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Abstract
Synthetic amphiploids between Triticum aestivum (AABBDD) landrace Chinese Spring (Ph I )

and cultivar WL711 with different accessions of Aegilops kotschyi (UUSlSl) were developed

through colchicine treatment of sterile hybrids. The F1 hybrids and amphiploid plants were

intermediate between the parents for plant morphology and spike characteristics. Meiotic

metaphase chromosome analysis of the F1 hybrids (ABDUSl) showed the expected

chromosome number (35) and very little but variable homoeologous chromosome pairing.

The amphiploids (AABBDDUUSlSl), however, had variable frequency of univalents at meiotic

metaphase-I. The SDS–PAGE of high molecular weight glutenin subunits of amphiploids along

with the parents showed the presence and expression of all the parental genomes in the

amphiploids. The amphiploids with seeds as large as that of wheat cultivars had higher

grain, flag leaf and grain ash iron and zinc concentrations than the wheat parents and compa-

rable with those of their Ae. kotschyi parents suggest that Ae. kotschyi possesses a distinctive

genetic system for the micronutrient uptake, translocation and sequestration than the wheat

cultivars. This could, however, be demonstrated unequivocally only with comprehensive

data on biomass, grain yield and harvest index of the Aegilops donors and the synthetic

amphiploids, which is not feasible due to their shattering and hard threshing. The use of

amphiploids for the transfer of high iron and zinc concentrations and development of alien

addition and substitution lines in wheat is in progress.
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Introduction

More than two billion people, depending predominantly

on starch-rich cereals and tubers as staple food, suffer

from iron deficiency-related anaemia and zinc deficiency

(WHO, 2002; White and Broadley, 2005; Zimmerman and

Hurrel, 2007) for which there is very limited variability

among Triticum durum (Desf.) Husn., Triticum aestivum

L. cultivars and landraces (Cakmak et al., 2000; Rawat

et al., 2009). Bread wheat originated some 10,000 years

ago (Dubcovsky and Dvorak, 2007) involving

three diploid species through two steps of hybridization

and chromosome doubling (Kihara, 1944; McFadden

and Sears, 1946; Feldman et al., 1997), resulting in their†These authors have contributed equally to the work.
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immediate isolation from the parental species due to

which very limited variability among the progenitor

species could get incorporated in the cultivated gene

pools of tetraploid and hexaploid wheat. The germplasm

of related wild progenitor and non-progenitor Triticum

and Aegilops species is a rich reservoir of useful variability

for resistance against biotic and abiotic stresses, quality

traits, yield and yield components (Damania, 1993;

Jiang et al., 1994; Friebe et al., 1996). Useful variability

for several traits has been introgressed into cultivated

wheat and exploited commercially (Dvörak, 1977;

Kuraparthy et al., 2007; Chhuneja et al., 2008). Several

diploid and tetraploid wild progenitor species have

been found to possess high grain iron and zinc contents

(Cakmak et al., 2000; Ortiz-Monasterio and Graham,

2000; Calderini and Ortiz-Monasterio, 2003a,b; Chhuneja

et al., 2006), which are being used for transfer of the

useful variability for biofortification of wheat for high

grain iron and zinc contents. Some ‘S’ genome diploid

and tetraploid Aegilops species possess variability for

two to three fold higher grain iron and zinc contents

(Rawat et al., 2009). In addition to direct crosses between

wheat cultivars and wild species, numerous synthetic

amphiploids have been developed between T. durum

or T. aestivum cultivars and the related wild species.

The synthetic amphiploids have been used for dissecting

alien genomes through the development of alien

substitution and addition lines with useful variability for

subsequent introgression into elite wheat cultivars using

induced homoeologous pairing (Chen et al., 1994;

Jiang et al., 1994; Aghaee-Sarbarzeh et al., 2002) and

molecular cytogenetics (Kuraparthy et al., 2007).

This article reports the development and characteri-

zation of synthetic amphiploids between bread wheat

cultivars and Aegilops kotschyi accessions having higher

grain iron and zinc contents than the wheat cultivars.

Materials and methods

Plant material

The plant material consisted of six accessions of

Ae. kotschyi viz., pau3774, pau3790, pau14262 (391),

pau14264 (393), pau14266 (395) and pau14267 (396) and

two T. aestivum genotypes – landrace Chinese Spring

(Ph I ) with introgressed homoeologous pairing inducing

gene (Chen et al., 1994), henceforth abbreviated as

CS(Ph I ) and a bread wheat cultivar WL711 (Table S1,

available online only at http://journals.cambridge.org)

received from Punjab Agricultural University, Ludhiana.

The source and origin of the Ae. kotschyi accessions used

in this study are available from one of the authors

Dr Kuldeep Singh. The plant material was grown in the

experimental field of the Indian Institute of Technology,

Roorkee in 2004–2005 as replicated single row of 2 m

length with plant to plant distance of 10 cm and row to

row spacing of 30 cm with the recommended fertilizers

(50:25:25 NPK kg/acre) and irrigation practices as that of

wheat. Several F1 hybrids were produced using wheat

as the female parent and the Ae. kotschyi accessions

as the male parent (Table S1, available online only at

http://journals.cambridge.org). In the following year,

the F1 seeds were sterilized with 1% sodium hypochlorite

for 5 min, washed thrice with distilled water and

germinated on two layers of sterilized moist filter paper

in Petri plates. The chromosomes of the F1 hybrids were

doubled by treating coleoptiles of germinating seeds with

0.25% of colchicine (in 5% DMSO solution) for 5 h.

The colchicine-treated seedlings were transplanted in

the field. Some F1 hybrid seeds were also grown in the

field without colchicine treatment and crossed with recur-

rent wheat parents. The colchicine-treated and -untreated

plants were grown under similar spacing and cultivation

conditions as that of the wheat cultivars.

During flowering, the spikes with anthers dehiscing

viable pollen grains and seed set, evidently due to

chromosome doubling, were identified and tagged.

Seeds (C0 generation of amphiploids) from the doubled

sectors of the tagged spikes were harvested carefully

before shattering of spikes. The C1 generation of these

amphiploids was grown in the field during 2006–2007.

Collection of mature spikelets and spikes of the F1

hybrids and synthetic amphiploids had to be done

repeatedly at different intervals over 2–3 weeks because

of frequent shattering of spikes. Due to tough glumes and

hard threshing in the amphiploids and wild donors, the

grains were threshed manually. Mean number of seeds

per spike was determined for each amphiploid by

taking the average of number of seeds of ten spikes in

each replication.

Pollen stainability

Anthers dehiscing pollen grains were collected from five

spikes of each replication in the morning, and pollen fer-

tility was determined by staining with iodine potassium

iodide solution.

Seed protein electrophoresis

SDS–PAGE of high molecular weight (HMW) glutenin

subunits of endosperm proteins of mature and dried

seeds of parents and amphiploids was done using

10% acrylamide following the method of Smith and

Payne (1984).
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Cytological studies

Spikes of F1 hybrids and amphiploid plants were fixed for

24 h in Carnoy’s solution (ethanol–chloroform–acetic

acid; 6:3:1) for meiotic analysis. Spikes were transferred

to 70% ethanol after 24 h of fixation. For meiotic study,

the anthers were squashed in 2% acetocarmine. Pollen

mother cells (PMCs) at meiotic metaphase-I were

scored for chromosome number and pairing in all the

crosses and synthetic amphiploids.

Micronutrient analysis

Grain analysis
For micronutrient analysis, whole-grain samples of

parents and amphiploids were taken at maturity, washed

with N/10 HCl to remove contaminating dust if any, and

dried in hot air oven at 808C until constant weight. Grain

samples (0.5 g) were digested in a mixture of two parts

of concentrated nitric acid and one part perchloric acid

as per the procedure described by Zarcinas et al. (1987).

Digestion was continued till white residue was obtained.

Required volume was made after the completion of

digestion process and digests were analyzed by Atomic

Absorption Spectrophotometer (GBC- Avanta Garde M,

Dandenong, Victoria, Australia). Seeds from each acces-

sion of wild species and the amphiploids were analyzed

as three replicates to minimize the error during analysis.

Flag leaf iron and zinc contents
Flag leaves of WL711, CS(Ph I ), Ae. kotschyi parents and

amphiploids were analyzed for iron and zinc contents

before ear emergence at pre-anthesis stage. The leaves

were washed thoroughly with N/10 HCl, dried at 808C

for 8 h in oven prior to digestion. Dried leaf samples

were then digested as a minimum of three replications

as that for grains. Iron and zinc concentrations in the

digests were analyzed by AAS.

Grain ash analysis
One gram dried grains of each of Ae. kotschyi accessions,

WL711, CS(Ph I ) and the seven amphiploids were cleaned

thoroughly and kept for incineration at 6008C for 10 h. The

ash was further processed like the grains for AAS analysis.

Results

Plant and spike characteristics and chromosome
pairing of F1 hybrids

The wheat £ Ae. kotschyi F1 hybrids were morphologi-

cally intermediate between wheat and Ae. kotschyi

parents (Fig. S1; Table S1, available online only at

http://journals.cambridge.org). All the F1 hybrids were

completely self sterile and had spelta heads with brittle

rachis above the basal spikelet. The hybrids with

CS(Ph I ) had awnless lemma and glumes, whereas

those with WL711 had one glume awn and one lemma

awn (Fig. S1, available online only at http://journals.

cambridge.org). Chinese Spring has been known to pos-

sess awn inhibitor genes on chromosomes 4A and 6B

(Sourdille et al., 2002).

The rachis of F1 hybrids disarticulated only above the

basal spikelets like that of Ae. kotschyi (Fig. S1, available

online only at http://journals.cambridge.org). The details

of fertility and chromosome pairing of seven F1 hybrids

between T. aestivum [WL711 or CS(Ph I )] and six acces-

sions of Ae. kotschyi are given in Table 1. There was

very limited intergenomic pairing in the F1 hybrids

(Fig. 1) with very high frequency of univalents (25.69–

32.74), low frequency of rod bivalents (1.0–4.17) and

occasional trivalents (0.09–0.32). One of the F1 hybrids,

CS(Ph I)/Ae. kotschyi 396, showed higher chromosome

pairing (25.69 Is, 4.17 IIs and 0.32 IIIs) when compared

with other hybrids (Table 1). This may be attributed to

induced homoeologous pairing due to Ph I in CS which

is epistatic to Ph1, the diploidization gene on the long

arm of chromosome 5B (Riley and Chapman, 1958;

Chen et al., 1994; Jiang et al., 1994; Aghaee-Sarbarzeh

et al., 2002). However, in the other three hybrids of

CS(Ph I ) with different Ae. kotschyi accessions com-

paratively less homoeologous chromosome pairing was

observed (Table 1). The F1 WL711/Ae. kotschyi 393 with-

out Ph I also had relatively higher frequency of bivalents

(up to 6 II). All the F1 plants showed very low-pollen

stainability (17.6–23.5%), no anther dehiscence and no

seed set (Table 1).

The F1 hybrid plants treated with colchicine were

exactly like F1 hybrids except for having some doubled

sectors or spikes with dehiscing anthers, which could

be readily distinguished from non-dehiscent sterile

anthers in other spikes. These spikes/sectors with

dehiscing anthers had normal seed set, whereas there

was no seed set on the otherwise sterile F1 plants

without chromosome doubling. The seeds thus obtained

were identified as the potential synthetic amphiploids

(C0 generation) for further studies.

Morphology and fertility of the synthetic
amphiploids

Comparative morphology of the synthetic amphiploids

with the parents showed their intermediate growth

habit, tiller number and plant height (Table S1, available

online only at http://journals.cambridge.org) like the
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F1 hybrids. The amphiploids displayed some of the

characteristics of the Ae. kotschyi parent such as spelta

head, brittle rachis and red seed colour and other charac-

teristics of the wheat parents such as 1000 grain weight.

The number of spikelets per spike exceeded both the

parents. Most of the spike characteristics like the

number and length of awns of glumes and lemmas

were again intermediate to both the parents. Ae. kotschyi

accessions had 5–7 glume awns against none and single

awn in CS(Ph I ) and WL711, respectively. The glumes of

amphiploids with WL711 had single awn, while those

with CS(Ph I ) were awnless and had a tooth only.

The long lemma awn of WL711 was replaced by small

awns in the amphiploids, whereas Ae. kotschyi had

two lemma awns (Fig. S1, available online only at

http://journals.cambridge.org).

Pollen stainability and seed set in the amphiploids

varied within the season. The early flowering spikes

had non-dehiscent anthers, low-pollen stainability and

less seed set, whereas the late flowering tillers hadT
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le
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Fig. 1. Chromosome pairing in metaphase-I of wheat/Aegilops
kotschyi F1 hybrids, (a) F1 CS(Ph I )/Ae. kotschyi 396 (6 II þ 23 I),
(b) CS(Ph I )/Ae. kotschyi 3774 (3 II þ29 I), (c) F1 CS(Ph I )/Ae.
kotschyi 393 (1 III þ2 II þ30 I), (d) F1 WL711/Ae. kotschyi 393
(1 II þ32 I), (e) F1 WL711/Ae. kotschyi 391 (1 III þ3 II þ27 I)
and (f) F1 WL711/Ae. kotschyi 3790 (2 II þ31 I).
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dehiscing anthers, higher pollen stainability and good

seed set. Pollen stainability varied from 62.6 to 81.8%

in different amphiploids of CS(Ph I)–Ae. kotschyi acces-

sions, while in amphiploids of WL711–Ae. kotschyi acces-

sions it ranged from 57.4 to 79.0% (Table 2). Variation

in the seed set was observed for different combinations

of bread wheat lines and Ae. kotschyi accessions. Maxi-

mum seed set was observed in the amphiploid

CS(Ph I)–Ae. kotschyi 3774 (17.5 seeds/spike) and least

in WL 711–Ae. kotschyi 391 (4.1 seeds/spike). Seeds of

the amphiploids were longer, red and had 1000 grain

weight comparable with those of the wheat

parents (Table S1; Fig. S1, available online only at

http://journals.cambridge.org).

Chromosome pairing in the synthetic amphiploids

Chromosome number in the amphiploids was

highly variable ranging from 35 to 70 chromosomes

in CS(Ph I )–Ae. kotschyi 396, 39–69 in CS(Ph I)–

Ae. kotschyi 395, 42–70 in CS(Ph I)–Ae. kotschyi 393

and 37–70 in CS(Ph I )–Ae. kotschyi 3774 (Table 2;

Fig. 2). There was only a small proportion of PMCs in

all the amphiploids with the expected double chromo-

some number (70) of the F1 hybrids (35). Comparatively,

higher number of bivalents and lower number of

univalents in the amphiploids CS(Ph I )–Ae. kotschyi 395

(32.8 II, 2.6 I), CS(Ph I )–Ae. kotschyi 3774 (32.8 II,

2.92 I) and WL711–Ae. kotschyi 393 (23.2 II, 8.5 I)

might have resulted in higher seed set (Table 2) in

these amphiploids, whereas irregular meiotic behaviour

of CS(Ph I )–Ae. kotschyi 396 and WL711–Ae. kotschyi

391 with very wide range of chromosome number,

higher frequency of univalents and lower bivalent

frequency was associated with low-seed set percentage

(4.1 seeds per spike; Table 2).

HMW glutenin subunit profiles of amphiploids

The SDS–PAGE profiles of the HMW glutenin subunits of

CS(Ph I ), Ae. kotschyi accessions and the CS(Ph I )–

Ae. kotschyi amphiploids are given in Fig. 3. T. aestivum

cultivars PBW343, Kalyan Sona and landrace CS and

CS(Ph I ) were taken as the control. CS and CS(Ph I )

had similar subunit pattern for Glu 1B-controlled 7 þ 8

subunits and Glu 1D-controlled 2 þ 12 subunits of

HMW glutenins. All the accessions of Ae. kotschyi

(UUSS) expressed 3–5 novel subunits of HMW glutenin

subunits. Two of the slowest migrating x subunits had

lower electrophoretic mobility than the Glu-D1 subunit

5, while the faster migrating two y subunits were

slower than the subunit 7. HMW glutenin subunits ofT
ab
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both the wheat and Ae. kotschyi parents were present in

all the amphiploids confirming the presence and

expression of both the parental genomes (Fig. 3). Similar

additive profile of HMW glutenin subunits was observed

in the three amphiploids of WL711–Ae. kotschyi.

Grain and flag leaf iron and zinc concentrations of
amphiploids

Table 3 shows grain and flag leaf iron and zinc concen-

trations of the amphiploids along with both the parents

viz., WL711, CS(Ph I) and Ae. kotschyi accessions. The

micronutrient concentration of Aegilops kotschyi acces-

sions was two to three folds higher when compared

with wheat parents. Ae. kotschyi accession 3774 had the

highest grain iron (70.8 mg/kg) and zinc concentration

(35.7 mg/kg), respectively. The micronutrient concen-

trations of wheat parents were quite low, iron being

22.8 mg/kg in WL711 and 30.2 mg/kg in CS(Ph I ) and

zinc 16.6 mg/kg and 18.3 mg/kg in WL711 and CS(Ph I ),

respectively. The micronutrient concentrations of amphi-

ploids were comparable with those of Ae. kotschyi. The

micronutrient content per seed in Ae. kotschyi parents

was, however, similar to that of the wheat parents in

spite of the fact that they had three times smaller seeds

than the wheat cultivars, which could be either attributed

to their distinctive genetic system for micronutrient depo-

sition or concentration due to lower harvest index.

Ae. kotschyi also had two to three times higher flag leaf

iron and zinc concentrations than the wheat parents,

suggesting that their higher grain micronutrient content

could be attributed to their distinctive genetic system

for deposition rather than to concentration in their

smaller seeds. The amphiploids also showed an increase

Fig. 2. Chromosome pairing in wheat–Aegilops kotschyi
amphiploids (a) Amphi. CS(Ph I )–Ae. kotschyi 396 (Chr-64, 1
III þ 28 II þ 5 I) (b) Amphi. CS(Ph I )–Ae. kotschyi 3774 (Chr-68,
32 II þ4 I) (c) Amphi. CS(Ph I )–Ae. kotschyi 393 (Chr-69, 31 II
þ7 I) (d) Amphi. WL711–Ae. kotschyi 393 (Chr-69, 32 II þ5 I),
(e) Amphi. WL711–Ae. kotschyi 3790 (Chr-64, 30 II þ4 I)
and (f) Amphi. WL711–Ae. kotschyi 391 (Chr- 67, 29 II þ8 I).

Fig. 3. HMW glutenin subunit profile of Triticum aestivum cultivars, Aegilops kotschyi accessions and the amphiploids of
CS(Ph I) and WL711 with Ae. kotschyi accessions. (a) Lane 1, PBW343; 2, Kalyan Sona; 3, Chinese Spring; 4, Chinese
Spring(Ph I); 5, Ae. kotschyi 393; 6, Ae. kotschyi 395; 7, Ae. kotschyi 396; 8, Ae. kotschyi 3774; 9, Amphi. CS(Ph I)–Ae.
kotschyi 393; 10, Amphi. CS(Ph I)–Ae. kotschyi 395; 11, Amphi. CS(Ph I)–Ae. kotschyi 396; and 12, Amphi. CS(Ph I)–Ae.
kotschyi 3774. (b) Lane 1, WL711; 2, Ae. kotschyi 391; 3, Ae. kotschyi 393; 4, Ae. kotschyi 3790; 5, Amphi. WL711–Ae.
kotschyi 391; 6, Amphi. WL711–Ae. kotschyi 393; and 7, Amphi. WL711–Ae. kotschyi 3790.
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of up to 127% in iron and 92% in zinc in the flag leaves

and 2-3 times higher iron and zinc content per seed

than the parents due to the inherent distinctive micronu-

trient deposition system of the Ae. kotschyi parents.

Ash content and ash iron and zinc contents of
amphiploids

The grain ash content in Ae. kotschyi was up to 30%

higher than that of the wheat cultivars indicating their

higher inorganic component, whereas for the wheat–

Ae. kotschyi amphiploids it was intermediate between

the parental species (Table 3). The grain iron and zinc

contents in the amphiploids were more than double of

that of the wheat parents, whereas the iron content in

the grain ash was 61–85% and zinc was 50–63% higher

than that of WL711 cultivar.

Discussion

The wheat/Ae. kotschyi F1 hybrids as well as the amphi-

ploids were morphologically intermediate between the

wheat and Ae. kotschyi parents for plant height, growth

habit, tiller numbers per plant, etc. However, other char-

acters like ear shape, glume awns, hard threshing and

brittle rachis were more like their Ae. kotschyi parents.

The intermediate morphology of the F1 hybrids and

their synthetic amphiploids has been reported in several

studies (Sears, 1954; Martin and Laguna, 1982; Sharma

et al., 1987; Oliver et al., 2005). The genes controlling

brittle rachis (Br), tenacious glumes (Tg) of Ae. kotschyi

appear to be epistatic over the Q locus controlling square

head, tough rachis and free threshing in T. aestivum

(Endo and Gill, 1996; Li and Gill, 2006) as the amphi-

ploids resembled their Ae. kotschyi parents.

All the F1 hybrids (ABDUSl) had the expected

35 chromosomes (Table 1; Fig. 1) indicating complete

parental chromosome complement and chromosome

stability. Low to high intergenomic homoeologous

chromosome pairing was observed in different F1

hybrids. High-chromosome pairing observed in F1

CS(Ph I )/Ae. kotschyi 396 is probably due to the presence

of Ph1-inhibitor gene, Ph I, transferred from Aegilops

speltoides that is known to induce considerable amount

of wheat–alien pairing even in a single dose (Chen

et al., 1994). Our CS(Ph I) stock seems to be hetero-

geneous as some other F1 hybrids with CS(Ph I ) had

limited pairing. Intermediate homoeologous pairing in

hybrids with cultivar WL711 may also be explained due

to some pairing promoters in Aegilops species that are

known to suppress or enhance pairing in Triticeae

(Riley and Chapman, 1958; Sears, 1976; Jauhar, 2007).

Mello-Sampayo (1973) also observed the interaction of

pairing promoters that inactivate Ph1 or Ph1-like genes in

wheat/Ae. speltoides and wheat/Aegilops longissima hybrids.

The F1 hybrids had too low-pollen stainability to

permit anther dehiscence and hence had no self-seed

set. The low- to medium-chromosome pairing permitted

some of the paired chromosomes to undergo reduction

division and move to anaphase poles before the large

number of unpaired univalents align on the metaphase-

I plate and divide. Only those paired chromosomes

with intact sister chromatids would divide equationally

in the second meiotic metaphase, while the univalent

chromatids already separated in metaphase-I are

expected to move randomly resulting in tetrads with

unbalanced chromosome number and micronuclei. How-

ever, no fertile first division restitution nucleus was

observed as reported for T. durum/Aegilops tauschii

and T. durum/Ae. longissima crosses (Matsouka and

Nasuda, 2004; Jauhar, 2007; Tiwari et al., 2008).

Medium to highly fertile synthetic amphiploids (AABBD-

DUUSlSl) with nearly the expected chromosome

number (2n ¼ 10x ¼ 70) were obtained indicating the

effectiveness of colchicine treatment for doubling the

chromosome number of the F1 hybrids.

All the amphiploids developed in the present study

showed nearly additive parental electrophoretic pattern

of HMW glutenin protein subunits (Fig. 3) showing the

presence and expression of genomes of both the parents.

Most of the amphiploids having larger grains than the

wheat parents, and nearly as high grain iron and zinc

and flag leaf iron and zinc concentrations as that of the

Ae. kotschyi parent (Table 3), suggest that the higher

micronutrient content of Ae. kotschyi as reported earlier

(Chhuneja et al., 2006; Rawat et al., 2009) is due to its dis-

tinctive genetic system(s) for uptake, translocation and

sequestration in grains rather than due to their smaller

grains or lower harvest index (McDonald et al., 2008).

Higher flag leaf iron and zinc, grain ash and ash micronu-

trient concentrations in amphiploids with seeds larger

than or as large as the wheat cultivars further indicate

that Ae. kotschyi possesses genetically distinctive micro-

nutrient uptake, translocation or seed sequestration sys-

tem(s), which could be introgressed and commercially

exploited in elite wheat cultivars. Our inability to

record data on grain yield and harvest index in

Ae. kotschyi accessions and the synthetic amphiploids

due to their shattering and hard threshing and compare

the same with wheat in term of micronutrient concen-

trations continues as a major bottleneck in unequivocal

demonstration of Ae. kotschyi possessing superior genetic

control for micronutrient biofortification. Ae. kotschyi is

still a potential source of useful variability for wheat

biofortification for high grain iron and zinc in addition

to other progenitor species reported earlier (Calderini
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and Ortiz-Monasterio, 2003a,b; White and Broadley,

2005; Chhuneja et al., 2006). The work to transfer and

dissect useful variability of Ae. kotschyi through recurrent

backcrossing and development of alien addition and

substitution lines in wheat background is in progress.
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