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This study investigates the linear stability of a laminar premixed flame, anchored on a
square cylinder and confined inside a channel. Many modern linear analysis concepts
have been developed and validated around non-reacting bluff-body wake flows, and
the objective of this paper is to explore whether those tools can be applied with the
same success to the study of reacting flows in similar configurations. It is found that
linear instability analysis of steady reacting flow states accurately predicts critical flow
parameters for the onset of limit-cycle oscillations, when compared to direct numerical
simulation performed with a simple one-step reaction scheme in the low Mach number
limit. Furthermore, the linear analysis predicts a strong stabilising effect of flame ignition,
consistent with documented experiments and numerical simulations. Instability in ignited
wake flows is, however, found to set in at sufficiently high Reynolds number, and a
linear wavemaker analysis characterises this instability as being driven by hydrodynamic
mechanisms of a similar nature as in non-reacting wake flows. The frequency of nonlinear
limit-cycle flame oscillations in this unstable regime is retrieved accurately by linear
eigenmode analysis performed on the time-averaged mean flow, under the condition that
the full set of the reacting flow equations is linearised. If, on the contrary, unsteadiness in
the density and in the reaction rate are excluded from the linear model, then the congruence
between linear and nonlinear dynamics is lost.

Key words: shear-flow instability, flames, wakes

1. Introduction

Bluff-body burners are of particular interest for flame anchoring in a high-velocity flow.
The body generates a recirculation zone in its near wake, keeping the flame at a fixed
position and preventing blow-off. Flames anchored to bluff bodies have been studied
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extensively, experimentally and numerically (Williams, Hottel & Scurlock 1948; Chen
et al. 1990; Dally et al. 1998; Shanbhogue, Husain & Lieuwen 2009a; Ghani et al.
2015). However, vortex shedding may occur in bluff-body wakes, which drastically
affects the flame dynamics and may even trigger thermoacoustic instability (Manoharan
& Hemchandra 2015; Oberleithner, Schimek & Paschereit 2015a; Emerson, Lieuwen &
Juniper 2016). It is therefore important to analyse the physical mechanisms that underpin
these oscillations, which can then be targeted for an efficient control. In the field of
non-reacting flow, vortex shedding in cylinder wakes is a standard benchmark for stability
calculations. The linear stage of oscillation onset in such non-reacting wakes has been
rather fully explained within the framework of eigenmode analysis (Noack & Eckelmann
1994; Pier 2002; Theofilis 2003; Barkley 2006; Taira et al. 2020). In the presence of a
flame, however, chemical reaction and associated heat release may strongly change the
instability dynamics. The objective of this study is to characterise how the presence of
a flame in a square cylinder wake, through the effects of chemical reaction and heat
release, changes the instability dynamics. To this purpose, a linear eigenmode analysis
will be based on the governing equations for a simple reacting flow; the topic of mean flow
versus steady flow as base states, as well as ‘wavemaker’ concepts, will be revisited in this
context.

Linear stability analysis characterises the self-excited behaviour of a flow, by calculating
the temporal eigenmodes of the linearised governing equations. Conventionally, the real
part of complex eigenvalues denotes the growth rate, and the imaginary part denotes
the frequency of flow perturbations. Pier (2002) and Barkley (2006) performed linear
stability analysis of the base flow and mean flow of a two-dimensional cylinder wake.
Here, the base flow refers to a steady solution of the flow equations, and the mean flow
refers to the temporal average of the oscillating flow state. The least stable eigenmode of
the base flow fails to capture the shedding frequency at supercritical Reynolds numbers,
whereas the corresponding eigenmode of the mean flow gives excellent predictions. The
growth rate of the least stable mean flow eigenmode was found to be almost exactly
zero. Similar observations have been made in many other flow cases, prompting the
postulation of a ‘real-zero-imaginary-frequency’ (RZIF) criterion (Turton, Tuckerman &
Barkley 2015; Bengana & Tuckerman 2021), which states that perturbations inducing mean
flow modifications saturate when the mean flow becomes neutrally stable. Making use of
this criterion, Mantič-Lugo, Arratia & Gallaire (2014) proposed a self-consistent model to
predict the frequency and amplitude of vortex shedding without prior knowledge of the
mean flow.

With the added complexity of reaction, flame instability may arise from the inherent
coupling among various physical mechanisms, including thermoacoustic effects. The
classical thermoacoustic instability refers to a scenario where the flame acts as a
frequency-selective amplifier of perturbations, and a surrounding structure acts as an
acoustic resonator. Recently, a distinct scenario of ‘intrinsic thermoacoustic instability’
has also been explored (Hoeijmakers et al. 2014; Courtine, Selle & Poinsot 2015; Emmert,
Bomberg & Polifke 2015), where the acoustic chamber resonance is replaced with an
acoustic–hydrodynamic coupling in the upstream system to close the feedback loop.
Hydrodynamic instability of a flame, in the literature, may denote at least two distinct
concepts: on the one hand, the term is used to refer to instability dynamics that is
intrinsic to the flame dynamics itself, without involving any acoustic resonance, such as
the Darrieus–Landau and thermo-diffusive instability mechanisms (Matalon 2007); on
the other hand, it is also used to denote instability of the supporting flow field when
unsteady reaction dynamics, although present, are not accounted for. Examples for the

951 A27-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.857


Global linear stability of a cylinder anchored flame

latter approach include studies of vortex shedding in bluff-body anchored flames (Emerson
et al. 2016), shear layer instability (Oberleithner et al. 2015a), the precessing vortex core in
swirling flames (Oberleithner et al. 2015b), the coherent structures in turbulent jet flames
(Kaiser, Lesshafft & Oberleithner 2019a; Casel et al. 2022), and inertial waves (Albayrak,
Juniper & Polifke 2019; Müller et al. 2022). The justification of this approach relies on
the a priori hypothesis that unsteady reaction does not play an active role in the instability
mechanism, therefore it is commonly referred to as the ‘passive flame’ approach (Casel
et al. 2022).

In reality, however, flame unsteadiness involves a large number of physical processes
that may combine to form instability mechanisms. On conceptual grounds, many of these
can be either neglected or simplified for a fundamental analysis; in the present context,
we choose to regard the low Mach number limit in order to reduce the complexity of
compressibility, and we opt for a one-step chemical reaction model that retains much of
the specificity of combustion, without overstressing the fuel dependency.

Bluff bodies of different shapes are used to fix the flame position in various
combustion configurations, e.g. in propulsion applications, afterburners being one
example (Shanbhogue et al. 2009a). The basic scenario is a premixed reactant flow
passing around a bluff body, which is ignited in the recirculation region that contains
heated reaction products. Fundamental studies of flame dynamics in such a case cover
a wide range of topics, such as the near-wall anchoring structures (Kedia & Ghoniem
2014; Miguel-Brebion et al. 2016), the onset of flame blow-off (Nair & Lieuwen 2007;
Chaudhuri et al. 2012; Kedia & Ghoniem 2015; Vance et al. 2021; Kumar et al. 2022),
the forcing response (Shanbhogue et al. 2009b; Shin et al. 2011; Shin & Lieuwen 2013),
the acoustic flame transfer function (Mejia et al. 2018; Kaiser et al. 2019b) and the
effect of premixed flow properties, including gas composition (Kim, Lee & Im 2019;
Balasubramaniyan et al. 2021) and preheated temperature (Erickson & Soteriou 2011;
Michaels, Shanbhogue & Ghoniem 2017), on flame dynamics and structures. Closely
related to our present investigation are studies of the effect of reactant density ratio
on the hydrodynamic instability of bluff-body flames by Emerson et al. (2012, 2016),
Emerson & Lieuwen (2015) and Suresha et al. (2016). At different preheated reactant
temperatures, these authors conducted local stability analysis on experimental velocity and
density profiles. A transition from convective to absolute instability was found to occur for
preheated lighter unburnt gas when the density ratio between unburnt/burnt gas is close
to unity. The authors also estimated the global mode shapes by combining local stability
results (Juniper & Pier 2015), for the goal of identifying flow regions related to strong
eigenvalue sensitivity (Emerson et al. 2016). The latter is also one of the objectives in the
present paper, with an alternative strategy.

We conduct a global linear stability analysis of a two-dimensional premixed laminar
flame anchored on a square cylinder. The Navier–Stokes equations for reacting flow are
linearised around the steady and mean states, and both the streamwise and cross-stream
directions are resolved. Similar approaches have been used in recent years for premixed
laminar flames. The closest to our study is the analysis by Avdonin, Meindl & Polifke
(2019), who computed the global instability eigenmode of a slot flame in an anechoic
chamber, identified as the intrinsic thermoacoustic mode. Those authors also used
linearised approaches to calculate flame transfer functions and entropy wave transfer
functions (Albayrak, Bezgin & Polifke 2018; Meindl, Silva & Polifke 2021). The linear
dynamics of M-shaped flames was investigated in a similar framework by Blanchard et al.
(2015, 2016), who focused on the input–output behaviour of the flame, including impulse
response and pressure wave generation. Their studies were extended to M-shaped swirling
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flames by Skene & Schmid (2019). In a recent study, we used resolvent analysis to identify
the optimal forcing structures in a slot flame, leading to maximal heat release (Wang et al.
2022). For linear analysis of diffusion jet flames, one may refer to Nichols & Schmid
(2008), Qadri, Chandler & Juniper (2015), Moreno-Boza et al. (2016), Qadri et al. (2021)
and Sayadi & Schmid (2021). Modal analysis has also been conducted for hot jets (Coenen
et al. 2017; Chakravarthy, Lesshafft & Huerre 2018) and in turbulent swirling flames with
the presence of a precessing vortex core (Oberleithner et al. 2015a,b).

The reference case of the present study is taken from Kedia & Ghoniem (2014, 2015),
where the authors conducted direct numerical simulations (DNS) of a premixed laminar
flame anchored on a solid square cylinder inside a channel at Re = 500. The governing
equations for those simulations were formulated in the low Mach number limit, and
a detailed methane–air reaction scheme of 16 species and 46 steps was implemented.
A solid–fluid conjugated heat exchange model was included. Kedia & Ghoniem (2014)
found that the non-reacting cold flow displayed vortex shedding, whereas the ignited
reacting flow was steady, anchoring at a position immediately downstream of the square.
As one of our objectives is to elucidate the mechanisms by which flame ignition quenches
the instability, we use the same geometry and the same flow parameters as Kedia &
Ghoniem (2014), but we opt for a much simpler chemistry model.

The paper is organised as follows. In § 2, the governing equations and the geometry of
the flow configuration are documented. In § 3, nonlinear time stepping and linear analysis
of an unstable non-reacting mean flow is carried out. In § 4, base flow analysis of the
reacting flow is conducted. A detailed wavemaker analysis is attempted in order to identify
the spatial region that controls the global flow dynamics. It also gives insight into the
important physical mechanisms that contribute to the leading instability eigenmode. In § 5,
we perform nonlinear time stepping of unstable flames at supercritical Reynolds numbers,
alongside a modal analysis of the reacting mean flow. Conclusions and perspectives are
given in § 6.

2. Methods

2.1. Nonlinear governing equations
The governing equations for reacting flow are formulated in the low Mach number
limit (McMurtry et al. 1986), in terms of primitive variables (ρ, ux, uy, h, YCH4) in
Cartesian coordinates (x, y), where (ux, uy) are the streamwise and cross-stream velocity
components, ρ is the density, h is the sensible enthalpy, and YCH4 is the mass fraction
of methane. The chemical reaction is modelled by a global one-step scheme for a lean
methane–air mixture, requiring only one species equation for CH4. Each flow variable
in the compressible reacting flow equations is expanded in orders of Mach number
(McMurtry et al. 1986), and following notations in Albayrak et al. (2018), these equations
are written in the form

∂ρ

∂t
= − ∂

∂xj
(ρuj), (2.1)

ρ
∂ui

∂t
= −ρuj

∂ui

∂xj
− ∂p

∂xi
+ ∂τij

∂xj
, (2.2)

ρ
∂YCH4

∂t
= −ρuj

∂YCH4

∂xj
− ∂Jj

∂xj
+ ω̇CH4, (2.3)
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ρ
∂h
∂t

= −ρuj
∂h
∂xj

− ∂qj

∂xj
+ ω̇T . (2.4)

The system is closed by the equation of state for an ideal gas:

p0 = RsρT. (2.5)

The pressure p0 in the equation of state (2.5) is at the zeroth order of expansion,
i.e. independent of Mach number, whereas p in the momentum equation (2.2)
is its first-order complement. The molecular stress tensor is given by τij =
−(2μ/3)(∂uk/∂xk)δij + μ(∂ui/∂xj + ∂uj/∂xi), where the molecular viscosity μ is
modelled by the Sutherland law. The flux of species transport and heat transfer are
modelled as Jj = −Ds(∂YCH4/∂xj) and qj = −α(∂h/∂xj), respectively. The transport
coefficients therein are associated with a Schmidt number Sc = μ/Ds and a Prandtl
number Pr = μ/α. Constant values Sc = 0.7 and Pr = 0.7 are prescribed in this study,
which are valid for a lean methane–air mixture (Sato 1982). In the equation of state, Rs is
the specific gas constant. In the following, the enthalpy is expressed as h = CpT , where
the specific heat capacity Cp is taken to be constant. Combining this definition of enthalpy
with (2.1), (2.4) and (2.5), we can eliminate the time derivative term in (2.4) and replace
it with

0 = ρ
∂ui

∂xi
+ αρ

∂

∂xi

(
ρ−2 ∂ρ

∂xi

)
+ ρRs

Cpp0
ω̇T , (2.6)

in the same way as in Kaiser et al. (2019a). The system for the following calculations is
then given by (2.1)–(2.3) and (2.6).

The reaction rate is modelled by a one-step chemistry scheme,

CH4 + 2O2 → CO2 + 2H2O, (2.7)

where the reaction progress rate Q is given in the form of an Arrhenius law

Q = [XCH4]nCH4 [XO2]nO2 Tβ exp
(

−Ta

T

)
. (2.8)

Coefficients for the model constants nCH4, nO2, β and Ta are taken from the scheme
1S_CH4_MP1 provided by CERFACS (2017), which is suitable for a lean premixed
methane–air gas. The molar concentrations of CH4 and O2 are given by [XCH4] =
ρ(YCH4/WCH4) and [XO2] = ρ(YO2/WO2), respectively, where WCH4 and WO2 denote their
molecular masses. The reaction rate in the species equation is given by ω̇CH4 = −WCH4 Q,
and the heat release due to combustion in the enthalpy equation is given by ω̇T = −Δho

f Q,
where Δho

f is the standard enthalpy of reaction.
The reacting flow model documented in this section relies on several simplifying

assumptions; in particular, the one-step reaction scheme (2.7)–(2.8) does not reflect the
rich variety of chemical reactions that take place in methane combustion. It is chosen
here for convenience, mainly to maintain a small number of empirical model parameters
and species to track for this fundamentally oriented study. As will be shown in § 4.1, this
model seems to appropriately reproduce the steady states obtained numerically by Kedia
& Ghoniem (2014) with more detailed reaction kinetics. It should be understood that all
results presented in this paper, and the conclusions inferred therefrom, can be valid only
within the limitations of the flow model.
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Figure 1. Unstructured mesh of the numerical domain. Lengths are normalised with the square width
D = 5 mm.

2.2. Calculation of base flow and mean flow
The geometry of the numerical domain, presented in figure 1, corresponds to the
simulations of Kedia & Ghoniem (2014, 2015) with a square cylinder of side length
D = 5 mm centred in a channel that is 25 mm wide. The numerical domain extends 2D
upstream and 9D downstream of the cylinder. Inflow conditions for streamwise velocity
and temperature are set as U = 1.6 m s−1 and T0 = 300 K, which leads to an inflow
Reynolds number Re = ρ0UD/μ0 = 500, where ρ0 and μ0 denote the density and the
molecular viscosity at the inflow, respectively. The inlet velocity profile is prescribed
as being parabolic, and a no-slip adiabatic condition is used at the channel walls.
A no-slip condition is also prescribed on the cylinder surface, but an important difference
with respect to the reference simulations is that we prescribe a constant temperature of
the cylinder, Tc. A no-flux condition of species transport is imposed on the cylinder and
channel walls. Kedia & Ghoniem (2014) studied the equivalence ratio φ in the range from
0.5 to 0.7. We revisit this range and consider leaner mixtures down to φ = 0.25.

The nonlinear governing equations are discretised on the unstructured mesh shown in
figure 1 with a continuous Galerkin method, as provided by the FEniCS software (Alnæs
et al. 2015). The mesh contains 41 145 triangular cells, with high spatial resolution in the
flame front region.

A steady flow solution is obtained by Newton’s iterative method; such a steady state will
be denoted a ‘base flow’ in the following. Convergence of Newton’s method is conditioned
on the initial guess, which must be sufficiently close to the solution. In particular, it is
difficult to displace a sharp flame front during the iterations, but much less difficult to
successively steepen an initially diffuse front. An adapted approach, which was used to
calculate the steady solution of slot flames (Albayrak et al. 2018; Douglas 2021), is applied
in the present case. All diffusion coefficients are multiplied by an artificial parameter c1,
and the heat release term is multiplied by a parameter c2. We first enlarge the convergence
radius by computing a very viscous non-reacting flow as the initial guess. To this end, c1
is set to 30, and c2 is set to 0. Then we gradually decrease c1 from 30 to 1, and at the same
time we increase c2 from 0 to 1. Each time c1 and c2 are changed, one Newton iteration is
performed, until both factors are brought to 1. The final base flow is thus recovered with
residual errors of the order of machine precision, after around 25 iteration steps.

To obtain the time-averaged flow fields in unstable configurations, the nonlinear reacting
flow equations are integrated in time with a Crank–Nicolson scheme. Averaging is started
when the periodic regime is reached. Such time-averaged fields will be called the ‘mean
flow’ throughout this study.
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2.3. Global linear analysis
Flow fluctuations q′(x, t) around the steady base state or around the time-averaged mean
state are assumed to be governed by the linear equation

B
∂q′

∂t
= Aq′, (2.9)

where the matrices B and A are built from linearisation of (2.1)–(2.3) and (2.6). This
linear assumption is valid for infinitesimally small fluctuations around the base state,
and it is hoped to be extendable to finite-amplitude fluctuations around the mean flow in
supercritical conditions (Barkley 2006; Mantič-Lugo et al. 2014). The linearisation of the
governing equations is performed symbolically within FEniCS by use of the Unified Form
Language (Alnæs et al. 2014). The flow fluctuations q′(x, t) can be expanded in the basis
of eigenmodes q′

j(x, t) = φj(x) exp(λjt) obtained from the generalised eigenvalue problem

λjBφj = Aφj. (2.10)

The eigenvalues λj and associated eigenvectors φj are computed with a Krylov method.
We define the frequency as 2πfj = −Im[λj] and the growth rate as 2πσj = Re[λj], so that
λj/(2π) = σj − ifj. In the following, the eigenmode with maximal growth rate will be
named the leading eigenmode, with eigenvalue λ0 and eigenvector φ0.

Homogeneous Dirichlet boundary conditions are prescribed for all fluctuations, except
pressure, at the inflow; no-slip adiabatic conditions are imposed at the lateral channel
walls; and no-slip isothermal conditions, i.e. zero fluctuations of density and velocity, are
chosen on the cylinder surface. Stress-free boundary conditions at the outflow are used,
which is a common and convenient choice in finite-element formulations for low spurious
reflections (e.g. Lesshafft 2018).

The mesh convergence is tested by using 74 850, 91 776 and 155 636 cells to calculate
the leading eigenmode at φ = 0.5 for the ignited reacting flow. The relative error of the
leading eigenvalue is less than 0.85 %.

3. Non-reacting flow

Nonlinear simulation is first performed for a non-reacting flow at Re = 500. The terms
related to chemical reaction, ω̇CH4 and ω̇T , are removed from the governing equations
for this calculation, and the cylinder temperature Tc is set to be the same as the inflow
temperature. Figure 2 shows the periodic regime of vortex shedding, in agreement with
figure 4 of Kedia & Ghoniem (2014). Note that due to the parabolic inlet profile and the
confinement by no-slip channel walls, the vortex dynamics observed here is different from
an unbounded uniform flow past a square cylinder (Davis, Moore & Purtell 1984; Suzuki
et al. 1993; Turki, Abbassi & Nasrallah 2003).

The temporal signal of the cross-stream velocity uy, measured at the location
(x/D, y/D) = (4.5, 0), is shown in figure 3(a), and its frequency spectrum is given in
figure 3(b). The temporal signal is quasi-periodic and appears to be near the onset
of chaotic dynamics. A distinct peak at 64.0 Hz corresponds to the vortex shedding
frequency.

The nonlinear flow fields are averaged over the time horizon shown in figure 3(a),
and perturbation eigenmodes are computed for this mean flow. A leading eigenvalue at
64.1 Hz is identified, in excellent agreement with the measured vortex shedding frequency.
Here, the growth rate is found to be σ = 3.5s−1, relatively close to zero, therefore fairly
consistent with the RZIF criterion. This slightly non-zero growth rate may be attributed to

951 A27-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

85
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.857


C. Wang, L. Lesshafft and K. Oberleithner

4 60 2 8 10 12
−2.5

−1.5

−0.5

0.5

1.5

2.5

x/D

y/D

Ω (s−1)

−2300

0

2300

Figure 2. Snapshot of the vorticity field of the non-reacting flow, obtained by nonlinear time stepping.
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Figure 3. (a) Time evolution of uy measured at location (x/D, y/D) = (4.5, 0) in the non-reacting flow.
(b) Frequency spectrum of the signal in (a). (c) Eigenvalues of the non-reacting mean flow. The unstable
eigenvalue has f = 64.1 Hz and σ = 3.5 s−1, marked in blue.

the weak non-periodicity of the unsteady flow (Mantič-Lugo et al. 2014). More details
about this non-reacting flow analysis results are given in the Appendix, including a
comparison of eigenmodes obtained for base flow and mean flow, and convergence
tests with respect to the domain length and to the time-averaging interval used in the
construction of the mean flow.

4. Reacting flow: eigenmodes of the steady base state

4.1. Calculation of the base flow
The steady base state of a reacting flow is computed at various values of equivalence ratio
φ. The Reynolds number is always 500, and the inflow temperature is maintained at 300 K.
The cylinder temperature Tc is always fixed at Tc = 750 K, a value close to the temperature
profiles in figure 13 of Kedia & Ghoniem (2014). Such a condition is consistent with
the reference, where the authors stated that the cylinder was almost isothermal for
high conductivity cases. The steady base states of the reacting flow at 0.5 ≤ φ ≤ 0.7
are shown in figure 4, in the same range of equivalence ratio investigated in Kedia &
Ghoniem (2014). The structure of the computed base flows match well with figure 7 of
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Figure 4. Reacting base flow at equivalence ratio φ from 0.5 to 0.7. Streamlines are superposed on the
upper half of the temperature fields. The temperature of the cylinder wall is fixed at 750 K. Values used are
(a) φ = 0.5, (b) φ = 0.55, (c) φ = 0.6, and (d) φ = 0.7.
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Figure 5. The end position of the recirculation bubble at y = 0 calculated with an isothermal cylinder wall at
Tc = 750 K, compared with figure 8 of Kedia & Ghoniem (2014) using conjugate heat exchange for steel and
ceramic.

Kedia & Ghoniem (2014), in spite of our different temperature condition at the cylinder
and the simplified reaction scheme. The resulting Damköhler number is 33.3 at φ = 0.7,
and 2.38 at φ = 0.5. The flame front is anchored on the cylinder, advancing towards the
channel walls with downstream distance. A recirculation zone, immediately behind the
cylinder, is spatially separated from the flame fronts. Figure 5 shows that the length of
the recirculation bubble grows with the reduction of the equivalence ratio, qualitatively
in agreement with figure 8 of Kedia & Ghoniem (2014). As leaner mixtures will be
considered, in the following we use a longer computational domain extending downstream
to x/D = 20 such that the entire recirculation bubble is included.
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Figure 6. Growth rates σ of the least stable base flow eigenmode as a function of equivalence ratio φ in the
ignited (red) and non-ignited (blue) cases.

4.2. Stabilisation by ignition: a wavemaker analysis
The steady states of the flame computed are obtained by Newton iteration, and it is not
known a priori if they are linearly stable. Therefore, eigenmodes of the steady states are
calculated, and the growth rate of the least stable eigenvalue is plotted in figure 6 as a red
line. Over the range of equivalence ratios 0.5 ≤ φ ≤ 0.7, where Kedia & Ghoniem (2014)
report steady dynamics from their simulations, the flame is indeed found to be stable in
our calculations, as characterised by a negative maximum growth rate.

Aiming at understanding the stabilising effect by ignition, a non-ignited flow is
calculated at different equivalence ratios using the same value of cylinder temperature
Tc = 750 K. The non-ignited configurations are also obtained through Newton’s method,
but using the cold flow with Tc = 300 K as initial guess of iteration. The steady states at
various Tc with an increment of 50 K are calculated consecutively up to Tc = 750 K. In
this way, the flow field is always non-ignited. The ignited and the non-ignited flow fields at
φ = 0.5 are shown in the upper and lower halves of figure 7, respectively. The non-ignited
flow field closely resembles the non-reacting flow around a hot cylinder. Again, both states
are steady solutions of the reacting flow equations with exactly the same flow parameters.
The growth rate of the leading mode of the non-ignited flow at various equivalence ratios
is shown as a blue line in figure 6. The non-ignited flow is always found to be unstable
with a nearly constant positive growth rate. At φ = 0.5, the growth rate at non-ignited
conditions is 5.3 s−1, while the ignited flow is stable with the largest growth rate of
−20.3s−1. Such a stabilising effect of ignition has often been observed in experiments
and numerical simulations (Bill & Tarabanis 1986; Mehta & Soteriou 2003; Erickson &
Soteriou 2011; Kedia & Ghoniem 2014; Oberleithner et al. 2015b; Geikie et al. 2021).

We now attempt to characterise the cause of this stabilisation from a ‘wavemaker’
analysis of the leading eigenmode. Such an analysis aims at identifying flow regions where
local feedback mechanisms act to give rise to intrinsic oscillations. These flow regions are
characterised by the sensitivity of the eigenvalue to structural changes in the linear operator
(Giannetti & Luchini 2007).

First, the adjoint eigenvectors φ
†
j are introduced as the eigenvectors of the

conjugate-transposed system matrices of (2.10):

λ∗j BHφ
†
j = AHφ

†
j . (4.1)
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Figure 7. Comparison of base flow quantities between ignited (upper half, σ = 5.3 s−1) and non-ignited
case (lower half, σ = −20.3 s−1) at φ = 0.5. Streamlines are superposed on the temperature fields in (a).
Temperature isocontours of T = 550 K are superposed on cross-stream velocity in (b), indicating the flame
front position. Vorticity fields are shown in (c).

A direct eigenvector φj and an adjoint eigenvector φ
†
j are thus associated by their

complex conjugated eigenvalues. The sets of direct and adjoint eigenvectors, normalised
appropriately, fulfil the biorthogonality relation (Hill 1995)

〈φ†
j , Bφk〉 = δjk, (4.2)

where the spatial inner product over the flow domain Ω is defined as

〈g(x), h(x)〉 =
∫

Ω

g∗h dx. (4.3)

The wavemaker, as identified by the most commonly used definition of Giannetti &
Luchini (2007), is the local Frobenius norm of the structural sensitivity tensor, which is
constructed as a local product of the direct and associated adjoint eigenmode. Flow regions
where this quantity is large are expected to contribute strongly to the global flow instability.
For flames anchored to a cylinder, such a wavemaker analysis was carried out by Emerson
et al. (2016). Global eigenmodes were estimated by combining results from local analysis
(Juniper & Pier 2015), and the wavemaker region was found to lie in the recirculation
zone of the wake. In the analysis of Emerson et al. (2016), it was assumed a priori that the
instability is shear-driven: only the velocity and density fields were taken as input, whereas
the effects of unsteady chemical reaction were not taken into account.

In this study, we attempt a wavemaker analysis without the quasi-parallel assumption,
and we include perturbations of species concentration and enthalpy. A variation of the
wavemaker definition is adopted in the following, which takes into account the entire
state vector and allows an evaluation of contributions from individual components of the
linear operator. This method was proposed by Marquet & Lesshafft (2015), and applied
for instance by Chakravarthy et al. (2018) and Murali, Ng & Sheard (2022). From (2.10)
and (4.2), the leading eigenvalue is obtained in the form of a spatial integral:

λ0 = 〈φ†
0, λ0Bφ0〉 = 〈φ†

0, Aφ0〉 =
∫

Ω

E(x) dx. (4.4)

The integrand E(x) is given by the spatially local product between φ
†
0 and Aφ0. Marquet

& Lesshafft (2015) name E(x) the ‘endogeneity’ of the eigenmode, and we will adopt this
word for ease of writing. The growth rate Re(λ0)/(2π) is given by the spatial integral of
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Figure 8. Endogeneity field Re[E(x)]/(2π) corresponding to the least stable eigenmode in the ignited and
non-ignited cases at φ = 0.5: wavemaker according to the definition by Marquet & Lesshafft (2015). (a) Full
endogeneity, with spatial integral Re(λ0)/(2π) = 5.3 s−1 for the ignited case and Re(λ0)/(2π) = −20.3 s−1

for the non-ignited case. (b) Contribution of the momentum perturbation. (c) Contribution of the sum of the
other three linearised equations. The streamlines are superposed. Top of each plot: ignited. Bottom of each plot:
non-ignited.

Re(E)/(2π), therefore regions where Re(E) is positive are expected to contribute to the
destabilisation of the leading eigenmode; conversely, flow regions with negative values are
interpreted as having a stabilising influence.

Figure 8(a) displays Re(E)/(2π) for the ignited (top) and non-ignited (bottom) flow
shown in figure 7. For both cases, the instability seems to be generated mainly in the shear
region of the recirculation bubble in the near wake, close to the downstream stagnation
point. This wavemaker region in figure 8(a) closely resembles the non-reacting cylinder
wake results of Giannetti & Luchini (2007), indicating that similar instability mechanisms
are at play. The dominant feature in the endogeneity plot is an inner positive region
and an outer negative region appearing at the shear layer near the downstream end of
the recirculation bubble, identified as the flow region that most strongly influences the
instability growth rate.

The matrix A in the wavemaker definition (4.4) can be split into components that
represent individual equations or terms of the linearised flow equations, and the isolated
contributions of these equations or terms can be visualised as partial endogeneity fields
(Marquet & Lesshafft 2015; Chakravarthy et al. 2018). To study quantitatively the
contribution to the global instability from different physical mechanisms, we decompose
A into four matrices in the form

A = Amass + Amomentum + Aspecies + Aenthalpy, (4.5)

where Amass, Amomentum, Aspecies and Aenthalpy are the linear operators corresponding to the
conservation equations of mass, momentum, species and enthalpy in matrix A. Figure 8(a)
shows the total endogeneity field associated with A. The partial endogeneity field of
momentum equations (Amomentum) is given in figure 8(b), and that representing the sum of
mass, enthalpy and species equations (Amass + Aspecies + Aenthalpy) is given in figure 8(c).
A comparison of figures 8(a) and 8(b) clearly shows that the dominant contributions
to the growth rate stem from the linearised momentum equation, with nearly identical
distributions of the endogeneity field between A and Amomentum. Figure 8(c) reveals that the
combined effect of the other three linearised conservation equations on the growth rate is
weak: only a small positive region around the flame front in the near wake emerges in the
endogeneity field for the ignited case. The corresponding endogeneity of the non-ignited
case can hardly be observed with the same range of colour bar, consistent with the fact
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Global linear stability of a cylinder anchored flame

that barely any reaction takes place. A more detailed analysis (not shown) reveals that
contributions to the growth rate are dominated by competition between the destabilising
perturbation production term ρ(u′ · ∇)U and the stabilising convection term ρ(U · ∇)u′
in the linearised momentum equation. The stabilising contribution from momentum
diffusion is small in comparison.

We now examine why the presence of a flame stabilises the flow. Figures 7(a–c) show
the temperature, cross-stream velocity and vorticity fields of the ignited (upper half) and
non-ignited (lower half) base flow, respectively. The downstream end of the recirculation
bubble is where the wavemaker is located, and that region looks very different in the
non-ignited and ignited cases. The non-ignited flow closely resembles a standard cylinder
flow where there is strong shear near the downstream stagnation point. In the ignited case,
the thermal expansion has a significant effect on the base flow, where much less shear
is observed at the end of the recirculation bubble, as revealed by the vorticity field in
figure 7(c).

We find that the reaction acts in three ways in modifying the base flow and its stability.
First, the recirculation bubble is quenched because of the thermal expansion effect.
Second, the ignited flame region of around 1350 K in the present case increases the
kinematic viscosity μ by a factor of three according to the Sutherland law, but also the
kinematic viscosity ν = μ/ρ by a factor of ten due to the decrease of density, with respect
to the cold flow region of 300 K. The significantly higher viscosity potentially stabilises
the perturbations and diffuses the shear layer. Third, there is a strong pressure drop behind
the obstacle in the non-ignited case, while in the ignited case, this pressure deficit is filled
by the expanding fluid. As shown in figure 7(b), the flow is pulled strongly towards the
centreline at 6 < x/D < 8.5 in the non-ignited case, while such an intense movement is
not observed in the ignited case, resulting in much less shear in the wake.

4.3. Effect of equivalence ratio
We use the same argument as in the previous subsection to explain the effect of equivalence
ratio on the global instability. While the lean flames considered here are still fully
ignited, reducing the equivalence ratio continuously decreases the effect of reaction.
Figure 6 shows that decreasing the equivalence ratio φ destabilises the flame, leading
to global instability at φ < 0.3. Such a result is consistent with several experimental
studies confirming that vortex shedding is observed only at lean conditions (Hertzberg,
Shepherd & Talbot 1991; Kiel et al. 2007; Nair & Lieuwen 2007; Balasubramaniyan
et al. 2021). Figures 9(a–c) show the base flow quantities of the ignited flames at φ = 0.5
(upper half) and φ = 0.25 (lower half). By reducing the equivalence ratio, the region of
the recirculation bubble is extended and the temperature-dependent viscosity decreases
further. Consequently, a stronger shear at the end of the recirculation bubble is observed at
φ = 0.25, shown in figure 9(c), eventually leading to a positive growth rate (σ = 3.1 s−1).

5. Reacting flow: eigenmodes of the mean state

5.1. Unstable flames at supercritical Reynolds numbers
We increase the Reynolds number and investigate the unsteady ignited flow behaviour
at φ = 0.5. Eigenmode analysis is conducted on each base flow obtained in the range
from Re = 500 to Re = 2000, of which some are presented in figures 10(a)–10(c). The
frequency and growth of leading eigenvalues are presented in figure 11. At Re < 1150,
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Figure 9. Comparison of base flow quantities between ignited flame at φ = 0.5 (upper half, σ = 3.1 s−1)
and at φ = 0.25 (lower half, σ = −20.3 s−1). Streamlines are superposed on the temperature fields in (a).
Temperature isocontours of T = 550 K are superposed on cross-stream velocity in (b). Vorticity fields are
shown in (c).
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Figure 10. Snapshots, mean flow and base flow of the reacting flow at three supercritical Reynolds numbers
with Tc = 750 K and φ = 0.5. Temperature fields are shown for the following base flows: (a,d,g) Re = 1250,
(b,e,h) Re = 1600, (c,f,i) Re = 2000.

the leading mode has negative growth and the flow therefore is stable. The flow becomes
unstable at higher Reynolds numbers.

The temporal snapshots shown in figures 10(d–f ) at Re = 1250, 1600 and 2000 are
produced using nonlinear time stepping. Antisymmetric oscillations are observed in
all cases, and the amplitude of oscillation increases with Re. The temporal signal of
cross-stream velocity uy at the location (x/D, y/D) = (8, 0) is used to calculate the
frequency of vortex shedding, where the oscillation is observed in the regime of limit
cycle. The flame further downstream displays quasi-chaotic behaviours at Re = 2000. The
oscillation frequencies measured are represented as blue crosses in figure 11(a), revealing
that the oscillation frequencies are almost constant in the range of Reynolds numbers
considered.

The time-averaged mean flow is represented by the temperature field in figures 10(g–i).
The flame front becomes significantly thicker downstream at Re = 1250. Furthermore, the
mean flow is largely distorted downstream at Re = 1600 and 2000, leading to a shortened
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Figure 11. (a) Frequency f and (b) growth rates σ of the leading eigenmode in the base flow (black line) and
mean flow (red triangles) as a function of Re, at φ = 0.5. The oscillation frequencies obtained through time
stepping are represented as blue crosses.
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Figure 12. (a) Base flow and (b) mean flow of velocity magnitude at Re = 2000, with Tc = 750 K and
φ = 0.5.

flame length. An apparently shorter wake is also observed in the mean flow at Re = 2000
in comparison with its base state counterpart, shown in figure 12.

The leading eigenvalues of the mean flow are represented as red triangles in figure 11.
Their frequencies accurately match those measured in the nonlinear simulations (blue
crosses), with a relative error of less than 1 %. In contrast, the frequencies predicted from
the base flow analysis deviate with increasing distance from the critical Reynolds number.
The base flow eigenmode is unstable above Re = 1150, while the mean flow mode has
a growth rate of nearly zero for all supercritical conditions, which is consistent with the
classical results for non-reacting cylinder wakes (Barkley 2006) and the RZIF criterion
(Turton et al. 2015; Bengana & Tuckerman 2021).

The wavemaker of the leading mean flow eigenmode, at Re = 1250, is displayed in
figure 13 in the same way as for the base flow eigenmode in figure 8. Again, it is seen
that the growth rate of the mean flow eigenmode is controlled by terms in the momentum
equation alone, and the zero net growth of this saturated mode arises from the balance
of stabilising and destabilising dynamics in the downstream part of the recirculation
bubble. Species and enthalpy equations, which contain the reaction terms, have virtually
no influence on the growth rate. This result again suggests that the saturated instability
dynamics of the finite-amplitude oscillations are underpinned by ‘hydrodynamic’ effects,
as opposed to reaction-driven mechanisms like flame wrinkling. This conclusion is, of
course, limited to the present flow case.

The question now arises whether species and enthalpy fluctuations are irrelevant to
the instability dynamics, to the point that they can be removed altogether from the
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Figure 13. Endogeneity field Re[E(x)]/(2π) corresponding to the least stable mean flow eigenmode of
unsteady ignited flame at Re = 1250: wavemaker according to the definition by Marquet & Lesshafft
(2015). (a) Full endogeneity, with spatial integral Re(λ0)/(2π) = 0.2 s−1. (b) Contribution of the momentum
perturbation. (c) Contribution of the sum of the other three linearised equations. The streamlines are
superposed.

Method Input fields Linearised equation Leading eigenmodes (s−1)

A u, ρ, YCH4 Reacting flow 0.2 + 72.0i
B u, ρ Low Mach without reaction (Casel et al. 2022) −5.8 + 66.8i
C u Incompressible (cold μ) (1) 22.3 + 68.9i; (2) 9.8 + 76.9i
D u Incompressible (hot μ) (1) 22.2 + 68.3i; (2) 9.6 + 74.8i

Table 1. Summary of active flame approach (A) and passive flame approaches (B–D) results, conducted on
the mean flow at Re = 1250. The measured oscillation frequency by time stepping is 71.4 Hz.

linear model. Such reduced ‘passive flame’ models have been tried, often successfully,
in recent literature (e.g. Casel et al. 2022).

5.2. Test of ‘passive flame’ approaches
We examine if various passive flame approaches can capture the nonlinear oscillation
frequency and the structure of the global mode. The linear analysis is carried out on the
reacting mean flow at Re = 1250 and φ = 0.5 by using four different linearised equations
given in table 1, labelled as methods A to D. Method A, with the complete set of reacting
flow equations as used throughout this study, serves as the reference calculation. Method
B is the same as used by Casel et al. (2022), where the chemical heat release in the
energy equation and the transport equation of CH4 are removed. Methods C and D use
the incompressible Navier–Stokes equations, and thus exclude all fluctuations of density,
species and enthalpy. The kinematic viscosity μ is uniform, chosen as the cold value
μ(T = 300K) and the hot value μ(T = 1350 K), respectively.

According to table 1, method B can give reasonable predictions of the global oscillation
frequency, but fails for the growth rate. Methods C and D differ qualitatively from the full
model, by giving two unstable modes. The leading eigenmode structures of cross-stream
velocity are presented in figure 14. The differences between the results of methods C and
D are small, therefore only the mode structure associated with method D is shown. The
general behaviour of vortex shedding is captured by all methods, yet the detailed structures
along the flame fronts cannot be captured by using only the velocity as inputs through
method D, as shown in figures 14(c,d). Including the density information into the base
flow results in a slightly improved representation of flame front perturbations, shown in
figure 14(b), but the mode structures further downstream are no longer well predicted.
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Figure 14. Leading eigenmode structures of cross-stream velocity, corresponding to methods A, B and D in
table 1.

It is thus found that the inclusion of density, species and enthalpy fluctuations into
the linear model, along with their governing equations, is essential for the correct
representation of the instability dynamics. This finding may be seen as conflicting with
the earlier characterisation of the instability as being hydrodynamically driven, in the sense
that it is underpinned by momentum fluctuation dynamics. It must, however, be realised
that the momentum fluctuations contained in an eigenmode may themselves be strongly
affected by other flow quantities, in particular by density fluctuations due to unsteady
reaction. The distinction between ‘hydrodynamic’ and ‘reaction-driven’ effects in flames
has no rigorous criterion, and must always be justified in the context of the discussion.

6. Conclusions

This investigation characterises self-sustained oscillations of a confined cylinder-anchored
flame, described by the reacting flow equations with a simple one-step model for lean
methane combustion, as being the result of a linear instability. Several linear analysis
tools have been leveraged to successfully predict the critical parameters for the onset of
nonlinear oscillations, as well as their frequency in supercritical conditions. Wavemaker
analysis has been used to infer the driving mechanisms, leading to interpretations of the
stabilising effect of flame ignition and of the relative success of reduced linear models
where reaction is neglected.

Performing linear eigenmode analysis on ignited and non-ignited base flows, at identical
flow parameters, we first addressed the question of why ignition stabilises the flame, as has
been often observed in previous studies (Bill & Tarabanis 1986; Mehta & Soteriou 2003;
Erickson & Soteriou 2011; Kedia & Ghoniem 2014; Oberleithner et al. 2015b; Geikie et al.
2021). It is found that reaction strongly weakens the base flow shear in the portion of the
recirculation bubble where the wavemaker is located. As the hydrodynamic instability in
the non-ignited flow thrives on this shear, its stabilisation in the ignited flow is attributed
to the base flow alteration.

With an equivalence ratio φ = 0.5, the ignited flow again becomes linearly unstable at a
Reynolds number above 1150, in line with nonlinear time-resolved simulation that shows
self-sustained oscillations setting in as this threshold is crossed. Similarly, as in classical
literature on non-reacting wake flows, it is demonstrated that the leading linear eigenmode,
characterised by a zero growth rate, accurately matches the frequency of the nonlinear
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Figure 15. (a) Eigenmodes of the non-reacting base flow. The effect of domain length L is tested, extending
the domain downstream to 1.5L and 2L. (b) Eigenmodes of the non-reacting mean flow. The effect of averaging
flow is tested, with two mean flows averaged during the first 0.4 s (0–0.4 s) and the second 0.4 s (0.4–0.8 s) in
figure 3, respectively.

limit-cycle oscillations, under the condition that the equations are linearised around the
mean flow obtained from the nonlinear simulations. The present work represents one of
the first attempts to include a linearised chemical scheme in the analysis of time-averaged
reacting flows, and the results are in excellent agreement with the RZIF criterion (Turton
et al. 2015; Bengana & Tuckerman 2021). Modal mean-flow instability analysis therefore
holds promise for the investigation of flame instability phenomena, also in more complex
configurations.

The wavemaker analysis of leading eigenmodes conducted here, pertaining to both the
steady-state base flow and the time-averaged mean flow, characterises the instability as
arising from momentum dynamics, and therefore being of hydrodynamic origin. This
observation may be mistaken for evidence that accurate linear models may be built from
the momentum and continuity equations alone, as has been done previously; however, it
is demonstrated here that the inclusion of density, species and enthalpy fluctuations in the
linear system is required for quantitatively accurate modelling.
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Appendix. Linear analysis of a non-reacting wake

Both base flow and mean flow eigenmode analysis are conducted for the non-reacting
case. The steady base flow, not shown here, closely resembles the initial symmetric state
in figure 14 of Davis et al. (1984), whereas the mean flow is characterised by a considerably
shorter recirculation zone. The eigenspectra of base and mean flow are shown in figure 15.
In both cases, the imaginary part of the leading eigenmode is close to the measured
vortex shedding frequency, the mean flow yielding a more accurate result. The growth
rate obtained from the base state is larger than that found from the mean state, as expected.
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Note that the base flow spectrum in figure 15(a) contains two unstable eigenvalues. The
one with smaller growth rate has no corresponding trace in the frequency spectrum of the
nonlinear signal, shown in figure 3(b).

A test of convergence with respect to the domain length is conducted by calculating
the base flow with extending the flow domain downstream to 1.5L and 2L of the standard
length L. The base state eigenspectra are given in figure 15(a), and it is found that the
least stable eigenmodes are not sensitive with respect to domain length. A convergence
test is also performed for the time horizon for averaging the mean flow. Two mean flows
are obtained successively by averaging over the first 0.4 s (0–0.4 s) and the second 0.4 s
(0.4–0.8 s) in figure 3(a). It is shown that the least stable eigenmodes from both mean
states are well matched.
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