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Numerical simulation and analysis of
condensation shocks in cavitating flow
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We analyse unsteady cavity dynamics, cavitation patterns and instability mechanisms
governing partial cavitation in the flow past a sharp convergent–divergent wedge.
Reproducing a recent reference experiment by numerical simulation, the investigated
flow regime is characterised by large-scale cloud cavitation. In agreement with the
experiments, we find that cloud shedding is dominated by the periodic occurrence of
condensation shocks, propagating through the two-phase medium. The physical model
is based on the homogeneous mixture approach, the assumption of thermodynamic
equilibrium, and a closed-form barotropic equation of state. Compressibility of water
and water vapour is taken into account. We deliberately suppress effects of molecular
viscosity, in order to demonstrate that inertial effects dominate the flow evolution.
We qualify the flow predictions, and validate the numerical approach by comparison
with experiments. In agreement with the experiments, the vapour volume fraction
within the partial cavity reaches values >80 % for its spanwise average. Very good
agreement is further obtained for the shedding Strouhal number, the cavity growth and
collapse velocities, and for typical coherent flow structures. In accordance with the
experiments, the simulations reproduce a condensation shock forming at the trailing
part of the partial cavity. It is demonstrated that it satisfies locally Rankine–Hugoniot
jump relations. Estimation of the shock propagation Mach number shows that the
flow is supersonic. With a magnitude of only a few kPa, the pressure rise across
the shock is much lower than for typical cavity collapse events. It is thus far too
weak to cause cavitation erosion directly. However, by affecting the dynamics of
the cavity, the flow aggressiveness can be significantly altered. Our results indicate
that, in addition to classically observed re-entrant jets, condensation shocks feed an
intrinsic instability mechanism of partial cavitation.

Key words: cavitation, multiphase flow, shock waves

1. Introduction
Many hydrodynamic applications, such as turbopumps, ship propellers, hydroturbines

or diesel injectors, are required to operate in regimes where cavitation cannot be
avoided. Frequently, it is encountered as partial cavitation, i.e. when the cavity closes
on the surfaces of a flow obstacle. In general, partial cavitation is a highly unsteady

† Email address for correspondence: bernd.budich@tum.de
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phenomenon. As Callenaere et al. (2001) pointed out, two fundamental sources
of unsteadiness can be distinguished. First, ‘system instabilities’ denote unsteady
behaviour due to the interaction of the cavity volume with the surrounding system.
Second, ‘intrinsic instabilities’ render the cavity inherently unsteady, even under
steady operating conditions.

In its most violent form, partial cavitation is associated with the periodic shedding
of large vapour clouds. A comprehensive discussion of this flow regime was given,
for example, by Reisman, Wang & Brennen (1998) and Laberteaux & Ceccio (2001).
It is characterised by a variety of cavitation topologies, including sheet, cloud as
well as vortex cavitation, and involves various length and time scales. Cavitating
vortices range from small-scale turbulent eddies, to larger streamwise-oriented
structures, known as ‘streamers’ (Laberteaux & Ceccio 2001), to cavitating horseshoe
vortices, which can reach the extent of the original sheet cavity itself, or fractions
thereof. Further characteristic patterns are ‘crescent-shaped regions’ and ‘leading-edge
structures’ (Reisman et al. 1998). While the length scale of global cavity structures is
of the order of the characteristic scales of the flow obstacle, cavity clouds consist of
numerous bubbles of various sizes. By performing off-axis laser holography of cloud
cavitation on a two-dimensional hydrofoil, Kato et al. (1999) were able to detect
bubbles down to a radius of 10 µm. The authors reported that the number density
for bubbles with radii of 35 µm or larger is of the order of 103 bubbles cm−3.

Cloud cavitation results in large fluctuations of cavity volume, causing strong
variations in lift and drag forces. Wade & Acosta (1966), studying unsteady cloud
cavitation on a plano-convex hydrofoil, reported on lift oscillations reaching up to
±10 % of the steady mean. For the case of a two-dimensional NACA 0015 hydrofoil,
Arndt et al. (2001) later found variations in the lift exceeding the mean by 100 %.
Consequently, cloud cavitation may also lead to substantial structural vibrations. Many
researches have shown that surface pressure loads are extremely high for this regime;
refer, e.g., to Le, Franc & Michel (1993) and Kawanami et al. (1997). Reisman et al.
(1998) identified propagating shock waves emitted during ‘local’ and ‘global events’
as the fundamental reason for these pressure fluctuations. Due to the violent nature
of the collapses, cloud cavitation is not only associated with severe levels of noise,
but is also considered as one of the most aggressive forms of cavitation (Gopalan &
Katz 2000).

Due to these detrimental implications, it is of primary interest (i) to investigate
the transition from stable cavities to the unsteady shedding of clouds, (ii) to identify
relevant mechanisms governing the dynamics of cloud cavitation and, possibly, (iii)
to deduce effective means for flow control. In the classical view, cloud cavitation
is associated with the occurrence of a re-entrant jet. Feeding an intrinsic instability
mechanism, it develops at the cavity closure. Regarded as a thin upstream-propagating
flow of liquid underneath the original sheet cavity, it displaces the cavity away
from the wall. When it intersects again with the vapour–liquid interface close to
the leading edge, it pinches off the sheet, thereby generating a newly detached
cloud. One of the earliest experimental observations of re-entrant jets was reported
by Knapp (1955). High-speed videos were used to investigate the cavitating flow
over two-dimensional and axisymmetric bodies. Furness & Hutton (1975), utilising
two-dimensional unsteady potential flow analysis, were among the first to predict
the re-entrant jet phenomenon by analytical models. Later, many experimental
studies followed, which identified the re-entrant jet as the driving mechanism for
sheet-to-cloud transition; see, e.g., the works of Wade & Acosta (1966), Lush &
Skipp (1986) and Foeth, van Terwisga & van Doorne (2008). Kawanami et al.
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Condensation shocks in cavitating flow 761

(1997), studying re-entrant-jet-induced cloud cavitation over an elliptic-nose hydrofoil,
demonstrated an effective means of passive flow control. By placing a small obstacle
perpendicular to the direction of the flow, the re-entrant jet can be stopped, thereby
suppressing the associated cloud cavitation. The same conclusion was drawn by
Pham, Larrarte & Fruman (1999) in a similar study for a plano-convex hydrofoil.
By preventing the shedding of large-scale vapour clouds, it allows the effective
mitigation of flow aggressiveness and, thus, cavitation erosion. As a positive side
effect, Kawanami et al. (1997) also reported on the reduction of emitted noise and
hydrofoil drag.

As early as 1964, Jakobsen (1964) speculated that the observed violent head
breakdown in cavitating inducers is caused by a different mechanism. He conjectured
that the two-phase mixture locally reaches a supersonic state such that shock
phenomena occur in the cavitating flow. However, no direct experimental observation
was made by the author. Similarly, Kawanami et al. (1997) also reported on a
condensation shock phenomenon, but eventually concluded that cloud shedding is
related to a re-entrant jet.

Shocks can appear in bubbly flow, since the mixture speed of sound is significantly
lower than for either of the two pure constituents. Mallock (1910), assuming a
homogeneous mixture, was the first to derive an analytical expression for the speed
of sound in a two-phase medium. One of the earliest works on the subject of
propagating shock waves in bubbly flow was presented by Campbell & Pitcher
(1958), studying planar waves in gas–liquid mixtures. These authors also assumed
a homogeneous mixture, and derived Rankine–Hugoniot jump conditions, thereby
relating the propagation velocity of the shock to its strength. This work was later
extended by Crespo (1969) and Noordzij & van Wijngaarden (1974) by also taking
the relative bubble motion into account. The principal mechanisms of compressible
wave propagation, e.g. steepening of compression waves, frequency dependence and
oscillations in the wave structure, were identified. However, these authors considered
bubbles of air immersed in liquid, and thereby excluded phase transfer. For cavitating
flow, in contrast, phase transfer between the vapour and liquid needs to be taken into
account. Brennen (1995) and Franc & Michel (2005) derived analytical relations for
the speed of sound in a two-phase flow. For intermediate void fractions, the speed
of sound of the mixture can be up to two orders of magnitude smaller than without
phase transfer. A two-phase flow with phase transition thus is more susceptible to
the occurrence of shocks, and, as a consequence, the dynamics of the mixture can be
significantly affected.

It is important to recall that so-called condensation shocks are distinct from
shock waves emitted by collapsing cavity structures, such as bubbles or clouds.
The pressure rise of collapse-induced shocks is of short duration and high amplitude,
potentially reaching the order of several GPa (Philipp & Lauterborn 1998). In contrast,
condensation shocks, associated with a retracting partial cavity, act on longer time
scales and involve phase change. Furthermore, with amplitudes of only a few kPa, as
in the investigated case, the associated pressure rise can be very weak. Propagating
through the liquid medium, collapse-induced shock waves have the potential to
affect a shedding process. By abruptly stopping cavity growth when impinging
on an attached sheet, as described by Arndt et al. (2001) and Leroux, Astolfi &
Billard (2004), this represents an external forcing of the cavity. On the other hand,
condensation fronts propagate within a partial cavity. Comparable to a re-entrant jet,
these fronts travel upstream through the sheet, having a velocity of the same order
as the convective velocity, and cause pinch-off and subsequent shedding of vapour
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clouds. Yet, condensation shocks and re-entrant jets are also distinct entities, as the
former involve phase change and may span the complete height of the cavity, while
the latter are typically a thin layer of upstream-propagating liquid underneath the
sheet.

Experimental observation of condensation shocks dictating sheet-to-cloud shedding
has been described only recently in the literature. Ganesh, Mäkiharju & Ceccio
(2016) used x-ray densitometry for visualising the instantaneous vapour volume
fraction of the cavitating flow over a convergent–divergent wedge. Investigating a
range of cavitation numbers, these authors discerned three regimes termed ‘incipient’,
‘transitory’ and ‘periodic’. In the first case, the shedding is dominated by a re-entrant
jet, while for the latter, an upstream-propagating condensation shock is found. In the
transitory regime, both phenomena alternate intermittently. The authors showed that,
depending on the operation point, the time-averaged flow attains a void fraction of
5–50 %, while instantaneous values of 80–90 % or higher can be reached within the
sheet cavity. Due to the low speed of sound at these void fractions, the two-phase
flow supports compressible wave phenomena. Interestingly, these authors demonstrated
in a subsequent study (Ganesh, Mäkiharju & Ceccio 2015) that cloud shedding in
the case of condensation shocks cannot be controlled with an obstacle located on the
wedge surface.

Numerical investigations for this configuration have recently been performed by
Gnanaskandan & Mahesh (2016). Utilising compressible large-eddy simulation, these
authors studied the system at a cavitation number of σ1= (p1− pvap)/(ρref u2

1/2)= 2.1,
with the upstream pressure p1, the upstream velocity u1, the vapour pressure pvap
and the reference density ρref . In accordance with the experiments at this operating
point, corresponding to the ‘transitory’ regime, these authors observed re-entrant flow
and obtained good agreement for the shedding Strouhal number. Moreover, detailed
examinations of velocity and void fraction fluctuations for the sheet and cloud were
provided. However, the condensation front phenomenon was not discussed by these
authors.

One of the first numerical studies to examine cloud cavitation in conjunction with
condensation shocks was conducted by Schmidt, Thalhamer & Schnerr (2009). These
authors used a fully compressible homogeneous mixture approach and equilibrium
thermodynamics to investigate the cavitating flow past a two-dimensional NACA 0015
hydrofoil. By neglecting physical viscosity in the model, these authors discussed the
condensation shock phenomenon and demonstrated that the observed cavity dynamics
is essentially inertia-driven. For the same configuration, Eskilsson & Bensow (2012)
also employed a compressible cavitation model. Comparing the results obtained with
Euler, Reynolds-averaged Navier–Stokes and large-eddy simulations, these authors also
noted the occurrence of such shocks.

With no direct experimental observation of condensation shocks available until
recently, the authors of the aforementioned numerical studies made no attempt at
a detailed inspection. The goal of the present contribution thus is to revisit this
phenomenon. Relying on the numerical method developed by Schmidt et al. (2009),
the primary focus is the in-depth analysis of condensation shocks, and a validation
of our predictions with the available experiments of Ganesh et al. (2016).

In the present study, we consider an experimental cavitation number of σ1=1.96, i.e.
the ‘periodic’ regime. Our computational domain closely follows the experimental set-
up. We account for the variation of cross-sections within the up- and downstream duct,
and for the presence of the lateral walls of the test section, omitted in the previous
studies by Gnanaskandan & Mahesh (2016). Using the experimental references of
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Condensation shocks in cavitating flow 763

Ganesh et al. (2016), we compare typical flow features, the global dynamics of the
system and the time evolution of the shedding process. Furthermore, time-averaged
and root mean square (RMS) void fraction profiles as well as instantaneous vapour
volume fractions are juxtaposed.

For this study, following the methodology of Schmidt et al. (2009), we employ
a continuum approach to model the cavitating flow as a homogeneous mixture.
Unresolved flow features, such as bubbles, nuclei as well as the effect of surface
tension, are omitted. Furthermore, after affirming that temperature variations can
be neglected, we utilise barotropic thermodynamic closures. While retaining full
two-phase compressibility in the method, we deliberately omit molecular viscosity
from the model. For the case of a cavitating nozzle-target flow exhibiting sheet
and cloud cavitation, it has been shown previously by Mihatsch, Schmidt & Adams
(2015) that inviscid modelling is sufficient to capture relevant features of cavitating
flow. In the present study, it is demonstrated that this is also valid when the cavity
dynamics is dominated by condensation shock phenomena. Our results further provide
an indication that condensation shocks, additionally to re-entrant jets, feed an intrinsic
instability mechanism of partial cavities.

An inviscid model would give incorrect results for considerably lower Reynolds
numbers or higher upstream pressures (corresponding to the case of incipient
cavitation or single-phase flow). Viscous boundary layers, secondary flows such
as corner vortices, and shear in the bulk are then important, such that viscosity
cannot be neglected in these cases. The fundamental reason why an inviscid flow
model is applicable for the problem at hand is that the investigated configuration
is characterised by (i) a high Reynolds number, (ii) a well-defined separation line
for cavitation and (iii) a low cavitation number, resulting in developed cavitation.
The Reynolds-number effect was investigated experimentally by Ganesh et al. (2016),
studying three different inlet velocities (u1 = 6, 8, 10 m s−1), corresponding to a
Reynolds number based on the hydraulic diameter of the channel (rH=hch=76.2 mm)
of Rech = 460 × 103 . . . 760 × 103. For the case of incipient cavitation, the authors
did find a dependence on the Reynolds number, e.g. regarding the main void fraction
close to the apex and the shedding Strouhal number. For the transitional and shedding
cases, on the other hand, the authors qualified the Reynolds-number effect on the
mean and standard deviation of the void fraction as negligible (Ganesh et al. 2016).
Furthermore, the shedding Strouhal number and thus the dynamics of the system also
does not show a Reynolds-number dependence for the investigated inlet velocities
according to the experimental references. Furthermore, the pressure loss in the channel
is largely dominated by the pressure imbalance caused by the cavity itself, which is
not related to viscous effects.

We conclude that the rationale for an inviscid flow model in the context of
the investigated configuration is threefold: well-defined separation line, developed
cavitation and high Reynolds number. This situation is commonly found for
engineering systems affected by cavitation. Instead of devising a general-purpose
computational method, the model specifically aims at these applications. In the current
context, it is employed for studying fundamental physical processes, in particular the
condensation shock phenomenon.

This paper is structured as follows. The physical modelling and numerical method
are discussed in § 2. In § 3, the investigated physical configuration is introduced.
The computational domain, numerical grids, boundary conditions and conducted
simulations are presented as well. The main results are then discussed in § 4. The
paper concludes with a summary and discussion in § 5.
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2. Physical model and numerical method
2.1. Model assumptions and governing equations

Numerous studies show that compressibility plays a dominant role in the dynamics of
cavitating flow; see, e.g., Reisman et al. (1998). The interplay between compressible
collapse dynamics and phase transition may lead to a change of system dynamics,
as demonstrated by Arndt et al. (2001). As discussed further by Schnerr, Sezal
& Schmidt (2008) and Schmidt (2015), the dynamics of cavitating flow is largely
inertia-dominated. In addition to the peculiarities of the investigated configuration
rendering it insensitive to Reynolds-number effects, as explained above, this
includes the primary mechanisms of instability, i.e. Rayleigh–Taylor as well as
Kelvin–Helmholtz instabilities, re-entrant jets and, as demonstrated in this paper,
condensation shocks. Therefore, we model the two-phase flow of water and water
vapour as fully compressible, while neglecting viscous effects as well as dissolved
and free gas content. In regions of co-existence of liquid and vapour, we further
assume thermal, mechanical and phase equilibrium, and neglect surface tension. The
appropriateness of these assumptions has been demonstrated, e.g., by Schnerr et al.
(2008), Schmidt et al. (2014) and Mihatsch et al. (2015). These assumptions motivate
the use of a homogeneous equilibrium approach, which requires only a single set of
balance laws for mass, momentum and total energy; see Schnerr et al. (2008).

The governing equations are therefore the time-dependent three-dimensional
compressible Euler equations. Following the finite volume method, the computational
domain Ω is discretised using control volumes Ωi such that Ω = ∪Ωi. The control
volume boundary is denoted as ∂Ωi and the unit normal vector on the boundary as n.
In the following, •̂ =

∫
Ωi
• dV/

∫
Ωi

dV denotes the volume-averaging operator on Ωi.
Using these cell averages, the multiphase flow is regarded as a homogeneous mixture
and sub-cell structures are not represented. The flow can thus be characterised by
the mixture density ρ̂, the vector of flow velocity û =

[
û, v̂, ŵ

]T, the static pressure
p̂, the temperature T̂ and the specific internal energy ê. The total energy and total
enthalpy are then given as ρ̂E= ρ̂(ê+ 1/2 û2

) and ρ̂H = ρ̂E+ p̂ respectively.
The density ρ̂, momentum flux ρ̂u and total energy ρ̂E constitute the vector of

conserved quantities q̂= [ρ̂, ρ̂u, ρ̂E]T. The governing equations then, in integral form,
read as

∂

∂t

∫
Ωi

q̂ dV +
∫
∂Ωi

(Fc +Fp) dS= 0. (2.1)

The convective and pressure fluxes across the control volume surface ∂Ωi are
denoted as Fc and Fp respectively. With the vector of transported quantities
Q= [ρ̂, ρ̂u, ρ̂H]T, they are given as

Fc =
(
û · n

)
Q, Fp = p̂ [0, n, 0]T . (2.2a,b)

The above system (2.1)–(2.2) needs to be supplemented by appropriate
thermodynamic closures. In this paper, two modelling approaches are utilised. The
first approach, presented in § 2.2, considers temperature-dependent fluid properties
and solves for the energy equation. Section 2.3 then introduces a simplified model,
based on a barotropic equation of state.
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Critical temperature water Tc (K) 647.096
Critical pressure water pc (Pa) 22.064× 106

Critical density water ρc (kg m−3) 322.0
Reference temperature T0 (K) 273.15
Liquid specific heat capacity at constant volumea cv,l (J kg−1 K−1) 4180.0
Vapour specific heat capacity at constant volumea cv,v (J kg−1 K−1) 1410.8
Liquid specific energya el,0 (J kg−1) 617
Latent heat of evaporationa lv,0 (J kg−1) 2501.3× 103

Parameter in Tait equation B (Pa) 3300× 105

Exponent in Tait equation N (–) 7.15
Specific gas constant for vapour Rvap (J kg−1) 461.5

TABLE 1. Reference values utilised for the full thermodynamic model.
aFluid properties evaluated at the stated reference temperature for the full thermodynamic

model T0.

2.2. Full thermodynamic model
In the homogeneous mixture approach, the mixture density ρ̂ and internal energy ê
uniquely define the thermodynamic state of the fluid. The temperature T̂ is computed
from the specific internal energy using the caloric equation of state ê(T̂, ρ̂), which
follows a piecewise definition in the pure liquid, pure vapour and mixture regions. All
fluid properties utilised for the full thermodynamic model discussed subsequently are
summarised in table 1.

Phase boundaries are given by the properties of the saturated mixture, i.e. the
saturation pressure psat(T̂) and the densities of saturated vapour and liquid ρv,sat(T̂)
and ρl,sat(T̂) respectively. Following Schmidt & Grigull (1989), these are calculated
from

ln(psat(T̂)/pc)=
1
Θ

6∑
i=1

ai (1−Θ)li , (2.3)

ln(ρv,sat(T̂)/ρc)=

6∑
i=1

bi (1−Θ)mi , (2.4)

ρl,sat(T̂)/ρc = 1+
6∑

i=1

ci (1−Θ)ni . (2.5)

The polynomials (2.3)–(2.5), with coefficients ai, bi, ci and exponents li, mi, ni as
given in table 2, fit to the database established by the International Association for the
Properties of Water and Steam (IAPWS; see Wagner & Pruß 2002) and are expressed
in terms of the non-dimensional temperature Θ = T̂/Tc. The critical point of liquid
water is defined by the critical temperature Tc = 647.096 K, pressure pc = 22.064 ×
106 Pa and density ρc = 322.0 kg m−3.

In the pure liquid region, ρ̂ > ρl,sat(T̂), the specific internal energy is given as

ê= cv,l(T̂ − T0)+ el,0, (2.6)

with the specific heat at constant volume of the liquid cv,l = 4180.0 J kg−1 K−1

and the reference energy el,0 = 617 J kg−1 taken at the reference temperature
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psat ρv,sat ρl,sat

i ai li bi mi ci ni

1 −7.85823 1.0 −2.02957 2/6 1.992060 1/3
2 1.83991 1.5 −2.68781 4/6 1.101230 2/3
3 −11.78110 3.0 −5.38107 8/6 −0.512506 5/3
4 22.67050 3.5 17.31510 18/6 −1.752630 16/3
5 −15.93930 4.0 44.63840 37/6 −45.448500 43/3
6 1.77516 7.5 64.34860 71/6 −6.756150× 105 110/3

TABLE 2. Polynomial coefficients for the saturation properties of the two-phase system
of water and water vapour, (2.3)–(2.5), after Schmidt & Grigull (1989).

T0 = 273.15 K. The pressure in the liquid, p̂, is computed using the Tait equation,

p̂+ B

psat(T̂)+ B
=

(
ρ̂

ρl,sat(T̂)

)N

, (2.7)

see Saurel, Cocchi & Butler (1999), with parameters B= 3300× 105 Pa,N = 7.15.
In the pure vapour region, ρ̂ < ρv,sat(T̂), the caloric equation of state reads as

ê= cv,v(T̂ − T0)+ lv,0 + el,0, (2.8)

with the specific heat at constant volume for vapour cv,v = 1410.8 J kg−1 K−1 and the
contribution due to latent heat lv,0 = 2501.3 × 103 J kg−1. The pressure is obtained
by applying the ideal gas law for water vapour, with specific gas constant Rvap =

461.5 J kg−1,

p̂= ρ̂RvapT̂. (2.9)

In mixture regions, ρl,sat(T̂) > ρ̂ > ρv,sat(T̂), the pressure is equal to the vapour
pressure p̂= psat(T̂) and the vapour volume fraction α is computed as

α =
ρ̂ − ρl,sat(T̂)

ρv,sat(T̂)− ρl,sat(T̂)
. (2.10)

Subsequently, the specific internal energy is given by

ê=
(
εvcv,v + εlcv,l

)
(T̂ − T0)+ εvlv,0 + el,0, (2.11)

with the mass fractions of the vapour, εv = αρv,sat(T̂)/ρ̂, and the liquid, εl =

(1− α)ρl,sat(T̂)/ρ̂. In order to obtain the thermodynamic state of the mixture,
(2.6)–(2.11) need to be solved iteratively for α, T̂ and p̂.

2.3. Barotropic model
Modelling of the full thermodynamic behaviour for the system of water vapour, as
discussed above, is computationally expensive. This motivates a barotropic model,
where it is not necessary to solve for the energy equation explicitly, thereby reducing
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Reference temperature for barotropic model Tref (K) 293.15
Density of saturated liquida ρl,sat (kg m−3) 998.16
Density of saturated vapoura ρv,sat (kg m−3) 0.017214
Saturation pressurea psat (Pa) 2339.3
Specific heat capacity of the liquida cp,l (J kg−1 K−1) 4184.4
Latent heat of evaporationa lv,ref (J kg−1) 2453.5× 103

TABLE 3. Reference values utilised for the barotropic thermodynamic model.
aFluid properties evaluated at the stated reference temperature for the barotropic model

Tref .

the computational cost significantly. A barotropic equation of state p̂ = p̂(ρ̂) is
obtained upon assuming isentropic phase change in the mixture region. We extend
the barotropic equation of state continuously by a modified Tait equation for the
pure liquid. For this purpose, all fluid properties are evaluated at a constant reference
temperature Tref . This assumption is not strictly valid along isentropes. However, due
to the high specific heat capacity of water, temperature variations are small and can
be neglected. The reference temperature is chosen here as Tref = 293.15 K. Table 3
summarises the fluid properties employed in this model. A similar barotropic model
involving a diesel-like test fluid was used by Egerer et al. (2014).

In pure liquid regions, ρ̂ > ρl,sat(Tref ), the pressure is computed from the density via
a modified Tait equation (see (2.7)) with ρl,sat = ρl,sat(Tref ) and psat = psat(Tref ).

In the case of two-phase flow, ρl,sat(Tref ) > ρ̂ > ρv,sat(Tref ), the vapour volume
fraction α is computed according to (2.10), with ρl,sat = ρl,sat(Tref ) and ρv,sat =

ρv,sat(Tref ). The pressure of a saturated mixture in the barotropic model is then
obtained by integrating the speed of sound along an isentrope,

c2
=
∂ p̂
∂ρ̂

∣∣∣∣
s=const.

⇒ p̂(ρ̂)− psat(Tref )=

∫ ρ̂

ρl,sat

c2 dρ. (2.12)

In order to obtain p̂(ρ̂), a functional dependence for the speed of sound in the
mixture region is required. As discussed in appendix A, estimates for upper and
lower bounds are given by the frozen and equilibrium speeds of sound, cfr, (A 1),
and ceq, (A 2), respectively. As shown in appendix A, selection of cfr leads to an
underestimation of the vapour production rate. Alternatively, an intermediate model
between frozen and equilibrium speed of sound would require additional information,
e.g. bubble size distributions, interfacial areas between liquid and vapour phases, or
approximations for the degree of thermal exchange between the phases. However,
reliable estimates for these parameters are not available. To avoid the need for further
assumptions, we chose the equilibrium speed of sound ceq for integrating (2.12).

The resulting barotropic equation of state p̂(ρ̂) is depicted in figure 1 in the p̂–v̂
phase diagram, with v̂ = 1/ρ̂ denoting the specific volume. In this barotropic model,
the evaporation rate is directly linked to the mixture speed of sound. As discussed in
appendix A, lower values of c are associated with stronger vapour production. It is
to be noted, however, that complete evaporation, i.e. pure vapour (α = 1), cannot be
reached in this model. As indicated in figure 1, the assumed isentropic phase change
leads for α→ 1 to a crossing of the triple line at the reference temperature ptriple(Tref );
see also the discussion of Mihatsch et al. (2015). Hence, the triple line represents a
constraint of the physical model, where the thermodynamic closures become invalid.
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FIGURE 1. (Colour online) The p̂–v̂ phase diagram for the two-phase system of water
and water vapour, including the barotropic equation of state p̂ = p̂(ρ̂) (——, red). The
lines denote the saturation lines of liquid and vapour pl,sat and pv,sat (– –), the saturation
pressure psat(Tref ) (— - —) and the triple line ptriple(Tref ) (- - - -) at the barotropic reference
temperature Tref .

The maximum admissible amount of the vapour void fraction is α = 99.984 %. Due
to the low characteristic velocities in the present configuration, this value is, however,
not reached in the computations.

2.4. Numerical approach
The numerical method is described in detail by Schnerr et al. (2008) and Mihatsch
et al. (2015). An in-depth analysis is further given by Egerer et al. (2016). We
thus only briefly summarise the main components here. The numerical method
is a semi-discrete finite volume method, where the conservative form of the
barotropic Euler equations is discretised in space using body-fitted block-structured
hexahedral grids. Mass and momentum fluxes are approximated by numerical flux
functions including a low-Mach consistent advection scheme; see Schmidt (2015). An
upwind-biased reconstruction of the density is applied, together with a second-order
central approximation for the interface pressure. For the reconstruction of the velocity,
the total variation diminishing (TVD) limiter of Koren (1993) is applied, which
is formally third-order accurate in smooth regions. In order to resolve all time
scales of cavitating flow including shock-wave dynamics, explicit time integration
is performed using a second-order four-step low-storage Runge–Kutta method. A
constant Courant–Friedrichs–Lewy (CFL) number of CFL = 1.4 is selected for all
presented computations. The solver is fully parallelised using Message Passing
Interface (MPI) directives and static load balancing is performed with the Metis
graph partitioner; see Karypis & Kumar (1998).

In order to cope with numerical model uncertainty, the following measures are
taken. First, with preparatory studies discussed in appendix B, the influence of the
thermodynamic model is assessed. It is found that the high specific heat capacity of
the liquid medium causes only minor temperature fluctuations. Hence, the temperature
dependence of fluid properties is negligible. The present case is further characterised
by a low convective flow velocity. The condensation shocks that occur and the
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associated entropy increases are thus weak. Moreover, baroclinic vorticity production
is negligible for the dynamics of the considered system. We conclude that the
influence of the thermodynamic model is insignificant. Second, the spatial resolution
is investigated with a grid sensitivity study discussed in appendix E. Regarding the
operating point and the associated global dynamics of the system, the presented
analysis confirms grid convergence on the finest mesh lvl2. Third, the uncertainty
originating from the numerical reconstruction scheme is investigated by repeating
the simulations for the same configuration and operating point using an alternative
numerical scheme based on the work of Egerer et al. (2016). In smooth regions of
the flow, this method employs a linear fourth-order centred scheme for the velocity
and pressure, while the density is reconstructed using the minmod limiter. At flow
discontinuities, which are detected via a sensor functional, as discussed by Egerer
et al. (2016), the upwind-biased reconstruction scheme of the present study is used.
The spatial reconstruction of this method thus is of higher order in the bulk. Still,
identical results, e.g. regarding the global cavity dynamics, are obtained, justifying
the use of the present upwind-biased scheme. Fourth, uncertainty can also originate
from the discretisation of the tunnel geometry. However, as physical viscosity is
neglected and thus slip wall boundary conditions can be applied, no wall resolution
is necessary. We assume that the manufacturing uncertainty is sufficiently low that it
lies well within the first layer of computational cells adjacent to the tunnel walls. An
exception might be the shape of the wedge apex, where a finite radius can influence
the overall amount of cavitation through a modification of the local suction peak.
However, no information on the actual geometry is available to us. We thus resort to
modelling the apex as a sharp corner.

For all conclusions presented in the following, the inherent chaotic nature of the
system has to be taken into account. This results in a lack of repeatability of the
shedding process and noticeable cycle-to-cycle variations. This was already found
by Ganesh et al. (2016) and needs to be considered when comparing numerical and
experimental results. The simulations are thus sampled for an extended amount of
time, in order to incorporate as many cycles as possible, while keeping the required
wall-clock time for the computations at an acceptable level. For the time averages
of numerical probes and the time-averaged flow field, the statistics on the finest grid
cover 30 cycles, while 27 cycles are considered for investigating coherent structures
and the attached cavity sheet length. Furthermore, the compressible approach exhibits
transient acoustic waves developing from the simulation start-up. The presented
statistical data are collected only after a sufficiently long start-up phase, so that
all initial disturbances have decayed. This is determined by monitoring transient
quantities, such as the mass flux through the outlet plane, the pressure and velocity at
the upstream station 1 or the integral vapour volume within the entire computational
domain.

3. Problem description
3.1. Experimental set-up

We reproduce the experimental work of Ganesh et al. (2016). A schematic of the
experimental set-up is shown in figure 2. The test section, figure 2(a), possesses
a quadratic cross-section of 76.2 mm × 76.2 mm, with hch = 76.2 mm denoting the
channel height. A quasi-two-dimensional wedge profile, shown in detail in figure 2(b),
with a contraction angle of ϕ1 = 22.1◦, a diffuser angle of ϕ2 = 8.13◦ and a height
of hw = 25.4 mm, is mounted on the bottom wall of the test section. The origin of
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of flow
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FIGURE 2. Experimental set-up, showing (a) the test section and (b) the convergent–
divergent wedge. The sketches include the coordinate systems (x − y) and (s − n), and
the locations 1, 2, PA and PD employed for numerical probes.

the coordinate system coincides with the location of the wedge apex at mid-span.
The x-, y- and z-directions denote the streamwise, transverse and spanwise directions
respectively. In the following, the test-section walls in the lower/upper transverse
direction are denoted as bottom/top walls and in the lower/upper spanwise direction as
left/right side- or lateral walls. The directions parallel and normal to the downstream
face of the wedge are denoted by s and n respectively, as indicated in figure 2(b).

The test section is embedded into a circular feeding line with a diameter of
244.4 mm. At 464.4 mm upstream of the wedge apex, a double contraction connects
the test section to the feeding line. Across this contraction, the cross-section changes
from circular through an octagonal section to quadratic, as indicated in figure 2(a).
At 571.5 mm downstream of the wedge apex, a mount discontinuously connects the
test section back to the feeding line, with an additional variation in cross-section
shape through an octagonal section.

Optical access to the region of the wedge is provided from the top and either
side of the test section. Positions 1 and 2 in figure 2(a) indicate the locations of
static pressure transducers P1 and P2, which are utilised to specify the operating
point in the experiment. In addition, as shown in figure 2(b), the pressure above
the wedge is measured in the experiments by using the static pressure transducers
PA and PD. These are located below the wedge surface, and connected to a circular
opening of diameter 0.8 mm at mid-span of the wedge surface; see Ganesh et al.
(2016). This locally modifies the geometry of the wedge surface in the experiments
at mid-span, potentially acting as a nucleation site for cavitation. However, due to the
small physical dimensions of the probe, the effect on the overall system behaviour is
expected to be negligible.

3.2. Computational domain and grid
The computational domain, depicted in figure 3, reproduces the nominal experimental
set-up. We consider a feeding line with a length of approximately 1 m ahead of the
double contraction. The double contraction, the test section and the rear mount back
to the feeding line are identical to the experimental set-up, including all changes in
cross-section shape and size. Approximately 1 m downstream of the test section, the
feeding line connects to an additional large circular tube with a diameter of 800 mm
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FIGURE 3. Side view (x–y plane) of the entire numerical domain, including the duct up-
and downstream of the test section and the large diffuser near the outlet boundary.
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FIGURE 4. Numerical mesh, showing the lvl1 grid in the region of the test section. (a)
Side view on the x–y plane. (b) Variation of cross-sections A–A to E–E in the y–z plane.

and a length of 500 mm. Although this tube is not part of the experimental facility,
it allows for improved specification of the boundary conditions. In the experiment,
pressure waves originating from, e.g., cavity collapse events in the vicinity of the
wedge are able to travel through the whole facility, where a damping due to large
increases in cross-sections occurs. The additional tube in the computational set-up
causes a comparable effect. However, adjustment of the pressure at the end of the
additional tube is required in order to recover the experimentally measured pressure
at position 2 in the test section.

Three grid levels, denoted as lvl0, lvl1 and lvl2, are created; see table 4 for details.
All grids are body-fitted block-structured hexahedral grids. The finest grid level
comprises 24 million elements for the complete domain, with 17.5 million cells
located within the test section excluding the double contraction. In the vicinity of the
wedge, as visualised in figure 4, the grid is aligned parallel to the wedge surface in
order to increase the spatial resolution of the sheet cavity. Cubic control volumes with
a constant cell edge length of up to n= 30 mm above the wedge are utilised in this
region. The minimum grid spacing on the finest grid level is ls = ln = lz = 0.5 mm.
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Number of cells Cell size
Grid level (Total) (Test section) (wedge vicinity)

lvl0 0.87× 106 0.28× 106 2 mm
lvl1 4.30× 106 2.36× 106 1 mm
lvl2 24.47× 106 17.55× 106 0.5 mm

TABLE 4. The parameters of the numerical grids employed.

3.3. Boundary conditions
At the inlet plane of the upstream feeding line, a homogeneous inflow velocity u0 is
specified, while an asymptotic boundary condition on the static outlet pressure p3 is
utilised at the outlet plane of the large downstream diffuser. All walls are modelled
as slip walls as we neglect viscous effects.

Ganesh et al. (2016) specified the operating point of the experiment by measuring
the static pressure at points 1 and 2 in figure 2. The bulk velocity u1 at position 1
was derived by Ganesh et al. (2016) by measuring the pressure drop between two
upstream locations and their corresponding area ratios, and then applying Bernoulli’s
law. In the experiments, p1 = 63 kPa, giving an upstream cavitation number of
σ1 = (p1 − pvap)/(ρref u2

1/2) = 1.95. Ganesh et al. (2016) stated an uncertainty of
±0.1 m s−1 for the computed upstream velocity and ±2 kPa for the pressure
measurements. This leads to an overall uncertainty in the cavitation number of
±0.11.

In order to reproduce the experimental operation point in our computations, both
u0 and p3 are adjusted iteratively, until the velocity u1 = 7.9 m s−1 at position 1 and
the static pressure p2= 55 kPa at position 2 match with the experimental values. The
matching is performed on grid lvl0. For the subsequent levels lvl1 and lvl2, identical
boundary conditions are used. Since the pressure p2 is controlled with the downstream
boundary condition, the pressure p1 depends on the pressure drop in the test section.
It is hence part of the solution. Consequently, the upstream cavitation number σ1 in
the simulation cannot be independently prescribed. A definition of the operating point
in the computations through the imposed boundary conditions motivates the cavitation
number σ2 = (p2 − pvap)/(ρref u2

1/2). As will be shown subsequently, we find σ2 = 1.7,
which is a perfect match between simulation and experiment.

3.4. The simulations conducted
With preparatory studies, discussed in appendix B, the influence of the thermodynamic
model is assessed. It is found that, first, the high specific heat capacity of the liquid
medium limits the amplitude of temperature fluctuations. The temperature dependence
of fluid properties is hence negligible. Second, the present case is characterised
by a low convective flow velocity. The condensation shocks that occur and the
associated entropy increases are thus weak. Third, by analysing the budgets of
the vorticity-transport equation (VTE), i.e. vortex stretching, compressible dilatation
and baroclinic torque, we find that the latter is negligible for the dynamics of the
considered system. We conclude that the influence of the thermodynamic model is
insignificant. The subsequent discussion hence focuses on results obtained with the
barotropic model, due to its considerably lower computational cost.

A grid sequencing method is employed, consisting of consecutive computations
with increasing resolution in space and time. Statistically converged solutions from a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.882


Condensation shocks in cavitating flow 773

Grid Average Sampling Physical CPU time
level time step (s) interval (s) run time (s) (CPU hours)

lvl0 3.91× 10−7 1.95× 10−6 5.20 0.03× 106

lvl1 1.64× 10−7 0.82× 10−6 3.16 0.18× 106

lvl2 0.79× 10−7 0.39× 10−6 1.66 1.25× 106

TABLE 5. Overview of simulations conducted with the barotropic model.

Grid level u1 (m s−1) p1 (Pa) p2 (Pa) σ1 (–) σ2 (–)

lvl0 7.9 71× 103 55× 103 2.21 1.69
lvl1 7.9 69× 103 55× 103 2.16 1.71
lvl2 7.9 69× 103 55× 103 2.16 1.72

Exp. 7.9 63× 103
± 2× 103 55× 103

± 2× 103 1.95± 0.11 1.73± 0.11

TABLE 6. Flow properties up- and downstream of the test section; comparison between
numerical results on grids lvl0, lvl1 and lvl2, and the experimental reference.

coarse grid are thereby interpolated to the next finer grid. This significantly shortens
transients on the finer grid levels and thus reduces the computational cost. Three
grid levels, denoted as lvl0, lvl1 and lvl2, are employed. Table 5 summarises the
simulations conducted, showing the average time step, the interval used for statistical
sampling and the total run time in terms of physical as well as computational time.
Transients associated with simulation start-up and after interpolation are excluded
from this evaluation.

4. Results
4.1. Operating point

The agreement with the experimental operating point is assessed by evaluating the
temporal mean, denoted by an overbar, •, of quantities recorded at probing locations
1 and 2, and by comparison of the velocity profile upstream of the wedge.

Table 6 shows the obtained mean velocity u1 and pressures p1, p2. Additionally, the
mean cavitation numbers σ 1 and σ 2 are given. The quantities u1 and p2, controlled
with the boundary conditions, match the experimental references and vary only
little for the different grid levels. Correspondingly, an almost exact agreement is
obtained for the cavitation number σ 2. In contrast, the mean upstream pressure p1 is
consistently higher in the simulations for all three grid levels. As already discussed,
the upstream pressure, and thus also the upstream cavitation number, is part of the
solution. Compared with the experiments, p1 and σ 1 are larger by approximately
10 %, indicating that the pressure loss 1p = p1 − p2 in the test section is higher in
the simulation.

Two factors contribute to the higher pressure drop in the simulation. First, vapour
structures, causing a blockage effect, induce additional pressure losses. For the present
case and operating point, the extent of vapour structures intermittently reaches almost
the size of the channel cross-section. The pressure losses associated with cavitation
thus exceed the losses due to viscous effects within the test section. As discussed
in § 4.6, the mean amount of vapour produced is larger in the simulations compared
with the experiments, thus causing a larger contribution to the pressure drop in the
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simulation. Second, the pressure on the upstream shoulder of the wedge has a large
influence on the overall pressure drop as well. See appendix C for an analytical model
that can be used to explain the observed differences between the pressure drop in the
simulations and the experimental references. These are the primary reasons for the
larger pressure drop 1p and thus the deviations found in p1 and σ 1. In view of the
uncertainty in the measurements, the agreement with the experimental operating point
can still be considered to be satisfactory. The analytical model derived in appendix C
shows that the present configuration generates a pressure loss, even under inviscid
assumptions. It thus is analogous to the generation of wave drag in inviscid supersonic
flow. Here, it is caused solely by the presence of two-phase flow, which prevents a
pressure recovery on the back side of the wedge.

Due to the inviscid assumption, viscous effects, such as boundary layers or corner
vortices within the channel, are not captured by the numerical simulation. This could
potentially alter the effective inflow conditions to the cavitating region. The velocity
profile upstream of the wedge is analysed in appendix D. It is found that upstream of
the wedge, the near-wall viscous layer spans less than 2 % of the channel height. Due
to the subsequent acceleration of the flow on the convergent part of the wedge, the
boundary layer is expected to be even thinner when reaching the sharp wedge apex.
From this investigation, it is concluded that the incoming boundary layer does not
have a significant influence on the sheet cavity, and that the assumptions of inviscid
flow and slip boundary conditions in the two-phase computations are sound.

With only small changes between the quantities u1, p1 and p2 obtained on grids lvl1
and lvl2, table 6 already gives an indication that the numerical results on the finest
level can be considered as grid-converged. This is confirmed by a detailed analysis of
grid convergence, provided in appendix E. The following discussion hence focuses on
results obtained on the finest grid.

4.2. Instantaneous flow topology
Figure 5 compares instantaneous simulation results with snapshots from experimental
high-speed videos in top view. For a visualisation of the numerical results, isosurfaces
of the 10 % void fraction are chosen. Furthermore, instantaneous vortical structures
are shown with isosurfaces of λ2 =−2× 106 s−2, coloured by the axial vorticity ωx.
Here, λ2 denotes the second eigenvalue of S2

+Ω2, where S and Ω are the symmetric
and asymmetric parts of the velocity gradient tensor ∇u respectively. Dash-dotted
lines indicate the location of the apex (x = 0) and rear edge (x = xw) of the wedge.
For illustration of the shedding process, five representative time instants are selected
in figure 5(a–e), exhibiting typical topological features and coherent flow structures.
It is unknown which precise value of α corresponds best to a visual examination of
cavitation from experiments. Furthermore, it is unclear whether a single value actually
exists, considering the broad range of cavitation topologies (bubble cavitation, sheet
cavitation, cloud cavitation) that can be covered with the homogeneous mixture
approach. We choose the value of α = 0.1 for visualising the numerical results. A
further aspect for such a juxtaposition is the highly transient nature of the flow
and the lack of repeatability of the shedding process. Due to the inherent chaotic
nature of cavitating flow, this equally affects the simulation and the experiments. We
thus do not expect to find identical flow structures for any two arbitrarily selected
time instants. However, for a qualitative assessment of flow structures, the presented
analysis is suitable.

Figure 5(a) shows the time instant of maximum attached sheet cavity length.
The sheet, curved towards both sidewalls, attains its largest streamwise extent at
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FIGURE 5. (Colour online) Illustration of a typical shedding cycle (top view); comparison
between experiment (left, from direct communication with H. Ganesh) and simulation on
the lvl2 grid (right). The numerical results show vapour structures with the isosurface of
α = 0.1 (grey) and vortical structures with the isosurface of λ2 =−2× 106 s−2, coloured
by the axial vorticity ωx. The white boxes indicate coherent flow structures, and the dash-
dotted lines denote the wedge apex (x= 0) and the wedge rear point (x= xw).

mid-span. The experimental picture shows small-scale streamwise-oriented cavitating
vortices (‘streamers’; see Laberteaux & Ceccio 2001) trailing from the attached sheet
at mid-span. Furthermore, cavitating vortices are situated along both sidewalls. A
streamwise-oriented vortex is located close to the left sidewall and is connected
to the sheet. Another vortex, oriented normal to the bottom wall and propagating
downstream, is located close to the right sidewall. The simulations equally exhibit
these flow structures. Side views provided by Ganesh et al. (2016) show that the
streamwise-oriented vortices in the vicinity of the lateral walls are typically detached
from the bottom wall. They are different from corner vortices found in turbulent
channel flow. Rather, they are characteristic features of the cavitating flow, similar to
‘streamers’, resulting from the non-uniform distribution of circulation in the spanwise
direction. The latter originates from the non-planar and variable-strength condensation
shock front, causing the downstream advection of vortex lines. Furthermore, the
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isosurfaces show perturbations of the attached sheet along the sidewalls, developing
downstream of the apex, which are also found in the experimental picture.

Figure 5(b) depicts the situation of a condensation shock propagating through
the attached sheet towards the wedge apex. As indicated by the dashed line, the
progression of the shock is faster at mid-span, while it is slightly slower close to
the sidewalls. Simultaneously, a large cavitating horseshoe vortex develops at the
downstream part of the vapour structure. Just upstream of the horseshoe vortex, a
so-called crescent-shaped region is found, a typical flow phenomenon of cavitating
flow; see, e.g., Reisman et al. (1998). The simulations also predict the occurrence
of the condensation shock phenomenon, with a non-uniform rate of progression
across the spanwise direction. Likewise, large cavitating horseshoe vortices, as well
as crescent-shaped regions, can be found.

Figure 5(c) depicts the instant when the condensation front touches the wedge apex.
For most shedding cycles, this does not occur simultaneously across the complete
span. Instead, the shock reaches the apex first close to mid-span, while it lags slightly
behind near the lateral walls. A similar behaviour is found in the simulation. When the
shock reaches the apex, a detached cloud is generated, concentrating strong vorticity
along the spanwise direction. Typically, ‘streamers’, as shown by the experimental
picture, or horseshoe vortices, as depicted in the numerical visualisation, develop at
the trailing part of the cloud.

Figure 5(d) shows the situation just after the detachment along the entire spanwise
direction, and development of a fully separated cloud further downstream. The
region just downstream of the apex, denoted as ‘leading-edge’ separation in the
figure, is characterised by complex flow patterns. Cavitating vortices are mainly
oriented along the spanwise direction, partially forming horseshoe-type structures.
Streamwise-oriented vortices connect these patches of cavitation. The flow topology
predicted by the simulation resembles the experimental picture. The formation of
separated flow at the apex differs from viscous flow separation. Comparable to the
detachment caused by a re-entrant jet, it is induced by the reverse flow following
behind the upstream-propagating condensation front, which reaches the apex.

Finally, at the instant shown in figure 5(e), the separated cloud is convected further
downstream, while a new cavity sheet develops. Typical for this situation is the
observation of large cavitating vortices wrapping around the cloud, oriented primarily
in the streamwise direction. The simulation exhibits comparable structures.

On comparing experimental and numerical panels (a–e), it can be observed that the
simulation exhibits slightly less small-scale cavitation. Yet, the λ2-criterion illustrates
the existence of complex vortical structures. For example, smaller streamwise-oriented
vortices can be found at the downstream part of the cloud as well as concentrated
close to the tunnel sidewalls. This indicates that the pressure drop in these vortex cores
is not sufficient for cavitation to occur. Resolution of the vortex cavitation within these
small-scale structures would require a much finer numerical grid. However, the larger
cavitating structures (e.g. horseshoe cavitation on a variety of length scales, crescent-
shaped regions, streamers, vortices along the sidewalls in the streamwise direction
as well as normal to the bottom wall) are predicted in close agreement with the
experiments. From this qualitative comparison, it can be concluded that the selected
numerical model is able to capture the primary features present in the cavitating flow
of sheet-to-cloud transition.

The shedding process can also be visualised with the spanwise average, denoted by
〈 • 〉z in the following. For this purpose, figure 6 shows a series of six consecutive
time instants in the form of the instantaneous spanwise-averaged void fraction 〈α〉z,
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FIGURE 6. (Colour online) The spanwise-averaged instantaneous flow field during a shock-
dominated shedding cycle for six consecutive time instants; numerical prediction on the
lvl2 grid. Comparison between (a) the void fraction 〈α〉z, (b) the streamwise velocity 〈u〉z
and (c) the pressure 〈p〉z. Isocontours of 〈α〉z are superimposed on 〈u〉z and 〈p〉z.

the streamwise velocity 〈u〉z and the pressure 〈p〉z in the vicinity of the wedge. The
plots of velocity and pressure include isocontours of 〈α〉z to relate these fields to the
occurrence of cavitation.

The first instant, t = t0, depicts the instant when the attached sheet reaches its
maximum length in the streamwise direction; here, sL ≈ 100 mm. The spanwise-
averaged void fraction attains values close to 〈α〉z ≈ 0.8. Within the sheet, the local
flow velocity is small and is directed downstream, while the spanwise-averaged
pressure attains values close to the vapour pressure. Shortly thereafter, a condensation
shock forms at the rear part of the attached sheet. In the subsequent time instants,
t= t0+ 6 ms and t= t0+ 12 ms, the condensation shock propagates upstream through
the sheet. Simultaneously, the spanwise-averaged void fraction in the attached part
of the sheet increases, reaching values of 〈α〉z ≈ 0.9. The condensation front spans
almost the complete height of the attached sheet and causes condensation. Across
the shock, the direction of flow is reversed and the static pressure increases. A shear
layer forms between the free-stream and the upstream-directed flow behind the shock,
exhibiting classical Kelvin–Helmholtz instabilities. Within the low-pressure vortex
cores, evaporation takes place. This leads to the formation of new cavity structures
behind the shock, subsequently rolling up into a cloud. Across the condensation front,
the more dense liquid displaces the lighter mixture region within the sheet. As a
consequence, Rayleigh–Taylor instabilities develop along the interface. In addition
to the non-uniform rate of progression noted above, the resulting perturbations of
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the interface contribute to the fact that it does not appear as a sharp front in the
spanwise average. At t = t0 + 17 ms, the shock touches the wedge apex. Again,
caused by variations in the spanwise direction, this does not happen uniformly across
the wedge, and the spanwise-averaged void fraction is non-zero close to the apex for
this instant. Simultaneously, the downstream cloud is continuously fed by the shear
layer. Due to the upstream-directed flow following behind the shock front, the cloud
is not yet detached. Detachment across the complete spanwise direction is shown at
the next instant, t = t0 + 21 ms. The upstream-directed flow breaks down, and the
cloud separates and starts to propagate downstream. With the cloud being convected
downstream, the growth of a new sheet is initiated, as shown at the last instant,
t= t0 + 27 ms.

For a total of 27 shedding cycles, the maximum attached sheet length sL is
determined from the spanwise-averaged void fraction. The average yields a mean
attached sheet length of sL= 108.4 mm. A measure for the cycle-to-cycle variation is
given by the standard deviation of sL, which amounts to ±13 mm.

4.3. Temporal evolution of the shedding process
The shedding process across multiple cycles can be further analysed by recording the
temporal evolution of the spanwise-averaged flow on a plane at a normal distance
n = np parallel to the wedge surface. Choosing np = 5.2 mm, figure 7 shows the
thus obtained variation in time for the void fraction 〈α〉z|np

and axial velocity 〈u〉z|np
,

plotted along the s-direction for a time span of 1 s.
Individual shedding cycles can be identified by the triangular shape in the plot

of 〈α〉z|np
. The black solid lines exemplarily highlight several cycles. Positive slopes

denote processes of cavity growth, i.e. the formation of a new attached sheet. For
most cycles, typical void fractions in the attached sheet exceed 70 %, with a tendency
to increase during the growth process and towards the wedge apex, as already noted
above. In general, the flow is directed downstream within the sheets and the velocity
magnitude is small. After reaching a maximum sheet length, a new process of cavity
collapse is initiated, indicated by negative slopes in figure 7. Due to the restriction to
the plane n= np, the structures observed here are slightly shorter than the maximum
attached sheet length sL computed above. The majority of collapse processes are
associated with the occurrence of a condensation shock. Behind the shock, the flow
is directed upstream and the magnitude of the flow velocity is significantly increased.
In most cycles, the void fraction drops across the shock to values close to zero,
as expected. For some cycles, however, non-zero vapour content is present just
downstream of the condensation shock. On one hand, this is associated with the
cavitating shear layer following immediately behind the shock. On the other hand,
the front propagation velocity may be inhomogeneous along the spanwise direction,
as mentioned above. During the collapse process, the cloud, still being connected
to the sheet, moves downstream only moderately. For most cycles it does not pass
beyond s≈ 150 mm. At the time instant when the shock touches the apex, the cloud
completely separates and is convected further downstream.

The slopes in figure 7 can be used to estimate the characteristic velocities for the
cavity growth and collapse processes. The cavity growth velocity, on average ugrowth=

5.5 m s−1, is approximately constant during a given shedding cycle. The velocity of
cavity collapse, corresponding to the propagation velocity of the condensation shock
front ushock, is found to be ushock ≈ −4.5 m s−1 on average. The front undergoes a
slight acceleration when it approaches the wedge apex. Figure 8 compares the value
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FIGURE 7. (Colour online) The time evolution of the shedding process over a period
of 1 s; numerical prediction on the lvl2 grid. Spanwise-averaged quantities are extracted
from a wedge-parallel plane at a normal distance of n= np= 5.2 mm and plotted along s.
Comparison of (a) the void fraction 〈α〉z|np

and (b) the axial velocity component 〈u〉z|np
.

The slopes indicated by black lines denote processes of cavity growth (ugrowth= 5.5 m s−1)
and cavity collapse (ushock =−4.5 m s−1).

of ushock obtained numerically with experimental measurements for upstream cavitation
numbers in the range 1.886 σ1 6 2.19. The computed value for the front propagation
velocity is in close agreement with the experimentally reported values.

The acceleration of the condensation shock towards the wedge apex is caused by
the fact that the void fraction in the sheet close to the apex increases during the
process of cavity collapse, as seen from figures 6 and 7. This is in agreement with
the findings of Brennen (1995), who, neglecting bubble dynamics, surface tension and
phase change, derived the following equation for the front propagation velocity relative
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FIGURE 8. (Colour online) Average propagation velocity of condensation shocks ushock.
Comparison between simulation ( , red) and experiments of Ganesh et al. (2016)
( , grey). The error bars indicate cycle-to-cycle variation.

to the upstream fluid ushock,rel in a bubbly flow:

u2
shock,rel =

p2 − p1

ρL
·

1− α2

(1− α1)(α1 − α2)
. (4.1)

States upstream and downstream of the shock are denoted by subscripts ‘1’ and ‘2’
respectively. Assuming the pressure drop p2 − p1 to be almost constant across the
front, ushock,rel increases when α1→ 1. As seen from figure 7, the velocity of the flow
upstream of the front also remains approximately constant. Thus, the absolute velocity
of the condensation front, ushock, increases as well.

Figure 7 shows that the predicted shedding process does not undergo perfect
repeatability. This is documented for the current configuration by Ganesh et al.
(2016). It is also a general feature of sheet-to-cloud shedding, as, e.g., described
by Reisman et al. (1998). For the present case, irregular processes of cavity growth
in between two main sheddings can be found in figure 7, e.g. around t = 0.08 s,
t = 0.61 s, t = 0.79 s and t = 0.82 s. These are associated with the occurrence of
a classical re-entrant jet instability. According to Ganesh et al. (2016), this is more
frequent at higher cavitation numbers. As reported by these authors, however, it can
also appear for the chosen operating point. Furthermore, it is observed from the
simulations that a large coherent collapse of a cloudy structure can prematurely stop
the sheet before it reaches its ‘natural’ maximum sheet length, as dictated by the
adverse pressure gradient. Thereby initiating a condensation front, this downstream
cloud collapse depends, e.g., on the previous cycle, neighbouring cavity structures,
etc. Furthermore, a cloud collapse does not necessarily occur at mid-span. This can
initiate sheet retraction primarily at one side, while the opposite side lags behind. This
in turn affects the next cycle and may promote variations in the spanwise direction.
The entire shedding process thus is chaotic. This contributes to the cycle-to-cycle
variations in figure 7, e.g. regarding the maximum void fraction reached in the sheets,
the internal structures in the sheets and the attached sheet length. The visualisation
in figure 7 exhibits a subharmonic behaviour at a frequency lower than the shedding
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FIGURE 9. (Colour online) The time- and spanwise-averaged flow field in the test section;
numerical prediction on the lvl2 grid. Comparison of (a) the pressure 〈p〉z, (b) the
axial velocity 〈u〉z and (c) the void fraction 〈α〉z. The direction of flow is indicated by
streamlines; the red solid line indicates a region of reversed flow 〈u〉z=0; the white dashed
frame highlights the field of view for the experimental x-ray densitometry of Ganesh et al.
(2016).

frequency, which can, e.g., be seen in the maximum vapour content in the sheets and
the sheet length, which might also be a result of the abovementioned mechanism of
premature sheet collapse. This is compared with the experiments in § 4.6.4.

4.4. Mean flow topology
In order to analyse the time-averaged flow field in this section, the results obtained
on the lvl2 grid are sampled for a time span of 1.66 s, comprising approximately 30
shedding cycles. Figure 9 depicts the two-dimensional flow field obtained by averaging
in time and the spanwise direction. The contour plots show the mean pressure 〈p〉z,
axial velocity 〈u〉z and void fraction 〈α〉z in the vicinity of the wedge. The direction of
the mean flow is indicated by streamlines; a contour line of 〈u〉z= 0 m s−1 highlights
a region of reversed mean flow. Due to the convergent shape of the channel, the
mean flow is accelerated above the wedge. Correspondingly, the local static pressure
drops, reaching values close to the vapour pressure on the back side of the wedge.
Accordingly, a contiguous region of cavitation is present in the temporal mean.
Located above the back side of the wedge, it originates from the sharp wedge apex.
A narrow region of reversed flow exists just above the wedge in the mean flow,
spanning less than half of the cavity height.

The mean flow is not homogeneous in the spanwise direction. This is illustrated
by figure 10, showing the time-averaged three-dimensional flow field. The mean
cavitation pattern is visualised by an isosurface of the 20 % void fraction. Slices
perpendicular to the spanwise direction show the local time-averaged void fraction
α above the wedge, with a cutoff at α < 0.1. On the bottom and left sidewalls
of the channel, the contour of the mean velocity in the streamwise direction, u,
is given. An isocontour of u = 0 m s−1 denotes a region of reversed flow present
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FIGURE 10. (Colour online) The time-averaged flow field in the vicinity of the wedge;
numerical prediction on the lvl2 grid. Vapour structures are shown by isosurfaces of
α = 0.2 and vortical structures by isosurfaces of Q = 1 × 105 s−2, coloured by the
axial vorticity ωx. Contours of α are given in three slices perpendicular to the spanwise
direction, with a cutoff at α<0.1. The tunnel walls show the contours of the axial velocity
u. The red solid line (u= 0) indicates a region of reversed flow.

in the time-averaged flow field. Vortical structures are shown by isosurfaces of
Q = 1 × 105 s−2, with Q denoting the time average of the instantaneous Q-criterion,
Q = 1/2(‖S‖2

− ‖Ω‖2). The orientation of the vortices is given by colouring the
isosurface by the local mean axial vorticity ωx. Despite the fact that the long time
span of the temporal average contains many shedding cycles, fluctuations in the
isosurface of the vapour volume fraction can be observed. However, these deviations
can be regarded as small, and the statistics are considered as sufficiently converged.

The streamwise extent of the time-averaged vapour structure is largest at mid-span.
Simultaneously, the region of reversed flow extends further downstream close to the
sidewalls. Two counter-rotating vortices along the streamwise direction are present in
the temporal mean. These vortices originate from the corner between the sidewalls and
the bottom wall of the test section, just downstream of the contiguous mean vapour
structure. They are inclined slightly away from the bottom wall and oriented such
that fluid is transported along the lateral walls in the positive y-direction, converging
towards mid-span. This spanwise inhomogeneity of the time-averaged flow is caused
by the presence of the sidewalls.

A direct verification of the three-dimensional mean flow structure with the
experiments is not possible, as no corresponding data are available. However, it
is in alignment with the observations made in the context of figure 5 above. All
presented instantaneous images exhibit noticeable variations along the spanwise
direction, e.g. the development of horseshoe vortices in the centre of the channel
and vortices along the sidewalls, and show that the extent of the attached sheets is
largest at mid-span. Thus, the presence of the sidewalls cannot be neglected in the
simulations. We conclude that the global flow topology is correctly captured, even
though slip boundary conditions due to the inviscid modelling are used in the present
study.

4.5. Spectral analysis
In order to identify the dominant frequencies and their spatial distribution in the
system, a spectral analysis for signals recorded within the entire test section is
carried out. For this purpose, the local axial velocity component u and pressure p
are recorded along the bottom wall of the test section by a total of 55 numerical
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FIGURE 11. (Colour online) Frequency spectra for the signals of (a) velocity u and (b)
pressure p recorded by probes distributed within the test section along the bottom wall at
mid-span. The dashed lines (– –) indicate the locations of the wedge apex (x= 0) and the
rear point (x= xw), and the dash-dotted lines (— - —) indicate the mean of the maximum
attached sheet length (x= xL).
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FIGURE 12. The time-averaged flow quantities used for non-dimensionalisation of the
frequency spectra plotted in figure 11. Juxtaposition of (a) mean velocity ubottom and (b)
pressure pbottom recorded at mid-span along the bottom wall. The dashed lines (– –) indicate
the locations of the wedge apex (x= 0) and the rear point (x= xw), and the dash-dotted
lines (— - —) indicate the mean of the maximum attached sheet length (x= xL).

probes. The probes are located at mid-span and distributed evenly in the streamwise
direction with a spacing of 1x ≈ 11 mm between two consecutive probes. For the
spectral analysis, Welch’s method is applied. The signals are sampled with a time
resolution as given in table 5 and then linearly interpolated on a constant time step
of 1× 10−6 s. The spectra are estimated using Hanning window segments with equal
window length in the time domain of 0.2 s and 50 % overlap between subsequent
segments.

The frequency content is displayed in figure 11. The plots show the square root of
the premultiplied power spectral density,

√
f PSD(•), as a function of the streamwise

position. The computed spectra for the axial velocity u, figure 11(a), and the pressure
p, figure 11(b), can thus be interpreted as the RMS amplitude at a given frequency.
A non-dimensional representation of the spectra is obtained using the local mean
quantities for normalisation,

√
f PSD(•)/ • 2. Figure 12 shows the time-averaged

axial velocity, figure 12(a), and pressure, figure 12(b), at mid-span along the bottom
wall, which are used for the non-dimensionalisation. The resulting dimensionless
frequency spectra are given in figure 13 for the velocity signals, figure 13(a), and
pressure signals, figure 13(b). The locations of the wedge apex, x= 0, and rear edge,
xw = 177 mm, are indicated by dashed lines, while the projection of the maximum
attached sheet length on the x-axis, xL = cos(ϕ2)sL = 107.3 mm, is shown with a
dash-dotted line in the figures.
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FIGURE 13. (Colour online) Normalised frequency spectra of (a) velocity u and (b)
pressure p recorded by probes distributed within the test section along the bottom wall
at mid-span. The spectra are normalised by the local mean of the velocity and pressure,
as shown in figure 12(a,b) respectively. The dashed lines (– –) indicate the locations of
the wedge apex (x = 0) and the rear point (x = xw), and the dash-dotted lines (— - —)
indicate the mean of the maximum attached sheet length (x= xL).

The spectrum for the axial velocity, figure 11(a), shows a dominant peak (global
maximum) in the region xL . x . xw. The associated frequency f1 ≈ 19.1 Hz
corresponds to the frequency of cloud shedding. It is also found in the spectra of
discrete probes, as discussed in appendix E. With an RMS amplitude of approximately
6.4 m s−1, substantial variations are found for the axial velocity component. These
are caused by the flow reversal following behind the propagating condensation
front and are comparable to the upstream velocity u1. The normalised spectrum,
figure 13(a), shows that the fluctuations exceed the local mean velocity significantly.
The amplification locally exceeds a factor of >15 and remains high within the entire
region of attached sheets.

Due to the chaotic nature of the shedding process, the spectra do not show a sharp
peak at a single frequency. Instead, the fluctuations appear as smeared over a range
of frequencies: taking 80 % of the peak RMS amplitude, the shedding occurs in a
frequency band of approximately f1± 2 Hz. The spectrum further shows the existence
of harmonics of the shedding frequency.

The spatial region with noticeable variations in the velocity signals extends
downstream of the attached sheet and behind the wedge. This is caused by
downstream-propagating clouds that lead to a perturbation of the near-wall velocity,
recurring coherently with the shedding frequency. Furthermore, RMS amplitudes
exceeding approximately 2 m s−1 can be found in the frequency band 106 f 6100 Hz
throughout the test section, but are concentrated around the maximum attached sheet
length and the wedge apex.

As expected, the pressure spectrum, figure 11(b), equally exhibits the strongest
fluctuations at the shedding frequency f1 and harmonics thereof. In contrast to the
velocity, where the largest RMS amplitudes are found within a single spatial region,
two distinctive peaks can be identified in the pressure spectrum at f1. At the first
location, just upstream of the maximum attached sheet length x . xL, the RMS
amplitude amounts to approximately 15 kPa. This corresponds to the region where
the condensation shock is formed, connected to a pressure rise, within each cycle. In
addition, a second maximum can be found centred around x≈ xw. Here, the majority
of shed clouds collapse coherently. Intense pressure peaks emitted by these collapses
cause RMS amplitudes that are approximately 40 % higher than for the first peak. In
between these two regions, a contribution at a lower frequency is visible, which might
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be caused by an interference between these two mechanisms. The normalised pressure
spectrum, figure 13(b), shows that the variations caused by the condensation shock
are of the same order as the local mean pressure, which is essentially equal to the
vapour pressure. The relative pressure fluctuations hence are smaller by approximately
one order of magnitude than variations in the velocity, as seen above.

While no significant velocity fluctuations are present upstream of the wedge (x< 0),
noticeable levels of pressure fluctuations are found in this region. These are caused by
shocks, originating from coherent cloud collapses, that propagate upstream through the
liquid medium. Downstream, in the region 300 6 x 6 500 mm, the pressure spectrum
shows significant contributions at frequencies f > 1 kHz. These are generated by high-
frequency incoherent collapse events created during the disintegration of downstream-
propagating clouds into smaller vapour structures.

Two artefacts can be found in the pressure spectrum. First, in the vicinity of the
wedge, the amplitude rises when approaching the upper bound of the spectrum, i.e. at
frequencies f > 10 kHz. Due to the intermittent presence of vapour directly adjacent
to the wedge surface, the pressure signals recorded in this area are clipped at the
vapour pressure. This leads to the observed ringing artefacts. Second, the spectrum
gives a sharp peak at f ≈300 Hz when approaching the exit of the test section. This is
caused by interactions between cavity collapse acoustics and the free-stream jet exiting
the test section into the larger downstream tubing. The normalised pressure spectrum,
however, shows that the relative amplitude of this phenomenon is small.

The shedding process can be characterised by a non-dimensional Strouhal number.
In agreement with Ganesh et al. (2016), it is computed here as St= f1sL/u1 using the
shedding frequency f1, the mean attached sheet length sL and the upstream velocity u1.
With f1 = 19.1± 2 Hz and sL = 108.4± 13 mm, it amounts to St= 0.262± 0.03. The
frequency f1 is obtained equally by the presented spectral analyses of the pressure
and velocity signal record along the bottom wall, as well as by the pressure and
void fraction signals recorded with discrete numerical probes at position 1 and
PD, as discussed in appendix E. On the other hand, in order to determine the
shedding frequency experimentally, Ganesh et al. (2016) used pressure probes as
well as transient spanwise-averaged void fraction measurements obtained by x-ray
densitometry. Figure 14 shows the comparison with the experimental references for
upstream cavitation numbers in the range 1.88 6 σ1 6 2.19. The computed Strouhal
number is in close agreement with the experimentally reported value for periodic
shedding cavities, which is given by Ganesh et al. (2016) as St= 0.26± 0.02.

4.6. Comparison with x-ray densitometry
4.6.1. Time-averaged void fraction

The dashed rectangle drawn in figure 9(c) indicates the field of view for the x-ray
densitometry conducted by Ganesh et al. (2016). A zoom in to this view is given
in figure 15(a), juxtaposing the temporal mean of the experimentally obtained void
fraction with the corresponding numerical result of 〈α〉z. Figure 15(b) compares
profiles of the experimentally and numerically obtained void fraction, plotted as
functions of the normal coordinate n. These profiles are extracted along the y-direction,
at locations spaced evenly in the spanwise direction for 10 mm 6 x 6 120 mm, with
1x= 10 mm, as indicated by dashed lines in figure 15(a).

The time-averaged void fraction field is only a simplified representation of this
highly transient system. While being a straightforward measure of comparison with
the experiments, its significance remains limited as it does not correspond to a
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FIGURE 14. (Colour online) The Strouhal number St for cloud shedding. Comparison
between simulation ( , red) and experiments of Ganesh et al. (2016) (frequency
obtained from pressure transducer signals , black, and void fraction measurements

, grey). The error bars indicate cycle-to-cycle variation.
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FIGURE 15. (Colour online) The time- and spanwise-averaged void fraction field 〈α〉z.
(a) Comparison of contour plots obtained numerically (left) and with x-ray densitometry
by Ganesh et al. (2016) (right; data from direct communication with H. Ganesh). (b) Void
fraction profiles 〈α〉z(n) extracted along the dashed lines indicated in (a) (simulation, red;
experiment, black).

physical realisation of the flow. Due to the transient shedding process, cloudy
structures and sheet cavitation intermittently occur for most of the measurement
stations. Furthermore, the statistical sampling has to be taken into account when
considering these quantities, because of the large cycle-to-cycle variations obtained
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equally in the experiments as well as in the computations. The experimental references
for the mean and RMS were obtained from 788 samples, covering a total time span
of 0.79 s, corresponding to approximately 15 shedding cycles. On the other hand,
the numerical data comprise 1.66 s or 30 cycles, sampled at 0.4× 10−6 s, containing
more than 4 × 106 samples. Due to strong cycle-to-cycle variations, including the
subharmonic behaviour noted in §§ 4.3 and 4.6.4, we believe that both the numerical
result and the experiment require O(100) cycles in order to fully ensure statistical
convergence.

The simulation exhibits larger vapour production in the temporal and spanwise
mean: the extent of the mean vapour structure in the streamwise direction, as, e.g.,
measured by the 20 % void fraction, is larger than for the experiments. The local
maximum average void fraction in the simulation is up to 25 % higher compared
with the experiments. The agreement in the front part of the wedge, 0 . x . 50 mm,
corresponding to the location of the sheet cavity, is better than in the region further
downstream. As shown by the vapour profiles, the local mean void fraction attains
an almost constant value of 50 % across the height of the sheet, being consistently
higher in the simulation. The void fraction then abruptly drops to α ≈ 0, with good
agreement for the cavity thickness and the sharpness of the liquid–vapour interface.
Further downstream, x & 50 mm, the agreement deteriorates. In this region, the
maximum amount of vapour volume is overestimated by the simulation. However,
the wall-normal extent of the time-averaged vapour fraction, i.e. the n-position where
〈α〉z ≈ 0, agrees well with the experimental references for all investigated stations.
Furthermore, the computation gives excellent agreement of the mean vapour content
near the bottom wall.

Four factors may contribute to the larger mean amount of vapour in the simulation.
First, the shape of the wedge apex influences the local vapour production. As no
information about the actual manufactured apex geometry is available to us, it is
modelled as a sharp corner in the simulation. A finite apex radius would mitigate the
suction peak in the pressure, which would contribute to an attenuation of cavitation.
Second, the equilibrium speed of sound ceq is used for obtaining the barotropic
equation of state. As discussed in appendix A, this is a lower estimate of the true
speed of sound in mixture regions. With lower values of c being connected to
stronger evaporation, this may cause a higher vapour content. Third, neglect of the
effect of gas content in the simulations may also contribute to a higher mean amount
of vapour, although an exact quantification is difficult. Qualitatively, the presence of
free gas increases the compressibility of the bulk. For the present configuration, it
is expected that the suction peak at the wedge apex is mitigated, thereby reducing
the local rate of vapour production. Furthermore, the acoustics in the bulk are
damped, which also leads to an attenuation of expansion waves. As these in turn
may induce cavitation, this may additionally contribute to a lower vapour content.
Finally, in the region x & 50 mm, the main contribution to the mean void fraction
originates from cloudy structures, periodically detaching from the sheet cavity. It is
believed that the spatial resolution in this region is insufficient to capture the complete
three-dimensionality and granularity of the vapour structures. As mentioned initially,
Kato et al. (1999) found that the bubble number density in clouds can be of the
order of 103 bubbles cm−3 or higher. The necessary spatial resolution is beyond what
is currently computationally feasible for us when considering a large-scale system
such as the one under investigation.

The mean amount of vapour produced may further be affected by viscous
lateral boundary layers present in the experiments, by introducing additional
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FIGURE 16. (Colour online) The RMS of the time- and spanwise-averaged void fraction
field (〈α〉′z〈α〉

′
z)

1/2. (a) Comparison of contour plots obtained numerically (left) and with
x-ray densitometry by Ganesh et al. (2016) (right; data from direct communication with
H. Ganesh). (b) Profiles of (〈α〉′z〈α〉′z)

1/2 extracted along the dashed lines indicated in (a)
(simulation, red; experiment, black).

three-dimensionality. As demonstrated in the context of figure 10, the presence
of the tunnel sidewalls causes spanwise inhomogeneities in the simulation as well.
Since the walls are modelled with slip boundary conditions, this is, however, purely
attributed to the effect of flow restriction. As discussed initially, it is believed that this
effect has negligible influence on the temporal mean for the current configuration.

Subsequently, the fluctuations of the spanwise-averaged void field 〈α〉z are analysed
in terms of their RMS level and compared with the experiments. For this purpose,
figure 16(a) shows a contour plot of (〈α〉′z〈α〉

′
z)

1/2 and figure 16(b) shows the
corresponding profiles along the y-direction, evaluated at identical locations to those
used before. It should be noted that the definition of the RMS used here differs from
that utilised in the context of the grid convergence study in appendix E, 〈α′α′〉1/2z ,
as it is not possible to measure the true fluctuations of the three-dimensional void
fraction field with the available experimental measurement techniques. As such, the
peak RMS fluctuations documented here are smaller by a factor of approximately
1.6 compared with the actual fluctuations of the void fraction given in figure 34 in
appendix E.

Similar conclusions to those from figure 15 can be drawn. The simulation and
experiment agree best in the upstream part, 0 . x . 50 mm. Here, the RMS level
matches with an almost constant plateau in the centre of the attached sheet. Across the
liquid–vapour interface, the RMS level drops abruptly. At slightly larger wall-normal
distances, the computed fluctuations follow a nearly linear trend before they vanish in
the free stream. This can be ascribed to periodic perturbations of the sheet interface.
A similar trend is also observed for the experiments, albeit weaker. The fluctuations
recorded in the experiments do not vanish in the free stream, presumably due to
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noise in the measurements. In the downstream region, x & 50 mm, dominated by
the existence of detached clouds, the characteristics of the RMS fluctuations agree
qualitatively between computation and experiment. As already discussed, the utilised
grid is insufficient for resolving the full fine-scale complexity of the detached clouds,
which may affect the predicted fluctuations.

4.6.2. Instantaneous void fraction
In the previous section, it was conjectured that the agreement between the

computed and experimental void fractions depends on whether cavitation occurs
as attached sheets or as cloudy structures. As the two mechanisms may alternate
in time at a specific location, a clear differentiation is difficult when considering
time-averaged data only. In order to better assess the representation of different
regimes of cavitating flow with the computations, the instantaneous void fraction is
analysed in the following.

For this purpose, two consecutive time instants are selected. Situation A, t = t0,
corresponds to the presence of an attached sheet reaching its maximum streamwise
extent. For situation B, the instant t = t0 + 12 ms is chosen, with a condensation
shock being propagated midway through the sheet. Instants A and B are depicted
in figure 17, comparing the instantaneous spanwise-averaged void fraction field 〈α〉z
from the simulation with the experimental result obtained by x-ray densitometry. In
addition, the comparison is carried out in terms of instantaneous spanwise-averaged
void profiles along the y-direction, extracted at identical locations to those above.

At instant A, the simulation and experiment show an attached sheet attaining
an almost identical length sL ≈ 90 mm. The profiles show that the sheet thickness
predicted by the simulation matches the experiment up to x ≈ 40 mm. In the rear
part, x & 40 mm, the sheet is slightly thicker in the simulation, due to a disturbance
of the liquid–vapour interface propagating through the cavity for the selected cycle.
Despite this difference, excellent agreement is obtained for the void fraction within
the attached sheet, reaching values of & 80 %. In addition, the downstream profiles
within the sheet correctly capture the trend of increasing void fraction at larger
normal distances from the wedge.

At instant B, the condensation shock reaches the position x≈40 mm. The numerical
void fraction profiles extracted upstream of the shock position, i.e. within the attached
sheet, again match excellently with the experimental references. In close agreement,
the void fraction decreases for both the simulation and the experiment from 〈α〉z &
0.85 just upstream to 〈α〉z≈ 0.4 across the shock. Compared with the simulation, the
decrease of the void fraction in the streamwise direction appears more gradually in the
experiments. It is believed that this is caused by a larger variation of the condensation
shock front in the spanwise direction for the selected time instant. Larger deviations
in the void fraction can be found downstream of the condensation shock. In this
region, cloudy vapour structures develop. These originate from the shear layer located
at a distance of n ≈ 10 mm above the wedge, i.e. between the free-stream and the
upstream-directed flow following behind the shock. The amount of vapour produced in
the shear layer is higher in the simulation than in the experiment and, correspondingly,
also in the cloud downstream.

From this analysis, it can be concluded that the agreement in the local instantaneous
void fraction depends on the topology of the cavitating flow. In a sheet cavity, the
model closely agrees with the experimental references, yielding equivalent values
of 0.80 . 〈α〉z . 0.95. The agreement is less good when cloudy or foamy cavitation
structures exist. In this case, the amount of vapour tends to be larger in the simulation
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FIGURE 17. (Colour online) The instantaneous spanwise-averaged void fraction field 〈α〉z
at the instant of maximum attached sheet length (panels (a,b), t = t0) and with the
condensation shock at x ≈ 40 mm (panels (c,d), t = t0 + 12 ms). (a,c) Comparison of
contour plots obtained numerically (left) and with x-ray densitometry by Ganesh et al.
(2016) (right; data from direct communication with H. Ganesh). (b,d) Void fraction profiles
〈α〉z(n) extracted along the dashed lines indicated in (a,c) (simulation, red; experiment,
black).

than in the experiment. This leads us to the conclusion that the spatial resolution
is adequate for the case of a sheet cavity, but may be insufficient for representing
detached and highly fragmented cloudy structures. It is beyond the computational
resources available to us to resolve this regime better. We believe that the spatial
resolution is the main reason for the observed deviations, in conjunction with the
other aspects discussed in the previous section (shape of wedge apex, equilibrium

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.882


Condensation shocks in cavitating flow 791

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

20(a) (b) (c)

0

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

y 
(m

m
)

–20
20

0

–20
20

0

–20
20

0

–20
20

0

–20
20

0

–20

   x  (mm)
0 20 40 60 80 100 120

   x  (mm)
0 20 40 60 80 100 120

   x  (mm)
0 20 40 60 80 100 120

Experiment, Simulation, Simulation, 

Shock front Shock front

Shock front

Shock front

Shock frontShock front

FIGURE 18. (Colour online) Instantaneous vapour void fraction during a shedding cycle
for six consecutive time instants. Comparison between (a) x-ray densitometry by Ganesh
et al. (2016) (data from direct communication with H. Ganesh) and (b) numerical void
fraction spanwise averaged, as well as (c) in the mid-plane slice.

speed of sound and neglect of free gas content). Due to the transient shedding
process, cloudy structures and sheet cavitation intermittently occur for most of the
measurement stations analysed with figures 15 and 16. In consequence, a larger
vapour content for the shed clouds causes the higher mean and RMS of the vapour
content observed previously, even if sheet cavities are well reproduced.

4.6.3. Individual shedding cycle
Over the period of a shedding cycle, figure 18 juxtaposes the vapour volume

obtained from x-ray densitometry and the computed instantaneous spanwise-averaged
void fraction field 〈α〉z. In addition, the void fraction extracted at mid-span, α|z=0 mm,
is provided. The shedding process is exemplified by six consecutive time instants,
beginning with the instant t= t0, when an attached sheet reaches its largest streamwise
extent. The time intervals for the experiment and numerics are identical.

The spanwise-averaged field compares well with the experimental references. During
the existence of an attached sheet, the volume fraction within the attached part of
the cavity matches well. Comparing t = t0, t = t0 + 6 ms and t = t0 + 12 ms, the
spanwise-averaged void fraction increases, as noted before, exhibiting values of
〈α〉z & 0.8. With good agreement of the propagation velocity ushock, as discussed
above, the position of the condensation shock is almost identical for the simulation
and experiment for the presented frames. The void fraction in the downstream
developing cloud differs, as discussed. Nevertheless, the location and spatial extent
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of downstream cloudy structures, e.g. cavitation in the shear layer and subsequent
roll-up, match reasonably well with the experiment.

Further insight can be gained from the void fraction field extracted in the mid-span
slice. At the beginning of the shedding cycle, t= t0 and t= t0+ 6 ms, the sheet is not
a contiguous region of constant vapour volume fraction. Rather, its internal structure
exhibits local patches of low and high void fractions. In addition, the void fraction in
slices parallel to the mid-span shows noticeable variations in the spanwise direction,
especially at the beginning of a shedding cycle. Correspondingly, the condensation
front is difficult to identify during the early stages of a shedding cycle in individual
slices. This finding cannot be compared directly with the x-ray densitometry as it is
an integral measurement in the spanwise direction. However, experimental high-speed
videos (see figure 5) do not show a clear sheet either, but inhomogeneous cavity
structures. Furthermore, the propagation velocity of the condensation front, being a
function of the local void fraction, as shown by (4.1), is inhomogeneous as well.

When the shock progresses towards the wedge apex, i.e. at t = t0 + 12 ms, the
void fraction in the mid-span slice attains an almost constant value throughout the
remaining part of the sheet, accompanied by the occurrence of the condensation
shock. This observation agrees with the fact that the spanwise average of the void
fraction increases over the period of a shedding cycle, leading to an acceleration of
the condensation front. As already noted above, this observation can also be made
from the experimental measurements. Void fractions 〈α〉z & 0.9 imply that for these
time instants the flow transitions to a contiguous vapour sheet.

4.6.4. Shedding process
The temporal evolution of the shedding process, in conjunction with the cycle-to-

cycle variation of the void fraction and velocity in the simulation, has been discussed
in figure 7 in § 4.3. In order to further assess the numerical results, an equivalent
analysis is repeated here also for the experimental data. Figure 19 compares the
variation in time of 〈α〉z|n=np

in simulation and experiment over a period of 1 s.
Similar features are observed in the time evolution of the void fraction, for both

the experiment and the simulation. Growth and collapse processes are clearly present.
Experiment and simulation equally show a noticeable level of cycle-to-cycle variation,
e.g. regarding the maximum attained cavity sheet lengths. The maximum level of
vapour volume fraction within the sheets also varies. For the experiment, the void
fraction varies from 〈α〉z≈ 0.55 at t≈ 0.68 s to 〈α〉z≈ 0.95 at t≈ 0.4 s. Furthermore,
irregular processes of cavity growth, presumably due to the occurrence of re-entrant
jets, are observed experimentally as well, e.g. at t= 0.08 s, t= 0.47 s and t= 0.71 s.
The subharmonic behaviour of the maximum void fraction within the sheets and the
attached sheet length is also found in the experimental data.

Overall, the growth and collapse behaviour predicted by the simulation tends to be
slightly more irregular. Furthermore, the internal structures in the sheets appear to be
more scattered in the simulation. As mentioned in § 4.6.1, free gas content, which is
neglected in the computation, may have a damping effect on the acoustics in the bulk.
As these in turn may induce cavitation, this damping thus could cause a reduction of
such scatter.

4.7. Condensation shock phenomenon
In the following, the propagating condensation front is analysed with the help
of Rankine–Hugoniot jump conditions. These relations hold for any hyperbolic
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FIGURE 19. (Colour online) The time evolution of the shedding process over a period
of 1 s. Spanwise-averaged void fraction 〈α〉z|np

extracted from a wedge-parallel plane at
a normal distance n = np = 5.2 mm and plotted along s. Comparison of (a) numerical
prediction on the lvl2 grid, and (b) experimental x-ray densitometry of Ganesh et al.
(2016) (data from direct communication with H. Ganesh).

conservation law. For one-dimensional flow, this can be written in the generic form

∂

∂ t
U+

∂

∂ x
F(U)= 0, (4.2)

with the state vector U and flux F. The solution supports the existence of discontinu-
ities, i.e. shocks. These must satisfy the Rankine–Hugoniot relations

[F(U)]L,R = s · [U]L,R , (4.3)
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FIGURE 20. (Colour online) Instantaneous flow field exhibiting a condensation shock at
x ≈ 75 mm. Comparison of the flow field (a, b) in the mid-span slice and (c,d) as a
spanwise average, showing (a,c) the vapour volume fraction and (b,d) the axial velocity,
with isocontours of the void fraction superimposed. The indicated locations are used for
extraction of the pre- and postshock quantities shown in table 7.

where [ • ]L,R = ( • )L − ( • )R, the subscripts L and R denoting the left- and right flow
states, and s is the constant propagation velocity of the discontinuity. Equations (4.3)
can be utilised (i) for assessing whether the observed condensation fronts fulfil
the Rankine–Hugoniot conditions and thus represent a compressible shock-wave
phenomenon and (ii) to compute the shock strength or propagation velocity s. It
should be noted that this is a simplified analysis, assuming a planar one-dimensional
front propagating with constant velocity within a homogeneous medium.

Neglecting bubble dynamics, surface tension and viscosity, the system can be
modelled by the compressible Euler equations, with the vectors of conserved quantities
and flux given by U = [ρ, ρu, ρE]T and F(U) = [ρu, ρu2

+ p, ρu
(
e+ u2/2

)
+ p]T

respectively. The Rankine–Hugoniot conditions then read as ρu
ρu2
+ p

ρu
(
e+ 1

2 u2
+ p/ρ

)


L,R

= s ·

 ρρu
ρE


L,R

. (4.4a−c)

For this analysis, pre- and postshock states are extracted from the simulations at
several stages during the shedding cycles. We discuss a suitable time instant, depicted
in figure 20. The visualisation shows the void fraction and streamwise velocity at
mid-span (z= 0), figure 20(a,b), and the respective spanwise average, figure 20(c,d).
The pre- and postshock states used for the evaluation are extracted at the locations
indicated in the figure. Table 7 summarises the obtained velocity perpendicular to
the front u⊥, density ρ, void fraction α and pressure p. For reference, the pre-
and postshock speeds of sound, under the assumption of frozen and equilibrium
conditions, (A 1) and (A 2), are also provided in table 7. Due to the nonlinearity
of these relations, application of (A 1) and (A 2) is not commutative with the
spanwise-averaging operation. The speed of sound thus is first computed locally
within each computational cell, and then spatially averaged.
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ρ (kg m−3) u⊥ (m s−1) p (kPa) α (−) cfr (m s−1) ceq (m s−1)

Mid-span slice
{ preshock 31 0.7 2.3 0.97 10 1.2

postshock 998 −5.5 4.4 0.00 1482 1482

Spanwise average
{ preshock 162 0.5 2.4 0.84 67 573

postshock 739 4.5 4.1 0.25 60 566

TABLE 7. Representatively chosen pre- and postshock flow states for Rankine–Hugoniot
analysis, extracted from the time instant depicted in figure 20. Comparison between
quantities in the mid-span slice and the spanwise average.

Upstream of the discontinuity, the local flow velocity is small and mainly oriented
downstream. The sheet is characterised by a void fraction exceeding 95 % in the
slice and a spanwise average of 84 %. Across the shock, the direction of flow is
reversed, with a significant increase in magnitude. Complete condensation to α = 0
occurs behind the front in the slice. In contrast, the shock appears to be smeared for
the spanwise average, and the postshock void fraction is non-zero. The pressure rise
across the front for the chosen instant is 1.7 kPa on the spanwise average, and only
slightly larger in the slice. In general, values between 1 and 5 kPa are observed. The
compression is thus very weak, which is in close agreement with the values reported
by Ganesh et al. (2016).

Utilising the quantities extracted at discrete locations for various time instants in
(4.4a,b), it is found that the discontinuities indeed satisfy the Rankine–Hugoniot
conditions, with an error of .1 %. In contrast, errors of 10–15 % are obtained with
the spanwise-averaged values. The reason lies in the fact that the jump conditions
are strictly applicable only at discrete locations, while not being necessarily valid
for spanwise-averaged flow states. Interestingly, this approach still yields a good
approximation of the bulk front propagation velocity. With the values from table 7
for the chosen example, a value of 〈s〉z = −5.43 m s−1 can be computed for the
spanwise average. This is in reasonable agreement with the average value of
s ≈ −4.5 ± 0.5 m s−1 obtained from the s–t diagram, figure 7. The propagation
velocity computed in the slice for the chosen example is s=−5.75 m s−1. Ranging, in
general, between −4.5 and −8 m s−1, it tends to be higher than the bulk propagation
velocity. This can be explained with the assumption of one-dimensional flow, thereby
disregarding any existing perturbations of the interface and inhomogeneities in the pre-
and postshock states. As discussed, the actual front experiences Kelvin–Helmholtz
and Rayleigh–Taylor instabilities. It thus is strongly non-planar and has a non-uniform
propagation velocity.

It should be noted that the Rankine–Hugoniot condition for the conservation of
energy, (4.4c), can be utilised for computing the temperature variation associated with
the condensation shock. In the present example, assuming that the liquid behind the
shock is at a reference temperature Tref , this variation can be evaluated as 1T≈ 0.3 K.
Although this is larger in magnitude than for the example chosen in appendix B, the
temperature variation across the shock is still negligibly small.

Using the quantities in the slice, we compute a shock Mach number Mas, relating
the front propagation velocity, relative to the preshock flow, to the preshock speed
of sound. As already mentioned, estimates for the upper and lower bounds of the
thermodynamic speed of sound are given by (A 1) and (A 2). By excluding any phase
transfer from the estimation, i.e. using the frozen speed of sound cfr, the Mach number
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FIGURE 21. Sensitivity of the condensation shock propagation velocity. Relative change
s/sref as a function of

[
p
]

L,R /
[

pref
]

L,R, computed with (4.1) by Brennen (1995) (variant
A, — - —) and by Rankine–Hugoniot analysis (equation (4.4a,b), variant B, ——; equation
(4.4b), variant C, – –).

is evaluated as Mafr
s = 0.63 for the current example, so that a condensation shock

could not exist. In contrast, with the equilibrium speed of sound ceq, Maeq
s = 5.2 for

the chosen instant. In the simulation, Mas =Maeq
s > 1, because the equilibrium speed

of sound is utilised in the thermodynamic model. The local speed of sound in the
experiments is unknown. However, since a propagating shock wave was observed by
Ganesh et al. (2016), we conclude that in the experiments Mas > 1, too.

With only a few kPa, the pressure rise
[

p
]

L,R across the condensation shock is
small. In order to assess the sensitivity of the computed shock propagation velocity
to the pressure rise, the time instant discussed above is taken as a reference. The
postshock pressure pR is then systematically varied between −40 % and 160 % around
the probed reference value of pref

R = 4.4 kPa. This gives a pressure difference across
the shock of 0.3 kPa6

[
p
]

L,R 6 4.7 kPa, corresponding to a range between 15 % and
230 % of [ pref

]L,R.
The propagation velocity of the condensation shock can be computed with the

formula of Brennen (1995) (equation (4.1), denoted as variant A in the following) or,
alternatively, can be obtained by repeating the above analysis and solving (4.4a,b)
for s (variant B). Additionally, (4.4b) can be utilised for determining s directly
(variant C).

With the reference conditions from table 7, Brennen’s formula gives sref ,A
=

−7.45 m s−1, which is larger than both the numerical results and the experimental
references. This is expected, as phase change is neglected in (4.1), thereby implicitly
assuming a higher value for the speed of sound, i.e. the frozen speed of sound.
The computed reference velocities of variants B and C with sref ,B

= −5.75 m s−1

and sref ,C
= −5.83 m s−1 are very similar, and agree well with the cavity dynamics

actually observed in the experiments and the simulation.
The sensitivity of the computed velocities is summarised in figure 21, plotting the

normalised velocities s/sref versus
[

p
]

L,R /
[

pref
]

L,R. The Rankine–Hugoniot analysis
is insensitive to the pressure rise: a ±10 % difference in

[
p
]

L,R leads to a change in
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the predicted propagation velocity of at most ±0.7 %. In contrast, Brennen’s formula
shows a considerably larger sensitivity of ±8 % for the same variation in the pressure
rise.

While (4.1) gives reasonable results for the values from the mid-span slice,
a considerably lower shock speed of 〈s〉Az = −3.04 m s−1 is obtained by using
the spanwise-averaged values. The reason is the observed strong sensitivity of
Brennen’s formula to the pressure difference in combination with the fact that
the pressure difference in the spanwise average is lower than for the discrete slice,[
〈p〉z

]
L,R <

[
p
]

L,R. Hence, the shock speed computed with (4.1) is considerably
affected by the degree of variation in the spanwise direction. This is not the case
for the Rankine–Hugoniot analysis, which gives comparable values for the spanwise
averages and the discrete slices, and is less sensitive to the pressure rise.

With the simulation, flow field data can be extracted at any position in the
computational domain, including taking spanwise-averaged data. Thus, a clear
distinction between the two approaches is possible. For the experimental data, on
the other hand, some care has to be taken. Void fraction measurements as obtained
by the x-ray densitometry are only available as spanwise averages, while the pressure
is measured by pressure probes at discrete positions in the field.

5. Conclusions
The formation of cloud cavitation, classically associated with re-entrant jets, can

also be caused by the occurrence of condensation shocks. This has been predicted
previously by numerical simulations (Schmidt et al. 2009; Eskilsson & Bensow 2012).
However, a direct observation by experimental studies (see Ganesh et al. 2016) has
become available only recently. These authors suggest that condensation shocks
represent an additional instability mechanism of partial cavitation. The motivation
for our research is to obtain further insight into the physics of condensation shock
phenomena, with the help of numerical simulations.

Based on the experiments by Ganesh et al. (2016), a validation of the numerical
results is carried out. We focus on an operating point where periodic cloud
shedding and the formation of upstream-travelling condensation shocks occur. The
computational set-up reproduces the nominal definition of the experiments, including
all variations of cross-section within the up- and downstream duct. We avoid the
assumption of spanwise periodicity within the test section. The physical model is
based on the homogeneous mixture approach, equilibrium thermodynamics and a
barotropic equation of state. By neglecting the physical viscosity, we concentrate on
the inertia-dominated flow physics. Compressibility of the two-phase flow is retained
in the numerical method. Utilising explicit integration in time, all relevant time scales
of cavitating flow are resolved. The method captures cavitation-induced shock-wave
dynamics and its interaction with phase transition.

Our computations are in good agreement with most of the experimental results.
Typical flow patterns occurring during shedding are well reproduced. In particular,
sheet and cloud cavitation, inhomogeneous flow topology in the spanwise direction,
cavitating horseshoe and hairpin vortices as well as crescent-shaped regions are
found in the simulations. Furthermore, the growth and collapse speeds of the partial
cavity are well matched. The comparison of the shedding Strouhal number and the
evolution of the shedding process indicates that the global system dynamics are in
good agreement.

Excellent match is observed for the spanwise-averaged vapour volume fraction
within cavity sheets, reaching values of >80 %. In individual slices, void fractions
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may locally exceed >90 %, suggesting that the sheets consist of large contiguous
regions of vapour instead of individual bubbles. Within the downstream-propagating
clouds, however, the predicted void fraction is larger compared with the measurements.
This is attributed to the spatial resolution being insufficient to reproduce the full range
of scales for cloud cavitation. Slight deviations are found in the overall regularity
of the shedding cycles. It is suggested that stabilising mechanisms, such as viscous
layers and free gas content, may lead to a reduction of scatter for individual shedding
cycles. The observed intermittency of irregular growth phases and, less frequently,
re-entrant jets is also noted experimentally.

We conclude that the investigated configuration is entirely dominated by inertial
effects, phase transfer and wave dynamics. This conclusion is substantiated by
an analytical model for the total pressure loss in the test section, relying on the
assumption of steady inviscid flow. It is shown that most of the total pressure loss is
not related to viscous effects. Instead, it results from the pressure imbalance caused
by the presence of cavitation in the tunnel. Dominating all other loss mechanisms
including viscous losses, it justifies the use of an inviscid flow model.

Contrasting results from the simplified barotropic and non-barotropic
thermodynamic models shows that the temperature dependence of the fluid properties
are negligible. We further analyse the mechanisms of vortex stretching, compressible
dilatation and baroclinic torque in our computations using the full thermodynamic
model. We find that the baroclinic vorticity production is approximately one order of
magnitude smaller than the combined effects of vortex stretching and compressible
dilatation. The investigation substantiates that the baroclinic torque is only of
subordinate importance. Once vorticity is introduced initially into the flow, vortex
stretching due to shear, as well as dilatation due to flow compressibility, dominates
the subsequent evolution of vorticity. A significant amount of vorticity is produced by
the condensation shock front. As it is highly corrugated and of varying strength, this
discontinuity causes the generation of vorticity in both the spanwise and streamwise
directions. The upstream-propagating front is subject to Rayleigh–Taylor instabilities,
while the postshock liquid undergoes Kelvin–Helmholtz instabilities.

In agreement with the experiments, the simulations identify a recurring condensation
shock phenomenon as the main mechanism for cloud shedding. The predictions
closely correspond to the experimentally observed behaviour. The fronts span almost
the entire height of the cavity, and only a weak pressure increase across the front is
detected. The computed propagation velocity closely agrees with the experimentally
determined value. It is further found that the direction of flow is reversed behind the
front, similarly to re-entrant jets. In contrast to the latter, however, upstream-directed
flow is induced across most of the cavity height. It thus is not possible to stop the
front by a small obstacle and suppress the associated cloud shedding, as already found
experimentally by Ganesh et al. (2015). The aforementioned inviscid Rayleigh–Taylor
and Kelvin–Helmholtz instabilities contribute to a thickening of the front in the
spanwise average, while appearing sharp in individual slices.

Our simulations show that condensation shocks are, just like re-entrant jets,
inertia-dominated features of partial cavities. It is demonstrated that the pre- and
postshock flow states fulfil Rankine–Hugoniot jump conditions. The front thus
represents a compressible shock wave, and analytical relations can be used to predict
the shock strength and propagation velocity. We further contrast the Rankine–Hugoniot
relations with the formula by Brennen (1995) for computation of the propagation
speed, including a sensitivity study regarding the pressure rise across the front. It
is shown that Brennen’s formula is considerably more affected by this pressure
difference, requiring an accurate determination of the latter for a proper prediction of
the front velocity.
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We find that condensation fronts can be triggered by shocks emanating from a
downstream collapsing cloud. However, they are also observed under the absence of
such events. This implies that the adverse pressure gradient is sufficient to induce a
shock front. In addition to re-entrant jets, condensation shock phenomena thus feed
an intrinsic instability mechanism of partial cavities.
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Appendix A. Speed of sound in cavitating flow
In order to obtain a barotropic equation of state p̂(ρ̂) for the mixture region,

an estimate for the speed of sound c in a two-phase flow is needed. Assuming a
homogeneous mixture, i.e. neglecting bubble dynamics and surface tension, Brennen
(1995) and Franc & Michel (2005) derived analytical relations for c. These authors
discussed two limiting cases, which denote upper and lower estimates for the mixture
speed of sound.

For the case of infinitely slow phase change, the speed of sound can be modelled
as the frozen speed of sound cfr,

1
ρc2

fr
=

α

ρv,satc2
v

+
1− α
ρl,satc2

l
, (A 1)

where the speeds of sound in the pure liquid and pure vapour are cl and cv
respectively.

When both phases are in thermodynamic equilibrium, i.e. in the case of infinitely
fast heat exchange between phases and thus phase change, the latent heat of
vaporisation has to be taken into account on the right-hand side of (A 1). The
speed of sound is then modelled with the equilibrium speed of sound ceq,

1
ρc2

eq

=
α

ρv,satc2
v

+
1− α
ρl,satc2

l
+
(1− α)ρl,satcp,lT
(ρv,satlv,ref )2

. (A 2)

In the barotropic model, the specific heat capacity of the liquid, cp,l =

4184.4 J kg−1 K−1, and the latent heat of evaporation, lv,ref = 2453.5 × 103 J kg−1,
are assumed to be constant at the constant reference temperature Tref .

A comparison of these two analytical relations for c as a function of the void
fraction α is given in figure 22. As shown in figure 22(a), both yield a strong decrease
for the speed of sound in the mixture region, being at least two orders of magnitude
lower than the speed of the sound in either the pure liquid, cl ≈ 1482 m s−1, or the
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FIGURE 22. (Colour online) (a) Comparison between the frozen (cfr; equation (A 1), blue)
and the equilibrium (ceq; equation (A 2), red) speed of sound in the two-phase region. (b)
The ratio cfr/ceq.

pure vapour, cv ≈ 423 m s−1. The frozen speed of sound exhibits a global minimum
of min(cfr)= 3.51 m s−1 at α= 0.5, while the equilibrium speed of sound is minimal
for α→ 0+ with min(ceq)= 0.038 m s−1. Figure 22(b) illustrates the ratio cfr/ceq. In
the region of relevant void fractions, the two approaches differ by a factor ranging
between 10 (α = 0.95) and 140 (α = 0.1).

Brennen (1995) discussed that the behaviour of a real two-phase medium lies in
between these two extremes. The actual physical value is mainly controlled by the
‘degree of thermal exchange between the phases’. While perfect thermal exchange is
assumed for the equilibrium speed of sound, the frozen speed of sound derives from
the assumption of no exchange between the phases. However, the actual value of c
is difficult to measure experimentally, and may be problem-dependent. In either case,
the mixture speed of sound may easily attain values smaller than the convective flow
velocity in a technical system. Resulting in locally supersonic flow, this supports the
occurrence of compressible shock-wave phenomena in the two-phase flow.

In the barotropic model, the assumed mixture speed of sound directly influences the
level of vaporisation. With the definition of the speed of sound

c2
=
∂p
∂ρ

∣∣∣∣
s

(A 3)

and the mixture density ρ = αρv,sat + (1− α)ρl,sat, it immediately follows that

∂α =
1
c2

∂p
ρv − ρl

. (A 4)

Any change in pressure thus leads to a change in the vapour volume fraction, which
is proportional to the square of the inverse speed of sound. Recognising that cfr →

cl for α → 0, the integration of (A 4) with the frozen speed of sound shows that
essentially no vapour is produced. This is in agreement with the assumption of the
frozen model, but can thus not be used in the simulations. Still relying on the frozen
speed of sound, an upper estimate for the produced vapour is to assume a constant
mixture speed of sound equal to the global minimum, min(cfr) = 3.51 m s−1. The
maximum pressure difference is obtained when hypothetically expanding the mixture
from the vapour pressure psat to the triple line ptriple. Even under these assumptions, the
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x = 0

n = 1000 n = 80n = 80

2 m 8 m8 m

‘Left’ ‘Right’

FIGURE 23. The computational domain employed for the one-dimensional Riemann
problem study, with n denoting the number of cells along the respective edge.

maximum attainable vapour volume fraction is 14 %. In contrast, as shown by Ganesh
et al. (2016), the maximum void fraction observed for the current problem exceeds
80 %.

From these considerations, it is concluded that the frozen speed of sound is not
suitable for the employed barotropic model and the present configuration. On the other
hand, in order to accurately model the influence of thermal exchange between phases,
additional assumptions are necessary, e.g. on interface areas, bubble size distributions
and temperature gradients. None of these relevant parameters are available, either from
experiments or from scale-resolved simulations. Without involving further assumptions,
we chose the equilibrium speed of sound for the barotropic equation of state.

Appendix B. Assessment of the thermodynamic model
In the following, the influence of the thermodynamic modelling on the global

system behaviour is reviewed. The importance of temperature dependence of the fluid
properties in the modelling, the role of the barotropic assumption and the need to
evolve the energy equation are assessed.

B.1. Isolated condensation shock
The dynamics of the sheet-to-cloud cavitation for the problem at hand is dominated
by the repeated occurrence of condensation shocks. Capture of the associated entropy
increases requires one to solve for the energy equation. In contrast, not accounting for
these influences may cause an alteration of the shock speed or strength, and, hence,
may affect the shedding dynamics.

The influence of the thermodynamic model is first studied with regard to isolated
propagating condensation shocks, represented by simplified cases of one-dimensional
Riemann problems. The computational domain utilised for this study is shown in
figure 23. A total of 1000 homogeneously spaced cells are used for discretising the
region of interest, |x| 6 1 m. To decouple the boundaries from the interior, the flow
is extrapolated at the boundaries, located at |x| = 10 m, and a very coarse mesh
is used for the region 1 m 6 |x| 6 10 m. Here, n = 80 cells are used, which are
spaced according to an exponential bunching law, Spi = Sp1 · i · exp(R(i− 1)). Here,
Spi denotes the distance from the starting point to node i, 1 6 i 6 n, and the ratio
R=− logb(n− 1)Sp1c/(n− 2).

For initialisation, ‘left’ and ‘right’ states are extracted from representative pre-
and postshock states at discrete locations in the full three-dimensional simulations
presented below. In general, the flow direction is reversed across the shock, while
only a weak jump in pressure occurs. The vapour volume fraction upstream of the
shock attains values between 80 % and 97 %, while complete condensation occurs
after the front has passed.
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ρ (kg m3) u (m s−1) α (−) p (Pa) T (K)

x< 0 (left, preshock) 130 2.9 0.87 2335 (293.11)
x> 0 (right, postshock) 998 −4.1 0.00 4367 (293.13)

TABLE 8. Initial states at t = 0 for the representatively considered one-dimensional
Riemann problem, extracted from three-dimensional simulation. The initial temperature
applies only for the full thermodynamic simulation and is computed from the internal
energy.

1000
(a) (b) (c) (d)

500

0
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FIGURE 24. (Colour online) One-dimensional Riemann problem, initialised with the states
given in table 8, showing (a) density ρ, (b) velocity u, (c) void fraction α and (d)
temperature difference T − T0. Comparison between the initial state at t= 0 s (— —) and
results at t= 0.14 s obtained with the barotropic thermodynamic model (——, blue) and
the full thermodynamic model (– – –, red).

Results of this Riemann study are exemplified here by one set of ‘left’ and
‘right’ states, given in table 8. For the full thermodynamic simulation, additional
specification of the internal energy is necessary. It is chosen such that the ‘left’ and
‘right’ pressures and densities match for the two models. The chosen initialisation
yields a left-running condensation front. Figure 24 shows a comparison of the results
obtained with the barotropic and full thermodynamic models after integrating until
t= 0.14 s. Results are provided in terms of the density ρ, velocity u and void fraction
α. For the full thermodynamic simulation, the temperature difference T − T0 is also
provided, where T0 is the initial temperature of the ‘left’ state.

For ρ, u and α, the two models yield comparable results, and the left-running
shock is located at the same position. The propagation velocity of the front can
thus be evaluated equally as ushock = −5.18 m s−1. The obtained value for ushock

is in good agreement with the result of the full three-dimensional computations.
Temperature variations predicted with the full thermodynamic model are small. The
temperature increase across the shock amounts to max(T − T0) = 0.077 K as the
observed condensation shock is very weak. The associated entropy production can be
neglected.

The presented analysis is repeated with various pre- and postshock states, extracted
from the full three-dimensional simulations. From these investigations, it is deduced
that the thermodynamic model has no measurable influence regarding the computed
velocity and strength for the considered low-speed condensation fronts occurring in the
present case. This provides an indication that the barotropic model is able to correctly
predict the shock-dominated cavitating flow dynamics for the problem at hand.
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FIGURE 25. (Colour online) Comparison of (a,b) the span- and time-averaged void
fraction field 〈α〉z and (c,d) the span- and time-averaged RMS of the void fraction field
〈α′α′〉1/2z . Juxtaposition of results obtained with the barotropic model (a,c) and the full
thermodynamic model (b,d).

B.2. Full thermodynamic simulation
In order to assess the influence of the thermodynamic model on the flow dynamics,
three-dimensional simulations are carried out using both thermodynamic approaches.
Statistics on the lvl2 grid are collected with a sampling interval of 0.39 × 10−6 s.
For the barotropic model, the sampling spans 1.66 s, while the statistics of the full
thermodynamic model cover 1.54 s.

Only marginal differences are found between the two simulations; see figures 25(a,b)
and 25(c,d) for a juxtaposition of the spanwise average of the temporal mean and
RMS of the void fraction, 〈α〉z and 〈α′α′〉1/2z respectively, obtained on the lvl2

grid. Small deviations between the models are attributed primarily to the different
sampling times in conjunction with the chaotic nature and the associated cycle-to-cycle
variations of the shedding process.

Furthermore, the models are analysed with regard to their spectral content. For
this purpose, Welch’s method for estimating the spectral density is applied to the
operating-point-defining quantities u1, p1, p2 at locations 1 and 2, as well as the
pressure pPD and local void fraction αPD at probing position PD. The signals are
sampled with a time resolution of 0.4 × 10−6 s and then linearly interpolated on a
constant time step of 1 × 10−6 s. The spectra are estimated using Hanning window
segments with equal window length in a time domain of 0.2 s and 50 % overlap
between subsequent segments. The resulting spectra are given in figure 26. Signals
recorded in the vicinity of the wedge, namely p1, pPD and αPD , exhibit a dominant
low frequency f1, which is the shedding frequency of the sheet cavity. For both
models, f lvl2,baro

1 ≈ 19.1 Hz ≈ f lvl2,full
1 . Together with an almost identical prediction of

the attached sheet length, the associated shedding Strouhal numbers obtained with
the two models hence are also comparable. Deviations in the spectra are attributed
to the different numbers of shedding cycles covered with the statistics in conjunction
with the cycle-to-cycle variations.

The span- and time-averaged temperature field 〈T〉z and the associated RMS
〈T ′T ′〉1/2z predicted with the full thermodynamic model are given in figure 27(a,b).
The visualisations show that the mean temperature within the cavity drops by less
than 0.3 K and that the RMS of the temperature attains values of at most 0.5 K. In
these ranges, the associated variation of fluid properties hence is negligible and the
assumption of constant properties in the barotropic model is justified.
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FIGURE 26. (Colour online) Frequency spectra of time signals of (a) upstream velocity u1,
(b) upstream pressure p1, (c) downstream pressure p2, (d) pressure at PD and (e) local void
fraction at PD. Comparison of numerical prediction on the grid lvl2 using the barotropic
(blue) and the full thermodynamic model (red).
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FIGURE 27. (Colour online) Temperature variations predicted by the full thermodynamic
model. Juxtaposition of (a) the span- and time-averaged temperature 〈T〉z (with colour
gradation changes at equally spaced intervals of 0.02 K) and (b) the span- and
time-averaged RMS of the temperature 〈T ′T ′〉1/2z .

Moreover, the budgets of the VTE, describing the evolution of the vorticity ω along
a particle path, are assessed. The VTE is given as follows:

D
Dt
ω= (ω · ∇) u︸ ︷︷ ︸

=υ1

−ω (∇ · u)︸ ︷︷ ︸
=υ2

+
1
ρ2
∇ρ ×∇p︸ ︷︷ ︸
=υ3

. (B 1)

The material derivative of the vorticity is denoted by D/Dtω, and the three terms
υ1, υ2, υ3 can be identified as the vortex stretching due to velocity gradients, flow
compressibility (compressible dilatation) and baroclinic torque respectively. In order to
assess the relative importance of these budgets in the full thermodynamic simulation,
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FIGURE 28. (Colour online) Assessment of the VTE budgets. Time- and spanwise-
averaged field of (a) vortex stretching 〈|υ1|〉z, (b) compressible dilatation 〈|υ2|〉z and (c)
baroclinic torque 〈|υ3|〉z. (d) Juxtaposition of integral budgets Υ1, Υ2 and Υ3.

we further define the following integrals:

Υ1 =
1
V

∫
Ω

〈|υ1|〉z dV, Υ2 =
1
V

∫
Ω

〈|υ2|〉z dV, Υ3 =
1
V

∫
Ω

〈|υ3|〉z dV.

(B 2a−c)

Figure 28(a–c) shows the time- and spanwise-averaged budgets of 〈|υ1|〉z, 〈|υ2|〉z
and 〈|υ3|〉z, while figure 28(d) compares the integral magnitudes Υ1, Υ2, Υ3. The
visualisation shows that in the full thermodynamic computation, the baroclinic
torque is predominately active at the liquid–vapour interface, with the strongest
contribution in close vicinity to the wedge apex. In contrast, contributions due to
vortex stretching and compressible dilatation can be found throughout the cavitating
region, exceeding the baroclinic torque by at least a factor of 2 in close vicinity to
the liquid–vapour interface, or well above within the cavitating region. The integral
budgets in figure 28(d) further show that the baroclinic torque is approximately
one order of magnitude smaller than the combined effects of vortex stretching and
compressible dilatation.

The physical process of vorticity production through baroclinic torque υ3 cannot be
reproduced when employing a barotropic model, where the gradients of the density
∇ρ and the pressure ∇p are parallel. A significant amount of vorticity is, however,
produced by the condensation shock front. As it is highly corrugated and of varying
strength, this discontinuity causes the generation of vorticity in both the spanwise
and streamwise directions. The upstream-propagating front is further subject to
Rayleigh–Taylor instabilities, while the postshock liquid undergoes Kelvin–Helmholtz
instabilities. Additionally, a small amount of vorticity production is also associated
with the numerical regularisation (= artificial viscosity), which is inevitable for
discontinuity-capturing.

From the analysis of the VTE budgets, we conclude that, once vorticity is
introduced initially into the flow, vortex stretching due to shear as well as dilatation
due to flow compressibility entirely dominate the subsequent evolution of vorticity.

In summary, the influence of the thermodynamic model is insignificant for the
considered configuration.
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n

FIGURE 29. Sketch of the simplified test-section geometry utilised for the analytical
pressure drop model, including an indication of the parameters ζ1, ζ2, ζ3 and ξ .

Appendix C. Pressure drop

In order to assess the influences contributing to a larger pressure loss across the
test section in the simulation compared with the experiment, an analytical model for
1p between stations 1 and 2 is derived in the following. Figure 29 provides a sketch
of the considered simplified configuration. The flow in the test section is assumed
to be inviscid, stationary and two-dimensional. Furthermore, the inflow and outflow
velocities are taken as equal, u1 ≈ u2. This can be readily derived from continuity
through the test section, and assuming complete recondensation before the flow exits
the test section at station 2. Finally, it is assumed that the quantities u1, u2, p1 and p2

act across the entire inflow and outflow plane of the test section, which is reasonably
accurate for the following derivation. Under these assumptions, the pressure drop is
solely caused by pressure contributions along walls, with a non-vanishing normal
vector in the direction of the flow,

1p=
1

Ach

∫
A

p([1, 0, 0]T · n) dS. (C 1)

Here, Ach denotes the channel cross-section, while n is the inward-pointing unit normal
vector on the integration surfaces. Only the upstream and downstream shoulders of the
wedge contribute to the pressure drop.

By assuming a pressure distribution along the wedge surface, (C 1) can be solved
analytically. The total pressure of the flow entering the test section is given by the
upstream station 1 as pt = p1 + ρ1u2

1/2. The pressure at the edge between the bottom
wall and the upstream shoulder of the wedge is assumed to be ζ1pt. An inviscid flow
model requires a stagnation point at this location, i.e. ζ1 = 1. Under the presence of
a viscous boundary layer, the total pressure is only partly recovered, and thus 0 <
ζ1 < 1 for viscous flow. Originating at the apex and extending over a fraction ξ of
the back side of the wedge with length Lw, a cavity is present in the temporal mean.
Accounting for the fact that, intermittently, both wetted and cavitating flow exist, the
pressure in this region can be modelled as constant and equal to a multiple of the
vapour pressure, i.e. ζ2psat, with ζ2 > 1. For the upstream shoulder, a linear decrease
from ζ1pt to ζ2psat at the apex is assumed. The pressure recovery downstream of the
cavity is also assumed to be linear, from ζ2psat to ζ3pt, with 0< ζ3 < 1. It should be
noted that even for inviscid flow, no stagnation point can be assumed, as the region
downstream of the cavity is largely affected by the passage of clouds shedding from
the sheet cavity.

Integration of (C 1) with the assumed analytical pressure profile yields

1p= 1
6 [pt(ζ1 − (1− ξ)ζ3)− ζ2ξpsat]. (C 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.882


Condensation shocks in cavitating flow 807

0

–100 0 100 200

x (mm)

300 400 500

2
4
6
8

10
12
14

FIGURE 30. The pressure along the bottom wall for the analytical pressure loss model.
Comparison between the assumed analytical shape (——) with parameters ζ1 = 1, ζ2 =

4, ζ3 = 0.53, ξ = 0.6 and the time-averaged pressure pbottom as recorded from full three-
dimensional simulation at mid-span along the bottom wall (– –).

Under inviscid assumptions, i.e. with ζ1= 1, and, for simplicity, assuming a stationary
cavity that covers the entire back side of the wedge, i.e. ζ2 = 1, ξ = 1, (C 2) reduces
to

1p= 1
6 [pt − psat]. (C 3)

This predicts a pressure loss of ≈ 15 kPa, which clearly exceeds the experimentally
observed value of 8.2 kPa. These considerations show that the present configuration
generates a pressure loss even under inviscid assumptions. It thus is analogous to the
generation of wave drag in inviscid supersonic flow. Here, it is caused solely by the
presence of two-phase flow, which prevents a pressure recovery on the back side of
the wedge.

In order to calibrate the parameters ζ1, ζ2, ζ3 and ξ , the assumed analytical pressure
profile along the wedge surface is compared with the result obtained by the inviscid
computations presented in the remainder of this paper. As shown in figure 30, the
parameters ζ1 = 1, ζ2 = 4, ζ3 = 0.53 and ξ = 0.6 give good agreement with the
numerical result. The computed analytical pressure drop (12.3 kPa) compares well
with a numeric integration of the profile shown in figure 30 (12.7 kPa). Despite the
simplifying assumptions of the presented analysis, the computed 1p also compares
reasonably well with the pressure loss given by the two point probes at locations 1
and 2, as stated in table 6 (14 kPa).

Due to the boundary layer in the experiments, the total pressure is only partially
recovered at the upstream edge between the wedge and the bottom wall, and thus
0 < ζ1 < 1. No experimental data are available that would allow for an estimation
of ζ1. Thus, using the ANSYS CFX simulation package, incompressible single-phase
simulations solving the Reynolds-averaged Navier–Stokes (RANS) equations are
carried out. For this purpose, the same geometry, including all changes in the
upstream and downstream ducts, as discussed in § 3 is utilised. Viscous walls are
resolved with a wall-unit y+ . 1 in the upstream contraction leading to the test
section and the vicinity of the wedge; turbulence modelling is carried out with
the Baseline Explicit Algebraic Reynolds Stress model (BSL-EARSM). Inflow and
outflow boundary conditions are chosen identical to the compressible simulation.
These computations yield a value of ζ1/pt ≈ 0.82. Using this parameter in (C 2), in
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FIGURE 31. Sensitivity study for the pressure drop estimated with (C 2), regarding (a) the
cavity length and (b) the upstream pressure.

conjunction with the previously determined value of ζ3 = 0.53, and the experimental
value for the cavity length of ξ = 0.53, this gives 1p = 8.1 kPa. This result is in
good correspondence with the experimentally obtained pressure drop of 8.2 kPa. As
viscous contributions are neglected in the model, this substantiates the fact that the
losses due to the presence of two-phase flow dominate any other loss mechanisms,
including losses due to viscosity.

From this analytical model, two factors contributing to an overestimation of the
pressure loss can be identified. First, in the case of a partial cavity, i.e. for 0<ξ < 1,
a larger cavity length, correlating with a larger cavity extent, causes an increase of 1p.
A second factor is the pressure ζ1pt and the subsequent pressure distribution along the
upstream shoulder of the wedge. The significance of these two aspects is assessed in
figure 31. Keeping the parameters ζ2= 4, ζ3= 0.53 fixed, the cavity length is studied
in figure 31(a) via the parameter ξ . The investigation is carried out for two upstream
pressures ζ1 = (0.82, 1), corresponding to the cases without and with recovery of the
total pressure in the upstream corner of the wedge and the bottom wall respectively.
A variation in the cavity length in the range 0.5 6 ξ 6 1 leads to a change in 1p of
at most 3.6 kPa. In figure 31(b), the parameter ζ1 for the upstream pressure is varied,
with the same parameters ζ2= 4, ζ3= 0.53 and a fixed cavity length ξ = 0.6. With an
influence of at most 8.3 kPa on 1p when considering 0.5 6 ζ1 6 1, the pressure ζ1pt
also has a significant influence on the overall pressure drop.

The three-dimensional inviscid simulations give a cavity extent that is larger by
approximately 12 %, compared with the experiments. As deduced from figure 31(a),
this corresponds to an additional increase in the pressure drop according to this
model of ≈0.5 kPa. Furthermore, the total pressure is recovered at the upstream
edge of the wedge in the simulations, which is not the case in the experiments.
This latter aspect accounts for an additional pressure loss of approximately 2.8 kPa.
Combined, the model estimates a deviation in the pressure loss of approximately
3.3 kPa, relying entirely on inviscid and steady-state assumptions. It can be assumed
that under unsteady conditions, the pressure drop due to cavitation is larger, as,
intermittently, cavitating regions including detaching cloudy structures may reach a
much larger extent, causing a higher level of blockage in the channel. Regarding the
simplifications in the derivations, most notably the assumption of two-dimensional
stationary flow and neglect of viscous losses in the tunnel, this corresponds reasonably
well with the observed difference of 6 kPa shown in table 6 between the predicted
and experimental pressure losses.
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It is shown by this model that the present configuration generates a pressure
loss, even under inviscid assumptions. Furthermore, the pressure distribution on the
upstream shoulder of the wedge has a larger influence than the overestimation of the
cavity extent on the fact that the pressure loss in the computations is larger than that
in the experiments. Due to the employed inviscid flow model, the total pressure is
recovered at the upstream corner of the wedge and the bottom wall, which is not the
case in the experiments. Besides its influence on the overall pressure loss, this has
only limited influence on the system.

Appendix D. Upstream velocity
In order to assess the assumption of slip boundary conditions and their potential

effect on the cavitating region, the upstream velocity profile at x = −82 mm is
analysed in the following. For this purpose, figure 32 shows the profile of the
axial velocity component within the test section along the transverse direction at
mid-span. The velocity is normalised by the upstream velocity at position 1 as
u/u1 and the y-coordinate by the channel height as y/hch. The plot compares laser
Doppler velocimetry (LDV) measurements by Ganesh et al. (2016), including an
indication of the experimental uncertainty, with numerical predictions. Ganesh et al.
(2016) conducted two sets of measurements, i.e. in the bulk and, with a higher
spatial resolution, in the near-wall region. The two sets do not match exactly in the
overlapping region 0.02 6 y/hch 6 0.06, which is attributed to uncertainties in the
measurements. The difference in the measured velocity, however, amounts to .2 %,
and can thus be regarded as negligible. The numerical data included in figure 32
encompass the inviscid computations discussed in the remainder of this paper, as well
as the viscous but incompressible RANS computation conducted with ANSYS CFX,
introduced in appendix C. The RANS represents steady single-phase computations,
while the inviscid computations are transient and include phase change. Results of
the latter thus are time-averaged. The presence of cavitation developing downstream
of the wedge apex does not influence the investigated upstream velocity profile, as
can be seen from the visualisation.

In the bulk, very good agreement with the references is found, with both numerical
predictions being within the experimental error range. The viscous computations show
a slightly higher velocity compared with the inviscid simulation. This is due to the
displacement effect of the boundary layer while keeping the total mass flux through
the velocity inlet boundary condition identical. With a deviation of .1.5 % between
the predictions, this effect is, however, negligible. The RANS computations exhibit
good agreement with the experimental references also in the near-wall region. As
expected from the employed slip boundary condition, the inviscid simulation shows
no near-wall viscous layer. However, the differences are restricted to a region of less
than 2 % of the channel height. Due to the subsequent acceleration of the flow on the
convergent part of the wedge, the boundary layer is expected to be even thinner when
reaching the sharp wedge apex.

From this investigation, it is concluded that incoming near-wall viscous layers
do not have a significant influence on the sheet cavity, and that the assumptions
of inviscid flow and slip boundary conditions in the two-phase computations are
acceptable.

Appendix E. Grid convergence
Figure 33 shows the time evolution of the total amount of vapour volume in the

complete domain, Vα=
∫
Ω
α dV , together with an indication of the temporal mean, Vα,
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FIGURE 32. (Colour online) Validation of the upstream velocity profile at x =
−82 mm. Comparison between experiments by Ganesh et al. (2016) (data from direct
communication with H. Ganesh; measurements in the bulk, black, and near-wall profile,
grey, including experimental uncertainty) and numerical predictions (compressible inviscid
simulation, red solid line, and incompressible viscous simulation, red dashed line).
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FIGURE 33. (Colour online) The time evolution of the integral vapour content Vα ,
predicted on different grid levels (lvl0, blue; lvl1, red; lvl2, yellow), including the
respective time average (- - - -).

for all three grid levels lvl0, lvl1 and lvl2. Compared with the two finer grid levels, the
mean vapour volume predicted on lvl0 is larger, and the dynamics differs noticeably.
In contrast, grid levels lvl1 and lvl2 yield nearly the same mean integral vapour
volume and also show comparable time evolutions. With 〈 • 〉z denoting averaging in
the spanwise direction, figure 34 shows the mean void fraction 〈α〉z and the RMS
of the vapour fluctuations 〈α′α′〉1/2z . In agreement with the above findings for Vα,
the spatial extent of the mean vapour structures, figure 34(a–c), is largest on lvl0.
Moreover, the RMS level of vapour fluctuations, figure 34(d–f ), predicted on lvl0 is
higher compared with the two finer grid levels. On the other hand, the shape and
extent of 〈α〉z and 〈α′α′〉1/2z are almost identical for grids lvl1 and lvl2.

Furthermore, the three grid levels are analysed with regard to the dominant
frequencies present in the flow. For this purpose, Welch’s method for estimating
the spectral density is applied to the operating-point-defining quantities u1, p1, p2 at
locations 1 and 2, as well as the pressure pPD and local void fraction αPD at probing
position PD. The signals are sampled with a time resolution as given in table 4 and
then linearly interpolated on a constant time step of 2× 10−6 s (lvl0), and 1× 10−6 s
(lvl1 and lvl2). The spectra are estimated using Hanning window segments with equal
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FIGURE 34. (Colour online) Grid convergence of (a–c) time-averaged void fraction field
〈α〉z and (d–f ) time-averaged RMS of void fraction field 〈α′α′〉1/2z . Comparison between
numerical prediction on (a,d) lvl0, (b,e) lvl1 and (c, f ) lvl2.
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FIGURE 35. (Colour online) Frequency spectra of time signals of (a) upstream velocity
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local void fraction at PD. Comparison of numerical prediction on different grid levels
(lvl0, blue; lvl1, red; lvl2, yellow).

window length in a time domain of 0.2 s and 50 % overlap between subsequent
segments. The resulting spectra are given in figure 35.

Signals recorded in the vicinity of the wedge, namely p1, pPD and αPD , exhibit a
dominant low frequency f1 on all three grid levels. This frequency can be identified
as the shedding frequency of the sheet cavity. For lvl0, f lvl0

1 ≈ 11.4 Hz, which is lower
than on the two finer grids. This in accordance with the larger extent of the sheet
cavity on this grid level, as seen above. For lvl1 and lvl2, the computed shedding
frequencies are in excellent agreement, with f lvl1

1 ≈ 19.1 Hz ≈ f lvl2
1 . The dominant
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frequencies for the signals of u1 and p2 also agree for lvl1 and lvl2. In contrast, grid
lvl0 shows discrepancies both in the dominant frequencies as well as in the integral
power of the spectrum, indicating that the cavity dynamics is not sufficiently resolved
on this level.

Minor deviations in the spectral power can be observed also between lvl1 and lvl2.
This is associated with a higher level of fragmentation of vapour structures on finer
grid levels when using a formally inviscid modelling approach. This fragmentation
leads to a grid dependence of peak pressures and cavity collapse rates, which in turn
affects the level of recorded pressure fluctuations and thus spectra; see the in-depth
discussion by Mihatsch et al. (2015). As seen from figure 35, this does not alter the
predicted low-frequency shedding of the sheet cavity. This mechanism is governed by
the intrinsic instability of the cavity and the occurrence of the condensation shock
phenomenon, which is of primary interest for the current paper.

It should be noted that when utilising an inviscid approach, classical grid
convergence cannot be expected, since no viscous limiting length scale exists. From
this study, we conclude that lvl2 is grid-converged with respect to the integral length
scales of the flow and the global dynamics of the system.
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