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In this paper, we report that reversals of large-scale circulation in two-dimensional
Rayleigh–Bénard convection could be suppressed or enhanced by imposing local
constant-temperature control on sidewalls. When the control area is away from the
centre of the sidewalls, the control can successfully eliminate the flow reversal if the
size of the control region is large enough. With a proper location, the width can be as
small as 1 % of the system size. When the control region is located around the centre,
the control may enhance the flow reversal. It may also stimulate the occurrence of
a double-roll mode when the control is located in the centre. Explanations are also
discussed based on the twofold effects of the control region on the nearby plumes
and the concept of symmetry. The present work provides a new way to control the
flow reversals in Rayleigh–Bénard convection through modifying sidewall boundary
conditions.
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1. Introduction

Rayleigh–Bénard convection (RBC) is one of the simplest and most widely
investigated models representing buoyancy-driven convection in geophysical, astrophy-
sical and industrial problems (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010).
In addition to the scaling between the Nusselt and Reynolds numbers, which is
successfully explained by Grossmann–Lohse (GL) theory (Grossmann & Lohse 2000,
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2001, 2002; Ahlers et al. 2009; Lohse & Xia 2010), the reversals of large-scale
circulation (LSC) in RBC are also interesting and have been investigated intensively
(Benzi 2005; Brown & Ahlers 2007, 2008b; Assaf, Angheluta & Goldenfeld 2011;
Petschel et al. 2011; Vasil’ev & Frick 2011; Wagner & Shishkina 2013). In cylindrical
geometry, the reversals can be caused by azimuthal rotations of the LSC vertical
circulating plane due to the azimuthal symmetry, as well as the occurrence of LSC
cessations (Cioni, Ciliberto & Sommeria 1997; Brown, Nikolaenko & Ahlers 2005;
Sun, Xi & Xia 2005; Xi, Zhou & Xia 2006), and the latter could also be observed in
three-dimensional (3-D) or two-dimensional (2-D) cavity geometry (Tsuji et al. 2005;
Xi & Xia 2007).

Sugiyama et al. (2010) conducted experiments and numerical simulations to
investigate the flow reversals in 2-D and quasi-2-D geometry with a wide range
of Rayleigh number Ra and Prandtl number Pr (for definitions, see § 2.1). They
obtained the averaged time interval between reversals and a phase diagram of the
reversals. Explanations and scalings of the parametric bound of reversals were also
provided. Chandra & Verma (2011) used Fourier decomposition to study the time
evolution of modes, and Chandra & Verma (2013) demonstrated the Ra dependence of
averaged mode coefficients. To capture the physical mechanisms of reversals, ordinary
differential equation based stochastic (Sreenivasan, Bershadskii & Niemela 2002) or
deterministic (Araujo, Grossmann & Lohse 2005) models were also proposed. Other
recent works on flow reversals may be found in Ni, Huang & Xia (2015), Podvin &
Sergent (2015), Chong et al. (2018) and Chen et al. (2019).

Besides the classic set-up in RBC, new forms of boundary conditions, gravity field
and fluid properties have been considered in recent years, and it was found that these
new set-ups can greatly change the reversal behaviour. Huang et al. (2015) fixed the
heat flux of the lower wall instead of the temperature and reported that the reversal
frequency was reduced. Xia et al. (2016) discovered a wider parameter range with
non-Oberbeck–Boussinesq effects considered. Wang et al. (2018) found a drastic
decrease of reversal frequency with a very small tilt angle of the 2-D cavity. Other
interesting findings and analysis of LSC reorientations, cessations and reversals with
non-traditional set-ups may be found in Krishnamurti & Howard (1981), Sun et al.
(2005), Brown & Ahlers (2008a), Verma, Ambhire & Pandey (2015) and Wang et al.
(2017).

In this paper, we propose a new set-up in 2-D RBC where relatively small
constant-temperature zones were designed on sidewalls. Here, we choose a 2-D
configuration in our direct numerical simulations. This is because it is much cheaper
in computational cost and thus affordable for parametric study, while the flow
reversals in this configuration are easier to identify and visualize (Sugiyama et al.
2010). Furthermore, 2-D convection has been widely and successfully utilized as a
test-bed to study the physical and heat-transport features in 3-D convection (Sugiyama
et al. 2009, 2010; van del Poel, Stevens & Lohse 2013; Wang et al. 2018). Our set-up
and focus are different from the previous investigations on the sidewall effect (Stevens,
Lohse & Verzicco 2014; Wan et al. 2019). We will show that the proposed set-ups
can suppress or activate the flow reversals depending on the location of the control
zone. The underlying mechanism was also discussed.

2. Numerical set-up

2.1. Governing equations and boundary conditions
In this paper, we will consider 2-D flows in a square cavity with buoyancy force
simplified with the Boussinesq approximation. The origin is defined at the centre of
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cavity for convenience. With cavity height Ĥ, kinematic viscosity ν̂, thermal diffusivity
α̂, temperature difference between lower and upper walls 1θ̂ = θ̂l − θ̂u, gravitational
acceleration ĝ and thermal expansion coefficient β̂, we define the free-fall velocity as
Û= (ĝβ̂1θ̂Ĥ)1/2 and the free-fall time as T̂= Ĥ/Û. Using Û, T̂ , Ĥ and 1θ̂ as velocity,
time, length and temperature scales, respectively, and defining θ =[θ̂ − (θ̂l+ θ̂u)/2]/1θ̂ ,
the non-dimensionalized governing equations and related boundary conditions can be
written as

∇ · u= 0,
∂u/∂t+ u · ∇u=−∇p+ (Ra/Pr)−1/2

∇
2u+ θ j,

∂θ/∂t+ u · ∇θ = (Ra Pr)−1/2
∇

2θ,
y=−0.5: u= 0, θ = 0.5,
y= 0.5: u= 0, θ =−0.5,

x=−0.5: u= 0, αlθ + (1− αl)∂θ/∂x= 0,
x= 0.5: u= 0, αrθ + (1− αr)∂θ/∂x= 0,


(2.1)

where Rayleigh number Ra = ĝβ̂1θ̂Ĥ3/(ν̂α̂), Prandtl number Pr = ν̂/α̂ and the
coefficients governing the temperature boundary conditions on the sidewalls are

αl =

{
0, |y− hc|> δc/2,
1, |y− hc|< δc/2,

and αr =

{
0, |y+ hc|> δc/2,
1, |y+ hc|< δc/2.

(2.2a,b)

This means that the sidewalls are adiabatic except for two θ = 0 regions with the
same width δc around y= hc on the left wall and around y=−hc on the right wall.
For simplicity, we will only mention about the control on the right wall with hc > 0
in the following discussions. Similar boundary conditions can be seen in Tangborn
(1992) and Ripesi et al. (2014). A sketch of the flow set-ups and the related boundary
conditions are shown in figure 1.

2.2. Simulation parameters
In the present work, the above equation (2.1) are solved using the second-order central
difference code developed by Zhang & Bao (2015). Three groups of simulations were
carried out. The first group is at Ra = 5 × 107 and Pr = 2, where the flow reversal
happens for adiabatic sidewalls, with varying hc and δc in order to obtain a phase
diagram where the control can successfully eliminate the reversal. The value of hc
varies in [0, 0.45] with interval 0.05, while δc varies in [0, 0.1] with interval 0.01,
resulting in 101 simulations. The second group is at Ra = 5 × 107 and Pr = 6 with
hc=0, where no reversal occurs for adiabatic sidewalls in order to show the possibility
of activating the reversal. The third group is at Ra= 1× 108 and Pr= 2 with certain
hc and δc to show the Rayleigh-number effect of the control.

The number of grid points is 384× 384 for Ra= 5× 107 and 1152× 1152 for Ra=
1× 108, and the corresponding time intervals are 1.0× 10−3 and 2.0× 10−4. The grid
size ∆ satisfies ∆< 0.37 min[ηK, ηB] where ηK = (ν̂

3/ε̂(x, t))1/4/Ĥ (with ε̂(x, t) being
the local turbulent dissipation) and ηB= ηKPr−1/2 are the local Kolmogorov scale and
Batchelor scale, respectively, which can be estimated by scaling laws in the boundary
layer as suggested by Shishkina et al. (2010). The time step is small enough so that
the Courant–Friedrichs–Lewy number is smaller than 0.2.

In the following, 〈·〉t, 〈·〉x and 〈·〉y denote the average in time, along the x
axis and along the y axis, respectively. The averaged vortex turnover time tE is
tE = 4π/〈|ω(0, 0, t)|〉t where ω(0, 0, t) is the central vorticity (Sugiyama et al. 2010).
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FIGURE 1. Sketch of sidewall-controlled RBC with hc > 0.

In order to check the existence of reversals, simulations are performed for more than
1000tE for all cases. However, due to the stochastic feature of turbulence, the absence
of reversals cannot be confirmed with finite simulation time. Therefore, in the present
context, ‘no reversal’ means no reversal observed in 1000tE. Nevertheless, considering
the traditional mean time intervals ∼30tE in the present Ra range (Sugiyama et al.
2010), 1000tE can be viewed as a reasonably long time period. For accuracy of the
flow statistics, the simulations were run for 5000tE and the statistics are computed
within a time range over 4000tE.

3. Simulation results and discussion

Flow reversal can be identified through different approaches, such as the temperature
contrast between the left and right walls (Chen et al. 2019) and the sign change of
angular momentum (Sugiyama et al. 2010; Wang et al. 2018). Here, we are using the
latter, and the angular momentum is defined as (Sugiyama et al. 2010)

L(t)= 〈x · v − y · u〉x,y. (3.1)

Figure 2(a) shows the time series of the angular momentum L(t) at Ra= 5× 107 and
Pr=2 in a time period of 8000 free-fall times. Three cases were considered, including
no control with adiabatic sidewalls, and constant sidewall control with hc = 0.4, δc =

0.02 and with hc= 0.2, δc= 0.02. In the situation of no control, L(t) changes its sign
frequently, 43 times, in the time period shown, resulting in a mean time interval 〈τ 〉≈
28.2tE between successive reversals (tE ≈ 6.6 free-fall times). When sidewall control
with a small width δc= 0.02 is applied near the right bottom corner, i.e. hc= 0.4, the
flow reversal still happens but its frequency reduces a lot. When the control region
moves towards the centre height to hc=0.2, one has L(t)<0 in the whole time period,
indicating a successful elimination of the flow reversal.
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FIGURE 2. (a,b) Time series of (a) L(t) at Ra = 5 × 107 and Pr = 2, no control with
adiabatic sidewalls (black), hc = 0.4, δc = 0.02 (red) and hc = 0.2, δc = 0.02 (blue); and
(b) L(t) at Ra= 1× 108 and Pr= 2, no control with adiabatic sidewalls (black) and hc =

0.2, δc= 0.02 (blue). Values L> 0 indicates anticlockwise circulation, while L< 0 indicates
clockwise circulation. (c) Plot of Nu(t) at Ra=1×108 and Pr=2 with the same colouring
rule as in panel (b).

From these results, we may say that the sidewall control will affect the occurrence
of the flow reversal, and it can successfully eliminate the flow reversal if hc and δc

are chosen properly. This is also true when Ra increases to Ra= 1× 108, as shown in
figure 2(b), where the time series of L(t) with or without sidewall control are shown.
Again, the flow reversal, which happens without sidewall control, can be eliminated
successfully with sidewall control with hc = 0.2, δc = 0.02.

Figure 2(c) shows the time series of the instantaneous Nusselt number in the vertical
direction, which is defined as

Nu(t)=−
1
2

[
∂〈θ〉x

∂y

∣∣∣∣
y=−0.5

+
∂〈θ〉x

∂y

∣∣∣∣
y=0.5

]
, (3.2)

in the same two cases as in figure 2(b). It is seen that Nu(t) in both cases oscillates
severely, while the controlled case with hc = 0.2, δc = 0.02 has a slightly larger mean
value. Compared to the no-control case, where the time-averaged Nusselt number
in the vertical direction is 〈Nu〉t = 25.19, in the controlled case 〈Nu〉t increases by
approximately 2.2 % and reaches 25.74. This means that the slight sidewall control
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FIGURE 3. Phase diagram in the hc–δc plane with contours of relative values of Nusselt
numbers for Ra = 5 × 107 and Pr = 2. Crosses correspond to no detected reversals and
circles to detected reversals. Nu0 denotes the vertical Nusselt number of the case without
control. (a) Relative value of time-averaged vertical Nusselt number 〈Nu〉t. (b) Relative
value of time-averaged horizontal Nusselt number 〈Nuh〉t.

not only can suppress the flow reversal, but also can enhance the heat transfer in the
vertical direction.

Figure 3 shows the phase diagram of occurrence of reversals for fixed physical
parameters Ra= 5× 107 and Pr= 2 and varying control parameters hc and δc, together
with the relative value of the time-averaged Nusselt number in the vertical direction
〈Nu〉t (figure 3a) and in the horizontal direction 〈Nuh〉t (figure 3b) compared to the
no-control case at the same Ra and Pr. Here, the Nusselt number in the horizontal
direction Nuh is defined similarly as

Nuh =−
1
2

[
∂〈θ〉y

∂x

∣∣∣∣
x=−0.5

+
∂〈θ〉y

∂x

∣∣∣∣
x=0.5

]
. (3.3)

It is seen again that the sidewall control with constant temperature can eliminate the
flow reversal if hc and δc are chosen in proper ranges. When hc 6 0.05, the reversal
always happens even when δc is as large as 0.1, which means that the control location
should not be placed near the sidewall centre. On the other hand, if the control zone is
placed near the right bottom corner, that is hc= 0.45, it is also very hard to eliminate
the reversal and a successful elimination of flow reversal happens only when a very
wide control region δc = 0.1 is applied, i.e. θ = 0 is near the right bottom corner
−0.5 < y < −0.4. In the range 0.10 6 hc 6 0.40, the control is very effective, and
the flow reversal can be prevented if δc > 0.04. The δc value can be further reduced
when the control location hc moves to its optimal position hc ≈ 0.15, where a very
small width δc = 0.01 can effectively eliminate the reversal.

The contour in figure 3(a) shows that there is an increase of 〈Nu〉t for the controlled
cases when hc > 0.1 while it will decrease if hc 6 0.05. This is probably because the
sidewall control with hc > 0.1 could stabilize large-scale structures and suppress flow
reversals, which in turn would enhance the heat transfer in the vertical direction up
to a few per cent, while the sidewall control with hc 6 0.05 could enhance the flow
reversal and reduce the heat transfer in the vertical direction. The increase is generally
below 5 %, except for the hc=0.45, δc=0.1 case, where the variation is approximately
7 %, while the reduction could be approximately 3 %. Both increase and decrease of
〈Nu〉t seem to be non-monotonic for hc or δc.
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For the horizontal heat transfer, as shown by the contours in figure 3(b), it is seen
that 〈Nuh〉t increases generally with hc. We attribute this phenomenon to the fact that
with hc increasing there is an increase of heat transfer between the sidewalls and
horizontal plates through hot/cold plumes and direct thermal conduction. Interestingly,
〈Nuh〉t varies in a much wider range as compared to 〈Nu〉t, and the largest increase
could be as much as 0.14〈Nu0〉t. Again, 〈Nuh〉t seems to be non-monotonic for δc at
hc 6 0.4. The non-monotonic behaviours in both 〈Nu〉t and 〈Nuh〉t may illustrate the
complex coupling between the vertical and horizontal heat transfer under the sidewall
control.

Sugiyama et al. (2010) described the role of the corner flows during the reversal
process. Owing to energetic feeding by the detaching plumes from the boundary
layers trapped in the corner, the small corner rolls will grow until they reach the
half-height, and then they will destroy the main LSC and establish another LSC
in the opposite direction. Nevertheless, the reversals are not in perfect periodicity
(see figure 2) and sometimes the corner rolls remain oscillating around a certain
size (the height of the corner roll h oscillates by approximately 0.38; see the
supplementary movie 1 and figure 2(a) of Sugiyama et al. (2010) available at
https://doi.org/10.1017/jfm.2020.210). Without loss of generality, we will focus on the
right side of the flow in a clockwise LSC state in the following discussions.

Part of the detached hot plumes will rise up along the right sidewall due to the right
corner roll, and then they will encounter and interact with the cold plumes carried
by the main LSC. The interaction makes the hot plumes separate from the sidewall
and descend back towards the bottom plate. The sidewall control below the separation
point of the hot plume on the sidewall can absorb the heat from the hot plume and
lower its temperature, and thus reduce the corner roll’s kinetic energy input provided
by the work of the buoyancy force, breaking the feeding process of the corner rolls.
This results in the locking of the corner rolls into a smaller region near the corner,
making it harder for a reversal to occur. However, when the control region moves
close to the bottom plate, the efficiency of reversal suppression is even lower, although
the heat absorbed by the sidewall increases, as shown in figure 3(b). Furthermore,
the reduction of the corner roll’s energy feeding argument cannot explain the fact
that the best control region is approximately hc = 0.15 for the present Ra and Pr.
Therefore, we infer that the reduction of the corner roll’s energy feeding is not the
only mechanism for the reversal suppression with sidewall control.

Considering the situation when the hot plumes flow past the control region, the θ=0
wall would cool down the neighbouring fluid and create a small θ ≈ 0 region (see
figure 4f –h). Owing to the temperature difference, the θ ≈ 0 fluid tends to descend
relative to the surrounding hot fluid and behaves like an obstacle that forces the hot
plume to separate from the sidewall in order to bypass it. Such a mechanism originates
from the local variation of buoyancy force and can be quantitatively evaluated using
the divergence-free buoyancy force Fb

= θ j −∇pθ . Here, pθ is the buoyancy-induced
pressure and its governing equation is

∇
2pθ = ∂θ/∂y, ∂pθ/∂x|x=±0.5 = 0, ∂pθ/∂y|y=±0.5 = θ. (3.4a−c)

Above, Fb is the divergence-free projection of the buoyancy force and it corresponds
to the net contribution of the temperature field to the velocity fields.

Figure 4 shows the instantaneous velocity vectors, contours of temperature and the
horizontal component of the divergence-free buoyancy force Fb

x at Ra= 5× 107 and
Pr = 2 without sidewall control (not during the reversal event) and with different

891 R4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.210
https://doi.org/10.1017/jfm.2020.210


S. Zhang, Z. Xia, Q. Zhou and S. Chen

-0.4

-
0.

4-
0.

3-
0.

2
-

0.
1

-
0.

4-
0.

3-
0.

2-
0.

1

0 0.4 -0.4 0 0.4 -0.4 0 0.4 -0.4 -
0.

4
-

0.
45

-
0.

35
-

0.
25

-
0.

15
0

0.
4

-
0.

4
0

0.
4

-
0.

4
0

0.
4

0 0.4

0.1 0.2 0.3
x x x x

y

y

0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

-
0.01

0.0
3

0.03

-0.0
1

-0.0
1

-0.0
1-

0.01

-0
.01

-0.01

-0.0

-0.0
4

-0.07

-0.070.0
3-0.01 -0.01

-0.0
4

0.0
3-0.04

-0.0
4

-
0.

04

-
0.01

-
0.

4
-

0.
4-

0.
3-

0.
2

-
0.

1
0

-
0.

4

-0.0

0.07
-0.04 -0.01

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
œ

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 4. Temperature contours, velocity vectors and contours of Fb
x (levels

−0.1(0.01)0.1) of instantaneous fields at Ra = 5 × 107 and Pr = 2 with different
hc and δc: (a,e) no control, t = 10 422; (b, f ) hc = 0.2, δc = 0.02, t = 10 027;
(c,g) hc = 0.2, δc = 0.06, t = 10 075; and (d,h) hc = 0.4, δc = 0.06, t = 10 466.
(a–d) Temperature and velocity vectors; (e–h) temperature and Fb

x . Also see the
supplementary movies 1, 2, 3 and 4, respectively.

sidewall controls. Figure 4(b–d) indicates that the separation of the hot plume happens
near the control region for controlled cases. The supplementary movies 1–4 also show
that the separation points are relatively stable for the three controlled cases. Negative
Fb

x with relatively larger magnitude close to the wall is found near the separation point
of the hot plume just below the control region as shown in figure 4( f –h) and the
supplementary movies 2–4. Since the local influence of temperature on the velocity
field only exists in the projected buoyancy force, it is straightforward to claim that
the increase of near-wall Fb

x pointing inwards should be the main reason for plumes
to separate near the control region, and we believe that this direct forcing of the plume
to separate from the sidewall near the control region could be the second mechanism
of reversal suppression.

In fact, the sidewall control not only can suppress/eliminate the flow reversal, but
also can activate/enhance the flow reversal. Figure 5 shows the time series of angular
momentum L(t) from different simulations at Ra= 5× 107 and hc= 0. In figure 5(a),
we study the cases at Pr = 6. At Pr = 6 and Ra= 5× 107, there is no flow reversal
without sidewall control (Sugiyama et al. 2010) and L(t) will not change its sign as
time evolves, as depicted by the black lines. However, if the sidewall control is applied
at the sidewall centre, i.e. hc = 0, the flow reversal may happen. With a small width
δc = 0.02 (red lines), the reversal does occur, and L(t) changes its sign four times
during 5000 free-fall times. More importantly, there seem to be two different flow
states, as displayed by the insets at two different time steps. At one state, there is
one main LSC, clockwise or anticlockwise (single-roll mode, right inset). At the other
state, there are two counter-rotating rolls aligned in the vertical directions (double-roll
mode, left inset). Multiple states with single-roll mode and double-roll mode have
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-0.05

0

L(
t)

L(
t)

0.05

0.10

0.15(a)

(b)

Pr = 6, hc = 0 ∂c = 0.02

∂c = 0.02

No control

No control

∂c = 0.06

Pr = 2, hc = 0

-0.05
-0.10

26 000 28 000
t (free-fall time)

30 000

26 000 28 000 30 000

0
0.05
0.10
0.15

FIGURE 5. Time series of angular momentum L(t) from different simulations at Ra =
5 × 107 and hc = 0: (a) Pr = 6 with no control (black lines), δc = 0.02 (red lines) and
δc = 0.06 (blue lines); and (b) Pr = 2 with no control (black lines) and δc = 0.02 (red
lines). The two insets in (a) represent the instant temperature contours from the simulation
with δc = 0.02 at t= 26 400 and t= 28 200, respectively.

been reported before by Xi & Xia (2008) in cylindrical RBC at higher Ra. In their
experimental work, the averaged percentages of time that the large-scale mean flow
spends in double-roll mode is only 0.8 %. Here, with the sidewall control, we could
enhance the appearance of the double-roll mode. With a much wider width δc = 0.06
(blue lines), it is seen that the flow reversal happens more frequently, and L(t) changes
its sign 28 times in the same 5000 free-fall times. Furthermore, from the oscillating
amplitudes of L(t), it is easy to infer that the flow will experience multiple states as
the controlled case with δc=0.02 (see the supplementary movie 5), and the appearance
probability of the double-roll mode is also higher.

At Pr= 2 and Ra= 5× 107, where the flow will experience flow reversals without
sidewall control, the sidewall control with a small width δc=0.02 can still enhance the
reversal events, as displayed in figure 5(b). It is apparent that L(t) changes its sign
more frequently, and it might oscillate with a lower amplitude (see the time period
28 000 < t < 29 000), inferring a second flow state in double-roll mode of the large-
scale motions. The activation/enhancement of the flow reversals with control near the
sidewall centre (hc ≈ 0) can also be explained using the two mechanisms discussed
above. Differently from the suppression/elimination cases, the control region with hc≈

0 will break the feeding process of the main LSC instead of the corner rolls, smashing
in the balance between the LSC and corner rolls and making the flow reversal easier
to occur. Furthermore, the control region also makes the plumes separate from the
sidewall, and this in turn can determine the size of the LSC and corner rolls.

Finally, it is also very intuitive to explain the reversal suppression/enhancement
using the concept of symmetry: hc > Hc (Hc is the bound that separates the
suppression/enhancement of the sidewall control, and it is around 0.05 at Pr = 2
and Ra = 5 × 107) breaks the symmetry about lines x = 0 and y = 0 and favours a
clockwise state, while hc = 0 strengthens the symmetry of the system, motivating
LSC to reverse more frequently and even inducing a double-roll mode consequently.
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4. Conclusion

In traditional RBC, the sidewalls are adiabatic, and the LSC reversals may happen
in a certain range of Ra and Pr. In this paper, we reported through a series of
direct numerical simulations in 2-D RBC that the LSC reversals can be suppressed
or enhanced when a local θ = 0 control is applied on the sidewalls. When the
control region is located near the centre region (0 6 hc 6 Hc), the flow reversal can
be enhanced or even activated if there is no reversal without controls. The sidewall
control at the centre (hc = 0) can also stimulate the occurrence of the double-roll
mode. When the sidewall control is located away from the centre region (hc > Hc),
the flow reversal will be suppressed while convective heat transfer in the vertical
direction will be enhanced. As δc increases, the probability of occurrence of the
reversal becomes lower and it can be successfully eliminated if δc is large enough.
For hc= 0.15, flow reversals could be stopped with a control area less than 0.01. The
specific mechanism of reversal control is that control regions could weaken plumes
through heat conduction and they could also force the plumes to separate from the
sidewalls. Besides, the concept of symmetry is also helpful in the interpretation of
control mechanisms.

The results of the present work are quite elementary, but it opens a new idea to
the community to control the flow reversal through modifying the sidewall boundary
conditions. The results of the present work have extensive potential applications in
industry, geophysics and astrophysics, especially in the circumstances where only
small and local changes could be applied to the boundaries. In the future, we will
test the effectiveness of the control strategy in quasi-2-D and fully 3-D RBC through
both numerical simulations and experiments.
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