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Design and realization of GaN RF-devices
and circuits from 1 to 30 GHz
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The design, realization, and characterization of highly efficient powerbars and monolithic microwave integrated circuit
(MMIC) high-power amplifiers (HPAs) with AlGaN/GaN high electronic mobility transistors (HEMTs) are presented for
the frequency range between 1 and 30 GHz. Packaged powerbars for the frequency range between 1 and 6 GHz have been
developed based on a process called GaNso with a gate length of 0.5 wm. Based on a GaNz235 process with a gate length of
0.25 wm, high-power MMIC amplifiers are presented starting from 6 GHz up to advanced X-band amplifiers and robust

LNAs in microstrip transmission line technology.
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. INTRODUCTION

Gallium nitride (GaN) hybrids and monolithic microwave
integrated circuits (MMICs) find various applications for
energy-efficient high-power microwave amplification [1, 2].
Hybrid powerbar transistors achieve very high power-added
efficiency (PAE) values of >60% for large powerbars with
output power levels of >100 W in the frequency range
from 1-4 GHz, e.g. [3, 4]. HPA MMIC results with output
power levels of 50 W at X-band have been demonstrated
[5]. A significant number of outstanding MMIC results
are not fully visible [1]. Further developments, especially,
in the US and Japan, stretch the application frequencies to
the mm-wave up to 110 GHz [6]. This paper gives an over-
view on the results obtained on packaged powerbar and on
MMIC level.

. EVOLUTION OF DEVICE
TECHNOLOGY

The critical step toward the realization of state-of-the art of
II-N hybrids and MMIC amplifiers are achievements with
respect to the optimization of the active device technologies.
With the strong thermal constraints based on the high-
power densities achieved with GaN [1], the improvement
of PAE and gain became much more important than the
simple increase of the power densities. This is true for all
frequencies, however, for the particular gate length, for the
upper ranges of the targeted frequencies of operation. For
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powerbars based on gate lengths in the range of o.5 pm,
this critical area is the frequency range of 4-6 GHz.
MMIC-related frequencies in this paper range from 6 to
30 GHz. They are realized using gate lengths of 0.25 and
0.15 wm which are appropriate for this frequency range.
As a reference, Fig. 1 gives the overview of loadpull data
measured at 2, 10 and 28 GHz in CW-operation achieved
at Fraunhofer in order to visualize the status in device tech-
nology for gate lengths of 0.5, 0.25 and 0.15 pm on MMIC
level. We also see that the operation bias for the particular
technology reduces with increasing frequency. The break-
down voltages taken at an operation temperature of 150°C
are typically a factor of three higher for the technologies
given. The results in Fig. 1 are given for gate peripheries
which are relevant for large gate width power bars and
MMICs.

. POWERBAR TECHNOLOGY
(1-68 GHZ)

Hybrid powerbars are particularly attractive for the frequency
range between 0.9 and 6 GHz. The key issues are the increase
of efficiency at package level, gain improvement, oscillation
control for unmatched and prematched devices, and rugged-
ness for large VSWR ratios. These factors are of course inter-
dependent. As an example for the results of optimization,
Fig. 2 gives the CW-power results of a GaN power bar in
microstrip transmission line technology measured at 2 GHz
and Vpg=50V. We observe a linear gain of more than
20.7 dB at 2 GHz, a maximum power of 50 W, and an associ-
ated power density of 4.2 W/mm at an efficiency level of 60%.
The microstrip transmission line technology ensures good
linear gain for the device in package. Figure 3 gives the over-
view of the PAE and DE of various powerbar designs in
package as a function of output power achieved for the
frequencies 2 and 4 GHz when operated in CW between
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Fig. 1. Device CW-power and PAE for MMIC applications for three gate
lengths over frequency.
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Fig. 2. Device CW-power, gain, DE, and PAE at 2 GHz for a 12 mm powerbar
in microstrip transmission line technology, measured in package.

Vps = 40 and 50 V. The drain efficiencies are also given in
order to highlight the impact of the gain on PAE at the two
frequencies.

The PAE and DE levels at 2 GHz are in the range of
>65% for devices up to 50 W and roll-off slightly to the
120 W level. At 4 GHz, the typical efficiency level is in
the range of 50% up to the power range of 50 W. Further
work on the packaging and layout side shows that the roll
of PAE versus power roll of can be reduced to the level
of the smaller devices.
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Fig. 3. PAE and DE in CW over output power for packaged power bars

measured at 2 and 4 GHz.
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V. EVOLUTION OF MMIC LIBARIES
AND MODELING

A) Passive development and library extraction

For the MMIC design library-specific III-N passive com-
ponents require development in order to allow the same
design flow and flexibility as in the GaAs MMIC world.
Both coplanar and microstrip transmission line components
have been made available, including all technology-specific
elements like metal-insulator-metal (MIM) capacitors, resis-
tors, and inductances. The issues in GaN libraries include the
realization of high-power transmission lines, MIM capacitors
with high-breakdown voltage per area, high-power resistors,
and area-efficient high-current inductors. As the MMIC pro-
cesses are maturing, spread analysis techniques and advanced
passive components gain importance. Specific advanced
passive components such as MIM-on-top-of via and individ-
ual source-vias require more specific development. Modeling
of the passive components is mostly based on conventional
ADS models, which are conventionally extracted and used.

V. EVOLUTION OF CIRCUIT DESIGN
FOR GaN MMIC POWER
AMPLIFIERS

A) Large-signal modeling

The models used for this work are based on an in-house two-
dimensional voltage-lag model after an extensive phase of
development. Thermal effects and low-frequency dispersion,
and their impact on gain as well as PAE are well described.
Following the general theory presented in [7], long-term
memory effects are described by internal states. The par-
ameters of this model are extracted from pulsed-DC, pulsed
and CW-small-signal S-parameters, and time domain
measurements including the harmonics over wide bandwidth.
This model allows a state-dependent description of the intrin-
sic drain current and the gate-source and gate-drain space
charges. The state quantities are the low-pass filtered voltages
Vs and Vpg. This approach facilitates a correct description of
retarded responses as well as the instantaneous responses rel-
evant for RF power performance.

B) Discussion of specific design issues

In several ways, GaN design differs from the MMIC design
performed for GaAs and silicon. GaN offers very high intrinsic
levels suitable for broadband matching to 50 {2 loads. Typical
power cells for X-band design operated in the range of 30-
40 V offer real impedance very close to 50 (). At the same
time transformation networks lead to strong changes for
these theoretical impedances at the reference planes. The com-
plicated compression of the power gain due to dispersion and
thermal effects over input power are major challenges for the
design of amplifiers with high PAE at low gain compression.
The introduction of field plates, formerly only used in
silicon LDMOS technology at a few GHz into GaN technology
up to at least 30 GHz, has led to the delicate balance of
improving power compression and reliability while reducing
the effective parasitic capacitances to a minimum for the indi-
vidual process and frequency range.
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C) GaN X-band (8-12 GHz) MMICs

The realization of X-band MMICs with high power and high
bandwidth has been one of the major drivers for the develop-
ment of GaN technology [8]. Bandwidth, center frequency,
and PAE are key for the development of MMICs [9, 10, 12].
The ultimate goal for such frequencies is to convert more
energy into microwaves than into heat over a reasonable
bandwidth for real multi-stage MMICs operated at a bias of
up to 40 V. The realization of dual-stage designs is further
key due to the gain requirements of TRX-chains. Figure 4
gives the evolution of linear gain, PAE, and output power of
dual-stage X-band MMICs over time as developed at
Fraunhofer IAF over the last five years. The values are consist-
ently given for long-pulse operation (100 ws) for a duty cycle
of 10%, all measured between 9 and 10 GHz. The minimum
bandwidth for each design is 2 GHz. Figure 4 suggests a con-
tinuous development on MMIC level over time with signifi-
cant improvements, while the realization of higher PAE and
gain has found more attention than the simple increase of
output power. This is caused by lack of primary power in
most systems. In Fig. 4 we see a very consistent increase of
the linear gain level up to >27 dB at the center frequency,
which needs to be carefully balanced versus bandwidth and
the maximum PAE at the upper band edge at X-band frequen-
cies, e.g. >11 GHz.

VI. BROADBAND POWER
AMPLIFIERS 1-18 GHZ

GaN is particularly attractive to the realization of broadband
amplifiers. GaN is probably the first semiconductor technology,
which can provide broadband operation at similar power levels
and in frequency ranges as traveling-wave tube amplifiers and
replace tubes at least for the lower power ranges. For very prin-
cipal reasons, solid-state power amplifiers will always be less
efficient than tubes, providing broadband matching losses,
while they yield advantages such as compactness, size, omission
of high-voltage supplies, and overall relevant lifetime. Thus,
again PAE over bandwidth is a key for the application.

A) HPAs for the frequency range 1-6 Hz

Broadband power amplifiers in the frequency range 1-6 GHz
are attractive for multi-band communication amplifiers, e.g.
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Fig. 4. Evolution of PAE, output power, and linear gain at Fraunhofer IAF
over time for dual-stage MMICs with a bandwidth of >2 GHz for a duty
cycle of 10%, all with center frequency between 9 and 10 GHz.
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for base stations as well as for military radio and electronic
warfare applications. Both cost and PAE on device and
module level are key and typically lead to hybrid approaches.
At the same time, the loss mechanisms have to be identified.
For example, to obtain good PAE at the upper frequency
range of the C-band, advanced MMIC approaches have
been used to provide reference designs.

Figure 5 gives the pulsed output power measurement of a
single stage MMIC at 6 GHz with an output periphery of
6.4mm for a gate length of 0.25 wm. The MMIC delivers
more than 40% PAE in a broadband matching situation with
a linear gain of 10 dB and an output power of more than
45.5 dBm or 35 W when operated at Vg = 40 V. This trans-
lates into a power density of 5.5 W/mm under pulsed operation.
The MMIC situation allows very precise matching and to con-
sider the phase differences for the individual power transistors
at 6 GHz. This shows the enormous power potential of GaN
broadband designs. Hybrid designs based on gate lengths of
0.25 or 0.5 wm with their packaging may be more cost effective,
however, should provide similar PAE values as given in Fig. 5.

B) Broadband power amplifiers 6-18 GHz

For the higher frequency band, e.g., 6-18 GHz a broadband
solution using a MMIC approach is typical due to the strin-
gent needs to control the phase accurately with very low
losses. Figure 6 gives the micrograph of a nonlinear amplifier
realized already in 2004 based on a gate length of 150 nm and
II-N cascodes FET. The MMIC provides a linear gain of
>9 dB between 2 and 20 GHz, which makes such devices
very suitable for driver stages in broadband amplifier chains.
It provides output power levels of about 1 W in this case. A
similar MMIC design was recently published by Triquint
[11] at the power level of 17 W.

Vil. ROBUST LNA MMIC

Next to power amplifier robust low-noise amplifiers have been
realized as MMICs with the particular target to achieve very
high survivability at reasonable noise figure level [13]. Typical
targets for the survivability are in the 5-10 W range of input
power to a particular MMIC. Figure 7 provides an overview of
typical noise figures NF;, and gain per MMIC stage, which
are measured in low-noise operation for the frequency range
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Fig. 5. Output power results of a single-stage MMIC at 6 GHz measured at
Vps = 40 V in pulsed operation.
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Fig. 6. Early European CPW-broadband MMIC with a gate length of 0.15 pm.
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Fig. 7. MMIC LNA results at frequencies between 1 and 30 GHz.

of 1-30 GHz. This comparison is done on MMIC level with par-
ticular emphasis of reaching the robustness mentioned. We see
a consistent noise level of less than 2 dB is obtained up to
14 GHz of operation with a reasonable associated gain per stage
(on MMIC level) for low-noise operation. A third gate length
of 0.15 pm is added leading to a shrinked process of GaN1s.
The higher frequency range up to 30 GHz can be addressed.
The MMIC:s given in Fig. 7 all support a CW-input power level
beyond 40 dBm (10 W), which is even increased in pulsed oper-
ation. This work shows the enormous potential to realize robust
LNAs with good noise figure up to Ka-band frequencies.

VIlIl. CONCLUSIONS

The design, realization, and characterization of highly efficient
powerbars and MMIC HPAs with AIGaN/GaN high electronic
mobility transistors (HEMTs) has been presented for the
frequency range between 1 and 30 GHz. Powerbars for the
frequency range between 0.9 and 6 GHz have been developed
based on a process GANs50 which deliver PAE values beyond
60% for 50 V operation with a linear gain of >20 dB for the
50 W class at 2 GHz. Based on a GaN25 MMIC process
several high-power MMIC amplifiers with power levels >30
W are presented starting from 6 GHz up to advanced X-band
amplifiers in microstrip transmission line technology.
Low-noise amplifiers provide noise levels below 2 dB up to
14 GHz of operation with a robustness of >10 W input power.
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