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GENERALITY AND EXISTENCE:
QUANTIFICATIONAL LOGIC IN HISTORICAL PERSPECTIVE

JAN VON PLATO

Abstract. Frege explained the notion of generality by stating that each its instance is
a fact, and added only later the crucial observation that a generality can be inferred from
an arbitrary instance. The reception of Frege’s quantifiers was a fifty-year struggle over a
conceptual priority: truth or provability. With the former as the basic notion, generality had
to be faced as an infinite collection of facts, whereas with the latter, generality was based on
a uniformity with a finitary sense: the provability of an arbitrary instance.

§1. Frege’s generality. The quantifiers, all for generality and some for
existence, are as old as logic itself, but it was Frege in the Begriffsschrift who
got a decisive hold of the principles of reasoning with them. Others, though,
were slow in following him, partly because Frege explained generality in the
first place by stating that each its instance is a “fact,” and just later added
the “illuminating” observation by which generality can be inferred from an
arbitrary instance. It took over fifty years to arrive at a perfect understanding
of the quantifiers, in the form of autonomous, purely formulated rules of
inference for the universal and existential quantifiers in the work ofGentzen.
In the meanwhile, a wide spectrum of attitudes towards the quantifiers and
quantificational logic emerged, from a somewhat ambivalent refusal as in
Skolem, to a whole-hearted platonistic acceptance as in Tarski.
Frege’s introductionof quantificational logic in theBegriffsschrift contains
a section11 titledGenerality (DieAllgemeinheit, p. 19) that explains the logic
of the universal quantifier, modern notation ∀xF (x): Its assertion means
that whatever a is set in place of x, a “fact” F (a) always results. One page
later (p. 20), mere ∀xF (x) without the assertion-component is declared to
mean that F (a) “is always a fact, whatever one should put in place of a.”
The quoted passage is, of course, the way a universal assumption is put to
use and as such correct. How, then, to understand universal claims, against
assumptions?
What I consider to be the crucial passage on Frege’s universal quantifier
is found on p. 21, again with the abuse of a modern notation:
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418 JAN VON PLATO

It is even illuminating that one can derive A ⊃ ∀xF (x) from A ⊃ F (a)
if A is an expression in which a does not occur and if a stands in F (a)
only in the argument places.1

In the former passage, Frege is givingwhat evolved into the standard seman-
tical account of universality: ∀xF (x) holds or is true in a domain whenever
each instance F (a) is true. Now we have, in all but trivial cases with a finite
domain, an infinity of truths, and this went against the grain of finitists such
as Skolem and Wittgenstein, as I shall explain. In the latter passage, the
one Frege thought illuminating and even put in italics, he is not stating any-
thing about truth, but just gives the essential principle for reasoning about
generality, what became the rule of inference for the universal quantifier in
Hilbert and Bernays’ axiomatic logic, and the universal introduction rule of
Gentzen’s natural deduction.
After the quoted passage, Frege justifies the step of derivation in it: If

∀xF (x) is denied, “one must be able to give a meaning to a such that F (a)
becomes denied.” However, because A ⊃ F (a) was admitted, “whatever
a could be, the case in which A is admitted and F (a) denied is excluded”
(ibid., p. 22). Frege’s justification gives his real interpretation of the univer-
sal quantifier, namely that there is no counterexample. The matter is seen
clearly when Frege goes on to show by examples how his logic functions. In
section 22, he gives the logical law ∀xF (x) ⊃ F (a) and comments that if
∀xF (x) is affirmed, F (a) “cannot be denied. Our theorem expresses this.”
Instead of simply stating that any instance must hold, he is following the
tradition of Aristotle who explained generality by: “A thing is predicated of
all of another when there is nothing to be taken of which the other could
not be said” (Analytica Priora 24b28).
Frege finished hisGrundgesetze der Arithmetik I (Basic laws of arithmetic)
fourteen years after the Begriffsschrift, in 1893. The propositional machin-
ery is developed somewhat in relation to the earlier account, to make the
construction and display of formal derivations easier. As for the quantifiers,
the universal quantifier is taken into use with the motivation that one needs
to make a distinction between the generality of a negation and the negation
of a generality (p. 12). A generality is a truth if each its instance is a truth,
and existence is defined in the usual way (ibid.). The inference to generality
is presented inconspicuously twenty pages later, as a discourse about Latin
andGerman (fraktur) letters, the former used as free and the latter as bound
variables (p. 32). Frege’s notation for the universal quantifier has a horizon-
tal line in front of the formula, with a “notch” and a fraktur letter in the
notch. The scope of a quantifier is the formula right of the horizontal line.
The condition is that the letter, the quantified variable, must not remain free
anywhere outside the scope, thus making the free variable an eigenvariable
(pp. 32–33). On pp. 61–64, Frege summarizes his axioms and rules. Univer-
sal generalization is not presented as a rule of inference, but as modification
(Verwandlung) of a proposition that is already at hand (p. 62).

1A reader of the Van Heijenoort edition will miss Frege’s emphasis, for the translation of
Frege’s Auch ist einleuchtend is a bland It is clear also.
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In sum, Frege presented the two principles, universal generalisation and
instantiation, in what I take to be a reverse of the conceptual order of things,
with a confusion as a result that took some five decades to clear, the final
words set by theGöttingen logiciansHilbert, Bernays, andGentzen. Aspects
of this history are covered, in so many words, in Goldfarb (1979). Here I
shall consider the reception of Frege’s quantification theory through Russell
to Skolem, theGöttingers,Wittgenstein’s second coming as a philosopher, in
particular his work on the foundations and philosophy of arithmetic from
1929 to about mid-1930s, and end up with the intuitionists Brouwer and
Heyting.

§2. Enter Russell. Russell’s book The Principles of Mathematics of 1903
contains his first published acknowledgement of Frege’s achievement. The
book is anold-style synthetic presentation of the foundations ofmathematics
as a whole, including even a lot of classical mechanics. No explicit logical
notation is used, but the treatment is based on Peano’s work. Russell thinks
he can get along with a single primitive notion in logic, what he called
the “formal implication” rendered as “φx implies �x for all values of x”
(p. 11). Peano had used the notation φx ⊃x �x for such an implication with
a free variable, typically an eigenvariable in an inductive step from x to its
successor x′. That was the nature of Peano’s arithmetic: the quantifiers were
absent in his formalism.
Russell tells in the preface to his book that he had seen Frege’s Grundge-
setze der Arithmetik but added that he “failed to grasp its importance or to
understand its contents,” the reason being “the great difficulty of his sym-
bolism” (p. xvi). Upon further study, he wrote a lengthy appendix with the
title The logical and arithmetical doctrines of Frege (pp. 501–522), though
with just a disappointing half a page dedicated to the formalism of logic.
He notes the appearance of the universal quantifier in Frege (p. 519):

He has a special symbol for assertion, and he is able to assert for all
values of x a propositional function not stating an implication, which
Peano’s symbolism will not do. He also distinguishes, by the use of
Latin and German letters, respectively, between any proposition of a
certain propositional function and all such propositions.

Frege’s Latin and German letters stand for free and bound variables.
In a less known paper of 1906, The theory of implication, Russell develops
the calculus of logic formally, with negation and implication as primitives,
but without quantifiers. The deductive formalism is taken over verbatim
from Peano’s work (for details, see von Plato 2013, section 14.3.C). The uni-
versal quantifier makes instead its next appearance in Russell’s famous 1908
paper on the theory of types. Its section II is titledAll and any.Mathematical
reasoning proceeds through any: “In any chain of mathematical reasoning,
the objects whose properties are being investigated are the arguments to
any value of a propositional function” (p. 156). Still, reasoning with just
free variables would not do, for bound variables are needed in definitions
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(Russell’s terminology for free and bound variables is “real” and “appar-
ent”). Remarkably, his example is from mathematics proper (ibid.):

We call f(x) continuous for x = a if, for every positive number
� . . . there exists a positive number ε . . . such that, for all values of �
which are numerically less than ε, the difference f(a + �) − f(a) is
numerically less than �.

He goes on to explain that f appears in the definition in the any-mode, as
an arbitrary function, and that �, ε, and � instead are just apparent variables
without which the definition could not be made. Next Russell goes on to
introduce a formal notation for the universal quantifier, (x)φx, presumably
the first such notation in place of Frege’s notch in the assertion sign, if we
disregard the Πx notation in Schröder’s algebraic logic. The explanation,
though, is a disappointment, for it is stated that (x)φx denotes the proposi-
tion “φx is always true” (p. 156), a hopeless mixing of a proposition with an
assertion that would never have occurred in Frege. Later, in the more formal
section VI of the paper, this is corrected when the Fregean assertion sign �
is put to use.
Russell’s first example of a quantificational inference is: from (x)φx and
(x)φx implies (x)�x to infer (x)�x (pp. 157–8):

In order to make our inference, wemust go from ‘φx is always true’ to
φx, and from ‘φx always implies �x’ to ‘φx implies�x,’ where the x,
while remaining any possible argument, is to be the same in both.

As can be seen, the rule is applied by which instances can be taken from
a universal, after which the propositional rule of implication elimination
can be applied. Then, since x is “any possible argument,” �x is always
true, by which (x)�x has been inferred (pp. 157–8). Here we have a clear
case of the introduction of a universal quantifier. A further remarkable
feature of Russell’s example is its purely hypothetical character. He does read
the universal propositions in the “is always true” mode, but the argument
begins with: “Suppose that we know (x)φx,” thus, we have here a universal
assumption that is put into use by the rule of universal elimination.
One could add that bound variables are needed, not only in definitions,
but also in theorems, say, in almost any standard result about continuous
functions.
Russell ends his discussion of all and any in section II by praising Frege:

The distinction between all and any is, therefore, necessary to deduc-
tive reasoning and occurs throughout in mathematics, though, so far
as I know, its importance remained unnoticed until Frege pointed
it out.

Russell’s section VI of the type theory paper gives the formal machinery of
his type theory. It includes an axiomatization of propositional logic with
negation and disjunction as primitives, and implication elimination as the
rule, formulated in the logicist manner as: “A proposition implied by a true
premiss is true” (p. 170). The existential quantifier is defined through the
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universal one in the standard way, as (∃x).φx . = . ∼{(x). ∼φx}, another
notational novelty and presumably the first appearance of the existential
quantifier not counting Schröder’s Σx . The axioms and rules for the universal
quantifier are:

(7) �: (x).φx. ⊃ .φy
(8) If φy is true, where φy is any value of φx̂, then (x).φx is true.
(9) �: (x).φx. ⊃ .φa, where a is any definite constant.

Axiom (7) gives the license to infer to a free-variable expression, used infor-
mally in exampleswehavequoted. In (8), the rule of universal generalization,
the expression φx̂ denotes the propositional function, as opposed to its par-
ticular value for an argument, as Russell explains in a footnote. Thus, it is
a notation for functional abstraction. As to the last axiom, Russell sees no
“infinity of facts” brought in by universal instantiation, contrary to many
others who read Frege, but just writes (pp. 170–71): “It is the principle, that
a general rule may be applied to particular cases.”
Principles (7) and (9) give as contrapositions even the corresponding
axioms for the existential quantifier, if it should be chosen as a primitive: a
free-variable instance, resp. an instance with a constant, implies existence.
As to the rule of inference, existence elimination would be the classical
dual of universal introduction, but its formulation is tricky: Starting from
Frege’s generalization rule, its premiss and conclusion can be turned into
the respective contrapositions by which, given F (a) ⊃ A with a satisfying
the same conditions as in Frege’s rule, (∃x)F (x) ⊃ A can be derived.
Existential elimination can be found in this form in Hilbert and Ackermann
(1928). Can it be that late when the use of existential assumptions was put
on a firm formal footing?
Russell’s final word on logic is contained in the first volume of Principia
Mathematica, PM for short, that appeared in 1910 and was co-authored
with A. Whitehead. I take Russell to have been the driving force behind the
enterprise and refer only to him even if details of PM may have originated
with Whitehead.
Russell’s years as an active logicianwere in fact not that many, less than ten
anyway, and publications of note few in number. In 1927, in a preface to the
second edition of PM, he makes a remark that is likely to startle a modern
reader, namely that Sheffer’s stroke, the single connective by which one can
axiomatize classical propositional logic, is “the most definitive improvement
resulting from work in mathematical logic during the past fourteen years”
(p. xiv).
The presentation of logic in PM is somewhat different from Frege and the
1908 formulation that followed Frege. Part I, titled “Mathematical logic,”
begins with sectionAon “the theory of deduction” (pp. 90–126), followedby
a “theory of apparent variables” (pp. 127–160). There are moreover things
pertinent to propositional and predicate logic in the introductory part, such
as on page 3 where we find a typical logicist slogan: “An inference is the
dropping of a true premiss.”
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In first-order logic, as Russell calls it, PM has first both quantifiers
as primitive, alongside negation and disjunction. The reason lies in Rus-
sell’s reservation about applying the propositional connectives to quantified
propositions. Motivated by ideas from type theory, Russell writes that,
when applied to propositional and quantificational expressions, respectively,
“negation and disjunction and their derivatives must have a different mean-
ing” (p. 127). Russell’s way out is to not to apply propositional connectives
to quantified expressions at all, but to instead introduce negation and dis-
junction for quantified propositions as defined notions, here with Russell’s
numbering but the dot notation replaced by parentheses (p. 130):
∗9·01 ∼(x)φx ≡ (∃x)∼φx
∗9·02 ∼(∃x)φx ≡ (x)∼φx
∗9·03 (x)φx ∨ p ≡ (x)(φx ∨ p)
∗9·04 p ∨ (x)φx ≡ (x)(p ∨ φx)
∗9·05 (∃x)φx ∨ p ≡ (∃x)(φx ∨ p)
∗9·06 p ∨ (∃x)φx ≡ (∃x)(p ∨ φx)
∗9·07 (x)φx ∨ (∃y)�y ≡ (x)(∃y)(φx ∨ �y)
∗9·08 (∃y)�y ∨ (x)φx ≡ (x)(∃y)(�y ∨ φx)
The two straightforward cases with the same quantifier in both disjuncts
are not listed. The effect of the rules is that all propositions with quantifiers
become reduced to prenex normal form, a string of quantifiers followed by a
propositional formula. Here we have also an explanation of the use of both
quantifiers as primitives.
The axioms for the quantifiers are two:
∗9·1 � φx ⊃ (∃z)φz
∗9·11 � φx ∨ φy ⊃ (∃z)φz
The latter axiom is needed only for proving the contractive implication:

(∃x)φx ∨ (∃x)φx ⊃ (∃x)φx
The rule of inference is universal generalization (p. 132): “When φy may
be asserted, where y may be any possible argument, then (x)φx may be
asserted.” The arbitrariness of y is further explained by: “if we can assert a
wholly ambiguous value φy, that must be because all values are true.” We
see in the latter again, as in Frege, that the explanation goes from the truth of
the universal proposition to any of its instances, not the other way around.
Formal derivations with the quantifiers in the system of PM become eas-
ily hopelessly tricky. The reason is the curious synthetic nature of reasoning
in axiomatic logic, as compared to natural deduction, combined with the
ban on propositional inferences with quantified formulas. To have a feasible
system of derivation, Russell shows as a preparatory step that proposi-
tional inferences with the latter reduce to inferences within the propositional
system.
The first example of quantificational inference is the derivation of:
∗9·1 � (x)φx ⊃ φy
The proof is a formal representation of the following steps of inference that
synthesize the conclusion from an instance of excludedmiddle: First take the
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derivable propositional formula∼φy∨φy, then use existential introduction
to conclude (∃x)(∼φx ∨φy). Now the existential quantifier is moved in the
left disjunct, to get (∃x)∼ φx ∨ φy, and finally definition ∗9 ·01 is used in
the reverse direction to get (x)φx ⊃ φy.
One would expect that in addition to ∗9·1, also the rule of existence
elimination would be shown a derivable rule, but that rule appears nowhere
in PM. With hindsight, we know that the premiss of the rule has to be given
by a formula such as φy ⊃ p, i.e., ∼ φy ∨ p, assumed to be derived. Now
one can generalize to (x)(∼φx ∨ p), then apply definitions ∗9·03 and ∗9·01
to get ∼(∃x)φx ∨ p, i.e., (∃x)φx ⊃ p.
In paragraph 9 of section B, Russell gives an alternative account of quan-
tification in which negation and disjunction apply to all propositions. Then
existence can be defined in the usual way and its axioms replaced by ones
for the universal quantifier, as in the 1908 paper.
Russell gives special emphasis to the notion of formal implication that he
took over from Peano and defined in PM as (p. 139):

φx ⊃x �x ≡ (x)(φx ⊃ �x)
The importance of quantificational logic, against mere propositional logic,
comes out in Russell’s opinion as follows (pp. 20–21): In the latter, “material
implications” p ⊃ q between two propositions “can only be known when
it is already known either that their hypothesis is false or that their con-
clusion is true.” Such implications are useless, because “in the first case the
conclusion need not be true, and in the second it is known already.” Only
formal implications serve the purpose of “making us know, by deduction,
conclusions of which we were previously ignorant.”
Russell’s argument about the “uselessness” of implication in propositional
logic is a logical fallacy, committed because Russell moves from p ⊃ q to
the classically equivalent ∼p ∨ q, then appeals to the disjunction property
for the latter, but that property need not hold in classical logic.

§3. Skolem: yes and no to the quantifiers. Thoralf Skolem was a soli-
tary combinatorial genius who started, apparently on his own, to work
with Ernst Schröder’s algebra of logic. His long paper with the match-
ingly long title, Untersuchungen über die Axiome des Klassenkalküls und
über Produktations- und Summationsprobleme, welche gewisse Klassen von
Aussagen betreffen, was finished in 1917 and published in 1919. In it, he
established many of the basic results of lattice theory, such as the indepen-
dence of the axioms. He also defined what came later to be called Heyting
algebras, i.e., lattices with an “arrow” operation that imitates implication
and established many basic properties (see von Plato 2007 for details). These
algebras relate to intuitionistic propositional logic in exactly the same way
in which Boolean algebras relate to classical propositional logic. It is quite
amazing that Skolem had been able to determine such a structure, consider-
ing that intuitionistic logic became formally well-defined only by Heyting’s
(1930) axiomatic presentation.
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In 1919, Skolem became acquainted with the Principia Mathematica, but
his reaction toRussell’s universal and existential quantifiers was one of rejec-
tion. This is found in his paper on primitive recursive arithmetic, published
in 1923 but written in the Fall of 1919. He states in the introduction that he
wants to show that one can give a logical foundation to elementary arith-
metic without the use of bound variables. The real motivation comes out in
section 4 where the notion of divisibility is considered. Writing in Schröder’s
notation Σ for the existential quantifier, divisibility D(a, b) can be defined
as (p. 160):

D(a, b) ≡ Σx(a = bx)
Now comes the essential point:

Such a definition refers to an infinite—and that is to say
unexecutable—work, for the criterion of divisibility consists in try-
ing out, the whole series of numbers through, whether one can find a
number x such that a = bx obtains.

The situation is saved here, because one can limit the search for x: a divisor
of a cannot be greater than a. Therefore, universal and existential quan-
tifiers are finitely bounded and can be used, the definition written, with +
Schröder’s notation for disjunction, as (p. 161):

D(a, b) ≡
a∑
1

x(a = bx) ≡ ((a = b) + (a = 2b) + (a = 3b) + · · ·+ (a = ba)).

The bound variable x has a finite upper bound, and Skolem concludes:

Therefore this definition gives us a finite criterion of divisibility: one
can determine in each case through a finite work—a finite number of
operations—whether the proposition D(a, b) holds or not.

In the next section, Skolem defines subtraction b − c in which the problem
is to check that c � b; otherwise subtraction is not defined. Thus we have,
with c � b defined as the negation (c > b) and a nice overloading of the
symbol + as either disjunction or sum (p. 165):

(c > b) +
∑
x

(x + b = c)

Here the propositional summation [existential quantifier] in relation
to x should be extended over “all” numbers from 1 to ∞. Though,
even here it is not necessary to put into use such an actual infinity.

Towards the end of the paper, Skolem makes a remark that fixes his
philosophy (p. 186):

When a class of some objects is given, one would be tempted to say:
These things come in a finite number n means that there exists a one-
to-one correspondence between these objects and the first n numbers.
However, there occurs a bound logical variable in this definition, and
no limitation to the finite is given a priori for this variable, unless
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there is already at the start a result that states: the number of possible
correspondences is finite. So, from the point of view of the strict
finitism given here, such a result must be proved in advance, for the
number of the objects concerned to be definable.

Here we have Skolem’s approach that can be put concisely as: Decidability
is the only criterion of existence. All decision procedures have to terminate in
a bounded number of steps.
In elementary arithmetic, the atomic formulas are equations between
numerical terms. If the latter don’t contain variables, their values can be
computed and thus equality becomes decidable, a situation that can be
expressed so that the law of excluded middle, a = b ∨ ¬ a = b, holds for
numerical terms. It of course holds in classical logic, but here the point
is that it holds constructively. It is an easy exercise to show that the law
of excluded middle for arbitrary propositional formulas becomes derivable.
Thus, Skolem’s primitive recursive arithmetic with its quantifier-free formu-
las obeys classical logic. In fact, one can interpret classical propositional
logic as that special case of intuitionistic propositional logic in which the
atomic formulas are decidable (as done inNegri and von Plato 2001, p. 207).
When the quantifiers are added to primitive recursive arithmetic, it
becomes full intuitionistic arithmetic, usually called Heyting arithmetic.
When the principle of indirect proof is further added, we get classical Peano
arithmetic.
Skolem wrote another paper at about the time of the one on primi-
tive recursive arithmetic, very famous for its first section that contains the
Löwenheim–Skolem theorem. There one finds what to me seems a standard
formulation of expressions of predicate logic, with conjunction, disjunction,
negation, and universal and existential quantification. No logical rules of
inference are given for these, but the reading is clear. Skolemgives a definition
of what he calls Zählaussage, the clear idea being that these are expressions
for things that can be counted, i.e., objects for which the language is the
one of Russell’s “first-order propositions.” A counting expression is formed
from relations through the five logical operations in which the Schröderian
quantifiers Π and Σ range over individuals. The first two examples are
(1920, p. 103):

1) ΠxΣyRxy . This is in words: There is for every x a y such that the
relation Rxy obtains between x and y.

2) ΣxΠyΣz(Rxy + Txyz). This is in words: There is an x such that a
z can be determined for every y so that either the binary relation
R obtains between x and y or the ternary T between x, y, and z.

Had Skolem suddenly changed his mind about the Russellian quantifiers?
Hardly so. He had found what is now the Löwenheim–Skolem theorem
already in 1915–16, while in Göttingen, and dedicates the first section of
the 1920 paper to it. The title is again monstrous, Logisch-kombinatorische
Untersuchungen über die Erfüllbarkeit oder Beweisbarkeit mathematischer
Sätze nebst einem Theoreme über dichte Mengen (Logico-combinatorial
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investigations on the satisfiability or provability of mathematical propo-
sitions, together with a theorem on dense sets), and the contents a potpourri
of three or four separate things. The last one is easiest: even Skolem himself
writes that “the contents of this paragraph are completely independent of
those of the preceding ones” (p. 130, footnote). As to the first section on
the Löwenheim–Skolem theorem, that was something on which he wanted
to make a statement, namely that nondenumerable infinity is a relative and
even fictitious notion. The same is brought forth much more strongly in the
1922 version of the Löwenheim–Skolem theorem, with the explicit criticism
of set theory at the end of the paper.
As to sections 2 and 3 of the 1920 paper, they are quite a different matter:
Section 2 is titled, in translation, Solution of the problem to decide if a given
proposition of the calculus of groups is provable. Section 3 has the title A
procedure for deciding whether a given proposition of descriptive elementary
geometry follows from the axioms of incidence of the plane.What to make of
these? Everyone knows that Skolem formulated and proved in 1920 the result
by which predicate logic is unable to distinguish between the denumerable
and what is not denumerable: Any consistent collection of first-order for-
mulas admits of a denumerable interpretation. Jean van Heijenoort, when
delivering the English version of Skolem’s argument, noted that the rest of
Skolem’s paper dealt with “decision procedures for the theory of lattices and
elementary geometry, as well as with dense sets,” but left these parts out of
the translation. There is no explanation of the contents of these parts, and
the same goes for Hao Wang’s introduction to Skolem’s Selected Works in
Logic.
In the algebraic tradition of logic, no formal systems of proof were pre-
sented. Perhaps here is also the reason why Schröder’s Π and Σ are not taken
as having established quantification theory. Skolem’s sections 2 and 3 are,
however, completely different in this respect and present a “purely combi-
natorial conception of deduction,” as Skolem himself formulates it, with
explicit formal rules of proof.
It was around 1992 that Stanley Burris found out the following: The sec-
ond section of Skolem’s paper, on Schröder’s “calculus of groups,” contains
a polynomial-time algorithm for the solution of the word problem for lat-
tices. This result was otherwise believed to have stemmed from Cosmadakis
(1988), but is now seen as one of the most important early results on lattice
theory, with Skolem counted therefore among the founding fathers of the
topic. The third chapter contains a solution to a similar derivability problem
in plane projective geometry, analyzed in great detail in von Plato (2007)
and extended to cover the axiom of noncollinearity in von Plato (2010).
Both works are examples of what Skolem preached in his paper on primitive
recursive arithmetic: only the decidable has meaning.
There are some final programmatic remarks in the paper on primitive
recursive arithmetic in which Skolem writes that he is not really satisfied
with the logical development of primitive recursive arithmetic, for it is too
laborious with its logical notation:
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I shall soon publish another work on the foundations of mathematics
that is free from this formal laboriousness. Even this work is through
and through finitistic; it is built on the principle of Kronecker by
which a mathematical determination is a real determination if and
only if it leads to the goal in a finite number of attempts.

I believe that the following happened: Skolem was, after the paper on prim-
itive recursive arithmetic, working towards the new paper on foundations,
with chapters on a finitistic treatment of lattice theory and plane projective
geometry as examples. At some point, he gave up and just packed together
what he had: The Löwenheim–Skolem result, certainly unsatisfying against
the light of the final remarks in the primitive recursive paper, the two fin-
ished chapters on how one should really be a finitist, and the “completely
unrelated” result in infinitary combinatorics.
The second section of Skolem’s paper deals with a specific derivability
problem in lattice theory. We can see here in action the programmatic state-
ment about the laboriousness of the logical formalism and the unimportance
of notation. In the section on lattice theory, he considers what is known
today as the word problem for freely generated lattices. We have a basic
relation of weak partial order, a �b, assumed to be reflexive and transitive
(axioms I and II). Next in lattice theory there are usually two operations,
a lattice meet and join. Given two elements, a∧b is the meet, the greatest
element below a and b. Thus, the axioms are

a∧b �a a∧b �b c �a & c �b ⊃ c �a∧b

The third axiom states that anything below both a and b is below a∧b.
The axioms for join a∨b are duals of these. The word problem can now be
expressed as: To find an algorithm for deciding if an atomic formula a �b is
derivable from given atomic formulas a1 �b1, . . . , an �bn in lattice theory or
to show that there is none.
Skolem does not use the lattice operations, well known to him, but gives
instead a relational axiomatizationwith two added three-place relations that
we can write as M (a, b, c) and J (a, b, c) rendered as the meet of a and b
is c and the join of a and b is c. He does not tell the reader why he does
this. The axioms for meet, given above with lattice operations, become the
following:

IfM (a, b, c), then c �a and c �b.
IfM (a, b, c) and d �a and d �b, then d �c.

The effect is that the axioms for meet and join use a quantifier pattern as
in ∀x∀y∃zM (x, y, z), existence axiom VI for meet. All of the axioms are
without explicit notation in Skolem, in the style of: “There is for arbitrary
x and y a z such that. . . ”
Skolem’s axioms I–V are rules for the production of new atomic formulas
from given ones: New “pairs” and “triples,” as he calls his atomic formulas
for the order relation and the two lattice relations, are produced from the
given atoms by these axioms. This means that the “arbitrary” x, y, . . . in the
axioms can be instantiated in any way by any a, b, . . . known from the given
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atoms. When instead axiom VI is put to use, with the existential z instanti-
ated, “there appear newly introduced letters.” Skolem uses in fact α, �, 	 . . .
as eigenvariables in the elimination of the existential quantifier. It is, on the
whole, quite remarkable that Skolem was able to use the elimination rule
of the existential quantifier in the proper way. In Göttingen, this insight
was won towards the end of the 1920s, it seems. A very clear statement is
found in Hilbert (1931): He gives first the rule of existential introduction
and then adds (p. 121): “In the other direction, the expression (Ex)A(x)
can be replaced by A(
), where 
 is a letter that has not occurred yet.”
It would have been in the line of Skolem’s “logic-free” approach to use the
meet and join operations, for the axioms can be then written as free-variable
formulas, as above. The relational axioms are easily proved from the ones
with operations. The other direction is somewhat arduous, but it can be
done (see von Plato 2013, p. 175). The advantage of Skolem’s relational
axiomatization is that there are no function terms, but just pure parameters
a, b, c, . . . when the axiomatization is used. He proves in the paper that the
existence axioms VI for meet and join are conservative over the rest of the
axioms, I–V, for the derivability problem of atomic formulas from atomic
assumptions.
It should be clear now that the two sections of the 1920 paper belong to
the plan of a new logic-free approach to the foundations of mathematics
envisaged in the final remarks of the paper on primitive recursive arithmetic.
There is an essential tension, however: Take the meet and join existence
axioms, and they are formulated in the typical existential form ∀x∃yA(x, y).
This form is put into perfect even if informal use in the application of
universal and existential instantiation, the former by the use of parameters
as in ∃yA(a, y), the latter through the use of eigenvariables as in A(a, α).
Perhaps theway out of the dilemmaSkolem faced is to think of the axioms,
not as anything that should be finitely verified by decision procedures, but as
hypotheses. Very little in this direction can be found in Skolem, or in any
of the early constructivistic literature. Following Kronecker’s lead, the task
was to take the natural numbers as concretely given objects, then to build up
the basic structures of mathematics on strictly finitistic grounds. Abstract
axiomatics, with no intended interpretation as in lattice theory, does not
fit well into this picture. Whatever may have been Skolem’s thought at this
time, around 1920, the three papers (1920, 1922, 1923) were his last words
on foundations for several years. By his paper of 1928 on applications of
quantifier elimination, there is no criticism of quantificational logic.

§4. Logic inGöttingen. Arecent essay byReinhardKahle, “DavidHilbert
and the Principia Mathematica,” shows how enormously impressed Hilbert
was by Russell’s rendering of Frege’s logic. At last, clarity was brought to
inferences with the quantifiers, though the absorption of the novelties took
its time.
The work of Hilbert, Bernays, and Wilhelm Ackermann of the 1920s on
the logic of the Principia Mathematica is presented in some articles such as
Hilbert (1922, 1923), Ackermann (1924), Bernays (1926), Hilbert (1927),
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and Hilbert (1931). The paper by Bernays was drawn from hisHabilitations-
schrift of 1918, and included the discovery that one of the propositional
axioms of PM is in fact a theorem, as well as proofs of independence of
the remaining propositional axioms through valuations that have more than
two truth-values.
Around 1918,whenHilbert began his work on the basis of Russell, he used
Russell’s axioms with disjunction and negation as primitives. By the mid-
1920s, he and others in Göttingen gave axiomatizations for all the standard
connectives separately. The motivation for the connectives was the same as
in axiomatic studies in geometry: To separate the role of the basic notions,
especially negation. This move proved its worth when the axioms of intu-
itionistic logic were figured out, as in Heyting (1930). Bernays had in fact
found the right axioms already in 1925, as he wrote in a letter to Heyting
(found in Troelstra 1990).
The development of logic in Göttingen, excluding the work on separate
axioms for each connective and what is known as Hilbert’s �-substitution
method, is summarized in the Hilbert–Ackermann book of 1928,Grundzüge
der theoretischen Logik, apparently largely written by Bernays. It contains
many novelties such as explicit rules for the two quantifiers and a definition
of derivability under assumptions in axiomatic logic, and has just one severe
limitation, namely that its propositional part is limited to the negation-
disjunction–fragment with implication a defined notion.
Hilbert–Ackermann has the two familiar quantifier axioms (x)F (x)→
F (y) and F (y)→ (Ex)F (x) and the following two rules, even these the
work of Bernays as acknowledged by the authors (pp. 53–54):

Let B(x) be an arbitrary logical expression that depends on x, and
A one that doesn’t. If now A → B(x) is a correct formula, also
A → (x)B(x) is. One obtains similarly from a correct formula
B(x)→ A the new (Ex)B(x)→ A.

Both rules are quite particular, reminiscent of the rules of sequent calculus.
In the rule for existence, one has first that A follows under the assumption
with an eigenvariable, then from existence. In the case of the first rule, if A
is provable, the rule gives the simple rule of generalization, from B(x) for
x arbitrary to infer (x)B(x). A similar dual rule for existence would be to
instantiate (Ex)A(x) by an eigenvariable, as in Skolem (1920), and even
in Hilbert (1931). In this formulation, the rule does not guide the use of
eigenvariables.
In Hilbert–Ackermann, both quantifiers are treated independently. Read-
ers of the Grundzüge would not know the reasons that were somewhat
particular. First of all, in Hilbert’s first “post-Russell” paper of 1922 that
aims explicitly at the justification of arithmetic, the logic is restricted to
implication and universal quantification, with negation treated by taking in
addition to equality a = b also inequality a �= b as a primitive. The rules
for universal quantification seem to be, even if the statement is anything but
clear, universal generalization and instantiation, but no use is made of these
(p. 167).
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Hilbert’s next paper, of 1923, ismuch clearer: At the suggestion ofBernays,
there is just one “transfinite axiom,” i.e., one that contains quantifiers, writ-
ten A(�A) → A(a). The reading is (p. 156): “To each A(a) is associated
a determinate object �A such that if A(�A), then A(a) for all objects a.”
Hilbert now writes “definitional axioms” for the quantifiers:
1. A(�A)→ (a)A(a)
2. (a)A(a)→ A(�A)
3. A(�A)→ (Ea)A(a)
4. (Ea)A(a)→ A(�A)
The first two axioms give some sort of license for inference to and from
free-variable propositions. Thus, the former would be better rendered as
a rule of inference, not an implication: Whenever A(a) for an arbitrary a,
(a)A(a)can be concluded. Hilbert does not elaborate on the third and fourth
axioms; however, if in 1 we put A in place of A and take contrapositions,
we get

(a)A(a)→ =
A (�A)

The antecedent is classically equivalent to existence, and the double negation
in the consequent can be deleted, which brings us Hilbert’s definitional
axiom 4. Axiom 3 is obtained similarly from 2.
Hilbert’s approach was used in Ackermann’s 1924 paper, with the
�-operator for universality changed to its dual �-operator for existence. The
same is found in Hilbert (1927, p. 460), with the axiom:

A(a)→ A(�(A))

Here, as Hilbert writes, “�(A) stands for an object for which A(a) certainly
holds if it holds for any object at all.”
We have now the equivalences, dual to 1–4 above:

A(�(A)) ↔ (Ea)A(a)
A(�(A))↔ (a)A(a)

In Hilbert’s last paper, the “Beweis des tertium non datur” of 1931, both
quantifiers appear in a standard formulation, as in the Hilbert–Ackermann
book.
Just five years after the Hilbert–Ackermann book put predicate logic on
a firm and accessible basis, Gentzen had turned the quantifier axioms and
rules into the natural deduction rules of predicate logic. The ones for the
universal quantifier are:

Γ....
A(y)

∀xA(x) ∀I

Γ....
∀xA(x)
A(a)

∀E

As explained by Frege, the y in the premiss of generalization must be arbi-
trary, or an eigenvariable in rule ∀I in the Gentzen formulation, i.e., one that
is not free in any of the collection of open assumptions Γ the premiss A(y)
depends on.
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By these rules, the role or meaning of a universal formula in a derivation
depends on its place: if it is an assumption, it is put into use by instantiation.
Otherwise, it is either a generality hidden in some other assumption, or it is
an assertion that is proved by the introduction rule.
If the introduction of universality by Frege’s or Gentzen’s rule is followed
by the taking of an instance, the two steps can be eliminated, as in Gentzen’s
normalization procedure for natural derivations (Gentzen 2008, a paper
written in 1933):

Γ....
A(y)

∀xA(x) ∀I
A(a)

∀E
converts to

Γ....
A(a)

Whenever a universality is instantiated, if it was derived in the canonical way
through the universal introduction rule, the instance can be produced with-
out the “transfinite” quantifier steps, to use a phrase of Hilbert’s: Just take
the derivation of the premiss A(y) and since y is arbitrary, the substitution
of y by a in the whole derivation gives a correct derivation of A(a) from the
assumptions Γ.
The above shows that Frege’s “illuminating” addition to his explanation
of universality, namely the principle of reasoning by which universality
can be concluded, conveys meaning, and that instantiation is explained on
its basis as in Gentzen’s conversion. Specifically, if A(a) is quantifier free,
the conversion step should have pleased greatly Hilbert, for it is a proof
transformation from the transfinite to the finitary that fits perfectly the
Hilbert programme.
In Frege’s time, logic was classical. Thus, he used implication and nega-
tion and universal quantification as primitive notions and defined the rest.
Brouwer saw early on, in part already in his 1907 article, that such definitions
are purely classical, but clear results in that direction were obtained much
later. For example, the independence of the quantifiers in intuitionistic logic
was proved first as late as in Prawitz (1965, pp. 59–62).
As mentioned, the idea to treat the connectives and quantifiers separately
had already arisen in the tradition of classical logic, perhaps first in Bernays’
(1918) attempt at isolating the axioms into groups for each logical operation.
Each axiom and rule had to contain, however, at least an implication or a
negation, as even seen in the two quantifier rules in Hilbert–Ackermann
above. A perfect autonomy and purity of definition was achieved only with
Gentzen’s proof systems in 1933. By purity is meant that no other logical
notions appear in the rules. The rules for the existential quantifier are:

Γ....
A(a)

∃xA(x) ∃I

Γ....
∃xA(x)

1
[A(y)],Δ....
C

C
∃E,1
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In rule ∃E, y is again an eigenvariable, not free in Δ, C , and the temporary
assumption A(y) is closed. Here, again, we see that the I -rule is used for
arriving at an existential assertion, and the E-rule is instead used when an
existential assumption is at hand or hidden in Γ. As with the universal
quantifier, an introduction followed by the corresponding elimination gives
rise to a reduction step:

Γ....
A(a)

∃xA(x) ∃I

1
[A(y)],Δ....
C

C
∃E,1

converts to

Γ....
A(a),Δ....
C

The lower part of the right derivation is obtained by substituting a for y in
the derivation of the minor, right premiss of rule ∃E.
The famous subformula property is an easy corollary to the normaliza-
tion theorem for natural deduction. It is even mentioned in an addition to
Gentzen’s unpublished 1933 proof of normalization. Gentzen calls it the
“hillock theorem” (see von Plato 2008):

Subformula theorem from the hillock theorem:

There is, among the formulas that are not subformulas of the end-
formula, one of a greatest grade. This is an inner hillock. Now one
applies the hillock theorem.

In the printed thesis, Gentzen wrote that in the proof of a theorem, “no con-
cepts beyond those that are contained in the final result, and that therefore
have to be necessarily used in arriving at it, need be introduced” (1934–35,
p. 177).
Gentzen formulated, as is well known, the normalization theorem within
sequent calculus, as the Hauptsatz or cut elimination theorem. The motive
was his failure to prove normalization for classical natural deduction. His
detailed proof of normalization for intuitionistic natural deduction came
known only in February 2005 when I found a handwritten version of his
doctoral thesis. Having found a form of the cut elimination theorem that
applied directly to both an intuitionistic and a classical sequent calculus,
he had no special need for the normalization theorem and could afford
never to mention it. That was, on the whole, quite unfortunate, for sequent
calculus remained for a long time a rather esoteric discipline. The wider
understanding of Gentzen’s achievement, a logical calculus in which rea-
soning is analytic in the sense of the subformula property, started coming
only with Prawitz’ 1965 re-examination of natural deduction: Each of the
logical connectives, as well as the two quantifiers, stand on their own feet
with purely formulated rules that can be combined as needed.

§5. Intuitionistic predicate logic in the 1920s. Developments in the late
1920s led to a formal presentation of intuitionistic predicate logic, in the
tradition of axiomatic logic, in Heyting’s three-part article published in
1930. The axioms and rules for the quantifiers, found in the second part of
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Heyting’s article, were taken over from the book of Hilbert and Ackermann
(1928). At that time, Brouwer had already presented many properties of
intuitionistic logic in his papers, first of all of propositional logic, but even
of predicate logic, especially in connection with his famous counterexamples
to classical logical laws:
(A) Brouwer’s and Heyting’s counterexamples: When Brouwer devel-
oped intuitionistic mathematics, mainly in the 1920s, he did not create
any separate formal intuitionistic logic, but had otherwise a perfect com-
mand of what was to count as intuitionistically valid in logic. Thus,
Brouwer’s 1928 paper Intuitionistische Betrachtungen über den Formalismus
contains the, in fact quite astonishing, insight that the predicate-logical for-
mula ¬¬∀x(A(x) ∨ ¬A(x)) is not intuitionistically valid. First Brouwer
makes note of the “intuitionistic consistency of the law of excluded mid-
dle,” i.e., that the assumption of the inconsistency of excluded middle,
¬(A ∨ ¬A), leads to an “absurdity,” by which ¬¬(A ∨ ¬A) holds intu-
itionistically (p. 50). Then he shows by induction that the principle can be
generalized to any finite “combination of mathematical properties,” as in
¬¬((A1∨¬A1)& . . .&(An ∨¬An)). However, in Brouwer’s terminology, “it
turns out that the . . . multiple law of excludedmiddle of the second kind [for
an arbitrary instead of finite collection ofmathematical properties] possesses
no consistency.” This is just Brouwer’s way of expressing the intuitionistic
failure of ¬¬∀x(A(x) ∨ ¬A(x)). The counterexample consists of points
of the intuitionistic unit continuum for which ¬¬∀x(A(x) ∨ ¬A(x)) holds
only if one of ∀xA(x) and ∀x¬A(x) holds, which latter need not be the case
(p. 52). The counterexample comes from the bar theorem by which it is not
possible to divide the unit continuum in any nontrivial way. An accessible
brief explanation of the bar theorem and its special case the fan theorem is
found in Coquand (2004).
The intuitionistic failure of what is today usually called “the double
negation shift” ∀x¬¬A(x) ⊃ ¬¬∀xA(x), follows from Brouwer’s coun-
terexample to ¬¬∀x(A(x) ∨ ¬A(x)). The law ∀x¬¬(A(x) ∨ ¬A(x)) is
easily proved, for we get by propositional logic that ¬¬(A(x) ∨ ¬A(x))
is provable with x arbitrary. Were the double negation shift an intuitionistic
theorem, we could shift the double negation ahead of the universal quanti-
fier in ∀x¬¬(A(x)∨¬A(x)), to conclude ¬¬∀x(A(x)∨¬A(x)), against the
unprovability of the double negation of the “universal” excluded middle.
In Heyting’s original paper on intuitionistic logic of 1930, Die formalen
Regeln der intuitionistichen Logik, there are very few formal results. One
such result is the independence of the propositional axioms, another the
unprovability of A ∨¬A. For the rest, Heyting just states things such as the
“correctness” of the following (p. 44, here and later, the standard notation
of today is used for uniformity):

¬A ∨ B ⊃ (A ⊃ B)
(A ⊃ B) ⊃ ¬(A&¬B)
A ∨ B ⊃ ¬(¬A&¬B)
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The claim of correctness can be shown by formal derivations of these formu-
las in intuitionistic logic. However, when Heyting states that “the converses
are all unprovable,” there is not much at all to back up this claim.We could,
say, consider for the last-mentioned the special case of the converse, with
B ≡ ¬A:

¬(¬A&¬¬A) ⊃ A ∨ ¬A
The formula ¬(¬A&¬¬A) is intuitionistically provable, so by the unprov-
ability of excluded middle, even ¬(¬A&¬B) ⊃ A ∨ B must be unprovable.
The unprovability of the converse of the first formula is seen similarly, by
setting B ≡ A in it, with the result (A ⊃ A) ⊃ ¬A ∨ A, and the second by
setting A ≡ ¬¬B . Heyting doesn’t make notice of these possibilities.
On p. 50, we find the following formula, with an indication of a formal
proof:

(A ∨ ¬A) ⊃ (¬¬A ⊃ A)
“When the law of excludedmiddle holds for a definite mathematical proposi-
tionA, then even the reciprocity of the complementary species holds for A.”
The observation is followed by another: “This theorem cannot be inverted,”
left to Heyting’s authority.
The relation between excluded middle and double negation is somewhat
involved: Heyting like Brouwer sees that if¬¬A ⊃ A is assumed as a general
logical law, the law of excluded middle follows, simply by the intuitionistic
derivability of ¬¬(A∨¬A) to which the double negation law is then applied,
as in Brouwer (1928, somewhat hidden in the “fourth insight,” p. 49). Still,
the implication (¬¬A ⊃ A) ⊃ A ∨ ¬A is not a theorem of intuitionistic
logic.
By the above, Brouwer and Heyting had obviously a deep grasp of the
properties of intuitionistic logic, but they had little in their hands by the way
of means for proving their points.
In the second installment of Heyting’s 1930 essay, with the slightly modi-
fied titleDie formalen Regeln der intuitionistichenMathematik, the following
are proved in intuitionistic predicate logic (p. 65):

6.77. ∃x¬¬A(x) ⊃ ¬¬∃xA(x)
6.78. ¬¬∀xA(x) ⊃ ∀x¬¬A(x)
The proof sketches for these are followed by a passage that we quote in full:

Remark. The inverses of both of the above formulas are not provable.
For 6. 77, this follows easily from the meaning of ∃x. For 6. 78, we
show it by an example already used by Brouwer (Math. Ann. 93,
p. 256), of a set A of all choice sequences that consist of only the
signs 1 and 2, with 2 always followed by 2. We associate to each
natural number an element of A in the following way: To 1 belongs
the sequence of ones throughout; to 2 belongs 2 2 2 2 . . . , to 3 belongs
1 2 2 2 . . . , to 4 belongs 1 1 2 2 . . . , etc.
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Let a mean the sentence: “x is associated to a natural number”;
let ∀x a mean: “a holds for each element of A.” Then ∀x¬¬a holds,
for were an element of A not associated to any number, there would
have to occur in it neither ever, nor once, a 2. However, even ¬∀x a
holds, for if there were a natural number associated to each element
of A, there would be a natural number z such that, for each two
elements that are equal in the z first signs, the same number would
be associated (Brouwer, Math. Ann. 97 p. 66); so the same number
would be associated to all elements that begin with z ones.
However,∀x¬¬a &¬∀x a is by 4. 5 2 1 [a previous derived formula]
incompatible with the inverse of 6. 78.2

What kind of principles about choice sequences are hidden in this argument?

(B)Heyting’s counterexample in detail:We consider now Heyting’s direct
counterexample to the double negation shift in detail. The set of choice
sequences S consists of infinite sequences of 1’s and 2’s with the condi-
tion that whenever there is a first occurrence of 2, all successive mem-
bers of the sequence are 2’s. The variables x, y, z, . . . range over S, and
n,m, k, . . . over N . The notation xk stands for the initial segment of x of
length k.
If we add 0 as a root element, the choice sequences can be depicted as
branches in the following tree:

2The German original reads: Bemerkung. Die Umkehrungen der beiden vorstehenden
Formeln sindnicht beweisbar. Für 6. 77 folgt dies leicht aus derBedeutung von (Ex). Für 6. 78
zeigenwir es an dem schon von Brouwer benuzten (Math.Ann. 93, S. 256) Beispiel derMenge
A allerWahlfolgen, welche nur aus den Ziffern 1 und 2 bestehen, während nach einer 2 immer
wieder eine 2 folgt. Wir ordnen jeder natürlichen Zahl ein Element von A zu in folgender
Weise: Zu 1 gehört die Folge von lauter Einsen; zu 2 gehört 2 2 2 2 . . . , zu 3 gehört 1 2 2 2 . . . ,
zu 4 gehört 1 1 2 2 . . . , usw.
a bedeute den Satz: “x ist einer natürlichen Zahl zugeordnet”; (x) a bedeute: “a gilt für

jedes element von A.” Dann gilt (x)¬¬a, denn wenn ein Element von A keiner natürlichen
Zahl zugeordnet wäre, so müsste in ihm weder niemals, noch einmal eine 2 auftreten. Es gilt
aber auch ¬(x) a, denn wenn jedem Element von A eine natürliche Zahl zugeordnet wäre,
so gäbe es eine solche natürliche Zahl z, dass je zwei Elementen, die in den ersten z Ziffern
übereinstimmen, dieselbe Zahl zugeordnet wäre (Brouwer, Math. Ann. 97 S. 66); also wäre
allen Elementen, die mit z Einsen anfangen, dieselbe Zahl zugeordnet.
(x)¬¬a ∧ ¬(x) a ist aber nach 4. 5 2 1 unverträglich mit der Umkehrung von 6. 78.
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Next we define a function f over N+ as follows:

f(1) = 〈1 1 1 . . .〉
f(2) = 〈2 2 2 . . .〉
f(3) = 〈1 2 2 . . .〉
f(4) = 〈1 1 2 2 . . .〉

...
f(n) = 〈1 . . . 1︸ ︷︷ ︸

n−2

2 2 . . .〉

Property A(x) (Heyting’s a) is: To x is associated a natural number. In terms
of f, we can write A(x) ≡ ∃n.f(n) = x
Lemma 5.1. ∀x¬¬∃n.f(n) = x.
Proof. Assume ∃x¬∃n.f(n) = x. With y the eigenvariable in existence
elimination, we have the assumption ¬∃n.f(n) = y.
Assume 2 occurs in y. Then it can be decided when a first occurrence of 2
takes place: y = 〈1, . . . , 1︸ ︷︷ ︸

k

, 2, 2, . . .〉. Now f(k +2) = y against assumption.

Therefore 2 does not occur in y, and y = 〈1, 1, . . .〉 and f(1) = y against
assumption.
Conclusion: ¬∃x¬∃n.f(n) = x, or equivalently, ∀x¬¬∃n.f(n) = x. �
There are two specific points, rendered in italics in the above: First, if
the digit 2 occurs in a choice sequence from the collection S, it is assumed
decidable when it occurs for a first time. Secondly, if it doesn’t occur, it is
concluded that all digits must be 1’s. What sort of principles about choice
sequences warrant these steps? First, if there is 2 in the sequence y, it can
be found. Nothing, however, gives a bound on how far one has to inspect the
initial segments of y. The second principle is that if 2 does not occur in y,
then y = 〈1, 1, . . .〉. As there are just two alternatives, this seems a justified
step.
Heyting’s argument seems somehow to go in two directions: First there is
a sequence associated to each natural number. Then he considers sequences
and asks what numbers are associated to them. Easy “Brouwerian coun-
terexamples” can be used to show that not every sequence constructed by
the choice conditions stipulated need have an associated natural number.
Example: Let the first member of g be 1 and the n-th member 1 if 2n is
the sum of two primes, and 2 otherwise. As long as Goldbach’s conjecture
remains unsettled, no number is associated to g.

Lemma 5.2. ¬∀x∃n.f(n) = x.
Proof. Assume ∀x∃n.f(n) = x. By the bar theorem,

∃k∀y∀z(yk = zk ⊃ f(k) = y&f(k) = z)
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In particular, with yk = zk = 〈1, . . . , 1︸ ︷︷ ︸
k−2

〉, y = z, but this need not be so.

Therefore ¬∀x∃n.f(n) = x. �
The fan theorem is actually sufficient for the result, because the tree of choice
sequences pictured above has a binary branching.

Theorem 5.3. ∀x¬¬A(x) ⊃ ¬¬∀xA(x) is not intuitionistically valid.
Proof. Let A(x) be ∃n.f(n) = x, then by lemma 1, ∀x¬¬∃n.f(n) = x,
and by lemma 2, ¬∀x∃n.f(n) = x. �
Heyting’s article established intuitionistic logic as a separate discipline in
1930. Choice sequences were taken into use in studying its properties right
away, but this aspect seems not to have been discussed in previous literature,
unless I have missed something. It is not easy to judge what Heytings’
arguments with choice sequences amount to in detail; At least we have that
the space of choice sequences is not discrete, for the equality of two choice
sequences cannot be decidable, as the Goldbach example shows.
(C) Failed recognition of a crucial fact: There is a letter from Gentzen to
Heyting, written 23 January 1934, in which Gentzen writes as follows (the
letter is included in the collection von Plato 2015):

My dissertation will appear in the Mathem. Zeitschrift under the
title “Untersuchungen über das logische Schliessen.” I prove therein
a quite general theorem about intuitionistic and classical proposi-
tional and predicate logic [the cut elimination theorem]. The decision
procedure for intuitionistic propositional logic results as a simple
application of this theorem. One can also show with it the intu-
itionistic unprovability of simple formulas of predicate logic, such
as (x)¬¬Ax . ⊃ ¬¬(x)Ax. I have not studied how far, in the end,
one could go. I am now working with the proof of the consistency of
analysis that has been since 2 years my real aim.

Gentzen must have studied in detail Brouwer’s 1928 paper as well as Heyt-
ing’s 1930 work in which the double negation shift and the intuitionistic
unprovability of ¬¬(x)(Ax ∨¬Ax) appear. Gentzen obtained unprovabil-
ity results syntactically from an analysis of cut-free derivations in sequent
calculus, thereby showing that these results belong to pure intuitionistic
logic, rather than depending on the intuitionistic theory of real numbers.
Heyting was initially enthusiastic about natural deduction, as is shown by
his series of Dutch papers from 1935 on (see von Plato 2012 for details). It is
difficult to understand why he later completely ignored these developments.
Imagine what it would mean if things were otherwise than envisaged by
Gentzen: The use of intuitionistic reals would be essential for showing the
failure of classically provable formulas of predicate logic. Would not intu-
itionistic predicate logic be incomplete if that were the case? So, why was he
not positively alarmed by Gentzen’s sensational discovery of a method of
syntactic unprovability in intuitionistic predicate logic?
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§6. Stricter than Skolem: Wittgenstein and Goodstein. Ludwig Witt-
genstein thought he had solved the problems of philosophy in his little
book on logical investigations that got baptized into the Tractatus Logico-
Philosophicus with publication in 1922 under the patronage of Russell.
A careful reader of theTractatuswill notice the total absence of the notion
of inference or deduction in it. There is instead the semantical method of
truth tables bywhich it can be determinedwhether a propositional formula is
a tautology. How the method is to be extended to the quantifiers is nowhere
explained: At 6.1201, the principle of universal instantiation (x)fx ⊃ fa
is simply called a “tautology.”
ThePrincipia hadmade it clear that there is no quantificational logic with-
out a rule of generalization.Wittgenstein does not see that this rule is crucial,
as is shown by the passage 6.1271 in the Tractatus where he states that all of
logic follows from one basic law, the “conjunction of Frege’sGrundgesetze.”
Rules can be no parts of such conjunctions. Moreover, the Principiamade it
clear that the notion of tautology does not extend to the quantifiers. There-
fore even the rule of detachment is essentially needed. Wittgenstein missed
both of these points and my conclusion is, unfortunately: The impatient
philosopher had never made it to page 130+ of the Principia!
Realizing later that there are still things to do beyond the Tractatus,
Wittgenstein turned to philosophy around 1928, and was greatly interested
in the philosophy of mathematics. Some of his discussions of the time can be
found recorded verbatim, through shorthand notes by Friedrich Waismann,
in the book manuscript Philosophische Bemerkungen, dated November 1930
and published in 1964. The notes are on pages 317–346.
Wittgenstein went to Cambridge in 1929 and became a professor. He pre-
pared long manuscripts on the basis of his lectures that have been published
many years after his death in 1951. He also dictated shorter pieces to his
students and friends, such as one known as The Blue and Brown Books, with
several more of these still to be published today.

(A) Problems with generality and existence: The book manuscripts, such
as the Philosophische Grammatik that was written around 1933, contain
lengthy discussions of themes related to logic. Regarding the quantifiers,
it emerges from these discussions that Wittgenstein was at great pains at
understanding them: As in the Tractatus, there is no trace of the rule of
universal introduction, but quantifiers are instead simply logical expressions
of a certain form.Generality is first takenas a “logical product” and existence
as a “logical sum,” the latter written, with f a predicate, as (p. 269):

fa ∨ fb ∨ fc ∨ . . .
Generality covers all cases, but its explanation as a “product” of instances
becomes infinitistic, and that was not acceptable for Wittgenstein (p. 268).
In the absence of a rule of generalization, one gets at most that a universality
implies any of its instances. Likewise, existence cannot be a summing up of
all the disjunctive possibilities for its introduction, because there is an infinity
of such. The dual to universal generalization is existential elimination and
in its absence, one gets only that an instance implies existence.
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In the Philosophische Grammatik, Wittgenstein discusses at length an
example, in translation the phrase The circle is in the square, illustrated
by a drawing of a rectangle and a circle inside (p. 260). It is clearly correct to
say that there is a circle in the square, but the statement does not fix any spe-
cific circle. Wittgenstein sees that there is a generality behind existence and
ponders on the matter page after page; all this because he does not know that
there should be a rule of existential elimination, the one Skolem used in an
informal way, Hilbert and Bernays wrote in an axiomatic form, and finally
Gentzen as a pure rule of natural deduction. Wittgenstein’s “generic circle”
is correctly presented through the eigenvariable of an existential elimination.
Wittgenstein’s first works in his “second period” as a philosopher of logic
and mathematics include two specific achievements, both of them somewhat
cryptic and clarified only decades later. The first is a constructivization of
Euler’s proof of the infinity of primes, reconstructed in detail in Mancosu
andMarion (2003). The seconddiscovery derives fromWittgenstein’s careful
reading of Skolem’s paper onprimitive recursive arithmetic. Both are directly
relevant to Wittgenstein’s modest understanding of the quantifiers, and to
his philosophy of mathematics:
A direct statement of the infinity of primes could be: For any n, there is
anm such that m > n andm is prime. The logical form of Euler’s argument
is: Assume that there is a number n such that for any m > n, m is divisible.
A contradiction follows. From Euler’s argument, we could at most infer
that for any n, it is impossible that there should not be a number m such
that m > n and m is prime; Still, no way of actually producing a prime
greater than n need have been given by the proof. Wittgenstein turned the
indirect inference into a direct one. The contextwas amanuscript ofHeinrich
Behmann’s in which the latter claimed to be able to convert any classical
proof into a constructive one. After criticism by, inter alia, Gödel, Behmann
withdrew publication. The full story of the Behmann affair is found in
Mancosu (2002).
The nature of indirect existence proofs was debated a lot in the 1920s,
because of the intuitionistic criticisms of such classical proofs by Brouwer.
Wittgenstein’s interpretation was that two notions of existence are in fact
involved, and that there is no content in denying the law of excluded middle:
One just adapts different rules of proof and the sense of the theorems is dif-
ferent. One of these could be called classical existence, the other constructive
existence.
So far, so good. However, consideringWittgenstein’s wanting understand-
ing of the quantifier rules, it is not surprising that he got some of the
properties of universal and existential quantification wrong. He certainly
understood the law of excluded middle and the related law of double nega-
tion. In the case of indirect existence proofs, the latter can be put in the form
of ¬¬∃xA(x) ⊃ ∃xA(x), a law that fails intuitionistically. The properties
of intuitionistic logic were not perfectly understood in the early 1930s in
general, and here Wittgenstein seems to have committed a specific mistake
even though I have so far not found it directly in any text of his: Instead,
his pupil Reuben Louis Goodstein followed his lectures in Cambridge in
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1931–34 and started work on a topic to which I shall soon turn. In the
meanwhile he published an article titledMathematical systems, in the well-
known philosophical journal Mind in 1939. It was a statement of what he
took to be Wittgenstein’s philosophy of mathematics. The article contains
many exclamations and positions that should perhaps best be described as
silly, but there are even indications thatWittgenstein was not displeased with
it, contrary to some writings of other pupils of his.
In the paper, Goodstein maintains that the inference from ¬∃x¬A(x) to

∀xA(x) is intuitionistically legitimate. The converse implication is intuition-
istically provable, so with the claimed inference, the universal quantifier
could be defined by the existential one. Instead, this particular argument
against intuitionism and for the “strict finitism” of Wittgenstein and Good-
stein is just fallacious: In Goodstein (1951, p. 49), written under Wittgen-
stein’s influence around 1940, it is stated that “some constructivist writers
maintain that. . . a ‘reduction’ proof of universality is acceptable.” In Good-
stein (1958, p. 300), we find again that Brouwer rejects indirect existence
proofs, here¬(∀x)¬P(x)→ (∃x)P(x), “whilst retaining the converse impli-
cation ¬(∃x)¬P(x)→ (∀x)P(x).” In other words, if (∃x)¬P(x) turns out
impossible, a reduction gives (∀x)P(x); certainly not anything Brouwer or
any other constructivist thinker would have ever proposed. Goodstein’s early
paper of 1939 has very likely the same claim, but there is in the formula a
dot instead of a negation, on p. 66 of his article. Such a dot has no place
there and I take it to be a misprint.
The reason for the above misunderstanding is somewhat subtle. The intu-
itionistically invalid implication ¬∃x¬A(x) ⊃ ∀xA(x) is perhaps at a first
sight rather close to ¬∃xA(x) ⊃ ∀x¬A(x). The latter is intuitionistically
provable, in fact one of the first examples of intuitionistically correct infer-
ence that Gentzen gave when he presented the calculus of natural deduction
in his thesis (1934–35). The argument is very easy: To prove the implication
assume¬∃xA(x). To prove ∀x¬A(x), try to prove¬A(x) for an arbitrary x.
For this, in turn, assume A(x) and try to derive a contradiction. It comes
in one step: by rule ∃I , ∃xA(x) follows, a contradiction. Therefore ¬A(x)
follows from the assumption ¬∃xA(x). The variable x is not free in the
assumption, so rule ∀I gives ∀x¬A(x), and ¬∃xA(x) ⊃ ∀x¬A(x) can be
concluded.
One could think that if¬∃xA(x) ⊃ ∀x¬A(x) is intuitionistically provable,
it makes no difference to have ¬A(x) under the negated existence, and A(x)
under the universal, instead of the other way around as in the above proof,
but this is not in the least so: With ¬A(x) in place of A(x), we do get from
what was proved above ¬∃x¬A(x) ⊃ ∀x¬¬A(x) as an instance, but the
double negation cannot be deleted.
Wittgenstein was not alone with his problems: The correspondence
between Heyting and Oskar Becker gives ample illustration of how diffi-
cult it was to get intuitionistic logic right, even for people who tried hard
(see Van Atten 2005).
A tentative conclusion can be drawn from this little story: Part of the moti-
vationofWittgenstein’s refusal of the quantifiers, even the intuitionistic ones,
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in favour of a strict finitism as in Skolem, was based on misunderstanding
the nature of the intuitionistic quantifiers.
We come now to Wittgenstein’s second specific discovery:

(B)From induction to recursion: In 1945, there appeared in theProceedings
of the LondonMathematical Society a long article titled “Function theory in
an axiom-free equation calculus.” The bearing idea of the workwas to recast
primitive recursive arithmetic in an even stricter mould than the quantifier-
free calculus of Skolem. Even logic had to go, and the venerated principle of
arithmetic induction as well. The latter is replaced by a principle by which
two recursive functions defined by the same equations are the same (p. 407):
“If two functions signs ‘a’, ‘b’ satisfy the same introductory equations, then
‘a = b’ is a proved equation.” A footnote added to this principle tells the
following: “This connection of induction and recursion has been previously
observed by both Wittgenstein and Bernays.” The author of the paper, this
time not in the least silly, was Wittgenstein’s student Goodstein. The full
story of his paper can be recovered through the correspondence he had with
Paul Bernays. In the opening letter of 29 July 1940, he writes:

The manuscript which accompanies this letter gives some account of
a new formal calculus for the Foundations of Mathematics on which
I have been working for the past six years.

Unfortunately, the original version of the paper is not to be found. The most
we know are some comments by Bernays such as the following from his first
letter to Goodstein, of 28 November 1940:

Generally my meaning is that your attempt could be quite as well,
and perhaps even better appreciated, if you could deliver it from
the polemics against the usual mathematical logics which seem to
me somewhat attackable, in particular as regards your arguments on
the avoidability of quantifiers. Of course in your calculus, like in the
recursive number theory, quantifiers are not needed. But with respect
to the “current works on mathematical philosophy” the thesis that
“the apparent need for the sign ‘(x)’ arose from a confusion of the
two different uses . . . of variable signs” can hardly be maintained. In
fact the possibility of taking f(x) = 0 instead of (x)(f(x) = 0)
consists [sc. exists] only, if the formula in question stands separately
and not as a part of a complex logical structure.
So for instance the negation of (x)(f(x)= 0), that is ∼(x)
(f(x)= 0), has of course to be distinguished from the proposition
(x).∼(f(x) = 0); if here the sign“(x)” is left out, then really a con-
fusion is arising. Thus there neither is the possibility of taking simply
the proposition ∼(f(x)= 0) instead of (Ex).∼(f(x)= 0) (or else
one would have to add artificial conventions).

Bernays mentions also that he had presented in 1928 at the GöttingenMath-
ematical Society “the possibility of taking instead of the complete induction
the rule of equalizing recursive terms satisfying the same recursive equa-
tions,” a discovery he left unpublished. Bernays’ first letter to Goodstein is
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ten pages long, typewritten single-spaced, and it displays his full command
ofGoodstein’s calculus.Goodsteinwas enormously impressed as can be seen
from his letters and thankfully revised his paper and cleared it of polemics,
adding all the references to a literature that had been unknown to him;
quite embarrassingly, even the extensive treatment of primitive recursive
arithmetic in the first volume of the Grundlagen der Mathematik, Section 7,
pp. 287–343 belonged there.
Before going to the replacement of induction by recursion, a brief word
about the disposal of logic: Goodstein, as well as Bernays before him
(Grundlagen, pp. 310–12), noticed that propositional logic can be reduced to
equational reasoning in primitive recursive arithmetic. Equations a = b can
be turned into equivalent equations of the form t = 0, and now conjunction
and negation can be defined: a = b& c = d turns into t + s = 0, and
¬ a = b into 1 − t = 0, with subtraction truncated so that whenever t > 0,
we have 1− t = 0.3
The Wittgensteinian background of Goodstein’s “logic-free” and
“induction-free” arithmetic calculus is not mentioned in the book Recur-
sive Number Theory that Goodstein published in the prestigious yellow
logic series of the North-Holland Publishing Company in 1957. Instead,
when Wittgenstein’s book manuscript Philosophische Grammatik came out
in 1969, one could find his discovery of the way from proof by induction to
proof by recursion equations clearly stated, and developed to some extent
mainly through a few examples (Philosophische Grammatik, PG below, pp.
397–450). The text was written between 1932–34, the years during which
Goodstein attendedWittgenstein’s lectures. The crucial discovery comes out
on the very first page devoted to the topic (PG, p. 397), where Wittgenstein
considers the associative law for sum in elementary arithmetic, denoted byA:

(a + b) + c = a + (b + c) A

Skolem’s 1923 paper on primitive recursive arithmetic, Wittgenstein’s source
for the topic of elementary arithmetic, gives the standard inductive proof
for A, based on the recursive definition of sum by the recursion equations:

a + 0 = a

a + (b + 1) = (a + b) + 1

If one counts the natural numbers from 1 on, the second equation gives the
base case of the inductive proof. For the step case, one assumes A for c and
proves it for c+1, i.e., (a+b)+(c+1) = a+(b+(c+1)). The left side is by
the recursion equation equal to ((a+b)+c)+1, then applying the inductive
hypothesis to (a + b) + c one gets ((a + b) + c) + 1 = ((a + (b + c)) + 1,
and finally by two applications of the recursion equation in the opposite
direction ((a + (b + c)) + 1 = a + ((b + c) + 1) = a + (b + (c + 1)).

3 Some details: Define the predecessor function p by p(0) = 0 and p(a +1) = a, then the
“truncated” subtraction a −̇ b by a −̇ 0 = a and a −̇ (b + 1) = p(a −̇ b). Finally, define the
absolute distance between a and b by d(a, b) = (a −̇ b)+(b −̇ a). Now d(a, b) = 0whenever
a = b, and negation can be defined by ¬ a = b ≡ 1 −̇ d(a, b) = 0, and conjunction further
by a = b& c = d ≡ d(a, b) + d(c, d) = 0. A similar development is found in Curry (1941).
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In PG, p. 397, Wittgenstein gives the proof as follows:

What Skolem calls the recursive proof of A can be written as follows:

a + (b + 1) = (a + b) + 1
a + (b + (c + 1)) = a + ((b + c) + 1) = (a + (b + c)) + 1
(a + b) + (c + 1) = ((a + b) + c) + 1

⎫⎬
⎭B

We have to put emphasis on Wittgenstein’s words “can be written,” for this
is not Skolem’s proof by induction, but another proof thatWittgenstein goes
on to explain in the following words:

In the proof [B], the proposition proved clearly does not occur at all.–
One should find a general stipulation that licenses the passage to it.
This stipulation could be expressed as follows:

α ϕ(1) = �(1)
� ϕ(c + 1) = F (ϕ(c))
	 �(c + 1) = F (�(c))

⎫⎬
⎭ ϕ(c)

Δ
= �(c)

When three equations of the forms α, �, 	 have been proved, we shall
say: “the equation Δ has been proved for all cardinal numbers.”

Here we see the essence of the argument: Two functions ϕ and � that obey
the same recursion equations, are the same function. Wittgenstein himself
writes (PG, p. 398):

I cannow state: ThequestionwhetherAholds for all cardinal numbers
shall mean: Do equations α, � , and 	 hold for the functions

ϕ(�) = a + (b + �), �(�) = (a + b) + �

Wittgenstein’s principle can be considered, as in the letter of Bernays quoted
above, a “rule of equalizing recursive terms.” Taken as a rule, it is readily seen
to be a derivable rule inPRA:Given its premisses for two functions ϕ and�,
the conclusion follows by the principle of induction. These premisses are:

α ϕ(1) = �(1)
� ϕ(c + 1) = F (ϕ(c))
	 �(c + 1) = F (�(c))

Wewant to deriveϕ(x) = �(x) for an arbitrary x. Equation α gives the base
case of induction. For the inductive case, assume ϕ(y) = �(y). By � , we
get ϕ(y + 1) = F (ϕ(y)), by the inductive hypothesis F (ϕ(y)) = F (�(y)),
and by equation 	 next F (�(y)) = �(y + 1), so the equation ϕ(y + 1) =
�(y + 1) follows. By the principle of induction, ϕ(x) = �(x) follows for
arbitrary x.
By the above, we see that Wittgenstein’s rule contains the essential steps
that lead from y to the successor y + 1, i.e., the inductive step, in a
somewhat disguised form.
The way fromWittgenstein’s uniqueness principle for recursion equations
to induction is similar: Assume given the premisses of induction, ϕ(1) =
�(1) and ϕ(y) = �(y) ⊃ ϕ(y + 1) = �(y + 1) for an arbitrary y, and the
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task is to prove ϕ(x) = �(x) for arbitrary x. The recursive functions ϕ and
� are defined by some recursions equations that for the successor case have
the forms:

� ϕ(c + 1) = F (ϕ(c))
	 �(c + 1) = G(�(c))

If ϕ(y) = �(y), then ϕ(y + 1) = �(y + 1) by the assumption that the
inductive step is given. By the recursion equations, this latter equation gives
at onceF (ϕ(y)) = G(�(y)). Therefore, when the argumentsϕ(y) and�(y)
of F and G are equal, the values are equal. We have now altogether:

α ϕ(1) = �(1)
� ϕ(c + 1) = F (ϕ(c))
	 �(c + 1) = F (�(c))

By Wittgenstein’s uniqueness rule, ϕ(x) = �(x) follows for any x, i.e., we
have reached the conclusion of induction.
Wittgenstein’s book does not reveal the motive for preferring proofs by
recursion equations toproofs by induction, but in 1972,Goodstein published
a paper “Wittgenstein’s philosophy of mathematics” in which the matter is
explained. In reference to the Philosophische Grammatik that had come out
three years earlier, Goodstein recalls Skolem’s inductive proof and then adds
(p. 280):

In his lectures Wittgenstein analysed the proof in the following way.
He started by criticizing the argument as it stands by asking what it
means to suppose that (1) [associativity] holds for some value C of c.
If we are going to deal in suppositions, why not simply suppose that
(1) holds for any c.

Goodstein now gives a very clear, intuitive explanation of whyWittgenstein’s
method works: With c = 0, (a + b) + 0 = a + b = a + (b + 0). Thus, the
ground values of Wittgenstein’s ϕ- and �-functions are the same, here
ϕ(0) = �(0) with the natural numbers starting from 0 instead of 1 as
in the 1920s. For the rest, when c grows by one, ϕ(c) and �(c) obtain their
values in the same way, here, both growing by 1, by which (a + b) + c and
a + (b + c) are always equal.
As the above-quoted clear recollection on the part of Goodstein shows,
Wittgenstein was led to propose a finitism that was even stricter than that of
Skolem, in that assumptions with free variables were to be banned. These
assumptions are a crucial component in inductive inference, where one
assumes a property A(n) for an arbitrary natural number n then shows
that the successor of n has the property, expressed asA(n+1). However, the
assumption A(n) is a far cry from assuming, say in the case of associativity,
that the inductive predicate “holds for any c” as Goodstein suggests at the
end of the quote. It is the simplest error in inference with the quantifiers
to assume A(x), then to conclude ∀xA(x): The eigenvariable condition in
universal generalization is that x must not occur free in any assumption on
which its premissA(x) depends, but here one must keep inmind that ifA(x)
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itself is an assumption, it depends on itself so to say, thus, x is free in an
assumption. More generally: To assume A(x) is not the same as to assume
A(x) provable and only the latter gives ∀xA(x). No amount of philosophi-
cal reflection inWittgenstein can replace the command over quantificational
inferences that results from Gentzen’s formulation of the quantifier rules in
terms of natural deduction.

∗ ∗ ∗
I began by stating that the quantifiers are as old as logic itself. That was an
implicit reference to Aristotle’s syllogistic, a theory of the four quantifiers
every, no, some, and not some, what they mean when prefixed to the indef-
inite form of predication A is a B, and what the correct forms of inference
are. Even if Frege was proud to present a formalization of the syllogistic
inferences in terms of predicate logic, as the final example of his new nota-
tion in the Begriffsschrift, no formal quantifiers in the modern sense are
needed for their theory, ones that would bind variables. The four kinds of
quantified propositions Every A is a B, Some A is a B, No A is a B, and
Not some A is a B can be treated simply as atomic formulas (as in section
14.1 of von Plato 2013). In the light of this fact, it should be no surprise
that Aristotle’s quantifiers and syllogistic played no role in ancient Greek
mathematics.
In Greek mathematical texts, one finds generality and existence treated
informally, but according to our best experts on the topic, explicit quantifiers
are practically absent (see, e.g., Acerbi 2010, p. 33). A typical pattern would
be to begin a theorem by an assumption like Given two points A and B such
that. . . with a claim like to construct a triangle such that. . . . These situa-
tions are clear free-variable inferences. Much confusion has been caused by
a similar situation in which the given is taken as an assumption about exis-
tence. In that case, the free variables act as the eigenvariables of existential
elimination, a tricky move as witnessed by its formal representation as late
as in 1928. Moreover, such an existential assumption, rendered as ∃xA(x)
in modern notation, can have a consequence B in which the eigenvariable
does not occur. Then the result can be ∀x(A(x) ⊃ B) when instead one
would expect it to be ∃xA(x) ⊃ B . The same is seen informally in ancient
mathematics, as discussed in my essay review of Acerbi’s book (von Plato
2013a). Thus, sometimes the givens act as free variables that lead to gener-
ality of a conditional, at other times as eigenvariables in the elimination of
an existential assumption. An explanation of what happens here is hidden
in Russell’s prenex rules for the quantifiers: The application of definitions
∗9 ·03 and ∗9 ·01 to ∃xA(x) ⊃ B gives at once ∀x(A(x) ⊃ B) with the,
certainly less intuitive, consequence that these two expressions are logically
equivalent.
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