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The radar micro-Doppler signature of a target is determined by parts of the target moving or rotating in addition to the main
body motion. The relative motion of these parts is characteristic for different classes of targets, e.g. the flapping motion of a
bird’s wings versus the spinning of propeller blades. In the present study, the micro-Doppler signature is exploited to discrim-
inate birds and small unmanned aerial vehicles (UAVs). Emphasis is on micro-Doppler features that can be extracted from
spectrograms and cepstrograms, enabling the human eye or indeed automatic classification algorithms to make a quick dis-
tinction between man-made objects and bio-life. In addition, in case of man-made objects, it is desired to further characterize
the type of mini-UAV to aid the threat assessment. Also this characterization is done on the basis of micro-Doppler features.
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I . I N T R O D U C T I O N

Within the security and defense domain, radar is more and
more applied in the confined and crowded urban and littoral
environments. Consequently, there is a demand for detecting
and classifying a wider range of small targets such as mopeds,
dismounts, animals, birds, flocks of birds, and mini-drones.
Basically, detection of these smaller targets requires lowering
the detection threshold, with respect to both target radar
cross section (RCS) and Doppler velocity. However, the
sheer number of objects in crowded littoral and urban envir-
onments may potentially saturate the radar signal processing,
leading to, e.g. lost tracks. Ultimately, situational awareness is
affected.

In these environments, full situational awareness can be
maintained only if target classification can be done reliably
and rapidly. Rapid classification allows filtering-out objects
that are irrelevant for the current mission. For this first
rapid classification, distinction between broad target classes
may be sufficient. Depending on the mission, these broad
classes could be man-made object, i.e. a potential threat, and
bio-life, i.e. a non-threat, such as a bird. In a next classification
step, it is desired to provide further separation within the
potential threat classes to aid the threat assessment. For
instance, the size or number of rotors of a drone may be an
indication of its maximum payload. In this paper, the

potential of exploiting micro-Doppler properties for this
two-step classification approach will be reviewed.

The classification problem addressed within the current
study focuses on recognizing small unmanned aerial vehicles
(UAVs). Mini-UAVs are an emerging threat and exhibit
so-called “LSS” characteristics, for Low (altitude), Small
(RCS), and Slow (speed), which makes them challenging
radar targets when they operate in an environment with for
instance birds.

To reduce the number of false alarms, it is important to
quickly classify a UAV as a man-made object, preferable
before the tracking stage where the identity of all objects cur-
rently present is maintained, and thus the number of irrele-
vant objects should be minimal to prevent track overload. In
the next step, further characterization of the UAV is desired.
Some characteristics of interest are the type of UAV, the
number of rotors, approximate size, etc. This classification
can be done by a trained human operator just by visual inspec-
tion of the pre-processed measurement data. It is also possible
to use automatic recognition. Key is that the data are mea-
sured and presented such that certain features can be extracted
that, combined, characterize the target class. For instance, a
simple maximum a posteriori probability (MAP) classifier
can be used to perform automatic classification. An important
advantage of this approach is that this type of classifier also
works with a subset of available features, in case some features
are unstable or of low quality.

In the study presented here, the emphasis is on
micro-Doppler features that enable fast distinction between
birds and mini-UAVs and that can be derived from spectro-
grams and cepstrograms in a rather straightforward manner.
The features represent actual physical properties of the
target and the proposed method allows defining a classifier
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without the need to construct target models based on training
sets. Some explanatory examples of spectrograms of real and
synthetic targets, both man-made objects and bio-life, can
be found in [1]. This work is also a good starting point for
understanding the micro-Doppler phenomenon in general,
feature extraction and related micro-Doppler concepts.

The generation of spectrograms and cepstrograms is dis-
cussed in Sections II and III. In Section IV, examples are
shown of spectrograms and cepstrograms from actually mea-
sured data. Relevant features for classification are identified in
Section V. Section VI discusses an implementation of feature
extraction and classification, and some results of these are
shown in Section VII. Finally, some conclusions are presented
in Section VIII.

I I . S P E C T R O G R A M G E N E R A T I O N

A spectrogram is a two-dimensional (2D)-graphical “water-
fall” representation of the spectral content of a signal as func-
tion of time, where the power level in each time–frequency cell
is taken from a color or gray scale. The appearance of a spec-
trogram depends on waveform and processing parameters,
which will be discussed next.

A spectrogram is obtained by taking the magnitude
squared of the short-time Fourier transform (STFT) of a dis-
crete signal, where the STFT can be written as:

STFT x n[ ]{ } ; X(m, k)

=
∑1

n=−1

x n[ ]w n − m[ ]e−(j2pkn/N). (1)

Here, x[n] is the discrete signal, w[n] is the discrete window
function, which is non-zero in [0..N] and zero elsewhere, n is
the sample number, N is the number of samples in the analysis
window, and k is an index for the frequency kv0, where v0 ¼

2p fs/N with sample rate fs. For radars measuring range and
Doppler, fs in this paper is sometimes referred to as pulse repe-
tition frequency (PRF) in case of pulse radars and sweep repe-
tition frequency (SRF) in case of frequency-modulated
continuous-wave (FMCW) radars. Index m determines the
position of the analysis window. By repeatedly calculating
the STFT with increasing m using a certain step size Dm,
the spectrogram can be obtained. The step size Dm can be
chosen such that a certain overlap between two consecutive
analysis windows is realized, which gives a smoother result
in the time dimension. Each calculation of the STFT gives a
single column in the spectrogram, which will be referred to
as a “trace”.

If we want to generate a visually useful spectrogram of a
certain event, such as the flapping of a bird’s wing, then we
need to choose an appropriate value for N. As a rule of
thumb, we should choose to have the integration interval N/fs

as a fraction of the length of the event. This we refer to as
the “short integration interval”. The wing beat period of the
majority of bird species in steady flight is in the range of
0.05–0.5 s [2]. By assuming a moderate wing beat period of
0.1 s, the suitable integration interval to capture the details
of a single wing beat cycle is of the order of 20 ms. The
maximum radial velocity associated with flapping wings is
about 15 m/s depending on the aspect angle. Consequently,

the required sample rate fs is relatively low, i.e. several kilo-
hertz in X-band. A spectrogram of a flying bird, measured
with an X-band continuous-wave (CW) radar, is shown in
Fig. 1. For different bird species the spectrogram will appear
different, e.g. in terms of wing beat frequency and amplitude,
but comparable in terms of wing beat modulation around the
(usually stronger) body echo.

Compared with flapping wings, spinning rotor blades con-
stitute much faster events with much higher associated veloci-
ties. The rotor rotation period of mini-UAVs is of the order of
milliseconds with related blade tip velocities of perhaps
200 m/s or even higher. The required sample rate fs is there-
fore very high, of the order of tens of kilohertz. With a CW
radar, such high sample rates are achievable, as well as with
some short-range surveillance radars. Considering typical
medium and long-range surveillance radars, however, such a
high sample rate is unfeasible.

For periodic events that are stable to some extent, such as
the spinning of rotor blades, “long integration intervals” can
be applied for generating the spectrogram. By applying
longer integration time, several revolutions of the rotor
blades are included. The instantaneous spectral content is
now dominated by the rotation rate of the blades causing
modulation peaks. The instantaneous radial velocity of the
blade tips is no longer observable. The difference between
short and long integration interval is clearly visible in the mea-
sured spectrograms shown in Fig. 3 (top left and right). In case
of long integration time, under sampling (i.e. lower sample
rates) can be allowed if “cepstral analysis” is applied, as will
be discussed in the next section.

I I I . C E P S T R O G R A M G E N E R A T I O N

Cepstral analysis can be used to assess the rate of change in a
spectrum and it has been used for, e.g. characterizing seismic
echoes from earth quakes and for human speech analysis.
Cepstral analysis is based on the power cepstrum, which is
defined as the power of the inverse Fourier transform of the
logarithm of the power spectrum [3]. Congruently to the

Fig. 1. Measured spectrogram of a bateleur (Terathopius ecaudatus)
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STFT and spectrogram, a short-time cepstrum [4] and “cep-
strogram” have been proposed:

CG x n[ ]{ } m, k( ) = F−1 10 log STFT x n[ ]{ } m, k( )| |2
( ){ }∣∣ ∣∣2

,

(2)

in which F21 is the inverse Fourier transform. Also here, the
calculation of CG for a single m is referred to as a “trace” and
corresponds to a single integration interval of N samples. The
running variable of the cepstrum has the dimension of
seconds and has been coined “quefrency”. The micro-
Doppler periodicity expressed in hertz can be obtained by
taking the inverse of the quefrency.

The cepstrogram will prove particularly valuable in the case
of long integration interval measurements on rotor or
propeller-driven targets. We can use it to determine the
micro-Doppler periodicity, which is related to the blade
flash frequency, which in turn is related to the angular velocity
of the rotor or propeller (see Fig. 3 and the Discussion). We
can determine whether we deal with a single rotor or
multicopter-type target (see Fig. 4 and the Discussion). In
clear cases, we can even estimate the number of rotors and
their individual angular velocities.

To further demonstrate the potential of the cepstrogram,
we point out the natural cyclic property of the inverse
Fourier transform in equation (2). This property allows for
extracting the micro-Doppler periodicity even in case of
under sampling. The micro-Doppler periodicity feature is suf-
ficient to discriminate man-made objects and bio-life.
Consider the following simulation of a mini-UAV with four
rotors each with two blades of 12 cm length. The average rota-
tion rate is 80 rounds per second (RPS), with 6 RPS difference
between the rotors. In addition, 3 RPS variance has been
added to each rotor to account for some minor steering
dynamics over time. Now, let us assume an X-band radar
with a sampling rate of only 3 kHz, corresponding to practical
range-Doppler surveillance operation. The blind velocity in
X-band is around +22.5 m/s, whereas the blade tip velocity
is 60.3 m/s, so significant aliasing occurs. This prohibits the
extraction of the overall micro-Doppler spectrum width.
However, if we monitor the cepstrogram, we can still identify

the micro-Doppler periodicity, as is shown in Fig. 2. Since the
extracted quefrencies are very low, between 4.5 and 7 ms, the
target can be classified as man-made.

I V . A P P L I C A T I O N O N R E A L
M E A S U R E M E N T S

A low-power experimental CW radar operating in X-band
was used to acquire measurements on real life targets. In
Fig. 3, a measurement on a small radio-controlled (RC) heli-
copter is shown. The micro-Doppler spectrum width is
clearly visible in the long integration interval and appears
quite constant. The short integration interval reveals a relative
slowly rotating, even-bladed main rotor and a much faster
rotating, yet shorter second rotor (the tail rotor), also even-
bladed [5]. Both rotors are also visible in the cepstrogram,
with the main rotor producing the strongest signal at
20.6 ms quefrency, which corresponds to approximately 24
RPS for the two-bladed main rotor. This value is appropriate
for this particular RC helicopter.

An octocopter example is shown in Fig. 4. The short inte-
gration interval in the top right panel now appears chaotic due
to the superposition of eight asynchronous rotors. The long
integration interval does reveal the micro-Doppler spectrum
width and quite some dynamics in the separate harmonics,
but the periodicity cannot be deduced from the spectrogram.
The cepstrogram however shows clear quefrency peaks
between 4.5 and 6.5 ms, corresponding to rotation rates of
76.9 RPS up to 111.1 RPS considering two-bladed rotors.
This range of values is appropriate for this particular octocop-
ter. From the cepstrogram it is clear that the rotation rates of
the different rotors are continuously adapted to keep the octo-
copter stable in the wind.

V . R E L E V A N T F E A T U R E S

Suitable features provide information on target parameters and
are discriminative between relevant target classes. For reliable
classification under varying conditions, features should be

Fig. 2. Spectrogram (left) and cepstrogram (right) from a simulated stationary target with four rotors and two blades per rotor. Radar sample rate is 3 kHz.
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robust with respect to target type, radar settings, and measure-
ment parameters, such as carrier frequency, sample rate, polar-
ization, and aspect angle. In this section, the relevant micro-
Doppler features for classification of birds and mini-UAVs
are reviewed, i.e. RCS, overall target velocity, micro-Doppler
periodicity and micro-Doppler spectrum width.

In general, the RCS of mini-UAVs is higher than that of
birds (depending on the species). RCS is therefore a discrim-
inative feature, but it is not a robust feature. Observed RCS
levels fluctuate significantly as function of aspect angle and
radar frequency. One reason is that small and medium-sized
birds and mini-UAVs are in the Mie resonance region for
S- and X-band radar frequencies.

Typically, the main velocity component in a spectro-
gram is due to the motion of a target as a whole, assuming
the body or fuselage gives the strongest reflection. Velocity
components due to moving parts are usually weaker. The
velocity of birds and many types of mini-UAVs is in the
same range, such that radial velocity is not that much dis-
criminative. Also, radial velocity is not a robust feature in
itself since it depends on direction of flight with respect
to the radar.

Many target micro-motions are of periodic nature, i.e. the
pendulum-like motion of a bird’s wings and the rotation of
rotor/propeller blades. The related spectrograms are periodic

as well. The period of a mini-UAV spectrogram is deter-
mined by the rotor rotation rate, which is generally one
order of magnitude higher than that of manned helicopters.
The period of a bird spectrogram is related to the wing beat
cycle. The wing beat frequency of birds is between 2 and 20
beats per second, depending on the species. The periodicity
of mini-UAVs can be extracted using cepstral analysis, as
was discussed in Section III. In case of multiple dominant
components in the spectrogram, for instance with multicop-
ters, we can take the average periodicity (within a single
trace). Furthermore, if we consider the periodicity values
from multiple traces, we can calculate the variance or stand-
ard deviation on the average periodicity (from trace to trace).
For multicopters we expect to find higher variance as com-
pared with helicopters. This is because of the multiple dom-
inant components in the cepstrogram, but also because the
rotation rates of the individual rotors are continuously and
rapidly adapted in order to manoeuvre and stabilize the plat-
form. For helicopters the blade flash frequency is much more
stable. Note this difference in Figs 3 and 4.

The micro-Doppler spectrum width indicates the
maximum velocity of the micro-motions relative to the
main velocity component. This feature can be exploited to dis-
tinguish birds from mini-UAVs. The spectrum width asso-
ciated with flying birds is just several meters per second.

Fig. 3. Long and short integration interval spectrograms (top) of an RC helicopter shown bottom left. The cepstrogram is shown bottom right.
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Typically, the velocity spread related to spinning rotors is
much wider. The spectrum width feature is robust with
respect to radar parameters, but it depends on the target
aspect angle. High sample rates are necessary to obtain the
unambiguous Doppler spectrum from mini-UAVs. Note
that for range-Doppler radar, this means using specific classi-
fication waveforms with a very high PRF or SRF, as was dis-
cussed in Section II.

V I . F E A T U R E E X T R A C T I O N A N D
C L A S S I F I C A T I O N

In the remainder of this paper, we will work toward a classifier
example that uses the features mentioned in Section V. All fea-
tures except for spectrum width as we assume that we are
unable to measure this feature with a radar that operates
with a relatively low fs in the spectral dimension, i.e.
,10 kHz. This radar does however give us at least range
and accompanying Doppler-spectrum for the unknown
object. Our primary goal is to be able to make a quick distinc-
tion between a man-made object and (possible) bio-life, based
on a single “scan” over the target, i.e. single time-on-target
that consists of several traces. In the second step, in case of
a man-made object, we would like to be able to indicate a
certain subclass, e.g. whether it is a kind of helicopter or a mul-
ticopter, etc.

We try to obtain the following information for a certain
number of traces M (e.g. M ¼ 10), which will become our
feature vector for classification:

(1) Mean radar cross section, rcs m2[ ].
(2) Target speed, Vbody(m/s).
(3) Mean dominant periodicity, for each trace, mperiodicity[Hz].
(4) Standard deviation on the mean periodicity from several

traces, speriodicity[Hz].

The mean RCS for a detected target is obtained by:

rcs = 1
M

∑M

i=1
CiR

4
i

Si

Ni
.

Si/Ni is the signal to (thermal) noise ratio of the main
body, which is usually the strongest bin in the Doppler-
spectrum outside the stationary clutter band. Ci is a radar
and waveform-dependent constant, containing items such
as transmit power, antenna gain, number of pulses, etc. In
cases where these factors are constant for all M measure-
ments, we may instead use C ¼ Ci for i ¼ 1,. . ., M.
Similarly, for a radially slow or stationary target, the range
is constant R ¼ Ri.

If the main body can be identified in the Doppler spectrum,
then the radial velocity of the target can be extracted.
Combined with the heading of the target, we may find the
absolute speed Vbody. If the heading is not known, then
we may use the absolute value of the radial velocity for
Vbody instead, but then one should allow all classification
models to have zero velocity as the target may fly tangentially.

Fig. 4. Long and short integration interval spectrograms (top) of an RC octocopter shown bottom left. The cepstrogram is shown bottom right.
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The mean periodicity is obtained from the cepstrum.
Different approaches can be used, but in our case we will do
the following.

(1) Calculate the cepstrum for each trace using equation (2).
We will use only the first half, i.e. N/2 samples, as both
halves share the same content. Let qi be the quefrency
for each cell, equal to qi ¼ (i 2 1)/fs in seconds. Let pi

be the cepstral value for cell i, with i ¼ 1,. . ., N/2. In our
case, we will identify the quefrencies by their index, and
refrain from interpolation between cells. Note that typic-
ally pi≫ for low i as these cells cover a relative large band-
width. For Gaussian input noise, the resulting noise
distribution will appear /1/qi. For this reason, we will
not use the first n 2 1 samples, i.e. Qall ¼ {n,. . ., N/2}.

(2) Apply a noise threshold, QT = i [ Qall| pi . c1/qi
[ ]{

+c2}, where c1 and c2 are tuning constants to set the
threshold performance.

(3) From the threshold crossings, find the mean peaks,
i.e. local maxima, QLM = i [ QT | ∃6 j [ QT : pi ,

{
pj ^ i − j

∣∣ ∣∣ = 1}.
(4) Find the fundamental quefrencies, called “fundamentals”.

Often, the cepstrum shows harmonics for each

fundamental. These are called “rahmonics”. We need to
assess all items in QLM and decide whether they are a fun-
damental or a rahmonic. The following algorithm can be
used for each separate trace:

(a) Parameters and initialization: Let F be a variable set of
fundamentals, initialized to F :¼ Ø. Let a be a decision
parameter for assessing whether two quefrencies
match, set to, e.g. a ¼ 1. Let b be a decision parameter
for assessing whether a fundamental has been found,
set to, e.g. b ¼ 0.5 Let P be the maximum rahmonic
we consider to be visible in the data, set to, e.g. P ¼ 4.

(b) Main algorithm:
(i) If QLM ¼ Ø, then stop, else, take a quefrency index

k[QLM and set the current rahmonic under con-
sideration r to r :¼ P.

(ii) If r , 0, then go to step i.
Else, assess whether k is the rth rahmonic, in
which case the fundamental f[Qall would be at
f ¼ [k/(r + 1)]. Local maxima hits would be
expected at H ¼ {nf[Qall|n¼1..(r + 1)|}. The fol-
lowing hits actually match the measurement
H′ = h [ H|∃y [ QLM : h − y

∣∣ ∣∣ ≤ a
{ }

.

(iii) If we found sufficient proof, i.e. #H′/(r + 1) . b,
then we update F :¼ F<{ f} and QLM := {y [
QLM|∃6 s [ {1..(r + 1)} : s − y

∣∣ ∣∣ ≤ a}, and go
to step i, else, we assume r :¼ r 2 1, and go to
step ii.

(5) The fundamentals for the current trace are indexed in F.
These correspond to the periodicities 1/qk [Hz] with
k[F. The result is subject to the overall resolution of
the cepstrum 1/fs.

(6) Finally we take,

mperiodicity =
∑

f [F

∑P
k=0 1/q(k+1)f

· p(k+1)f

#F ·
∑

f [F

∑P
k=0 p(k+1)f .

(3)

The standard deviation of the periodicity speriodicity is
simply obtained by speriodicity ¼ std(mperiodicityi) with i ¼ 1..M.

For each radar time-on-target (i.e. the time the radar beam
touches the target), consisting of M traces, of (overlapping) inte-
gration intervals of N samples, we obtain a feature vector z,

Fig. 5. Model of small model helicopters, with a single dominant rotor that
gives a fairly low, yet stable blade flash frequency.

Fig. 6. Left: spectrogram of an octocopter measurement. Right: cepstrogram of an octocopter measurement. “X” markers indicate the chosen fundamentals.
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composed of, z = rcs, Vbody,mperiodicity, speriodicity

[ ]T
, which is

then fed to the classifier.
For the sake of demonstration, we will take one of the sim-

plest forms of classifiers, which is the MAP probability classi-
fier, also known as the “unit cost function Bayesian”, or
“minimum error rate” classifier [6]. Here, the decision func-
tion v̂MAP(·) : RN � V, that maps the feature vector z [
RN to a class vi[V, with i[{1..K}, is obtained by
v̂MAP(z) = argmax

v[V

p(z|v)P(v)
{ }

.

The conditional probability density functions p(z|vk)
contain the discriminative information, while the priors
P(v) carry information on the composition of the entire
population. Quite often however, the priors are chosen to be
equal, i.e. P(v) ¼ 1/K. Of course, in practice we could use
the priors to influence our classifier, e.g. in areas with migrat-
ing birds in order to reduce the false alarm rate.

The p(z|vk) functions can be found using training sets and
a generative learning algorithm, but it is not uncommon to
just simply define them ad hoc using some a priori knowledge
from the targets. In our case, we intend to implement the fol-
lowing aspects:

(1) We are only interested in small targets that can contain
either bio-life or man-made targets. Aerial target larger
than, say, 0 dBm2 are considered to be man-made, but
need no further detailing.

(2) Among the small aerial targets, helicopters and multicop-
ters are more-or-less in the same velocity bracket as birds,
but fixed wing aircraft can go a lot faster.

(3) Given the chosen features, we should be able to tell
apart drone helicopters, from drone fixed wing aircraft,
from drone multicopters. For instance, for drone heli-
copters, we could argue that their blade flash frequency
can be quite low compared with propeller carrying
targets. And multicopters might have quite some vari-
ance on theirs, compared to helicopters and fixed
wing aircraft.

(4) In absence of clear distinctive features obtained from the
cepstrogram, we should conclude that no propellers or
rotors are “seen” by the radar, thus the target could be
anything ranging from a bird to any type of drone. Still,
all bio-life will fall into this category.

Our set of classes V is thus chosen as follows:

V ¼ {“largeManMade”, “possibleBioLife”, “smallFixedWing
Type”, “smallHeliType”, “smallMulticopterType”}.
Instead of using a training set to shape up the target models in
terms of features, we will stick to experience based, hand
drawn linear likelihood curves in which we expect certain
targets to appear. Because we are using features that have a
physical meaning, we are able to mold the knowledge we
have of our targets regarding these features, directly into the

Fig. 7. Classification result of an octocopter measurement. Only classes that appear at least once are shown.

Fig. 8. Left: spectrogram of an RC helicopter measurement. Right: cepstrogram of an RC helicopter measurement.
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classifier. To illustrate this approach, the curves of the
smallHeliType are shown in Fig. 5. From this we can, e.g.
see the low speriodicity that we would expect from an RC heli-
copter, whereas for a multicopter, this value is expected to be
much higher.

V I I . C L A S S I F I C A T I O N R E S U L T S

Several drone and bird measurements were given as input to
the classifier from Section VI. Three results are shown in
Figs 6 and 7 for an octocopter measurement, Figs 8 and 9
for an RC helicopter measurement and Figs 10 and 11 for a
bird measurement.

The white markers on the left panels of Figs 6, 8 and 10
indicate for each trace the bin with the strongest signal

excluding the clutter band from 21 to +1 m/s. This corre-
sponds, most of the time, with the radial body velocity of
the target. If the target crosses the clutter band, then wrong
values are chosen, which for this particular example is not crit-
ical. The spectrograms of Figs 6 and 8 also show the long inte-
gration interval micro-Doppler signal as lines following the
body signal. For the bird in Fig. 10 spectrogram wingbeat
modulation is visible around the main body.

The right panels of Figs 6, 8 and 10 show the corresponding
cepstrograms. In these figures, the chosen fundamentals
according the algorithm in Section VI are indicated by white
markers. For Fig. 6 this corresponds to an average value of
7.5 ms, or 133.3 Hz periodicity, with quite some variance. In
Fig. 8, the same is shown for the helicopter: 20.6 ms
(48.5 Hz), which is quite stable over time. In Fig. 10, no sig-
nificant fundamental was found by the algorithm.

The classification result of the octocopter in Fig. 7 shows
some confusion with “smallHeliType” between 11 and 16 s
and with “smallFixedWingType” at 27 s. Most the time,
however, the correct class was chosen, and at least there was
never confusion with “possibleBioLife”. Fig. 9 shows excellent
results for the “smallHeliType” and finally Fig. 11 scores
equally great for “possibleBioLife”.

V I I I . C O N C L U S I O N

In this paper, we state that spectrograms and cepstrograms
can be used to extract key features for automatic or visual rec-
ognition of LSS-targets versus bio-life. The long integration

Fig. 9. Classification result of an RC helicopter measurement. Only classes that appear at least once are shown.

Fig. 10. Left: spectrogram of a bird measurement. Right: cepstrogram of a bird measurement (no detections here)

Fig. 11. Classification result of a bird measurement. Only classes that appear
at least once are shown.
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interval spectrogram reveals the spectral width and body vel-
ocity. The short integration interval spectrogram shows the
spectral symmetry as well as the individual rotor echoes and
blade flashes. The cepstrogram shows the periodicity, and in
clear cases also the number of rotors. The cepstrogram may
also be particularly useful in case of lower sampling frequen-
cies. The variance on the extracted periodicity can be used as a
feature to distinguish between single, stable rotor/propeller
carrying targets and multicopters such as quadcopters and
octocopters.

A straightforward MAP-classifier has been used to demon-
strate the potential to discriminate between possible bio-life
and different types of man-made objects. Without going
into performance details, this paper shows that the classifier
is able to distinguish between a bird, a multicopter and a heli-
copter based on their micro-Doppler returns.

A C K N O W L E D G E M E N T S

This study is performed in the framework of the D-RACE; the
Dutch Radar Centre of Expertise, a strategic alliance of Thales
Nederland B.V., and TNO. Thanks to Antonio Recinos for
formatting several figures.

R E F E R E N C E S

[1] Chen, V.: The Micro-Doppler Effect in Radar, Artech House,
Norwood, MA, 2011.

[2] Pennycuick, C.J.: Wingbeat frequency of birds in steady cruising
flight: new data and improved predictions. J. Exp. Biol., 199
(1996), 1613–1618.

[3] Bogert, B.P.; Healy, M.J.R.; Tukey, J.W.: The Quefrency Alanysis of
Time Series for Echoes: Cepstrum, Pseudo Autocovariance,
Cross-Cepstrum and Saphe Cracking, in M. Rosenblatt (ed.), Proc.
of the Symp. on Time Series Analysis, Wiley, New York, 1963.
Chapter 15, p. 209–243.

[4] Noll, A.M.; Schroeder, M.R.: Short-time ‘Cepstrum’ pitch detection.
in (abstract), J. Acoust. Soc. Am., 36 (5), 1030.

[5] de Wit, J.J.M.; Harmanny, R.I.A.; Prémel-Cabic, G.: Micro-Doppler
analysis of small UAV, in Proc. EuRAD, Amsterdam, The
Netherlands, October 31–November 2, 2012.

[6] van der Heijden, F.; Duin, R.P.W.; de Ridder, D.; Tax, D.M.J.:
Classification, Parameter Estimation and State Estimation, Wiley
& Sons, Chichester, UK, 2004.

Ronny Harmanny received his B.Sc.
degree in Electrical Engineering in
1997 from the Hanze University of
Applied Sciences, and his M.Sc. degree
with honors in Computer Science in
2000 from the University of Twente. In
the same year, he joined Thales Neder-
land B.V. as a radar system designer.
He currently holds the position of Ad-

vanced Development Engineer at Thales’ Sensors department
in Delft where he is involved in several innovative radar pro-
jects and studies.

Jacco de Wit received the M.Sc. and
Ph.D. degrees in Electrical Engineering
from Delft University of Technology,
in 2000 and 2005, respectively. Since
2005 he has been employed at TNO,
Department of Radar Technology, as
radar systems engineer. His main
research interests include advanced
radar signal processing and innovative

radar system concepts.

Gilles Premel-Cabic received his M.Sc.
degree in Electrical Engineering in 2000
from the IRESTE Engineering School
(now Ecole Polytechnique de l’Université
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