing-edge regions. Three main grid resolution issues arise and are
given by the discretization of the sharp corners, of the boundary layer regions and of
the turbulent core regions. Concerning the sharp corners, the size of the surrounding
cells is (1x, 1y, 1z) = (0.004, 0.004, 0.0347) and is also found to be sufficiently
small when compared with other approaches such as those collected in Bruno et al.
(2014). Concerning the near-wall resolution, the boundary layers are characterized by
small levels of turbulence owing to their very short development length. Hence, the
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FIGURE 1. (Colour online) Configuration of the system.

more important near-wall resolution requirement is given by the correct discretization
of the vertical gradients rather than of the turbulence. In terms of friction units,
the mean grid resolution employed is (1x+, 1y+, 1z+) = (6.1, 0.31, 5.41) where
(·) denotes the streamwise average along the rectangle length. Owing to the highly
inhomogeneous behaviour of friction which essentially reflects the upstream and
downstream accelerations of the boundary layers rather than the development of
small-scale fluctuations, the local behaviour of resolution in friction units significantly
varies from minima of the order (1x+min,1y+min,1z+min)= (0.1, 0.003, 0.6) to maxima of
the order (1x+max,1y+max,1z+max)= (34,0.375,30). As a reference, let us note that in the
forward boundary layer region, the local behaviour of the present resolution is found
to be comparable with that reported by Yao, Thomas, Sandham & Williams (2001),
where a grid refinement study of the trailing-edge separation of a fully turbulent
boundary layer is carried out. As far as the resolution of the turbulent core regions
is concerned, this is assessed by using the Kolmogorov scale η = (ν3/ε)(1/4). We
measure (1x1y1z)1/3/η < 2.2 in the leading-edge shear layer where the transitional
mechanisms take place, whereas (1x1y1z)1/3/η < 6.2 in the turbulence core region
above the plate and (1x1y1z)1/3/η < 3.8 in the wake. Finally, the time step is kept
variable throughout the simulation to obtain a condition CFL< 1 in each point of the
domain. The resulting time step, on average, is 1t= 0.0023.

In the present flow case, the computational demand for well-converged statistics
denoted as 〈·〉 is mitigated by the statistical stationarity of the flow field and by
the statistical homogeneity in the spanwise direction. Furthermore, the flow exhibits
certain statistical symmetries in the vertical direction that are better expressed by
shifting the origin of the vertical coordinate to the centre of the rectangle, ỹ= y−D/2.
Indeed, the transformation ỹ → −ỹ leaves quantities such as U = 〈u〉 and 〈uiui〉

statistically invariant while reversing the signs of quantities such as V = 〈v〉, 〈uv〉 and
∂〈·〉/∂ ỹ. Accordingly, the average of a generic quantity β is defined as

〈β〉(x, ỹ)=
1
N

N∑
i=1

1
2

(
1
Lz

∫ Lz/2

−Lz/2
β(x,+ỹ, z, t) dz±

1
Lz

∫ Lz/2

−Lz/2
β(x,−ỹ, z, t) dz

)
, (2.2)

where the sum and difference of the two integrals are imposed by the symmetric/anti-
symmetric nature of the considered variable. After reaching a statistical steady state,
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FIGURE 2. (Colour online) (a) Streamlines of the mean velocity field (U, V)(x, y). The
primary vortex, secondary vortex and wake vortex, denoted as PV, SV and WV, are
identified with green, red and cyan streamlines, respectively. The shaded regions show the
mean shear for values |∂U/∂y| > 4. The relevant locations P1, P2, P3, P4 and P5 used
for the analysis of the spatial correlations § 5 and of the temporal signals § 7, are also
reported. (b) Isocontours of the mean pressure field P(x, y). (c) Isocontours of turbulent
kinetic energy 〈q〉 = 〈u′iu

′

i〉/2. In (b) and (c) the dashed lines report the location of the
primary vortex, secondary vortex and wake vortex.

the fields are collected at a number N= 317 of samples separated in time by 1T = T
where T = D/U∞ is the characteristic time scale of the flow. In the following, the
customary Reynolds decomposition of the flow in a mean and fluctuating field is
adopted, i.e. ui=Ui+u′i and p=P+p′. If not stated specifically, variables are hereafter
presented as dimensionless by using D for lengths and D/U∞ for times.

3. Mean flow features
In this section, we report the main features of the mean flow. As shown in

figure 2(a), the streamlines of the mean flow highlight the presence of a separation at
the leading edge and of a reattachment at xr≈ 3.65. Hence, a large-scale recirculation
is present on average and will hereafter be called the primary vortex, see the green
lines in figure 2(a). The flow separation gives rise to a strong leading-edge free-shear
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layer as highlighted in figure 2(a), where the regions of the flow characterized by
high levels of mean shear are also shown. In fact, a second recirculating bubble is
present and highlighted with red lines again in figure 2(a). This secondary vortex is
located below the primary vortex. Indeed, the reverse flow induced in the near-wall
region by the primary vortex creates a boundary layer moving upstream. As shown
by the isocontours of the mean pressure field in figure 2(b), the induced boundary
layer undergoes an adverse pressure gradient, hence it decelerates, becomes thicker
and, finally, breaks down leading to separation (Simpson 1989). Hence, the secondary
vortex, being induced by the primary vortex, is counter-rotating with respect to the
primary vortex and its characteristic length and time scales are smaller than those
of the primary vortex. After the average reattachment point for x > xr, the flow
evolves in a downstream boundary layer and finally detaches at the trailing edge thus
forming a third recirculating region hereafter called wake vortex, see the cyan lines
in figure 2(a). Further details can be found in Cimarelli, Leonforte & Angeli (2018).

The isocontours of turbulent kinetic energy 〈q〉 = 〈u′iu
′

i〉/2 shown in figure 2(c)
highlight the initial almost laminar state of the leading-edge shear layer. Instabilities
associated with the shear-layer amplify the intensity of the fluctuations thus giving
rise to turbulence. The maximum intensities of turbulent kinetic energy are reached
in a region which elongates itself in the streamwise direction and crosses the external
paths of the large scale recirculation. This region will be hereafter called primary
vortex shedding region. The peak of the turbulent kinetic energy is located at
(x, y) ≈ (2.7, 0.4). Then, moving downstream, the turbulent fluctuations decrease
their magnitude but retain their local maxima far away from the wall for y ≈ 0.35.
This behaviour of 〈q〉 inverts while moving through the wake where turbulent kinetic
energy increases again forming a local maximum in a region just behind the wake
vortex centered at (x, y)≈ (6.2, 0.15). For further details, see Mollicone et al. (2017)
where the energetics of separating and reattaching flows are assessed by analysing
the mean and turbulent kinetic energy budgets.

4. Instantaneous flow topology

The complex physical features characterizing the separated and reattaching flows can
be highlighted by analysing the structures emerging from the instantaneous velocity
field in the different regions of the flow. This aspect has been already investigated
in the past. Here, supported by the present DNS data, we intend to recall these
previous results on the formation and evolution of vortices with particular attention
paid to the flow structures populating the reverse flow region. To this aim, in figure 3,
the regions where the second largest eigenvalue (λ2) of the tensor SikSkj + ΩikΩkj

is negative, λ2 = −2, are shown with isosurfaces coloured by the intensity of the
streamwise velocity, see Jeong et al. (1997). Here, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 and
Ωij= (∂ui/∂xj− ∂uj/∂xi)/2 are the symmetric and antisymmetric parts of the velocity
gradient tensor. Other values of λ2 have been analysed and we found that, under
certain reasonable limits, i.e. −8 < λ2 < −1, no relevant differences appear in the
identified turbulent structures.

As shown in figure 3, a complex flow feature emerges from the analysis of the
instantaneous vortical pattern. The sharp corner at the leading edge fixes the location
of the boundary layer detachment and a leading-edge shear layer takes place. In
the very first part of the shear layer, for x < 0.3, the flow is laminar as highlighted
by the presence of a flat and continuous layer of spanwise vortical motion in
figure 3(a). Then, the spatially developing shear layer grows and, through instability
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(a)

(b)

(c)

FIGURE 3. (Colour online) Instantaneous flow realization. Isosurfaces of λ2=−2 coloured
by streamwise velocity. The perspective and lateral views are shown, respectively, in
(a) and (c). The enlargement in (a) highlights a hairpin-like structure of the flow. The
top view shown in (b) reports the isosurfaces of λ2 = −2 characterized by a negative
streamwise velocity, u < −0.2, to highlight the flow structures within the reverse flow
region. The mean reattachment length xr and the mean location of the secondary vortex
(SV) are also reported.

and transitional phenomena, breaks down to turbulence. A Kelvin–Helmholtz-like
instability develops first, leading to the formation of spanwise vortex tubes, see again
the main plot of figure 3(a). Subsequently, transition to turbulence sets in very rapidly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

77
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.772


On the structure of separating and reattaching flows 915

FIGURE 4. (Colour online) Instantaneous flow realization. Isosurfaces of positive and
negative streamwise vorticity, ωx =±7, are used to detect the streamwise vortical pattern
of the flow.

for x> 0.5 (Winant & Browand 1974; Spalart & Strelets 2000). Under the effect of
the mean shear, still strong at these streamwise locations, perturbations of the flow
field lead to the lift up and stretching of the primary spanwise vortices thus forming
hairpin-like structures (Hourigan et al. 2001; Langari & Yang 2013; Tenaud et al.
2016) arranged in a staggered manner (Sasaki & Kiya 1991; Soria, Sheridan & Wu
1993), see the enlargement of figure 3(a). By moving downstream, these hairpin-like
structures are stretched and, as shown in figure 4 where the pattern taken by the
streamwise vorticity, ωx = ∂w/∂y − ∂v/∂z is reported, the flow motion develops
streamwise vortices (Kiya & Sasaki 1985; Bernal & Roshko 1986), which are known
to induce entrainment and high- and low-speed streaks (Jiménez 1983).

By following the mean streamline paths of the flow shown in figure 2(a), we argue
that a first branch of turbulent structures is advected downstream toward the free flow
while a second branch of turbulent fluctuations, following the recirculating paths of the
primary vortex, is conveyed toward the wall and finally impinges on it. The turbulent
structures of the first branch, by passing the trailing-edge region, are encompassed
by oscillatory large-scale motions reminiscent of the laminar von Kármán instability,
see the lateral view of the turbulent motions given by figure 3(c). On the other hand,
the turbulent structures of the second branch, after impingement to the wall, are split
into two boundary layers, one moving upstream and the other downstream. As shown
in figure 3(b), the turbulent structures moving upstream through the reverse boundary
layer are predominantly aligned in the streamwise direction in the first part while,
by moving further upstream, in correspondence with the streamwise location of the
secondary vortex, they are recognized to form a pattern of spanwise vortex tubes.
This topological change of the turbulent structures in the reverse flow region will
be statistically analysed in § 5 and will be explained as a result of the clustering of
structures due to the very slow intermittent phenomena of upstream advection in § 7.

It is finally important to point out that the turbulent motion described so far is
actually superimposed to low-frequency unsteadinesses. Low-frequency unsteadinesses
are very-large-scale phenomena that are felt everywhere in the flow (Kiya &
Sasaki 1985). For this reason, their presence is indicative of a possible coupling
of phenomena occurring in the two sides and in the wake of the rectangular plate. A
way to characterize these large-scale unsteadinesses is the use of a spanwise average,
here denoted as ˆ(·). This operation is performed to cancel out the small spanwise
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FIGURE 5. Space–time plot of spanwise-averaged contours of the instantaneous shear
stress at the top wall. Solid black line marks τ̂w= 0 and separates the regions of forward
τ̂w > 0 (white) and reverse τ̂w < 0 (grey) flow. PV and SV are used to indicate the
reverse and forward flow regions induced by the primary vortex and secondary vortex,
respectively.

scales of turbulence and, dependent on the size of the domain in the spanwise
direction, it almost allows us to retain the large time-scale features of the flow (Le,
Moin & Kim 1997). In figure 5, the time evolution of the spanwise averaged wall
shear stress τ̂w on the top wall is shown. The temporal variation of the spanwise
averaged reattachment point x̂r is recognized as the downstream border between
reverse flow, τ̂w < 0 (grey region) and forward flow, τ̂w > 0 (white region). As shown
in figure 5, the spanwise averaged reattachment point x̂r follows an oscillatory pattern
in the form of saw-teeth. As highlighted by the enlargement of figure 5, x̂r moves
slowly downstream with an average velocity Uτ ≈ 0.24, measured by means of the
slope of the saw-tooth ramp. While moving downstream, an area of forward flow
forms upstream that eventually overtakes the downstream reverse flow zone, thus
closing the leaning saw-tooth shape. Hence, the upstream limit of the formed forward
zone becomes the new reattachment point. This behaviour is consistent with the
picture of a slow enlargement of the primary vortex interrupted by the detachment of
a large-scale motion rather than being followed by a rapid phenomenon of shrinkage.
In particular, it appears that once the primary vortex reaches a critical volume
corresponding to x̂r≈ 3.8, it becomes unstable giving rise to a shedding of large-scale
motions. The frequency of this shedding, measured as the averaged distance between
two saw-teeth, is t≈ 7. As will be shown in the analysis of frequency spectra in §§ 6
and 7, this time scale exactly matches that of vortex shedding in the wake. For this
reason this time scale will be hereafter referred to as the shedding time scale of the
flow.

The space–time contours of the spanwise-averaged wall shear stress in figure 5
allow us to also analyse the large-scale behaviour of the secondary vortex, which
can be recognized as the region of forward flow, τ̂w > 0 (white region), in between
the reverse flow, τ̂w < 0 (grey region), induced by the primary vortex. An oscillatory
pattern can be recognized consisting of long periods of the order of t≈ 25 where the
secondary vortex takes place, thus interrupting the attached reverse flow of the primary
vortex. These periods are alternated with smaller time spans where, in contrast, the
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reverse boundary layer induced by the primary vortex remains attached to the wall,
thus forming bridges of negative shear stress continuously flowing upstream with
an average velocity Uτ ≈ −0.14 (measured as the slope of the connected regions
of reverse flow). The average width of these connected regions of reverse flow is
of the order of t ≈ 8. During this time window, the spanwise averaged secondary
vortex is very weak or even absent. The overall picture is as follows. The primary
vortex induces a reverse boundary layer that, under the effect of the previously
shown adverse pressure gradient, detaches, giving rise to the secondary vortex. The
lifetime of this reverse flow detachment and, hence, of the secondary vortex is
recognized to be of the order of t ≈ 25. These long periods are alternated with
shorter time windows, t ≈ 8, during which the reverse boundary layer no longer
detaches forming a bridge of negative shear stress toward the leading-edge region.
As will be shown in § 7, this phenomenon, in conjunction with intermittent events
of upstream advection, is induced by favourable pressure gradient conditions. Let us
finally point out that the lifetime of the secondary vortex, t ≈ 25, corresponds to a
very-large-scale phenomenon which embraces the entire flow and will hereafter be
referred to as the very-large-scale unsteadiness of the flow. Given the clear matching
of temporal scales with the low-frequency unsteadiness found in Kiya & Sasaki
(1985) for a flat plate, and in Le et al. (1997) for a backward-facing step, such a
large-scale phenomenon is conjectured to be an inherent general feature of separating
and reattaching flows.

5. Three-dimensional spatial correlation function
The statistical signature of the previously described flow pattern can be studied by

means of two-point statistics, such as the velocity correlation function in physical
space. This allows us to identify the statistically dominant three-dimensional structures
of the flow and to quantitatively assess their topology. For the symmetries of the flow,
the spatial correlation function for a generic quantity β can be defined as

Rββ(x, y, rx, ry, rz)=
〈β ′(x, y, z, t)β ′(x+ rx, y+ ry, z+ rz, t)〉

〈β ′β ′〉(x, y)
. (5.1)

Equation (5.1) emphasizes that the correlation function is defined in a five-dimensional
compound space of separations (rx, ry, rz) and positions (x, y). For each position
(x, y) within the flow, the spatial correlation function allows us to define the
lengths (rx, ry, rz) of the statistically dominant coherent motions. Owing to statistical
inhomogeneity in the streamwise and vertical directions, the three-dimensional spatial
correlation function (5.1) is symmetric only in the rz-direction, i.e. Rββ(x, y, rx, ry, rz)=
Rββ(x, y, rx, ry, −rz). For obvious reasons of compactness, only three reference
locations of the (x, y)-space will be shown as representatives of the primary vortex
shedding region, the attached reverse boundary layer and the detached reverse
boundary layer, respectively. In describing the correlation lengths, we will use `j
to denote the size of a given three-dimensional correlation isosurface along the
j direction and dj to denote the distance between peaks of positive and negative
correlation. For a similar analysis, the reader is referred to Sillero, Jiménez & Moser
(2014) where three-dimensional spatial correlation is used to study the structures of
turbulent boundary layers and channels.

5.1. Primary vortex shedding region
We start the analysis by considering the behaviour of the velocity spatial correlation
function in the primary vortex shedding region at (x, y)= (4, 0.39) corresponding to
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FIGURE 6. (Colour online) Three-dimensional spatial correlation functions evaluated in
the primary vortex shedding region at (x, y) = (4, 0.39) corresponding to location P4
highlighted in figure 2(a). The spatial correlation is computed for the streamwise (a,d,g),
vertical (b,e,h) and spanwise (c, f,i) velocity fluctuations, i.e. Ruu, Rvv and Rww, respectively.
Panels (a–c) show a three-dimensional view of the (rx, ry, rz)-space by means of two
isosurfaces of positive and negative correlation, i.e. for Ruu = Rvv = Rww = 0.3 (red)
and for Ruu = Rvv = Rww = −0.06 (cyan), respectively. Panels (d–f ) and (g–i) show a
two-dimensional section of the isolevels of velocity correlations for rx = 0 and rz = 0,
respectively. The positive correlation range of values is discretized by nine equally spaced
isolevels (solid lines) whereas the negative range is discretized by five equally spaced
isolevels (dashed lines).

location P4 highlighted in figure 2(a). In this region, the increment in the vertical
direction ry is limited by the presence of the rectangular plate so that ry > −0.39
since for ry 6 −0.39 the moving point of the correlation (x + rx, y + ry, z + rz, t)
would be inside the rectangular plate. The measured maximum and minimum values
of correlation are 1.01 and −0.37, and the correlated and anticorrelated structures are
identified here with isosurfaces of correlation 0.3 and −0.06, respectively.

The three-dimensional correlation of the streamwise velocity fluctuation is shown
in figure 6(a,d,g). The positively correlated region, Ruu = 0.3, has an ellipsoidal
shape elongated in the streamwise direction whose lengths are `x ≈ 1 and `z ≈ 0.4.
Concerning the vertical lengths, as better highlighted by the rx= 0 and rz= 0 sections,
the positive correlation of streamwise velocity is found to extend down to the wall.
Two regions of negative correlation are also detected, Ruu =−0.06, and are found to
flank the positively correlated region in the spanwise direction. These two regions are
inclined with respect to the wall so that their upstream root is at the wall and their
downstream head points away from it. The cross-flow shape is slightly stretched in
the vertical direction, see the section in the rx = 0 space. In particular, we measure
`y ≈ 0.45 and `z ≈ 0.4. The spanwise distance of their centre to the peak of positive
correlation is dz ≈ 0.5.

The three-dimensional spatial correlation of the vertical velocity fluctuation is shown
in figure 6(b,e,h). In contrast to streamwise fluctuations, the positively correlated
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region Rvv = 0.3 has a tall shape elongating in the vertical direction. The lengths in
the horizontal directions are `x≈ 0.55 and `z≈ 0.4. As shown in the rx= 0 and rz= 0
planes, the positive isolevels do not reach the wall, thus highlighting the detached
nature of vertical fluctuations. The positive correlation region of vertical fluctuations
is found to be flanked both in the streamwise and spanwise directions by negative
correlation regions. In the spanwise direction, the negative correlation Rvv = −0.06
takes the form of two detached, streamwise-elongated structures whose cross-flow
lengths are `y ≈ 0.3 and `z ≈ 0.2. The spanwise distance of their centre to the peak
of positive correlation is dz ≈ 0.4 and is located slightly closer to the wall dy ≈−0.1.
On the other hand, the negative correlation regions beside the positive one in the
streamwise direction appear to form two large spanwise structures. The upstream
one is located roughly at the same wall distance dy ≈ 0 and its streamwise distance
is dx ≈ −0.8, whereas the downstream one is centred further away from the wall
dy ≈ 0.3 and for dx ≈ 0.9.

The spanwise velocity correlation is shown in figure 6(c, f,i). The isosurface of
positive correlation, Rww = 0.3, has an inclined disc-shaped structure. The cross-flow
lengths are `y≈ 0.28 and `z≈ 0.56. As shown in the rz= 0 plane, the upstream values
of positive correlations extend down to the wall. The positive correlation is flanked
by four negative correlation structures, Rww = −0.06. The strongest anticorrelated
structures are those above and below the positive one. The outer structure is detached
from the wall and is centred more upstream and away from the wall than the positive
correlated region, dx ≈−0.6 and dy ≈ 0.15. On the other hand, the inner structure is
attached to the wall and dx ≈ 0.1 and dy ≈ −0.3. Two weaker anticorrelated regions
flank the positive correlation in the spanwise direction for dz ≈ 0.9. These two
structures are not inclined and are clearly detached from the wall since their vertical
length, `y = 0.3, is small compared with the wall distance.

Summarizing, the spatial organization of the three-dimensional velocity correlation,
consisting of negative correlation regions flanking the positive ones in the spanwise
direction for the vertical velocity and in the vertical direction for the spanwise one,
suggests that the dominant flow structures of this region are quasi-streamwise vortices
whose cross-flow lengths are of the order of dy ≈ 0.3 and dz ≈ 0.4. Furthermore,
the spanwise flanking of positive and negative correlation for the streamwise velocity
suggests a streaky pattern consisting of alternating high and low streamwise velocity
regions whose size is dz≈ 0.5. The presence of negative correlation regions beside the
positive correlation of vertical velocity in the streamwise direction actually suggests
that spanwise rolls are also significant in this region of the flow. The combination of
spanwise rolls and streamwise vortices support the previously observed presence of
hairpin-like structures, see figures 3 and 4, also from a statistical point of view. The
same qualitative behaviour is also observed in the near-wall forward boundary layer
region, not shown for brevity reasons. It is intended that the dominant flow structures
of the forward boundary layer are again streamwise vortices and streaks as a result
of hairpin-like structures.

5.2. Attached reverse boundary layer
In figure 7, we report the behaviour of the spatial correlation function in the attached
reverse boundary layer at (x, y)= (2.7, 0.12) corresponding to location P3 highlighted
in figure 2(a). Also in this region, the increment in the vertical direction ry is limited
by the presence of the rectangular plate so that ry >−0.12. The measured maximum
and minimum values of correlation are 1.06 and −0.41, and the correlated and
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FIGURE 7. (Colour online) Three-dimensional spatial correlation functions evaluated in
the attached reverse boundary layer at (x, y) = (2.7, 0.12) corresponding to location P3
in figure 2(a). The isosurfaces of positive and negative correlation shown in (a–c) are
Ruu = Rvv = Rww = 0.3 (red) and Ruu = Rvv = Rww =−0.07 (cyan), respectively. For further
details on the structure of the figure, see the caption of figure 6.

anticorrelated structures are identified with isosurfaces of correlation 0.3 and −0.07,
respectively.

The correlation function of streamwise velocity is shown in figure 7(a,d,g). The
isosurface of positive correlation, Ruu = 0.3, forms a streamwise elongated structure,
`x ≈ 1 long and `z ≈ 0.34 wide. As better shown in the rx = 0 plane, the isolevels
of positive correlation extend down to the wall. Two negative correlation regions are
also detected, Ruu =−0.07. In contrast to the primary vortex shedding region shown
in figure 6, the anticorrelated regions are smaller in size and are displaced not only
in the spanwise direction but also in the vertical direction. In particular, we measure
dy ≈ 0.55 and dz ≈ 0.85.

The correlation of vertical velocity is shown in figure 7(b,e,h). The isosurface of
positive correlation, Rvv = 0.3, forms a slightly elongated structure in the streamwise
direction different from the primary vortex shedding region where a tall vertical
structure is observed. The horizontal lengths are `x ≈ 0.56 and `z ≈ 0.22. Two
anticorrelated regions, Rvv = −0.07, are observed beside the positive correlation in
the spanwise direction. These are streamwise elongated structures displaced in the
spanwise direction, dz ≈ 0.28, and at the same wall distance, dy ≈ 0. Their cross-flow
lengths are `y ≈ 0.27 and `z ≈ 0.25.

The correlation of spanwise velocity is shown in figure 7(c, f,i). The isosurface of
positive correlation, Rww = 0.3, forms a slightly inclined disc-shaped structure whose
lengths in the horizontal directions are `x ≈ 0.7 and `z ≈ 0.5. A single negative
correlation region is observed and takes place above the positive one, in contrast
to the quadrupole anticorrelation structure observed for the primary vortex shedding
region. The isosurface of anticorrelation, Rww = −0.07, takes the form of a slightly
inclined structure whose lengths are `x ≈ 0.78, `y ≈ 0.28 and `z ≈ 0.4. This structure
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FIGURE 8. (Colour online) Three-dimensional spatial correlation functions evaluated in
the detached reverse boundary layer at (x, y)= (0.86, 0.18) corresponding to location P2
in figure 2(a). The isosurfaces of positive and negative correlation shown in (a–c) are
Ruu=Rvv=Rww= 0.3 (red) and for Ruu=Rvv=Rww=−0.2 (cyan), respectively. For further
details on the structure of the figure, see the caption of figure 6.

is displaced in the vertical direction by dy ≈ 0.25 and in the streamwise direction by
dx ≈−0.08.

Overall, the observed anticorrelated regions flanking the correlated ones in the
spanwise direction for the vertical velocity and the negative correlation taking place
above the positive one for the spanwise velocity suggest that the statistically dominant
structures of the attached reverse boundary layer are quasi-streamwise vortices whose
cross-flow lengths are dy ≈ 0.25 and dz ≈ 0.28. This result is in accordance with the
previous instantaneous flow field analysis, see figure 3(b). The absence of upstream
and downstream negative correlations of vertical velocity, as observed in the shedding
region, actually suggest that streamwise vortices in the attached reverse flow are
not part of the hairpin-like structures. A final difference with respect to the primary
vortex shedding region is that the streamwise velocity does not show an evident
streaky pattern.

5.3. Detached reverse boundary layer
Here, we analyse the structure of the detached reverse boundary layer by considering
the spatial correlation function evaluated at (x, y) = (0.86, 0.18) corresponding to
location P2 highlighted in figure 2(a). The increment in the vertical direction ry
is again limited by the presence of the rectangular plate so that ry > −0.18. The
maximum and minimum values of correlation are 1.03 and −0.55, and the correlated
and anticorrelated structures are identified with isosurfaces of correlation 0.3 and
−0.2, respectively.

In figure 8(a,d,g), the three-dimensional correlation function of streamwise velocity
is shown. The isosurface of positive correlation Ruu= 0.3 is a compact structure whose
horizontal lengths are `x ≈ 1 and `z ≈ 0.6. No isosurfaces of negative correlation are
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shown since the anticorrelation of the streamwise velocity is very weak, min(Ruu)=
−0.12, compared with the other two components of the velocity. However, as shown
by the isolevels in the rx = 0 and rz = 0 planes, negative correlations are actually
present. Although weak, three negative correlation regions are observed with one on
the top and two on the spanwise sides of the positive correlation.

The spatial correlation function of the vertical velocity is shown in figure 8(b,e,h).
The isosurface of positive correlation, Rvv=0.3, is a compact structure stretched in the
spanwise direction. Its horizontal lengths are `x≈ 0.29 and `z≈ 0.6. The isosurface of
negative correlation, Rvv =−0.2, is a small spanwise elongated structure taking place
slightly above and downstream from the positive one, dx ≈ 0.25 and dy ≈ 0.33. Its
streamwise and vertical lengths are `x ≈ 0.22 and `y ≈ 0.28.

In figure 8(c, f,i), the three-dimensional correlation function of the spanwise velocity
is shown. The isosurface of positive correlation, Rww = 0.3, is a large structure
elongated in the spanwise direction whose lengths in the wall-parallel directions are
`x ≈ 0.67 and `z ≈ 1.24. The isosurface of negative correlation, Rww =−0.2, is a thin
structure taking place downstream of the positive correlation region, dx ≈ 1.2 and
dy ≈−0.1. As clearly shown in the plane rz = 0, the isolevels of positive correlation
are significantly stretched downstream for large vertical separations. As a consequence,
the positive correlation region is found to enclose the region of anticorrelation from
above.

Summarizing, the presence of a strong anticorrelated region downstream and slightly
above the positive one for the vertical velocity suggests that the dominant structures
of the detached reverse boundary layer are spanwise vortices in accordance with the
previous analysis of the instantaneous flow field, see figure 3(b). On the other hand,
the downstream location and the size of the anticorrelated region for the spanwise
velocity suggest the presence of a wall-normal large-scale vortical motion. This motion
could be understood as the statistical footprint of the phenomenon reorienting the
streamwise vortices of the attached reverse boundary layer into the spanwise vortices
observed in the detached reverse boundary layer. Finally, the streamwise velocity does
not highlight a spanwise alternating pattern of high- and low-velocity streaks.

6. Multi-scale features
In this section, we address the scale-by-scale evolution of turbulence through the

different regions of the flow. To this aim, we study the inhomogeneous behaviour of
turbulent spectra. By taking advantage of the statistical homogeneity of the flow in the
spanwise direction and in time, the spectrum of a generic quantity β can be defined as

Φββ(kz, ω, x, y)= 〈β̃(kz, ω, x, y)β̃∗(kz, ω, x, y)〉, (6.1)

where kz and ω are the spanwise wavenumber and the frequency and (·̃) denotes the
Fourier transform with respect to the spanwise direction and time. Let us point out
that the Fourier transform in time has been performed using all the temporal signals
without using windowing and weighting functions. Accordingly with (6.1), the spectral
properties of the flow turn out to be statistically defined in a four-dimensional space
of scales and positions (kz, ω, x, y). To simplify the analysis, in the following,
we consider separately the one-dimensional wavenumber and frequency spectrum
defined as

Φ
kz
ββ(kz, x, y)=

∫
Φββ(kz, ω, x, y) dω and Φω

ββ(ω, x, y)=
∫
Φββ(kz, ω, x, y) dkz,

(6.2a,b)
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respectively. Owing to inhomogeneity in the streamwise and vertical directions, the
one-dimensional spectra defined above still contain a large amount of information,
being a function of the compound three-dimensional space of locations and
wavenumbers/frequencies (x, y, kz/ω). For this reason, we decided to limit the analysis
to two selected reduced spaces of (x, y) locations. These two reduced-space locations
are defined by tracing the (x, y) positions intercepted by two selected streamlines
of mean velocity. Hence, a spectral analysis of the flow along its mean evolution
paths is enabled. The statistical study of the multiscale properties of the flow is
then reduced to the analysis of a two-dimensional space (γ , kz/ω) where γ is the
curvilinear coordinate length defined by the mean velocity streamline along its path
in the (x, y) space, γ =

∫
dγ with dγ =

√
dx2 + dy2.

The first reduced space, reported in figure 9(a), is a closed loop tracing the
mean flow path around the primary vortex and will hereafter be called the cyclical
reduced space. The resulting path γ allows us to study the statistical evolution of the
flow along its development in the main recirculating region. Three distinct relevant
subregions can be defined. In the first, shown in red in figure 9, we can address how
fluctuations are triggered and amplified in the leading-edge shear layer and how they
develop during the advection along the primary vortex path up to the reattachment
region. In the second part after the reattachment, shown in blue in figure 9, we
can deal with the behaviour of the branch of motions flowing upstream through the
reverse boundary layer. Finally, in the last part, shown in green in figure 9, we can
study the final detached part of the reverse flow up to the leading-edge shear layer,
thus closing the cycle. The second reduced space, shown in figure 11(a), starts at
the leading edge, covers the primary vortex, reaches the trailing edge and finally
moves downstream along the wake. This second reduced space will be called open
reduced space and allows us to study the statistical evolution of the flow along its
development toward the free flow in the wake. Also in this case, the resulting path γ
can be divided into three relevant subregions. The first, in red, traces the evolution of
fluctuations from their origin at the leading-edge shear layer up to the reattachment
point. The second part, in blue, allows us to assess the behaviour along the attached
forward boundary layer, whereas the third, in green, describes the development of the
motion along the wake.

In the following, we show spectral results for the vertical velocity component only.
The spectra of the other components of velocity and of the pressure field have been
also analysed, but are not reported for brevity. However, the main differences, when
present, and the main outcomes from the other components of velocity and from the
pressure field will be explicitly highlighted in the text.

6.1. The cyclical reduced space
Let us consider the behaviour of the flow in the cyclical reduced space. As reported
in figure 9, the mean pressure P(x, y) shows a slight decrease from the leading
edge up to the streamwise location of the primary vortex core corresponding to
γ /γmax≈ 0.27. Then, the mean pressure field highlights a significant adverse pressure
gradient up to the reattachment region for 0.27 < γ/γmax < 0.5. After this region,
moving upstream in the reverse boundary layer, the mean pressure field shows an
almost equivalent favourable pressure gradient up to γ /γmax ≈ 0.7. This streamwise
location is the footprint of the low pressure levels associated with the primary vortex
core, see also the isocontours of mean pressure shown in figure 2(b). In the final part
of the path before reaching back to the leading-edge shear layer, the mean pressure
again shows an adverse gradient.
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FIGURE 9. (Colour online) (a) Selected streamline for the study of the recycling
mechanisms in the primary vortex. (b) Behaviour of turbulent intensities and of mean
pressure along the path γ .

In figure 9, the behaviour of the turbulent intensities, 〈u′u′〉, 〈v′v′〉 and 〈w′w′〉 is
also shown. In the first part of the path (red section) along the leading-edge shear
layer, the turbulent intensities increase. Indeed, the free-shear layer is recognized to
be the site of the instabilities first and then of the transition to turbulence in this kind
of flow. For γ = 0, the three components exhibit similar values, but the streamwise
fluctuations are found to be the most amplified along the path. The increase of the
turbulent intensities is maintained up to the reattachment region with the exception
of the streamwise fluctuations, which show a decrease just before it. The result is
that in the reattachment region, the intensity of the fluctuations is almost equally
distributed in the three directions. After the reattachment, along the reverse boundary
layer (blue section), all three components of the turbulent intensities decrease. As
expected, owing to the impermeability constraint given by the proximity of the wall,
this reduction abruptly occurs for the vertical fluctuations. Interestingly, the most
intense fluctuations in the first part of the reverse boundary layer are those in the
spanwise direction. This fact could be explained as the result of a spanwise sweeping
of the three-dimensional fluctuations impinging into the wall. In the last segment
of the path (green section), the intensity of the fluctuations further decreases before
reaching the leading-edge shear layer, thus closing the cycle. Such a decrease is most
significant for the streamwise fluctuations, presumably due to the adverse pressure
gradient that is established in this final part of the path.

The multiscale nature of the flow in the cyclical reduced space is described by
means of turbulent spectra of the vertical velocity and is shown in figure 10. In
the very first part of the leading-edge shear layer (red segment), the most energetic
spanwise scales of the flow are relatively large, of the order of the rectangular plate
thickness, λz = O(1). In contrast, the energy peak in time is located at small time
scales of the order of λt = O(10−1). In fact, a second distinct peak is present for
relatively large time scales of the order of λt = O(10). Its intensity is smaller than
the first one located at small time scales. The nature of the second smaller peak
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FIGURE 10. (Colour online) Premultiplied one-dimensional spectra of turbulent vertical
fluctuations in the cyclical reduced space. (b) Premultiplied one-dimensional wavenumber
spectrum kzΦ

kz
vv as a function of (γ , λz) where λz is the spanwise wavelength, λz= 2π/kz.

(c) Premultiplied one-dimensional frequency spectrum ωΦω
vv as a function of (γ ,λt) where

λt is the period, λt = 2π/ω. The premultiplied spectra are normalized with their local
maxima, e.g. kzΦ

kz
vv(γ , λz)/ max(Φkz

vv|γ ), and are shown in linear scale. To address the
variation of the intensity of the vertical fluctuations along the path, the reader should refer
to figure 9.

at large time scales is analysed in the following section. However, let us note that,
interestingly, the intensity of the second peak becomes smaller and smaller with
respect to the first when moving downstream along the path and almost disappears
around γ /γmax ≈ 0.06. These behaviours of the turbulent spectra are in accordance
with the presence of spanwise vortex tubes as a result of the Kelvin–Helmholtz
instability of the shear layer. In particular, it appears that the mean width of these
structures is of the order of the plate thickness.

Following the development of the shear layer, the energy-containing spanwise
scales λz remain almost unaltered of the order of O(1), whereas the time scales λt
increase in accordance with the formation of streamwise vortices due to the stretching
and reorientation by mean shear of the spanwise tubes to form hairpin-like patterns.
This behaviour is retained up to γ /γmax≈ 0.2 where a decrease of the most energetic
spanwise scales λz starts to take place, and the temporal scales λt continue to increase.
In fact, in a very short length, from γ /γmax ≈ 0.2 to ≈ 0.3, the energy-containing
spanwise scales decrease to scales of the order of O(10−1). In this short region,
transition to turbulence definitely takes place as is also shown by the levels of
turbulent kinetic energy reported in figure 2(c). For γ /γmax > 0.3 and, hence, after the
streamwise location of the primary vortex core, the peak of the turbulent spectrum
remains at almost the same spanwise scales, whereas the time scales still show a
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FIGURE 11. (Colour online) (a) Selected streamline for the study of the free flow from
the leading edge up to the wake. (b) Behaviour of turbulent intensities and of mean
pressure along the path γ .

slight increase. The main aspect is a filling of the spectrum, which is particularly
marked in the time scales. This behaviour is retained up to the reattachment region.
Across the reattachment region, in between the red and blue segments of the path,
the spanwise scales become smaller, whereas the time scales remain almost unaltered.
This decrease of the spanwise lengths across the reattachment region suggests that
structures with smaller spanwise lengths are those mainly advected upstream through
the reverse boundary layer. Accordingly, through the analysis of the instantaneous
reverse flow pattern, figure 3(b), and of the spatial correlation function, figure 7, these
structures are recognized to be streamwise vortices.

Through the reverse boundary layer (blue segment), the most energetic spanwise
and temporal scales remain almost unaltered. As shown in figure 9, this section of
the path is characterized by a favourable pressure gradient up to the streamwise
location of the primary vortex core, γ /γmax ≈ 0.7. Further upstream (final part of the
blue segment), a weak adverse pressure gradient takes place leading to a longitudinal
shrinking and spanwise enlargement of flow structures as shown by the instantaneous
reverse flow pattern shown in figure 3(b). Accordingly, we observe an increase
of the most energetic spanwise scales, λz. Upon entering the last part of the path
(green segment), the reverse boundary layer detaches, thus forming the secondary
vortex, and the enlargement of flow structures is even more evident, thus leading
to spanwise vortices as shown by the spatial correlation function, figure 7 (see also
the instantaneous reverse flow pattern shown in figure 3b). This increase of the most
energetic spanwise lengths is retained up to the leading-edge shear layer where the
detached spanwise vortices are encompassed by and conform with the even larger
motion, λz =O(1), related to the Kelvin–Helmholtz instability, thus closing the cycle.
On the other hand, the temporal scales show a very interesting double feature along
the detached reverse boundary layer. When moving upstream, for γ /γmax > 0.8, the
turbulent spectrum splits into two branches of energetic scales. A large time scale
range of the order of O(10) characteristic time scales is developed simultaneously
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with the generation of a small time scale range of the order of O(10−1) characteristic
time scales. These two branches survive along the detached reverse boundary layer
and reach the leading-edge shear layer where only the range of small time scales
survives, thus closing the cycle.

6.2. The open reduced space
The behaviour of the flow in the open reduced space is shown in figure 11. We
again start the analysis by considering the behaviour of the mean pressure field. The
first part of the path (red segment) essentially matches the corresponding section of
the cyclical reduced space. Indeed, pressure is found to slightly decrease up to the
streamwise location of the primary vortex core, then it starts to increase. In contrast
to what happens in the cyclical reduced space, this adverse pressure gradient is also
maintained in the second part of the path (blue segment). Indeed, this second part
corresponds to the forward boundary layer toward the trailing edge. The mean pressure
rise is observed up to γ /γmax ≈ 0.28 where it leaves room for a small favourable
pressure gradient which continues in the first part of the last section of the path
(green segment). From a relative minimum immediately after the trailing edge around
γ /γmax ≈ 0.36, the mean pressure field increases again up to the free stream value in
the wake just after a few lengths for γ /γmax ≈ 0.5.

As shown in figure 11, from the instabilities in the very first part of the leading-edge
shear layer, the turbulent intensities grow while moving around the primary vortex
(red segment). A drastic decrease is then observed when approaching the reattachment
region, especially for the wall-normal fluctuations. This decrease of the fluctuations is
almost maintained in the forward boundary layer (blue segment) up to the trailing
edge where a second shear layer forms and develops in the wake, thus promoting the
generation of turbulent fluctuations. Indeed, in the very first part of the wake (green
segment) a strong increase in the fluctuations is observed, especially for the vertical
component. This growth is maintained for a very short length up to γ /γmax≈ 0.4 and
just downstream from the average wake vortex, a weak decrease of the fluctuations
takes place following the asymptotic behaviour of the wake.

Let us now analyse the multiscale features of the open reduced space reported
in figure 12. The first part of the path (red segment) essentially matches the
corresponding region of the cyclical reduced space and will be not described for
brevity reasons. We start then by considering the second part of the path (blue
segment), i.e. from the reattachment region down to the trailing edge. By crossing
the reattachment region, a significant decrease of the most energetic spanwise and
temporal scales is observed. Then, following the development of the forward boundary
layer, the spanwise scales remain almost unchanged, whereas the temporal scales
decrease. By crossing the trailing edge, the relatively small spanwise and temporal
scales of the boundary layer are abruptly encompassed by the large-scale motion of
the separated wake. Interestingly, the most energetic spanwise scales rapidly evolve
and reach large values of the order O(1). On the other hand, the temporal scales
do not evolve upon passing the trailing edge, but are found to be simply damped
in a very short length for γ /γmax < 0.35. Indeed, the dynamics of the wake create
a separate well-defined peak at larger temporal scales, λt ≈ 7, i.e. the shedding time
scale. Hence, for γ /γmax > 0.35 only the large-scale motions of the wake survive and
the resulting spectrum is not fulfilled in contrast to the spectrum in the spanwise
scales. Let us close the analysis of the open reduced space by addressing the spectral
evolution of the wake for γ /γmax > 0.4. A logarithmic (linear in the semilog plot)
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FIGURE 12. (Colour online) Premultiplied one-dimensional spectra of turbulent vertical
fluctuations in the open reduced space. See the caption of figure 10.

increase of the spanwise scales and a replenishment of the spectral bands is observed.
The same development of wake turbulence cannot be observed in the temporal scales
owing to the intensity of the shedding spectral peak which overshadows the energy
content of the other spectral bands.

7. Self-sustaining cycle

Before discussing the self-sustaining mechanisms of the flow, it is instrumental to
briefly recall the main features of the separating and reattaching flows analysed so far.
In the very first part of the leading-edge shear layer, the instability of the flow gives
rise to very large spanwise vortex structures. The interaction with the strong shear
leads to a blow up and streamwise stretching of these structures, thus giving rise to a
hairpin-like flow pattern and to the development of streamwise vortices and high- and
low-speed streaks. Hence, transition to turbulence takes place, as highlighted by the
levels of the turbulent intensities and by the filling of the turbulent spectrum shown
in figures 9 and 10. Two branches of turbulent structures can be identified. The first
represents detached fluctuations that are freely convected downstream toward the wake.
The second is given by turbulent structures moving down toward the wall. These
fluctuations impinge into the wall and a portion of these flows downstream toward the
trailing edge while the other portion moves upstream, thus forming a reverse boundary
layer.

This last branch of turbulent structures accelerates first, driven by a favourable
pressure gradient associated with the low-pressure levels of the primary vortex core,
see the behaviour of pressure within the blue segment shown in figure 9. These
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FIGURE 13. (a) Probability density function and (b) premultiplied frequency spectrum
of the streamwise velocity computed in the reverse flow region at (x, y) = (0.88, 0.18)
corresponding to location P2 shown in figure 2(a). The dashed vertical line in (a) denotes
the mean.

structures are found to be essentially elongated in the streamwise direction as shown
by the analysis of the correlation function (figure 7). Then, beyond the streamwise
location of the primary vortex core, the reverse boundary layer experiences an adverse
pressure gradient and detaches, thus forming a secondary vortex. In the consequent
detached reverse boundary layer, turbulent fluctuations become wider and wider as
shown again by the analysis of the correlation function (figure 8). These spanwise
vortices are eventually conveyed upstream thus triggering the leading-edge shear layer
and closing the cycle. In the following, we provide evidence of a self-sustaining
cycle at the base of the upstream rising of these spanwise vortices and, hence, of the
triggering of the leading-edge shear layer instabilities.

A careful inspection of the detached reverse boundary layer reveals that the
mean upstream advection of turbulent fluctuations is very weak in this region.
Figure 13(a) reports the probability density function of the streamwise velocity
in the detached reverse flow at (x, y) = (0.88, 0.18), corresponding to location P2
shown in figure 2(a). A clear non-Gaussian behaviour is observed. In particular, the
flow is recognized to be almost quiescent most of the time. Indeed, as shown by
the long negative tail of pdf(u), the reverse flow is found to be essentially given by
rare and intense events of upstream advection. In accordance with the peak in the
premultiplied frequency spectrum of streamwise velocity shown in figure 13(b), these
extreme reverse flow fluctuations belong to long time-scale motions of the order of
λt≈ 25. As a consequence of these periods of quiescence, we recognize that turbulent
structures moving upstream from the reattachment region are actually clustered
in correspondence of the streamwise location of the secondary vortex because the
upstream advection is null for long periods. We argue that this clustering of structures
in the detached reverse flow would give rise to vortex reconnection phenomena, which
would explain the creation of spanwise vortices from the streamwise ones observed
in the attached reverse flow, see the instantaneous flow field analysis, figure 3(b), and
the results of the spatial correlation function, figures 7 and 8.

Given the clear matching of temporal scales, this intermittent phenomenon of
upstream advection is strictly related to the behaviour of the secondary vortex. Indeed,
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FIGURE 14. (a) Premultiplied frequency spectrum of the streamwise movement of low
pressure levels at the wall, ωΦω

xlowxlow
. Inset: premultiplied frequency spectrum of vertical

velocity, ωΦω
vv , evaluated in the wake at a location corresponding to point P5 shown in

figure 2(a). (b) Correlation function Rxt
lowxb

low
(τ ), equation (7.3).

as shown in figure 5, the time scale between two bridges of negative wall shear stress,
i.e. the lifetime of the secondary vortex, is t≈ 25, actually matching the time scale of
the upstream advection in the detached boundary layer, λt≈ 25, shown in figure 13(b).
Both the lifetime of the secondary vortex and the intermittency of the upstream
advection of the detached boundary layer are due to events of favourable pressure
gradient conditions that, in turn, are given by large-scale unsteadiness phenomena.
In particular, we argue that the long periods of quiescence of the detached boundary
layer are due to the adverse pressure gradient that for long time scales significantly
opposes the weak reverse flow also inducing a detachment of the boundary layer
and, hence, creating the secondary vortex. On the other hand, for smaller periods,
the adverse pressure gradient becomes weaker, thus allowing the reverse flow to
proceed toward the leading-edge shear layer and preventing the flow separation into
the secondary vortex.

To clarify this point, let us consider the frequency spectrum of the streamwise
location of an isolevel of low pressure evaluated at the wall defined as

Φω
xlowxlow

(ω)=

∫
〈x̃low(kz, ω)x̃∗low(kz, ω)〉 dkz, (7.1)

where xlow = xlow(z, t) is computed as the upstream streamwise location satisfying the
following condition

pwall(xlow, z, t)= plow, (7.2)

where plow≡ 0.45Pmin=−0.014. In figure 14(a) the premultiplied frequency spectrum
ωΦω

xlowxlow
is shown. A well-defined peak at large time scales, λt≈ 7, is present, which

exactly matches the frequency of the large-scale vortex detachment in the wake,
λt ≈ 7, see the peak of the premultiplied frequency spectrum of the vertical velocity
in the wake shown in the inset of figure 14(a). Actually, as already shown in figures
5 and 12, the shedding of large-scale vortices from the primary vortex is also locked
at the same time scale. Hence, we conjecture that the characteristic time scale of
the streamwise oscillation of low-pressure levels is a footprint at the wall of the
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shedding of large-scale vortices from the primary vortex whose characteristic time
scale is exactly t≈ 7. However, in figure 14(a), a second spectral peak at even larger
time scales, λt ≈ 25, is observed, thus highlighting that the most intense fluctuations
of xlow for λt ≈ 7 are superimposed to a weaker fluctuation of xlow characterized by
an even larger period corresponding to almost four times the vortex shedding period,
λt ≈ 25. Let us now consider the temporal cross-correlation between the streamwise
location of low wall pressure in the top and bottom sides of the rectangular plate,
xt

low and xb
low, respectively,

Rxt
lowxb

low
(τ )=

〈xt′
low(z, t′)xb′

low(z, t′′)〉
〈x′2low〉

, (7.3)

where τ = t′′ − t′. As shown in figure 14(b), Rxt
lowxb

low
(τ ) shows a clear anticorrelation

for τ = 0, thus highlighting that, on average, an upstream fluctuation of low wall
pressure on one side corresponds to a downstream fluctuation on the opposite side.
This negative correlation is retained up to τ ≈ 9. For larger time scales, the correlation
becomes positive and reaches a maximum around τ ≈ 11, which is then recognized to
be the period of inversion of the upstream/downstream fluctuations of low pressure
in the two sides of the plate. Let us point out that the time scale of the positive
maximum of correlation of two signals in phase opposition corresponds to half of
the period of the dominant harmonic. Hence, τ ≈ 11 corresponds in spectral space to
the peak of ωΦω

xlowxlow
at λt ≈ 25. This fact suggests a superimposition of the intense

fluctuations of xlow at λt ≈ 7 with those weaker fluctuations at λt ≈ 25. Summarizing,
the low-wall-pressure levels fluctuate in space by following the detachment of large-
scale vortices from the primary vortex. This upstream/downstream movement of low
pressure is superimposed to a very slow phenomenon such that the most effective
upstream fluctuations of plow actually occur for periods corresponding to that of the
very-large-scale unsteadiness of the flow, i.e. λt ≈ 25.

The low-frequency upstream and downstream oscillation of low levels of wall
pressure is responsible for the very intermittent upstream advection of turbulent
structures within the detached reverse boundary layer shown in figure 13(a). In fact,
given the adverse pressure gradient and the small values of momentum associated
with the detached reverse boundary layer (green segment of figure 9), turbulent
fluctuations are able to reach the leading-edge shear layer only when the pressure
levels are favourable, i.e. when xlow�〈xlow〉. Accordingly, the frequency spectrum of
streamwise velocity in the detached reverse boundary layer reported in figure 13(b)
shows a clear peak at large temporal scales matching the large-scale period of
fluctuations of xlow at λt ≈ 25. The same matching of scales is also observed with
the characteristic time scale of the secondary vortex shown in figure 5. Given the
alternate nature of the process in the two opposite sides of the plate, we argue that
turbulent structures along the detached reverse boundary layer are clustered in one
side of the plate where the secondary vortex holds and are advected upstream in the
opposite side where, in contrast, the secondary vortex is absent or very weak. On
average, this clustering and advection is maintained for a relatively long period, and
then reverses in the two sides of the plate. In accordance with the peak of correlation
shown in figure 14(b), this period of inversion is of the order of O(10) characteristic
time scales. Hence, the system consists of trains of small-scale structures able to
reach the leading-edge shear alternatively in the two sides of the plate.

In accordance with this picture, the time signals of the fluctuating vertical velocity
evaluated in the leading-edge shear layer (location P1 reported in figure 2a) show
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FIGURE 15. (a) Temporal signal and (b) premultiplied frequency spectrum of vertical
velocity in the leading-edge shear layer, location P1 of figure 2(a). The thick line in (a)
reports the filtered signal (7.4). (c) Correlation function Rv̄v̄(τ ), equation (7.5).

packages of high-frequency fluctuations alternating with relative unperturbed periods
as shown in figure 15(a). The premultiplied frequency spectrum of vertical velocity
shown in figure 15(b) highlights that, on average, these packages are characterized by
a range of high frequencies centred at time scales of the order λt≈ 0.7. In accordance
with the time signal reported in figure 15(a), ωΦω

vv(ω) also shows a range of large
temporal scales centred at λt ≈ 25 which actually denotes the periodic appearance of
these packages. This period matches the large period of the streamwise fluctuations of
low wall pressure shown in figure 14(a) and of the upstream advection events in the
detached reverse boundary layer shown in figure 13(b), thus supporting the physical
connection between pressure fluctuations, upstream advection and triggering of the
leading-edge shear layer.

Let us consider the filtered signal of the absolute value of vertical velocity,

v̄(x, y, z, t)=
∫

G1t(t− t∗)|v(x, y, z, t∗)| dt∗. (7.4)

As shown in figure 15(a), the filtered signal, with G1t the Gaussian filter function
and with a filter time scale 1t = 4, allows us to efficiently detect the packages of
small-scale fluctuations triggering the shear layer. By computing the temporal cross-
correlation function of the filtered signal (7.4) evaluated in the top and bottom shear
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layer,

Rv̄v̄(τ )=
〈v̄′(x, ỹ, z, t′)v̄′(x,−ỹ, z, t′′)〉√
〈v̄′v̄′〉(x, ỹ)〈v̄′v̄′〉(x,−ỹ)

, (7.5)

with τ = t′′ − t′, we can confirm the alternating nature of the small-scale triggering
of the leading-edge shear layer in the top and bottom sides of the rectangular plate.
Indeed, as shown in figure 15(c), the trains of small-scale structures detected by the
filtered vertical velocity v̄ are correlated in the two sides of the plates for τ ≈ 11
matching the time scale of the streamwise rising/descent of low pressure levels along
the body. It is worth noting that for τ = 0, the correlation is almost zero and is not
negative as would be expected from a phenomenon of the alternation of two signals.
The reason is that the alternation is between quiescence and triggering and, hence,
simultaneously (τ = 0) the average product of these two processes in the two shear
layers is zero.

We can now give an explanation of the two branches of energetic scales observed
previously in § 6 and shown in figure 10. In the final portion of the cyclical
reduced-space (green segment of figure 10), the turbulent structures advected upstream
through the detached reverse boundary layer have been shown to be spanwise vortices
whose spectral footprint is the branch of energetic small temporal scales. On the other
hand, the second branch, corresponding to very large temporal scales, can now be
understood as the spectral footprint of the observed alternation between the top and
bottom sides of long periods of quiescence and rising toward the leading edge of
small-scale structures. As a consequence, the second spectral branch is actually a
footprint of the very-large-scale unsteadiness of the flow, which promotes/suppresses
the upstream rising of packages of small-scale fluctuations toward the leading-edge
shear layer through streamwise fluctuations of low pressure levels. Hence, we argue
that trains of structures characterized by small time scales and relatively large
spanwise lengths, trigger the leading-edge shear layer alternatively in the top and
bottom sides for relatively long periods. Indeed, we observe that, while in the first
part of the leading-edge shear layer (red segment of figure 10) both spectral branches
appear, only the branch of small temporal scales, corresponding to the evolution of
the turbulent structures of the reverse boundary layer is amplified.

8. Conclusions
The separating and reattaching flow over blunt-bluff bodies can be considered as

characterized by seven different but physically connected phenomena: (i) the laminar
separation at the sharp leading edge; (ii) the free-shear layer instability and transition
to turbulence; (iii) the shedding of large-scale vortices from the separated region;
(iv) the impinging of turbulent motions on the wall in the reattachment region; (v)
the reverse flow associated with the large-scale recirculation; (vi) the shedding of
large-scale vortices in the wake; (vii) the turbulent wake development. The mutual
interaction of these phenomena gives rise to a self-sustaining cycle whose features
characterize the main unsteadinesses and the turbulent fluctuations of the flow. The
strongly inhomogeneous character of the above-mentioned mechanisms call for a
rational approach able to give a clear picture of the interrelated physical processes.
To this aim, here we study the multiscale features of the flow by means of a spectral
decomposition along two reduced spaces of locations: (i) a closed loop encompassing
the flow recirculation and (ii) an open path starting at the leading edge, moving above
the flow recirculation and finally, through the attached boundary layer flows through
the wake. The rationale of this choice is given by the mean velocity field which is
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used to trace these two reduced spaces. They allow us to track, scale-by-scale, the
phenomena experienced by the flow along its paths. The picture emerging from such
an analysis consists of a coupling mechanism where the leading-edge shear layer
instabilities, the recirculating turbulent structures and the large-scale vortex shedding
interact with each other forming a self-sustaining cycle as follows.

The instability of the leading-edge shear layer gives rise to large spanwise vortex
tubes, which, under the action of the strong mean shear, evolve in hairpin-like
structures and turbulence. The flow pattern is then characterized by turbulent
fluctuations that are predominantly aligned in the streamwise direction. As shown
by the analysis of the three-dimensional spatial correlation functions, they consist of
quasi-streamwise vortices and high- and low-streamwise velocity streaks. By following
the paths of the mean velocity field, we recognize that some turbulent fluctuations are
freely convected downstream toward the wake region, whereas others are conveyed
toward the wall where they finally impinge, giving rise to downstream and upstream
turbulent boundary layers. As shown by the analysis of the three-dimensional spatial
correlation functions, the branch flowing upstream is characterized first by streamwise
vortices and, in the final part, by spanwise vortices. Owing to the action of adverse
pressure gradients, these structures are found to form a very intermittent periodic
system. Indeed, pressure fluctuations of long periods are found to alternatively
promote/suppress the reverse flow separation (secondary vortex) and the upstream
recirculation. As a result, turbulent fluctuations are clustered within the primary
vortex at one side of the plate and advected upstream toward the leading-edge at the
other side. The self-sustaining cycle thus consists of trains of small-scale structures
triggering the leading-edge shear layer for relatively long periods of the order of
O(10) characteristic time scales. These packages of fluctuations are followed by
periods of the same order O(10) of almost quiescence. These processes appear on
the two sides of the rectangular plate in phase opposition. In conclusion, a feedback
loop through the primary vortex takes place which is mediated by a large-scale
phenomenon of a long period connecting the top and bottom sides of the rectangular
plate. It consists of a leading-edge shear layer instability locked at the frequency of
small-scale structures, which were originally created by the leading-edge shear layer
itself, thus closing the cycle.

Let us close the work by pointing out some relevant open issues. It is known
that variations of the Reynolds number, corner geometry and the presence of free
stream turbulence have an impact on the recirculating flow topology. Hence, a
systematic variation of these parameters is demanded to analyse how the observed
coupling phenomenon between large-scale unsteadiness and upstream rising of trains
of small-scale structures is modified by these changes. The nature of the large-scale
unsteadiness itself also deserves further investigations. In this context, emerging tools
based on global stability techniques (Theofilis 2011), dynamic-mode decompositions
(Schmid 2010) and proper orthogonal decompositions (Rigas et al. 2014) could help
to clarify its origin.
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