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A function f : F
n
2 → {0, 1} is odd-cycle-free if there are no x1, . . . , xk ∈ F

n
2 with k an odd

integer such that f(x1) = · · · = f(xk) = 1 and x1 + · · · + xk = 0. We show that one can

distinguish odd-cycle-free functions from those ε-far from being odd-cycle-free by making

poly(1/ε) queries to an evaluation oracle. We give two proofs of this result, each shedding

light on a different connection between testability of properties of Boolean functions and

of dense graphs.

The first issue we study is directly reducing testing of linear-invariant properties of

Boolean functions to testing associated graph properties. We show a black-box reduction

from testing odd-cycle-freeness to testing bipartiteness of graphs. Such reductions have

already been shown (Král’, Serra and Vena, and Shapira) for monotone linear-invariant

properties defined by forbidding solutions to a finite number of equations. But for odd-cycle-

freeness whose description involves an infinite number of forbidden equations, a reduction

to graph property testing was not previously known. If one could show such a reduction

more generally for any linear-invariant property closed under restrictions to subspaces,

then it would likely lead to a characterization of the one-sided testable linear-invariant

properties, an open problem raised by Sudan.

The second issue we study is whether there is an efficient canonical tester for linear-

invariant properties of Boolean functions. A canonical tester for linear-invariant properties

operates by picking a random linear subspace and then checking whether the restriction of

the input function to the subspace satisfies a fixed property. The question is if, for every

linear-invariant property, there is a canonical tester for which there is only a polynomial
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blow-up from the optimal query complexity. We answer the question affirmatively for

odd-cycle-freeness. The general question remains open.

AMS 2010 Mathematics subject classification: Primary 68Q01, 68Q87

1. Introduction

A property testing algorithm is required to distinguish objects that satisfy a given property

from objects that are ‘far’ from satisfying the property. One can trace the beginnings of

property testing as an area of study to two distinct origins: work by Blum, Luby and

Rubinfeld [13] (and subsequently Rubinfeld and Sudan [28]), who formally investigated

the testability of linearity and other properties of Boolean functions, and by Goldreich,

Goldwasser and Ron [16], who studied the testability of various graph properties. Although

[16] was inspired by the preceding work on Boolean functions, the two directions evolved

more or less independently in terms of the themes considered and the techniques employed.

Recently, though, this has dramatically changed, and quite a few surprising connections

have emerged. In this work, we draw more connections between these two apparently

different areas and show how ideas and tools used in the study of graph properties can

be used to test certain properties of Boolean functions.

We start with a few definitions. A property of Boolean functions is a subset P ⊆
{f : {0, 1}n → {0, 1}}. The distance between f, g : {0, 1}n → {0, 1} is given by the Hamming

metric δ(f, g) = Px[f(x) �= g(x)], and the distance from f to P is δP (f) = ming∈P δ(f, g). A

function f is ε-far from P if δP (f) � ε. These definitions carry over to graph properties,1

where the distance to a graph property P is said to be ε if εn2 edges need to be added to

or removed from the given graph on n vertices in order to obtain a graph in P . A tester

for P is a randomized algorithm which, given oracle access to the input and a parameter

ε ∈ (0, 1), accepts with probability at least 2/3 when the input is in P and rejects with

probability at least 2/3 when it is ε-far from P . In the case of Boolean functions, the tester

can query the value of the function at any element of {0, 1}n, and in the case of graphs, it

can query the adjacency matrix at any location. The complexity of a tester is measured by

the number of queries it makes to the oracle, and if this quantity is independent of n, the

property is called (strongly) testable. A one-sided error tester should accept every object

in P with probability 1 and reject every object that is ε-far from P with probability 2/3.

Our main focus in this paper is the study of the following property of Boolean functions.

Definition: odd-cycle-freeness. A function f : F
n
2 → {0, 1} is said to be odd-cycle-free

(OCF ) if, for all odd k � 1, there are no x1, x2, . . . , xk ∈ F
n
2 satisfying x1 + · · · + xk = 0

and f(xi) = 1 for all i ∈ [k].

The name ‘odd-cycle-freeness’ arises from the observation that f is OCF if and only if

the Cayley graph2 with the support of f as its generators is free of cycles of odd length,

1 In this paper, when we refer to graph properties we will always mean the dense graph model where the graph

is represented by its adjacency matrix.
2 See Section 1.1 for the precise definition.
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i.e., it is bipartite. The property of bipartiteness in general graphs has been extensively

studied, and nearly tight upper and lower bounds are known for its query complexity

[16, 6, 14, 21]. In this work, we show that odd-cycle-freeness for Boolean functions is

testable with comparable query complexity and, moreover, using tests that are very similar

to those for graph bipartiteness.

Odd-cycle-freeness can also be described in a more algebraic way. As observed in

Section 2, given a function f : F
n
2 → {0, 1} with density ρ

def
= Ex[f(x)], the distance of f

to OCF is exactly 1
2
(ρ + minα f̂(α)). So, a Boolean function’s distance to OCF is directly

connected to the (signed) value of its smallest Fourier coefficient. This link proves crucial

in our analysis of tests for OCF.

Our work is part of a larger programme to understand the structure of testable

properties of Boolean functions. We explain this perspective next.

Common themes in testing. A leading question in the search for common unifying themes

in property testing has been that of discovering necessary and sufficient conditions for

strong testability. Kaufman and Sudan [22] suggest that linear invariance is a natural

property of Boolean functions and plays an important role in testing. Formally, a property3

P ⊆ {f : F
n
2 → {0, 1}} is said to be linear-invariant if, for any f ∈ P , it is also the case

that f ◦ L ∈ P , for any F2-linear transformation L : F
n
2 → F

n
2. Some notable examples

of properties that were shown to be testable and which are invariant under linear

transformations of the domain include linear functions [13], low-degree polynomials [5],

and functions with low Fourier dimensionality or sparsity [19].

A general class of linear invariant families can be described in terms of forbidden

patterns. The first instance of this perspective appeared in the work of Green [20] in

testing whether a Boolean property is triangle-free. Formally, f is triangle-free if it is free

from the pattern 〈f(x), f(y), f(x + y)〉 = 〈13〉 (where, for a positive integer k, 〈1k〉 denotes

the vector of length k whose entries are all ones), for any x, y ∈ F
n
2. More generally, a

function is said to be free from solutions to the linear equation x1 + · · · + xk = 0 if there

are no x = (x1, . . . , xk) ∈ (Fn
2)

k satisfying x1 + · · · + xk = 0 and f(xi) = 1 for all i ∈ [k].

Pushing this generalization further, for a matrix M ∈ F
m×k
2 and σ ∈ {0, 1}k , we say that f

is (M,σ)-free if there is no x = (x1, . . . , xk) ∈ (Fn
2)

k such that Mx = 0 and f(xi) = σi for all

i ∈ [k]. This corresponds to freeness from solutions to a system of linear equations. When

σ = 1, notice that if f ∈ P , then any function obtained from f by removing elements in

the support of f must also belong to P , and in this case P is said to be monotone.

Green [20] proved that (M, 1)-freeness is testable with one-sided error when M is a

rank-one matrix. Král’, Serra and Vena [23] and Shapira [30] showed that this is true

regardless of the matrix M. The setting when σ �= 1 was introduced by Bhattacharyya,

Chen, Sudan and Xie [9], who showed that (M,σ)-freeness is testable for any σ as long as

M is of rank one. The case of M being of rank one was fully resolved by Bhattacharyya,

Grigorescu and Shapira [11], who showed that any (possibly infinite) intersection of such

3 Henceforth, we will identify {0, 1}n with the vector space F
n
2.
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properties is also testable. Now, note that odd-cycle-freeness is an example4 of such a

property; it is the intersection of (Ck, 1
k)-freeness for all odd k � 1, where Ck is the row

vector [1 1 · · · 1] of size k. We next state this result formally.

Theorem 1.1 ([11]). There exists a function f : (0, 1) → Z
+ such that the following is true.

For any ε > 0, there is a one-sided tester with query complexity f(ε) that distinguishes OCF

functions from functions ε-far from OCF.5

Surprisingly, a similar picture has been staged in the world of testable properties in

the dense graph model. Just as for Boolean functions, triangle-freeness, which was shown

(implicitly) by Ruzsa and Szeméredi [29] to be testable, brought up a wealth of perspectives

to the area. It was followed by breakthrough results in testing H-freeness [2] and induced

H-freeness [4], which are somewhat analogous to the results on testing monotone and

non-monotone (M,σ)-freeness properties of Boolean functions. This sequence of results

culminated with a nearly complete characterization of all properties that are testable

with one-sided error and constant number of queries [7]. Similar understanding of the

testability of hypergraph properties [27, 24, 8, 26] has been achieved using extensions of

the techniques used for analysing tests for graph properties.

Given the emerging connection between testing properties of Boolean functions and

testing dense graphs, our investigation in this paper is motivated by the goal of taking this

connection one step forward by trying to harness two powerful results regarding testing

dense graphs. The first is the fact that every hereditary property of dense graphs is testable

[7] and the second is the existence of a canonical tester for dense graph properties [18].

Odd-cycle-freeness serves as a ‘testbed’ for our work.

1.1. The edge-sampling test

Our first approach for testing OCF is to directly reduce testing OCF in Boolean functions

to testing bipartiteness of the Cayley graph associated with the function. For a function

f : F
n
2 → {0, 1}, define the Cayley graph G(f) = (V , E) to be the graph with vertex set

V = F
n
2 and edge set E = {(x, y) | f(x − y) = 1}. (Since x − y = y − x, we may assume

that G(f) is undirected.) The reduction implies that the following algorithm is a tester for

OCF.

Edge-sampling test (Input: oracle access to f : F
n
2 → {0, 1})

1 Uniformly pick α1, . . . , αk ∈ F
n
2, where k = Õ(1/ε). Let G = {αi − αj : i < j}.

2 Accept if and only if the restriction of f to G is odd-cycle-free.

Theorem 1.2. The edge-sampling test is a one-sided tester for odd-cycle-freeness with query

complexity Õ(1/ε2).

4 In fact, odd-cycle-freeness is not just an ‘example’ of a property shown to be testable by [11]: any monotone

property that can be expressed as freeness from solutions to an infinite set of linear equations is equivalent

to the odd-cycle-freeness property (see Section 5 for a short argument).
5 f(ε) in Theorem 1.1 is a tower of exponentials.
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Our proof of Theorem 1.2 relies on the fact that bipartiteness is testable in dense graphs.

More precisely, we show that the distance of G(f) from being bipartite is exactly half of

f’s distance from being OCF. This raises the following problem.

Question 1. Given any collection S of forbidden equations and patterns, can one define a

hereditary graph property P = P(S) such that f is S-free (i.e., free from induced solutions

to every equation in S) if and only if G(f) satisfies P?

Hence, a natural strategy for proving that such properties are testable would be to show

that if f is ε-far from being S-free, then G(f) is δ(ε)-far from P . If that were the case, one

would be able to directly apply the result of Alon and Shapira [7] on testing hereditary

properties of dense graphs in order to deduce that such properties are testable. Taking

this one step further, if one could show a similar result for Cayley hypergraphs, then one

could use the powerful results of Rödl, Schacht and Nagle [26, 24] on testing hereditary

properties of dense hypergraphs in order to give an almost complete characterization of

the linear-invariant properties of Boolean functions that are testable with one-sided error

(a problem raised by Sudan [31]).

Our proof of Theorem 1.2, showing that if f is ε-far from being odd-cycle-free, then

its Cayley graph G(f) is ε/2-far from any bipartite graph, relies on the well-known fact

that the eigenvalues of the adjacency matrix of G(f) are exactly the Fourier coefficients

of f, and uses spectral techniques to analyse the distance to bipartiteness. The test then

emulates the test for bipartiteness of Alon and Krivelevich [6]. In fact, as mentioned

earlier, we prove something stronger: the distance of G(f) from bipartiteness is exactly

half the distance of f from OCF. Using the fact [16, 3] that one can estimate a graph’s

distance from bipartiteness using poly(1/ε) queries to within additive error ε, it follows

that one can estimate the distance of f from OCF.

Theorem 1.3. There exists an algorithm that, given oracle access to a function f : F
n
2 →

{0, 1} and a parameter ε ∈ (0, 1), makes poly(1/ε) queries and returns the distance of f to

OCF to within an error of ±ε. The same holds for approximating minα f̂(α) to within an

error of ±ε.

The second statement is because of the connection between the distance to OCF and

Fourier coefficients mentioned earlier. Using the above, we also obtain a poly(1/ε)-query

algorithm to approximate the distance to linearity that seems different from previously

known ones [13, 25].

1.2. The subspace restriction test

Call a tester for a graph property P canonical if it works by picking a set of vertices

uniformly at random, querying all the edges spanned by these vertices and checking

whether the induced graph satisfies P . Alon [1] and Goldreich and Trevisan [18] showed

that if P is a hereditary graph property (i.e., if a graph G satisfies P , then so does

every induced subgraph of G), then P can be in fact tested using a canonical tester

with only a quadratic blow-up in the query complexity. Moreover, for many natural
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hereditary graph properties, and in particular, for the property of graph bipartiteness,

there is asymptotically no loss in using a canonical tester. The existence of a canonical

tester also makes convenient proving lower bounds for the testability of hereditary graph

properties. It is thus natural to ask if a similar theorem can be proved in the context of

testing properties of Boolean functions.

Suppose P is a subspace-hereditary linear-invariant property of Boolean functions,

meaning that if a function f : F
n
2 → {0, 1} satisfies P , then so does f restricted to any

linear subspace of the domain. Subspace-hereditary properties are especially interesting

because they include most natural linear-invariant properties and are conjectured by

Bhattacharyya, Grigorescu and Shapira [11] to be exactly the class of one-sided testable

linear-invariant properties (modulo some technicalities). Now, just as a canonical tester

for a hereditary graph property works by sampling a set of vertices S and querying all

edges induced in S , one defines a canonical tester for a subspace-hereditary property P
to be the algorithm that, on input ε ∈ (0, 1) and oracle access to f : F

n
2 → {0, 1}, chooses

uniformly at random a linear subspace H � F
n
2 of dimension d(ε, n) (for some fixed

function d : [0, 1] × Z
+ → Z

+) and accepts if and only if f restricted to H satisfies P .

The query complexity of the canonical tester is obviously 2d(ε,n), the size of the subspace

inspected by the tester. It is shown by Bhattacharyya, Grigorescu and Shapira [11], using

ideas similar to those of Alon [1] and Goldreich and Trevisan [18], that any tester for a

subspace-hereditary linear-invariant property can be converted to be of canonical form,

but at the expense of an exponential blow-up in the query complexity. The question that

arises then is whether, instead of an exponential blow-up, only a polynomial blow-up in

the query complexity is always possible.

Question 2. Given a subspace-hereditary property P that can be tested with q queries, is

there always a canonical tester of complexity poly(q)?

This seems to be a hard question in general. However, in this work, we show that for

the property of odd-cycle-freeness, the answer to Question 2 is affirmative. (Note that the

edge-sampling test is not canonical.)

Subspace restriction test (Input: oracle access to f : F
n
2 → {0, 1})

1 Uniformly pick α1, . . . , αk ∈ F
n
2, where k = O(log 1

ε
). Let H be the linear subspace

spanned by α1, . . . , αk .

2 Accept if and only if the restriction of f to H is odd-cycle-free.

Theorem 1.4. The subspace restriction test is a one-sided tester for odd-cycle-freeness with

query complexity O(1/ε20).

The analysis of the subspace-restriction test relies on a Fourier analytic argument.

One can easily see that the test accepts every OCF function. The main insight is that

certain properties of the Fourier spectrum of a function that is ε-far from being OCF are

preserved under random restrictions to small subspaces.
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Note that Theorem 1.4 implies the combinatorial fact that, for any function f that is

ε-far from OCF, there must exist a short witness to this fact. That is, there must exist

x1, . . . , xk ∈ supp(f) with x1 + · · · + xk = 0 and k = O(log 1/ε) an odd integer. In fact,

Theorem 1.4 asserts that there must exist many such witnesses, but a priori, it is not clear

that even one such witness exists. This is in contrast to properties such as triangle-freeness

studied in [20], where witnesses to violations of triangle-freeness are, by definition, short,

and for testability, one ‘only’ needs to show that there exist many such witnesses.

1.3. Organization

The rest of the paper is organized as follows. In Section 2 we show that one can

relate the distance of f from OCF to the Fourier expansion of f. In Section 3 we use

this relation together with some results from spectral graph theory in order to analyse

the edge-sampling test and thus prove Theorem 1.2. We also show in this section that

a strengthening of the analysis for the edge-sampling test yields a distance estimator.

In Section 4, we analyse the subspace restriction test and prove Theorem 1.4. Finally,

Section 5 contains some concluding remarks and a discussion of some open problems

related to this paper.

2. Odd-cycle-freeness and the Fourier spectrum

Our goal in this section is to give two reformulations of OCF, one of a geometric flavour

and one in terms of the coefficients of the Fourier expansion of f. These characterizations

of OCF will be useful in the analysis of both the edge-sampling test and the subspace

restriction test which will be given in later sections. We begin by recalling some basic

facts about Fourier analysis of Boolean functions.

The orthonormal characters {χα : F
n
2 → R, χα(x) = (−1)α·x}α∈F

n
2

form a basis for the

set of {0, 1}-valued functions defined over F
n
2, where the inner product is given by

〈f, g〉 = Ex[f(x)g(x)]. The Fourier coefficient of f at α ∈ F
n
2 is f̂(α) = Ex[f(x)χα(x)]. The

density of f is ρ = Ex[f(x)] = f̂(0), and notice that ρ = maxα∈F
n
2

|f̂(α)|. The support of

f is supp(f) = {x ∈ F
n
2|f(x) �= 0}. Parseval’s identity states that

∑
α f̂(α)

2
= Ex[f(x)2] = ρ.

Further, for all α, f̂(α) � max(−ρ,−1/2).

We first notice that the presence of cycles in a function induces a certain distribution

of the density of the function on half-spaces.

Claim 2.1. Let f : F
n
2 → {0, 1}. Then:

(a) f is OCF if and only if there exists α ∈ F
n
2 such that for all x ∈ supp(f), α · x = 1 (i.e.,

there exists a linear subspace of dimension n − 1 that does not contain any element of

supp(f)),

(b) f is ε-far from OCF if and only if, for every α ∈ F
n
2, it holds that for at least ε2n many

x ∈ supp(f), α · x = 0 (i.e., every linear subspace of dimension n − 1 must contain at

least ε2n elements of supp(f)).

Proof. (a) To see the ‘if ’ direction, suppose f is not odd-cycle-free, but there exists

α such that for all x ∈ supp(f), α · x = 1. Now, let x1, . . . , xk−1 ∈ supp(f) be such that
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x1 + · · · + xk−1 ∈ supp(f) and k is odd. But then α · (x1 + · · · + xk−1) =
∑k−1

i=1 α · xi = 0,

a contradiction. For the opposite direction, suppose f is odd-cycle-free. If f is the zero

function, we are vacuously done. Assuming otherwise, let S = supp(f), and consider the

set H ′ = {x1 + · · · + xk : x1, . . . , xk ∈ S, and k � 0 is even}. Since f is OCF, H ′ ∩ S = ∅.

It is easy to see that H ′ is a linear subspace of codimension 1 inside span(S). It follows

that H ′ can be extended to a subspace H of dimension n − 1 such that H ∩ S = ∅.

(b) If f is ε-far from being OCF, then by part (a), every linear subspace H of dimension

n − 1 must contain ε2n elements of supp(f) (otherwise removing less than ε2n points from

supp(f) would create a function that is OCF). The converse follows again by part (a).

Lemma 2.2. Let f : F
n
2 → {0, 1}. Then:

(a) f is OCF if and only if there exists α ∈ F
n
2 such that f̂(α) = −ρ,

(b) f is ε-far from being OCF if and only if, for all β ∈ F
n
2, f̂(β) � −ρ + 2ε,

(c) the distance of f from OCF is exactly 1
2
(ρ + minα f̂(α)).

Proof. By Claim 2.1, f is OCF if and only if there exists α such that α · x = 1 for all

x ∈ supp(f), and so it follows that

f̂(α) = Ef(x)(−1)α·x = −ρ.

This implies item (a) of the lemma. To derive item (b), we get from Claim 2.1 that f is

ε-far from OCF if and only if any half-space contains at least an ε fraction of the domain,

or equivalently, for each β ∈ F
n
2,

f̂(β) = E
x∈F

n
2

f(x)(−1)β·x =
1

2n

( ∑
x∈supp,β·x=0

1 +
∑

x∈supp,β·x=1

(−1)

)

� ε + (−ρ + ε) = −ρ + 2ε.

Finally, observe that item (c) is just a restatement of item (b).

We see that the minimum Fourier coefficient of f determines its distance from OCF.

Since Fourier coefficients also measure correlation to linear functions, it is natural to ask

about the relationship between a function’s distance to OCF and its distance to linearity.6

Easy Fourier analysis shows that the distance of a function f : F
n
2 → F2 to linearity is

exactly min(ρ, 1
2

+ minα f̂(α)). So, the distance to linearity, in contrast to OCF, is not

always determined by the minimum Fourier coefficient.

3. The edge-sampling test

In this section, we analyse the edge-sampling test and prove Theorem 1.2. The analysis

starts with the characterization of OCF given in the previous section and then proceeds

6 A function f : F
n
2 → F2 is said to be linear if f(x + y) = f(x) + f(y) for all x, y (the range {0, 1} has been

identified with F2). Note that linear functions are OCF. However, the converse is certainly false, since the

function f(x) = x1x2 is OCF but 1/4-far from linear.
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to reduce the problem of testing OCF for Boolean functions to testing bipartiteness in

dense graphs. We then show why Theorem 1.3 follows.

Recall that, for a function f : F
n
2 → {0, 1}, the Cayley graph G(f) = (V , E) is the

undirected graph with vertex set V = F
n
2 and edge set E = {(x, y) | f(x − y) = 1}. Let

N = 2n, and let AG be the adjacency matrix of G. The next lemma is well known but we

include its proof for the sake of completeness.

Lemma 3.1. For any α ∈ F
n
2, the character χα is an eigenvector of AG of eigenvalue 2nf̂(α).

Moreover, the set {2nf̂(α)}α is exactly the set of all the eigenvalues of AG .

Proof. Notice that the entry indexed by xi in b = AGχα is

bi =
∑
xj∈F

n
2

f(xi − xj)χα(xj)

=
∑
x∈F

n
2

f(x)χα(xi − x)

= χα(xi)
∑
x∈F

n
2

f(x)χα(x)

= χα(xi)(2
nf̂(α)).

Therefore, AGχα = (2nf̂(α))χα, and since the set of characters contains 2n orthogonal

vectors, the lemma follows.

We remind the reader that in the context of testing graph properties, a graph is ε-far

from being bipartite if one needs to remove at least εn2 edges in order to make it odd-

cycle-free. In order to be able to apply results concerning testing odd-cycle-freeness in

graphs, we will have to prove that G(f) is in fact ε-far from any bipartite graph. To this

end, we show the following lemma, which relates the distance to being bipartite to the

least eigenvalue of the adjacency matrix. In what follows, we denote by e(S) the number

of edges inside a set of vertices S in some graph G.

Lemma 3.2. Let λmin be the smallest eigenvalue of the adjacency matrix A of an n-vertex

d-regular graph G. Then, for every U ⊆ V (G), we have

e(U) � |U|
2n

(
|U|d + λmin(n − |U|)

)
. (3.1)

Proof. Let u be the indicator vector of U. We clearly have

uTAu = 2e(U).

Since A is symmetric it has a collection of eigenvectors v1, . . . , vn which form an orthonor-

mal basis for R
n. Let λ1, . . . , λn be the eigenvalues corresponding to these eigenvectors where

λn = λmin. Suppose we can write u =
∑n

i=1 αivi in this basis and note that
∑n

i=1 α
2
i = |U|.

Since G is d-regular, (1/
√
n, . . . , 1/

√
n) is an eigenvector of A. Suppose this is v1 and note
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that this means that λ1 = d and α1 = |U|/
√
n. Combining the above observations we see

that

uTAu =

n∑
i=1

λiα
2
i

= d|U|2/n +

n∑
i=2

λiα
2
i

� d|U|2/n + λmin

( n∑
i=2

α2
i

)

= d|U|2/n + λmin(|U| − |U|2/n).

We now get (3.1) by combining the above two expressions for uTAu.

Corollary 3.3. Let G be an n-vertex d-regular graph with λmin � −d + 2εn. Then G is ε/2-

far from being bipartite.

Proof. It is clearly enough to show that in any bipartition of the vertices of G into

sets A,B we have e(A) + e(B) � 1
2
εn2. So let (A,B) be one such bipartition and suppose

|A| = cn and |B| = (1 − c)n. From Lemma 3.2 we get that

e(A) � c

2
(dcn + (−d + 2εn)(n − cn))

=
c

2
(2εn2 − dn) +

c2

2
(2dn − 2εn2),

and similarly

e(B) � 1 − c

2
(2εn2 − dn) +

(1 − c)2

2
(2dn − 2εn2).

Hence

e(A) + e(B) � 1

2
(2εn2 − dn) +

1

2
(c2 + (1 − c)2)(2dn − 2εn2)

� 1

2
(2εn2 − dn) +

1

4
(2dn − 2εn2)

=
1

2
εn2,

where in the second inequality we use the fact that c2 + (1 − c)2 is minimized when

c = 1/2.

We can now derive the following exact relation between the OCF property of functions

and the bipartiteness of the corresponding Cayley graphs.

Corollary 3.4. Let f : F
n
2 → F2. If f is ε-far from being OCF, then G(f) is ε/2-far from

being bipartite. Furthermore, if f is ε-close to being OCF, then G(f) is ε/2-close to being

bipartite.
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Proof. Suppose f is ε-far from being OCF. Let us suppose |supp(f)| = ρN where N = 2n.

By Lemmas 2.2 and 3.1, if f is ε-far from being OCF, then the smallest eigenvalue of

the adjacency matrix of G(f) is λmin � −(ρ + 2ε)N. For a function f, recall that G(f) is a

regular graph with degree d = |supp(f)| = ρN. Hence, we can use Corollary 3.3 to infer

that G(f) must be ε/2-far from being bipartite.

Suppose now that f is ε-close to being OCF, and let S be the set of εN points in F
n
2

whose removal from the support of f makes it OCF. Call this new function f′. Observe

that every x ∈ F
n
2 for which f(x) = 1 accounts for N/2 edges in G(f). Hence, removing

from G(f) all edges corresponding to S results in the removal of at most 1
2
εN2 edges.

To finish the proof we just need to show that the new graph G(f′) (note that the new

graph is indeed the Cayley graph of the new function f′) does not contain any odd

cycle. Suppose to the contrary that it contains an odd cycle α1, . . . , αk, α1. For 1 � i � k set

xi = αi+1 − αi. Then by definition of G(f′) we have f′(x1) = · · · = f′(xk) = 1. Furthermore,

as α1 +
∑k

i=1 xi = α1 (since we have a cycle in G(f′)) we get that
∑k

i=1 xi = 0, so x1, . . . , xk
in an odd-cycle in f′, contradicting the assumption that f′ is OCF.

We are now ready to complete the proof of Theorem 1.2 using the following result of

Alon and Krivelevich [6].

Theorem 3.5 ([6]). Suppose a graph G is ε-far from being bipartite. Then a random subset

of vertices of V (G) of size Õ(1/ε) spans a non-bipartite graph with probability at least 3/4.

Proof of Theorem 1.2. First, if f is OCF then the test will clearly accept f (with

probability 1). Suppose now that f is ε-far from being OCF. Then by Corollary 3.4

we get that G(f) is ε/2-far from being bipartite. Now notice that we can think of the

points α1, . . . , αk ∈ F
n
2 sampled by the edge-sampling test as vertices sampled from G(f).

By Theorem 3.5, with probability at least 3/4, the vertices α1, . . . , αk span an odd-cycle

of G(f). We claim that if this event happens, then the edge-sampling test will find an

odd-cycle in f. Indeed, if α1, . . . , αk, α1 is an odd-cycle in G(f), then as in the proof of

Corollary 3.4 this means that α2 − α1, . . . , α3 − α2, . . . , α1 − αk is an odd-cycle of f. Finally,

the edge-sampling test will find this odd cycle, since it queries f on all points αi − αj .

In order to obtain Theorem 1.3, observe that by Corollary 3.4, the distance to OCF

for a function f is exactly double the distance to bipartiteness for the graph G(f). We

now invoke the following result of Alon, de la Vega, Kannan and Karpinski [3], which

improved upon a previous result of Goldreich, Goldwasser and Ron [16].

Theorem 3.6 ([3]). For every ε > 0, there exists an algorithm that, given input graph G,

inspects a random subgraph of G on Õ(1/ε4) vertices and estimates the distance from G to

bipartiteness to within an additive error of ε.

Proof of Theorem 1.3. Combining Theorem 3.6 with Lemma 3.4, we immediately obtain

a poly(1/ε) query algorithm that estimates the distance to odd-cycle-freeness with additive

error at most ε. Since one can use sampling to estimate ρ to within an additive error
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ε using poly(1/ε) queries, it follows from item (c) of Lemma 2.2 that one can estimate

minα f̂(α) to within an additive error of ε using poly(1/ε) queries.

As mentioned earlier, the distance of f from being linear is given by min(ρ, 1
2

+

minα f̂(α)), where ρ is the density of f. Therefore, given an estimate of ρ and minα f̂(α) for

some function f : F
n
2 → F2, one can also estimate the distance of f to linearity. Theorem 1.3

thus gives a new distance estimator for linearity, and hence also a two-sided tester for the

property of linearity, both with poly(1/ε) query complexity.

4. The subspace restriction test

In this section, we analyse the subspace restriction test and prove Theorem 1.4. We

start with a few notational remarks. For f : F
n
2 → {0, 1} and subspace H � F

n
2, let

fH : H → {0, 1} be the restriction of f to H , and let ρH denote the density of fH ,

namely ρH = Px∈H [fH (x) = 1]. For α ∈ F
n
2 and subspace H , define the restriction of the

Fourier coefficients of f to a subspace H to be

f̂H (α) = E
x∈H

[f(x)χα(x)].

The dual (or annihilator) of H is the subspace H⊥ = {x ∈ F
n
2 | 〈x, a〉 = 0 ∀a ∈ H}. Note

that f̂H (α) = f̂H (β) whenever α ∈ β + H⊥, and so f̂H can be naturally viewed as a function

on F
n
2/H

⊥. The character group of H , denoted H∗, is isomorphic to F
n
2/H

⊥, and so, by

abuse of notation, we will identify H∗ with F
n
2/H

⊥. That is, with each α ∈ H∗, we associate

a representative element of a coset of H⊥. We then have the following inverse formula:

fH =
∑

α∈H∗ f̂H (α)χα.

The strategy of the proof is to use Lemma 2.2 and reduce the analysis to showing

that if every non-zero Fourier coefficient of f is at least −ρ + 2ε, then for a random

linear subspace H , with probability 2/3, every non-zero Fourier coefficient of fH is strictly

greater than −ρH (where, again, fH : H → {0, 1} is the restriction of f to H and ρH is the

density of fH ).

A useful insight into why this should be true is that the restricted Fourier coefficients are

concentrated around the non-restricted counterparts, deviating from them by an amount

essentially inversely proportional with the size of the subspace H . A direct union bound

argument is, however, too weak to give anything interesting when the size of H is small.

The idea of our proof is to separately analyse the restrictions of the large and small

coefficients. Understanding the restrictions of the small coefficients is the more difficult

part of the argument, and the crux of the proof relies on noticing that the moments of

the Fourier coefficients are also preserved under restrictions to subspaces. In particular,

an analysis of the deviation of the fourth moment implies that one can balance the

parameters involved, so that even when H is of size only poly(1/ε), no restriction of the

coefficients of low magnitude can become as small as −ρH .

In what follows, let h > 0 be a fixed integer to be chosen later, denoting the size of the

subspaces H that we focus on. We will slightly abuse notation and use PH [·] and EH [·]
to mean PH,|H |=h[·] and EH,|H |=h[·], respectively. The following two straightforward claims

will be used repeatedly. Their proofs are deferred to the end of this section.
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Proposition 4.1. Given sets S and T with T ⊆ S and |T | = (1 − α)|S |, and a function 	 :

S → [−1, 1], we have ∣∣∣ E
x∈S

[	(x)] − E
x∈T

[	(x)]
∣∣∣ � 2α.

If 	 : S → [0, 1], then ∣∣∣ E
x∈S

[	(x)] − E
x∈T

[	(x)]
∣∣∣ � α.

Proposition 4.2. If H � F
n
2 is a subspace of size h, then

P
x1 ,...,xk∈H

[dim(x1, . . . , xk) < k] � 2k − 1

h
<

2k

h
.

We first show that the restriction of f to a random linear subspace does not change

an individual Fourier coefficient by more than a small additive term dependent on

the size of the subspace. This follows from standard Chebyshev-type concentration

bounds.

Lemma 4.3.

PH

[
|f̂H (α) − f̂(α)| � 4

h
+ η

]
� 36

hη2
.

Proof. We compute the deviation of EH [f̂H (α)] from f̂(α). First we apply Proposition 4.1,

to get that

E
x∈H−{0}

[f(x)χα(x)] − 2

h
� E

x∈H
[f(x)χα(x)] � E

x∈H−{0}
[f(x)χα(x)] +

2

h
.

Therefore,

EH [f̂H (α)] = EH E
x∈H

[f(x)χα(x)]

� EH

(
E

x∈H−{0}
[f(x)χα(x)] − 2

h

)

� E
x∈F

n
2−{0}

[f(x)χα(x)] − 2

h

� f̂(α) − 2

2n
− 2

h
� f̂(α) − 4

h
.

Similarly,

EH [f̂H (α)] � f̂(α) +
4

h
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So, it suffices to show that PH

[
|f̂H (α) − EHf̂H (α)| � η

]
� 36/(hη2). We prove this by

bounding the variance of f̂H (α), using Propositions 4.1 and 4.2:

EH [f̂H (α)2] = EH

[(
E

x∈H
f(x)χα(x)

)2]
= EH

[
E

x,y∈H
f(x)f(y)χα(x)χα(y)

]

� EH

[
E

x,y∈H
dim(x,y)=2

f(x)f(y)χα(x)χα(y) +
6

h

]

� 6

h
+ E

x,y∈F
n
2

dim(x,y)=2

f(x)f(y)χα(x)χα(y)

� f̂2(α) +
6

2n
+

6

h

� 12

h
+

(
EHf̂H (α) +

4

h

)2

� 36

h
+

(
EHf̂H (α)

)2
.

Hence Var[f̂H (α)] � 36
h
, and the lemma now follows by Chebyshev’s inequality.

As in the case with the restricted coefficients, it can also be shown using a straightfor-

ward variance calculation that the fourth moment is preserved up to small additive error

upon restriction to a random H , when h is large enough. For that purpose, define A and

AH as follows:

A
def
=

∑
α∈F

n
2

f̂4(α) = E
x1 ,x2 ,x3∈F

n
2

[f(x1)f(x2)f(x3)f(x1 + x2 + x3)],

AH
def
=

∑
α∈H∗

f̂4
H (α) = E

x1 ,x2 ,x3∈H
[f(x1)f(x2)f(x3)f(x1 + x2 + x3)].

Then, we have the following result.

Lemma 4.4.

PH

[
|AH − A| � 16

h
+ η

]
� 500

hη2
.

Proof. As in the proof of Lemma 4.3, our strategy will be first to show that EH [AH ] is

likely to be close to A and then to bound the variance of AH .

Claim 4.5.

|A − EH [AH ]| � 16

h
.
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Proof. Applying (the second part of) Proposition 4.1 and Proposition 4.2,

EH [AH ] = EH E
x1 ,x2 ,x3∈H

f(x1)f(x2)f(x3)f(x1 + x2 + x3)

� EH

⎡
⎣ E

x1 ,x2 ,x3∈H
dim(x1 ,x2 ,x3)=3

f(x1)f(x2)f(x3)f(x1 + x2 + x3) − 8

h

⎤
⎦

= E
x1 ,x2 ,x3∈F

n
2

dim(x1 ,x2 ,x3)=3

f(x1)f(x2)f(x3)f(x1 + x2 + x3) − 8

h

� E
x1 ,x2 ,x3∈F

n
2

f(x1)f(x2)f(x3)f(x1 + x2 + x3) − 8

2n
− 8

h
� A − 16

h
,

and similarly

EH [AH ] � A +
16

h
.

Claim 4.6.

Var[AH ] � 500

h
.

Proof.

EH [A2
H ]

= EH

[
E

x1 ,x2 ,x3∈H
y1 ,y2 ,y3∈H

f(x1)f(x2)f(x3)f(x1 + x2 + x3)f(y1)f(y2)f(y3)f(y1 + y2 + y3)

]

� EH

[
64

h
+ E

x1 ,x2 ,x3 ,y1 ,y2 ,y3∈H
dim(x1 ,x2 ,x3 ,y1 ,y2 ,y3)=6

[f(x1)f(x2)f(x3)f(x1+x2+x3)f(y1)f(y2)f(y3)f(y1 + y2 + y3)]

]

=
64

h
E

x1 ,x2 ,x3 ,y1 ,y2 ,y3∈F
n
2

dim(x1 ,x2 ,x3 ,y1 ,y2 ,y3)=6

[f(x1)f(x2)f(x3)f(x1 + x2 + x3)f(y1)f(y2)f(y3)f(y1 + y2 + y3)]

� 64

h
+

64

2n
+ A2

� 128

h
+

(
16

h
+ EH [AH ]

)2

� 500

h
+ EH [AH ]2.

The lemma now follows by Chebyshev’s inequality.

Using Lemmas 4.3 and 4.4, we can now proceed with the proof of Theorem 1.4.

Proof of Theorem 1.4. If f is ε-far from odd-cycle-free, then ρ � ε, and by Lemma 2.2,

all its Fourier coefficients are � −ρ + 2ε. We need to show that with constant probability

over random choice of H , each Fourier coefficient of fH is > −ρH . We separate these
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coefficients into the sets of large and small coefficients and analyse them separately. Define

L
def
= {α | |f̂(α)| � γ} ⊆ F

n
2 and S

def
= F

n
2 \ L

for some γ < ρ to be chosen later. Notice that 0 ∈ L. Further, by Parseval’s identity,

|L| � 1/γ2. Let LH∗ ⊆ H∗ be the set of elements β ∈ H∗ such that there exists α ∈ L with7

β = α + H⊥, that is, β is the ‘projection’ of some large coefficient. Then |LH∗ | � |L|. Let

SH∗ = H∗\LH∗ be the complement of LH∗ in H∗.

From Lemma 4.3, for each α ∈ L and for any η1 ∈ (0, 1), we have

PH

[
|f̂H (α) − f̂(α)| � 4

h
+ η1

]
� 36

hη2
1

.

By a union bound, with probability 1 − 1
γ2

36
hη2

1

, for every α ∈ LH∗ , it holds that f̂H (α) >

f̂(α) − 4
h

− η1. Moreover, since 0 ∈ L, we know that |ρH − ρ| � 4
h

+ η1. If 2η1 + 8
h
< 2ε,

then for any α ∈ LH∗ we have

f̂H (α) > f̂(α) − 4

h
− η1 > −ρ + 2ε − 4

h
− η1 > −ρH + 2ε − 8

h
− 2η1 > −ρH,

with probability at least 1 − 36
hγ2η2

1

.

We now analyse the coefficients β ∈ SH∗ , and again show that with constant probability,

no f̂H (β) becomes as small as −ρH. As mentioned in the informal proof sketch earlier,

for this we want to analyse the fourth moment of the Fourier coefficients.

To this end, first observe that for any two Fourier coefficients α, α′ ∈ L, their projections

are identical if α − α′ ∈ H⊥. Over the random choice of H , this happens with probability

at most 1
h
. Therefore, using a union bound, we conclude that with probability at least

1 − |L|2/h � 1 − 1
γ4h

, all the large Fourier coefficients project to distinct coefficients in H ,

namely |LH∗ | = |L|. Let us condition on this event that no two large Fourier coefficients

in L project to the same restricted coefficient. Let us also condition on the event that

|A − AH | < 16
h

+ η2 for some η2 to be specified later. Further, condition on the event that

for all α ∈ L, |f̂H (α) − f̂(α)| < 4
h

+ η1. These events occur together with probability at least

1 − 500
hη2

2

− 36
hγ2η2

1

− 1
γ4h

by Lemmas 4.3 and 4.4.

The following claim shows that the fourth moment of the small Fourier coefficients is

also preserved under a random subspace restriction.

Claim 4.7. Conditioning on the events that

|LH∗ | = |L|, |A − AH | < 16

h
+ η2 and max

α∈L
|f̂H (α) − f̂(α)| < 4

h
+ η1,

we have ∣∣∣∣ ∑
α∈SH∗

f̂4
H (α) −

∑
α∈S

f̂4(α)

∣∣∣∣ � η2 +
16

h
+

4

γ2

(
4

h
+ η1

)
.

7 Recall the identification of H∗ with F
n
2/H

⊥ mentioned at the start of this section.
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Proof. ∣∣∣∣ ∑
α∈LH∗

f̂4
H (α) −

∑
α∈L

f̂4(α)

∣∣∣∣ =

∣∣∣∣∑
α∈L

f̂4
H (α) −

∑
α∈L

f̂4(α)

∣∣∣∣
�

∑
α∈L

|f̂4
H (α) − f̂4(α)|

�
∑
α∈L

|f̂H (α) − f̂(α)|
∣∣∣∣
( 3∑

i=0

f̂H (α)if̂(α)3−i

)∣∣∣∣
� 4 · |L| · max|f̂H (α) − f̂(α)|

� 4

γ2

(
4

h
+ η1

)
.

It follows that∣∣∣∣ ∑
α∈SH∗

f̂4
H (α) −

∑
α∈S

f̂4(α)

∣∣∣∣ �
∣∣∣∣
(
AH −

∑
α∈LH∗

f̂4
H (α)

)
−

(
A −

∑
α∈L

f̂4(α)

)∣∣∣∣
� |AH − A| +

∣∣∣∣ ∑
α∈LH∗

f̂4
H (α) −

∑
α∈L

f̂4(α)

∣∣∣∣
� η2 +

16

h
+

4

γ2

(
4

h
+ η1

)
.

Now, on the one hand, we have∑
α∈S

f̂4(α) < γ2
∑
α

f̂2(α) � γ2.

On the other hand, maxα∈SH∗ f̂
4
H (α) �

∑
α∈SH∗ f̂

4
H (α). Therefore, combining and using Claim

4.7, we have

max
α∈SH∗

f̂4
H (α) < γ2 + η2 +

16

h
+

4

γ2

(
4

h
+ η1

)

We need to choose the parameters such that maxα∈SH∗ |f̂H (α)| < ρH , and so it is enough

to have

γ2 + η2 +
16

h
+

4

γ2

(
4

h
+ η1

)
<

(
ε − 4

h
− η1

)4

.

In addition, we need to ensure that the events we have conditioned on occur with

probability at least 2/3. So, we want

500

hη2
2

+
36

hγ2η2
1

+
1

γ4h
<

1

3
.

One can check now that the following setting of parameters satisfies both of the above

constraints: γ = ε2/100, h = (10/ε)20, η1 = (ε/10)8, η2 = (ε/10)4.

We end this section with the proofs of Propositions 4.1 and 4.2.
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Proof of Proposition 4.1.

E
x∈S

[	(x)] =
1

|S |

( ∑
x∈S\T

	(x) +
∑
x∈T

	(x)

)

� 1

|S |

(
|S | − |T | + |T | E

x∈T
[	(x)]

)
= α + (1 − α) E

x∈T
[	(x)]

= E
x∈T

[	(x)] + α
(
1 − E

x∈T
[	(x)]

)
� E

x∈T
[	(x)] + 2α.

Further,

E
x∈S

[	(x)] � 1

|S |

(
−|S | + |T | + |T | E

x∈T
[	(x)]

)
= −α + (1 − α) E

x∈T
[	(x)]

= E
x∈T

[	(x)] − α
(
1 + E

x∈T
[	(x)]

)
� E

x∈T
[	(x)] − 2α.

The case of 	 : S → [0, 1] can be argued similarly.

Proof of Proposition 4.2.

P
x1 ,...,xk∈H

[dim(x1, . . . , xk) < k] = P
x1 ,...,xk∈H

[
∃

α1 ,...,αk
not all zero

k∑
i=1

αixi = 0

]

�
∑
α1 ,...,αk

not all zero

P
x1 ,...,xk∈H

[ k∑
i=1

αixi = 0

]

� 2k − 1

h
,

where the last inequality follows because if not all α1, . . . , αk equal 0, then
∑

αixi is

uniformly distributed in H .

5. Concluding remarks and open problems

(a) The main question raised here is Question 1, discussed in more detail in Section 1.1. A

way of transforming a set of forbidden equations (or systems of equations) and patterns

S into a graph (or hypergraph) property P(S) such that testing S-freeness can be inferred

from testing membership in P(S) would be a major step in completing the characterization

of all Boolean properties testable with one-sided error.

(b) Another important open question raised here (Question 2) is whether it is possible

in general to obtain canonical testers for subspace-hereditary properties with only a

polynomial blow-up in the query complexity. Here, we show this to be true for OCF, and

Bhattacharyya and Xie [12] showed the existence of a canonical tester with quadratic

blow-up for the triangle-freeness property. On the other hand, there is also some evidence
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to the contrary. Goldreich and Ron [17] proved a non-trivial gap between canonical and

non-canonical testers for graph properties. They showed that there exist hereditary graph

properties that can be tested using Õ(ε−1) queries but for which the canonical tester

requires Ω̃(ε−3/2) queries. Perhaps this indicates that, for subspace-hereditary properties

too, there is a non-trivial, maybe even super-polynomial in this case, gap between non-

canonical and canonical testers (although there is not a lot of convincing evidence

supporting this option).

(c) As previously mentioned, OCF is in fact the only monotone property characterized by

freeness from an infinite number of equations (of rank one). We briefly comment here on

the equivalence between all these properties. It is easy to see that even-length equations

can be handled trivially. Suppose now that P is defined by freeness from all equations of

length belonging to the infinite set of odd integers S = {k1, k2, . . .}. Note that OCF ⊆ P .

Now suppose k �∈ S and k is odd, and let k′ be the smallest element of S such that k � k′.

If f ∈ P is not free of solutions to the length k equation, then f is not free of solutions

to the equation of length k′, since a solution (x1, . . . , xk) to the former induces a solution

(x1, . . . , xk, x1, x1 . . . , x1) to the latter.

(d) Another open problem that arises is to characterize the class of linear-invariant

properties that can be tested using poly(1/ε) queries. For monotone properties that can

be characterized by freeness from solutions to a family F of equations, we conjecture

that there is a sharp dichotomy given by whether F is infinite or finite. It follows

from Theorem 1.2 and the discussion in the previous item that when F is infinite, the

query complexity is poly(1/ε). When F is finite and the property is non-trivial, then the

property is equivalent to being free of solutions to a single equation x1 + · · · + xk = 0 for

some odd integer k > 1. In this case, we conjecture that the query complexity is super-

polynomial, although the current best lower bound is only slightly non-trivial: Ω(1/ε2.423)

for testing triangle-freeness [12]. For non-monotone properties characterized by freeness

from solutions to a family of equations, Chen, Sudan and Xie [15] showed that (C3, 110)-

freeness can be tested using O(1/ε2) queries (recalling the notation in Section 1), but there

is no systematic understanding at present of when poly(1/ε) query complexity is possible

for larger equations or for arbitrary intersections of such non-monotone properties. For

properties characterized by freeness from solutions to a system of equations of rank

greater than one, even less is known.

(e) Another problem left open by our results is whether the Õ(1/ε2) bound for odd-cycle-

freeness is tight. This is indeed the case for bipartiteness testing in graphs [14], but a

direct analogue of their hard instances does not seem to work in our case.

(f) One could also ask Question 2 for linear-invariant properties that are not subspace-

hereditary. Given a linear-invariant property P , we say that a tester T is canonical for

P if there exists a fixed linear-invariant property P ′ (not necessarily the same as P) such

that when T is given oracle access to a function f : F
n
2 → {0, 1}, it operates by choosing

uniformly at random a subspace H � F
n
2 and accepting if and only if f restricted to H

satisfies the property P ′. Notice that unlike the subspace-hereditary case, the canonical

tester now need not be one-sided. The stronger form of Question 2 is whether it is the
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case that, for every linear-invariant property P , there exists a canonical tester for P with

query complexity poly(q(n, ε)) whenever P is testable with query complexity q(n, ε) by

some tester. Goldreich and Trevisan [18] showed the existence of such a canonical tester

with polynomial blow-up for graph properties.
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