
Extracting information from free-text aircraft repair notes

BENOIT FARLEY
Institute for Information Technology, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada

(Received November 10, 2000;Accepted December 5, 2000!

Abstract

For every problem mentioned by crew members in an aircraft log book, an associated repair action note is entered in the
same log book by a maintenance technician after the problem has been handled. These hand-written repair notes,
subsequently transcribed into a database, give an account of the actions undertaken by the technicians to fix the
problems. Written in a free-text format with peculiar linguistic characteristics, including many arbitrary abbreviations
and missing auxiliaries, they contain valuable information that can be used for decision support methods such as
case-based reasoning. We use natural language techniques in our information extraction system to analyze the structure
and contents of these notes in order to determine the pieces of equipment involved in a repair and what was done to
them. Lexical information and domain knowledge are extracted from an electronic version of the illustrated parts
catalog for the particular airplane, and are used at different stages of the process, from the morpholexical analysis to the
evaluation of the semantic expression generated by the syntactical analyzer.

Keywords: Aircraft Maintenance; Free-Text; Information Extraction; Natural Language; Semantic Interpretation

1. INTRODUCTION

When an aircraft is held on the ground for repair, time is of
major importance. If a malfunction has been detected, it is
crucial to rapidly identify the source of the problem and to
make the repair. The defective parts may have to be re-
placed, and replacement parts must be readily available.
With the objective of minimizing repair and maintenance
time, the Integrated Diagnostic System~IDS! has been de-
veloped at the National Research Council of Canada~NRC!
in collaboration with Air Canada~Wylie et al., 1997!. This
system monitors every message transmitted from the air-
plane’s computers to the ground, sorts them into clusters—
each representing a probable specific problem, and outputs
for each problem-related cluster a diagnosis in terms of
probable causes along with suggestions on repair actions.
All this is done while the airplane is still in the air, which
saves troubleshooting time on the ground to determine the
source of the problem. It also saves on the repair time since
the parts involved in the suggested repair may be identified,
ordered, and received before the airplane arrives. Part of
the IDS diagnosis reasoning, including causes and repair

suggestions, is based on a huge set of rules, automatically
extracted from an electronic version of the manufacturer’s
troubleshooting manual.

To improve diagnosis performance, the system will rely
on a set of cases, where observed symptoms and repair
actions along with the repair’s results are paired together.
That information can be found in the hand-written free-text
notes of the airplane’s log book where the crew write down
their observations about any problem or malfunction they
are aware of, and where the technicians write down what
they did to fix the problem. Each problem-related entry of
the log book is called a “snag.” The snags are ultimately
transcribed into a database along with supplementary infor-
mation such as the airplane’s identification. As a first step
toward the automation of the case creation process, we have
been applying natural language processing techniques,
namely grammatical analysis and knowledge-based seman-
tic interpretation evaluation, to the free-text repair action
notes ~FTRAN! of the snags in order to identify which
parts were involved in the repair and what was done to
them.

This paper describes the implementation of SNAGIE~Snag
Information Extractor!, our natural-language-based infor-
mation extraction system for extracting useful information
from free-text aircraft repair actions notes~see Farley, 1999,
for an overview of the concepts!. In the first part of this

Reprint requests to: Benoit Farley, Institute for Information Technol-
ogy, National Research Council of Canada, Montreal Road-M50, Ottawa,
Ontario, K1A 0R6, Canada. E-mail: Benoit.Farley@nrc.ca

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~2001!, 15, 295–305. Printed in the USA.
Copyright © 2001 Cambridge University Press 0890-0604001 $12.50

295

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

paper, we describe the linguistic characteristics and pecu-
liarities of the FTRANs. In the second part, we describe the
various modules of the implementation of SNAGIE.

2. THE LANGUAGE OF THE REPAIR NOTES

The FTRANs are written by maintenance technicians, with
conciseness as a goal, and the assumption that whoever
reads them will understand. This care for conciseness trans-
lates at two linguistic levels:lexical andsyntactical. At the
lexical level, numerous abbreviations are used. Abbrevia-
tions are words from which certain letters, assumingly un-
necessary for their recognition, have been removed. They
account for approximately 13% of all the words in a corpus
of 884 notes that we randomly selected. Some words are
more or less consistently abbreviated throughout the notes,
whereas for many others, the abbreviated forms are many
and seemingly arbitrary. Most of the abbreviated words are
easily recognizable, but for some of them, one has to take
into account the context of the phrase to decipher them:
“VLV” for “valve,” “CHKD” for “checked,” “S 0V” for “ser-
viceable.” Along with the abbreviations, one can also find
approximately 14% acronyms. Acronyms are lexical items
generally agreed upon in the community and formed by the
initial letters of a few words, like “FADEC” for “Full Au-
thority Digital Engine Control.” The head item of those
words is most often a noun and consequently, acronyms are
effectively used as nouns: they are used where a noun would
be used, and are often marked with the plural “s.”

One must also consider the typographical errors and the
misspellings, which can be found in close to 17% of the
“TEST” notes. Wrong characters, for example, “EMG” in-
stead of “ENG” for “ENGINE”; inverted characters, for
example, “VLAVE” instead of “VALVE”; characters in ex-
cess, for example, “SSERV” and “SER5V” instead of
“SERV” for “SERVICEABLE”; skipped characters, for ex-
ample, “RESITANCE” instead of “RESISTANCE” are ex-
amples of typographical errors. As for misspellings, one
can find “IGNITER” versus “IGNITOR,” “EVEDENCE”
versus “EVIDENCE,” “FLAGED” versus “FLAGGED,” and
many others. We can also find examples of a few consecu-
tive words glued together, instead of being separated by
spaces, as in “CALLUPPAGE” for “CALL UP PAGE,” and
examples of words which have inserted signs, as in “RE-
CALL,” “FURTH-ER,” and “CHG;D” for “CHANGED.”

At the syntactical level, things are worse. Whole catego-
ries of words are consistently missing. For example, one
cannot find any of the articles “THE” and “A”~or “AN” !.
In a great number of sentences, the auxiliary verb between
the subject and the past participle of the verb is not present.
Similarly, the predicative verb “TO BE” is most often left
out betwen the subject and the predicate. For example, “#2
EIU CHANGED” must be read as “~The! #2 EIU ~has
been! CHANGED”; also, “FADEC PWR BACK” reads as
“ ~The! FADEC POWER~is! BACK.” Normally those words

would be there if the notes were written grammatically or
spoken. In a fair proportion of notes, the subject of the
sentence is omitted, likely because it is clear that the sub-
ject is the technician responsible for the repair. All this
results in grammatical structures different from what is
considered grammatical English. Table 1 summarizes the
different grammatical sentence structures found in the test
notes, after delimiting thoses sentences by hand. A noun
phrase is a group of at least one word, a noun, with op-
tional modifiers, like an article, one or more adjectives,
noun premodifiers, and so forth. An adjectival phrase is a
group of at least one word, an adjective, with optional
modifiers, like an adverb, or a postpositioned preposi-
tional phrase. A prepositional phrase is merely a noun phrase
introduced by a preposition. A verb phrase is a group of
words the head of which is a verb, accompanied by ad-
verbs, auxiliaries, and complements.

Another characteristic is the deficient or absent punctu-
ation between sentences. For example, in the following par-
tial note: “FADEC PWR BACK FADEC 2B CLASS 1
MESS. ON UPPER ECAM,” there are really 2 sentences,
with no sign to tell the end of the first one from the begin-
ning of the second, which should read as: “~The! FADEC
POWER ~is! BACK ~.^end of sentence&! ~A! FADEC 2B
CLASS 1 MESSAGE~is! ON ~the! UPPER ECAM.” Ac-
tually, this problem in discriminating the sentences is made
more challenging by an inconsistent and incoherent punc-
tuation scheme. Many signs are used in many different ways
that vary greatly from what we are accustomed to seeing
and differ from one note to another. For example, one can

Table 1. Proportional distribution of the propositional
structures in a test set of FTRANs

Sentence structures

% of
total

sentences

Noun phrase1 Passive verb phrase
ex.: “ignition lead b changed”

33.94%

Noun phrase1 Adjectival phrase
ex.: “anti ice valves operation normal”

5.74%

Noun phrase1 Prepositional phrase
ex.: “13 psi min allowable pressure within limits
as per aom 01-70-08”

1.8%

Active verb1 noun0prepositional0adjectival phrase
ex.: “replaced tank drain valve”

21.96%

Adjectival phrase
ex.: “normal as per amm”

12.11%

Simple noun phrase0Substantive
ex.: “ground run”

9.85%

Negative noun phrase
ex.: “no faults”

6.2%

Prepositional phrases
ex.: “as per above comments”

0.5%

Noun phrase1 Active verb phrase~complete!
ex.: “motoring test and ground run check serviceable”

7.87%

296 B. Farley

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

find in the same note the sign “-” used as a sentence delim-
iter; a few words farther, the sign “.” has been put at the end
of the acronym “CFDS” as if it were an abbreviation by
truncation; and a few words farther again, the sign “.” is
used as a sentence delimiter. This is shown in the following
example: “#1 EIU RESET -̂end of sentence& CFDS. FA-
DEC TESTED - ^end of sentence& NIL FAULT. ^end of
sentence& #1 THRUST REVERSER OPERATION NOR-
MAL ON BOTH CHANNELS.” In another note, the sign
“-” is used like quotes: “#2 ENG -B- IGNITION U0S
#110198.”

3. SNAGIE

The goal of our system is to extract from free-text notes
very specific information, namely the pieces of equipment
involved in a repair job and the actions upon those parts.
In that, it closely relates to the field of Information Extrac-
tion ~IE!. Effectively, the goal of an IE system is to iden-
tify references to the concepts of interest for a particular
domain in an unrestricted text. Each domain needs a set of
text extraction rules based on the vocabulary, semantic
classes, and writing style peculiar to the domain and the
target concepts~Soderland, 1996!. There are basically two
approaches to designing an information extraction system:
the knowledge-engineering approach and the learning ap-
proach~Appelt, 1999!. In the knowledge-engineering ap-
proach, a system developer, familiar with such systems,
with natural language processing techniques, and with the
domain, writes the text extraction rules based on his analy-
sis of sample texts. On the other hand, in an opposite and

complementary way, the learning approach requires that a
domain expert annotate a large corpus of sample texts to
mark the specific concepts of interest, and some machine-
learning process automatically creates the text extraction
rules from the annotated training text. This last approach
was applied, for example, to a problem similar to ours in
the medical world~Lehnert et al., 1994!. Insofar as we
could not have the help of a domain expert for annotating
training text, our approach is clearly a knowledge-
engineering approach. Moreover, the availability of elec-
tronic versions of domain-specific manuals and the many
promising possibilities that this offered us in terms of
sources of lexical and domain knowledge favored that
approach. A thorough analysis of our corpus of close to
1000 repair notes showed recurrent grammatical patterns
~cf. Table 1!, which indicated the possibility of using nat-
ural language processing techniques to treat them and ex-
tract the desired information.

Because of the many peculiarities found in our analysis,
such as the multiple meanings of the punctuation signs and
of the words and the multiple possibilities for abbrevia-
tions, we chose Prolog~Sterling & Shapiro, 1994! as the
programming language for our implementation, due to its
ability to deal with heuristics, its backtracking facility, and
its definite-clause grammar paradigm. Several modules, such
as the lexicon, the morpholexical analyzer, and the gram-
mar, are derived from the Alvey Natural Language Toolkit
~ANLT; Carroll et al., 1991; Grover et al., 1993!. Some
have been merely translated from Alvey’s original lan-
guage, Lisp, to Prolog, whereas others have been directly
created in Prolog. Figure 1 shows the functional diagram of

Fig. 1. Functional diagram of SNAGIE.

Extracting information from free-text notes 297

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

SNAGIE, with the four main modules: the lexicon, the
knowledge base, the natural language processor, and the
semantic interpretation evaluator.

The snags are stored as records in a database. Apart from
the repair note, which is fed as input to the natural language
processor, snag records have several fields which may be of
help at the interpretation evaluation stage, namely: the snag’s
identifier, the FIN~Functional Item Number! aircraft num-
ber, the ATA~Air Transport Association! system and sub-
system codes, the snag’s description~the problem!, the
“continued from” and the “continued on” snag numbers,
the repair note, the UNI~Unit Numerical Index! code of the
part removed, and the UNI code of the part put back in.

3.1. The lexicon

The complete snag database contains 62,523 snags, and the
snags’ repair notes contain a total of 35,506 terms. After
removing numbers, single letters, prepositions, acronyms,
abbreviations, and misspellings to keep only nouns, adjec-
tives, and verbs, we ended up with approximately 15,000
different words, ranging from common nouns and verbs
like “GO,” “DO,” “FIND,” “NOISE,” and so on, to domain-
specific words like “VALVE,” “ACTUATOR,” and “EN-
GINE.” To parse the notes, make sense of them, and extract
information about pieces of equipment and actions upon
them, our system must know about the words and the terms
they are composed of.

Our lexicon comprises three modules: the words, the ac-
ronyms, and the abbreviations. The word lexicon’s main
source is the ANLT dictionary, a substantial English dictio-
nary derived semiautomatically with little manual interven-
tion from the machine-readable version of a conventional
learner’s dictionary~Boguraev et al., 1987; Carroll & Grover

1989! that we translated from Lisp to Prolog and aug-
mented with a few properties. It contains 28,240 nouns,
23,273 verbs, 9073 adjectives, 1069 adverbs, 1008 prepo-
sitions, modal and auxiliary verbs, pronouns, and various
function words. A word may have several entries, one for
each of its typical usages. Each entry is defined as a set of
properties in the form of attribute-value pairs, like@plu,-# to
indicate the singular and@per,3# to indicate the third person
of a verb or a pronoun, supplemented with a term or an
expression that is going to be used as its semantic expres-
sion. Actually, the lexicon consists of a set of source lexical
files, where each entry is declared with a minimal set of
properties. Each source file is then compiled, where each
entry’s set of properties is augmented with properties spe-
cific to the word’s category and default values. Finally, the
compiled lexical files are indexed for an easy and fast ac-
cess to the words. Figure 2 shows an example of the source
and compiled versions of the lexical entry of the word
“VALVE” from the Alvey dictionary.

The basic acronym lexicon contains 458 acronyms from
the Airbus General Information Manual, another 126 acro-
nyms from the Airbus Minimum Equipment List Manual,
and 70 acronyms from other Aerospatiale sources including
Air Canada. The very great majority of the acronyms stand
for a sequence of a few words, the main one being a noun
generally in the final position of the sequence, like “HPV,”
which stands for “High Pressure Valve” and designates a
valve. A few acronyms, though, do not follow that pattern,
like “AOA,” which stands for “Angle Of Attack”: the head
noun is not in the final position; or like “D0A” for “digital 0
analog,” which is an adjective. So, in every acronym entry,
we marked the head word, and when the acronym is looked
up in the dictionary, it is returned with the properties of the
head word’s entry in the word lexicon. For example, the

Fig. 2. Source and compiled lexical entry of the noun “VALVE.”

298 B. Farley

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

acronym “HPV” is returned with the properties of the noun
“VALVE,” with this difference, that the attribute “acr” now
has the value “1.”

Abbreviations represent a complex problem. When an
abbreviation is encountered in a repair note, the abbrevi-
ated word must be determined. The person who sees an
abbreviation in a repair note recognizes the word immedi-
ately because he knows about the domain, and the language
and the words of that domain. For example, “VLV” will
immediately read “valve.” Similarly, when “CHGD” is en-
countered while reading “IGNITION LEAD B CHGD,” it
will be read as “changed” even though the term might also
be the abbreviation of “charged” or “challenged,” because
he knows the word “change,” because he knows that an
ignition lead is a part and that it can be “changed,” and
because he has met the word “change” often in that context.
The key here is knowledge and context: the recognition of
the word is done through contextual knowledge.

The repair notes of the complete database of 62,523
snags do provide us with a contextual source of lexical
knowledge. For example, in regard of “VLV,” if we look
up every term starting with “V” and containing the letters
“L” and “V” in that order, we find 18 terms, like “VLAVE,”
“VALVA,” “VALVE,” “VLVE,” “VALVES,” and so on,
with a total of 2304 appearances in the whole set of notes.
Of those 18 terms, 1 is known in the word lexicon,
“VALVE” ~“VALVES” is recognized as the plural of
“VALVE” by the morpholexical analyzer!, which appears
2215 times, that is, it accounts for 96% of all appearances
of the 18 terms. This makes “VALVE” a very good candi-
date for “VLV.” Similarly, 37 terms start with the letter
“C” and contain the letters “H,” “G,” and “D” in that
order. One of them, “CHANGED,” is recognized in our
word lexicon, and this one accounts for 89% of all appear-
ances of the 37 terms. This makes “CHANGED” a very
good candidate for “CHGD.” We say “candidate” because
we cannot be sure at that moment. Once the whole process
has been completed, when the semantic evaluation has
been done, a valid candidate will have resulted in the iden-
tification of some part and an action upon it. In that case,
the abbreviations and the words they were assumed to
abbreviate are added to the abbreviation lexicon.

TheAlvey dictionary is general purpose and does not con-
tain certain words specific to the domain, specially nouns des-
ignating pieces of equipment.Anumber of words in the repair
notes are not contained in it, like “actuator”~586 appear-
ances in all the repair notes!, “connector”~272 appearanc-
es!, “transceiver”~37 appearances!, and “transducer”~193
appearances!, all words more or less common in the repair
notes,whichmeanshundredsofnotes that couldnotbe treated.

The Airbus Illustrated Parts Catalog~IPC! is a catalog of
all the parts of the particular type of aircrafts where the
snags originated. It details every system and subsystem,
installation and assembly. We will come back to the IPC in
Section 3.2. The IPC also contains a list of all the part
numbers and for each part number, a keyword designating

the part. This is the PNR~Part Number! file. Logically,
from this list, it is thus possible to draw a list of all the
nouns that name parts. However, the keywords are seldom
full words. Most of them are arbitrary abbreviations. To
recover the full words, each part number was looked for in
the IPC to pick the first item with that part number, and the
textual description of that item was analyzed to find a word
corresponding to the keyword associated with the part num-
ber. For example, the part number “30001-01-111,” associ-
ated with the keyword “ACCLRMTR,” can be found in the
IPC with the description “ACCELEROMETER-THREE
AXES.” The word to the left of the hyphen in the part
descriptions is generally the main noun describing the part;
the words to the right further describe the part. In this ex-
ample, we have a three-axis accelerometer, that is, an ac-
celerometer further determined with the characteristic of
having “three axes.” We compare the keyword with the
main noun, here “ACCLRMTR,” with “ACCELEROM-
ETER,” looking for a clear correspondence between the
two terms. Then, on the basis that the part descriptions
generally contain full words and not abbreviations, the main
word, here “ACCELEROMETER,” is looked up in the dic-
tionary as a noun. If it cannot be found, it is added as a
noun. It may also happen that the keyword is an acronym,
found as the main word of the part description, with its
development on the right side, like “ACP-AUDIO CON-
TROL PANEL.” In such cases, if the acronym cannot be
found in the acronym lexicon, it is added; the head noun
will be marked later, as was done for the other acronyms.
This way, 350 new nouns, 38 new acronyms, and 341 ab-
breviations were found. Those abbreviations may be of lit-
tle use, though, because of their arbitrary nature.

3.2. The knowledge base

Since we are looking for the piece of equipment involved in
a repair and what was done to it, we need to know how
those parts are referred to, that is, we need to know the
nouns used to designate the parts. In our processing of the
PNR file for collecting new words unknown to our general
lexicon ~discussed in the preceding section!, every main
noun and acronym associated with a part number and its
keyword is compiled into a list of part names. This way,
when a repair note says “REPLACED VALVE,” its inter-
pretation evaluation may establish immediately that the topic
“valve” is a piece of equipment. But we need more than
that. In the following repair note, “REPLACED TANK
DRAIN VALVE,” we have a cluster of three nouns, of which
the grammar of English says that the last one is the head
noun~we are talking here of a “valve”! and the others de-
termine it. But how do they determine it? Does “TANK”
modify and determine “DRAIN,” or does it modify and
determine “VALVE”? The answer to this problem lies in
the knowledge of the domain.

As mentioned in Section 3.1, the IPC describes the com-
ponent makeup of an airplane. Each item is described with

Extracting information from free-text notes 299

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

its part number, the vendor number, a textual description,
the number of such items in the assembly, the FINs~Func-
tional Item Number, from Airbus! of each copy of the item
in the assembly, its hierarchical rank as a component of
some other item or assembly, the range of A320 models
where the part can be found, and when applicable, informa-
tion about the interchangeability of the part with other part
numbers. From the SGML version of the IPC, we have
created a DB2 relational database of about 1.4 Gb, 392
tables for the 32,768 items of the IPC, the 51,319 part num-
bers of the PNR file, and their data.

The IPC’s items have textual descriptions, and the sub-
systems and the systems are described within sections and
chapters, which have titles. So, effectively, we have here a
textual hierarchical representation of the aircrafts. The words
of a compound noun can be looked for in the items’ de-
scriptions and, going up the hierarchy, the sections’ and
chapters’ titles; the locations where the words are found
can tell us how the words relate to one another. As an
example of this, we will follow the evaluation of the inter-
pretation of “TANK DRAIN VALVE” in the repair note
“REPLACED TANK DRAIN VALVE,” where “TANK”
determines “VALVE.” In agreement with the English gram-
mar, in compound-noun constructions, the second to the
last noun always modifies and determines the last noun;
the first thing then is to look for items the description’s
main word of which is “VALVE” and that relate somehow
to “DRAIN,” with this term either in the description itself
of the items as a secondary word, or in the description of
higher-rank items, or even in the title of the section or the
title of the chapter where the items are described. We do
not need to span the whole IPC since the value of the
“ATA System” field of the snag, 38, tells us in which
chapter of the IPC to search the items. So, in chapter 38
~WATER0WASTE-GENERAL!, there are 28 valves men-
tioned with a “drain” relationship. Of these 28 items, 2 are
found to be components of the immediate higher-rank item
the textual description of which is “WASTE DISPOSAL
LINE-WASTE WATER TANK,Z170” found on Airbus A320
aircrafts 201 to 234, and two others as components of the
immediate higher-rank item with the same description but
for Airbus A319 aircrafts 251 to 285. According to the
general structure of IPC item descriptions, the higher-rank
item can be told as “the waste disposal LINE of the waste
water TANK,” and so, we have a connection between
“TANK” and “VALVE” because in the end, the valve is a
component of the tank. Since the “Aircraft Number” field
of the snag has the value “206,” only the two first men-
tioned are relevant, and since the two are described as
mutually interchangeable, we end up with one item only.

3.3. The natural language processor

Prior to the syntactical analysis, the repair note is passed
through the morpholexical analyzer, where the terms of the
note, that is, its words and signs, are determined. Words are

first examined one at a time by a morphological analyzer
for specific morphological markers, for example the noun
plural “s” or the verb past “ed.” They are then looked up in
the lexicon to find out, if they exist, what kind of words
they are: nouns, adjectives, verbs, adverbs, prepositions,
articles, and so forth or acronyms or abbreviations. It is
possible for a word to be more than one lexical item and so,
all possibilities are returned. The morphological analyzer
has been built according to the description of the spelling
rules of the ANLT morphological analyzer~Ritchie et al.
1987!. For example, the word “TESTS” is analyzed as
“TEST” and “1S.” When looked up in the lexicon, “TEST”
returns as a noun and as a verb, “1S” returns as a noun
suffix and as a verb suffix, and their combinations result in
the two following possibilities: a plural noun and a third
person present tense verb.

Once all the words have been determined, they are fed to
the syntactical analyzer, a bottom-up chart parser based on
that proposed by Gazdar and Mellish~1989! and adapted to
run with our grammar formalism and implementation. The
parser looks for specific associations betwen the lexical
items according to the grammar. The grammar describes
the syntactical sentence structures of the repair notes as
shown in Table 1, and substructures like noun phrases, verb
phrases, and so forth. It is based on the ANLT grammar
formalism, which is similar to that of the Generalized Phrase
Structure Grammar~GPSG; Gazdar et al., 1985!, details of
which are discussed in Boguraev et al.~1988!, Briscoe et al.
~1987a, 1987b!, and Carroll et al.~1991!. Each constituent
of a rule, the mother as well as the sisters, consists of a list
of attribute-value properties, following the same paradigm
as the property lists of the lexical entries. Figure 3 shows an
example of a rule in our system as it is written in the gram-
mar file. Like the lexical entries, only those properties which
are necessary to express the rule are specified. Other prop-
erties will be assigned by default during the grammar
compilation.

This rule recognizes noun phrases like “#1 EIU.” It says
that a term~cat 1! with the property@sign,nbr# ~this is how
the sign “#” is defined in the lexicon!, followed by a term
~cat 2!, which is syntactically an intermediate-level adjec-
tive structure with the property@num,1#, which is what a
mere number like “1” is, followed by~cat 3!, an intermediate-
level noun structure, which an acronym like “EIU” can be,
is to be considered a numerically premodified intermediate-
level noun structure~cat 0!.

In addition to checking for valid grammatical associa-
tions, the syntactical analyzer generates an analysis tree
representing the hierarchical links between the syntactical
structures. In fact, because words may have different mean-
ings with several lexical entries, and because a set of words
may associate in different ways for different interpreta-
tions, there may be more than one analysis tree. In the case
of the example “#1 EIU,” our grammar generates two dif-
ferent analyses: in the first one, “EIU” is a noun premodi-
fied by a numeric identifier, as parsed by the rule shown in

300 B. Farley

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

Figure 3; in the second one, “EIU” is a noun premodified
by a special type of definite noun phrase which has the
form of a numeric identifier, for a pattern like “#1” in our
context may stand by itself for some undefined but definite
object. Figure 4 shows the syntactical analysis tree of the
first interpretation. Each node is the name of a grammar
rule and defines a grammatical structure level, from the top
level to the words.

Each lexical item in the lexicon is defined with an ex-
pression, most often a symbol, that stands as its semantic
interpretation. Likewise, each grammar contains a semantic
expression, in the form of a lambda-calculus~lc; Dowty
et al., 1981! logical expression which is the combination of
the semanticlc expressions of its syntactical constituents.
That lc expression conveys how the structure defined by
the grammar rule must be interpreted semantically. As the
syntactical analyzer parses a repair note, thelc expressions
of each rule’s constituents are combined by means of rule-
to-rule lc translations. Eventually, an unscoped event-
based~Davidson, 1967; Parsons, 1990; Alshawi, 1992!
logical form is generated which is the representation of the

compositional semantics of the input sentence. For exam-
ple, @lambda,@x#,@and,@3,x#,@ident,2,x### is the lc expres-
sion of the rule N10IDNUM2_PRE01 ~cf. Fig. 3! that the
rule will contribute to the overall semantic expression. The
“2” is replaced by the semantic expression of the second
element~the numerical adjective, cat 2! and the “3” by the
semantic expression of the third element~the noun, cat 3!.
Figure 5 shows the semantic expression of the first inter-
pretation of the noun phrase “#1 EIU.” This expression
says that there is a definite object X12 which has the prop-
erties of being a “EIU” and of being identified by the value
“1.”

3.4. The semantic interpretation evaluator

The semantic expressions generated by the syntactical an-
alyzer for a repair note are passed to the semantic interpre-
tation evaluator. This is where the information for which

Fig. 3. Example of a grammar rule as declared in the grammar file.

Fig. 4. Syntactical analysis tree of one interpretation of the noun phrase
“#1 EIU.”

Fig. 5. Semantic expression of one interpretation of the noun phrase “#1
EIU.”

Extracting information from free-text notes 301

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

we are looking is to be determined. The meaning of thelc
expressions is assessed by evaluating the validity, or cor-
rectness, of their assumptions. Figure 6 shows the semantic
expression of the sentence “#1 EIU RESET” with the first
interpretation of the noun phrase “#1 EIU” as described in
Section 3.3.

This expression can be paraphrased as the following de-
clarative statement: “There is some entity X11, such that there
is the definite single object X12 which is a EIU and which is
identified by the value 1, such that there is some event E3,
such that the event is a RESETTING by the entity X11 of the
object X12,” or in other words: “Someone has reset the eiu
no. 1.”The semantic evaluator goes down this expression and
tries to assess its meaning by determining the objects. When
an expression like@the, @x12#, @and, @sg,x12#, @eiu,x12#,
@ident,1,x12##, ^ . . .&# is encountered, each part is evaluated.
For thestructure@the,̂variable&,^properties&,^facts&#, one looks
to find one or more definite objects with the given properties
for which the facts have been stated. In our example, the eval-
uation of@eiu,x12# finds out from the list of part names that
“eiu” names a piece of equipment, and retrieves from the IPC
database, the airplane’s equipment list, all the items which
are EIUs in the appropriate system0chapter. Two items are
returned. But their part numbers are defined as interchange-
able, so one can keep only one of them. The evaluation of
@ident,1,x12#checks the items’propertiesandkeepsonly those
parts which can be identified by the number 1, that is, only
those parts for which there are more than one in the assembly
or installation.The item that was retained is described as there

being two copies of it, and so it is still retained. Finally, the
interpretation of@sg,x12# in the context of the formula@the,
. . .# says that there should be only one such object left, which
is the case. Thus we have identified an item from the evalu-
ation of thêproperties& part of the@the, . . .# expression, which
gives it a meaning. Now, thêfacts& part must be evaluated.
Since “reset” is a transitive verb with the part “eiu” as its
direct object, we can infer that this is an action done upon its
object. And so, we have a full meaning for the semantic ex-
pression of the repair note. We have found a piece of equip-
ment and an action upon it. The data related to that piece of
equipment in the IPC database gives us all the information
we want about that piece. If anything could not be assessed,
the interpretation is put aside as meaningless and the next
one, if any, is examined. Tables 2 and 3 summarize the pro-
cessing steps and results from the input of the repair note “#1
EIU RESET” to the output of the sought information.

4. PORTABILITY

Like any knowledge-engineered system, SNAGIE is some-
what customized to the target problem. Our approach is
based on knowledge engineering, and in order to apply our
method to another domain, some knowledge-engineering
work would have to be done to adapt some of the modules
to that domain. The first criteria of success for portability
would be that the new target problem be of the same na-
ture as ours. Our approach will work more easily if ap-
plied to repair notes dealing with parts and maintenance
actions on those parts. For example, we are looking at the
possibility of applying our approach to the extraction of
information from maintenance notes for a fleet of trucks
and shovels in a huge open-pit mine in the north of Can-
ada. Linguistically speaking, the same grammar rules could
be used, probably with some adjustments. From the lexical
point of view, domain-specific vocabulary and tokens with
peculiar structures have to be identified and defined. For
example, every domain has its own types of alphanumeri-
cal identifiers and idiosyncracies that have to be invento-
ried, and recognition rules created for them. Another
important criteria is the availability of electronically for-
matted documents, troubleshooting manuals, parts cata-
logues, and so forth, where knowledge of the domain can
be found and used. In our approach, those constitute an es-
sential source of domain-specific vocabulary, part names, part
numbers, semantic classification of the domain concepts, and
thevarious relationshipsbetween them.Fromasemanticpoint,
the semantic expressions generated by the parser are domain
independent and the semantic evaluation process over those
expressions is also domain independent, to a certain extent
because at the ground level, the domain concepts and their
relationships are necessarily expressed differently from one
domain to the other and from one document to the other.What
is important here is the methodology, that is, to identify clearly
the knowledge-engineering tasks and steps, the sources of
knowledge and their processing.

Fig. 6. Semantic expression of the sentence “#1 EIU RESET.”

302 B. Farley

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

5. CONCLUSION

The repair notes from aircraft maintenance technicians are
written in a fairly telegraphic format in an English-like lan-
guage where several types of words are missing: auxiliary
verbs, articles, and so on, where the lack of punctuation
makes it very difficult to tell sentences apart, where the
abbreviations and the acronyms, not to mention the typo-
graphical errors, make for more than 30% of all the words
on average, and where idiosyncracies are frequent. Yet a
deep analysis of several hundred notes shows recurrent pat-
terns which can be described in a grammatical form, allow-
ing the notes to be parsed. The parsing rewrites a note into
a set of unambiguous semantic expressions, the meaning of
which can be assessed by finding relationships between the
objects they suggest the existence of and the airplane parts
described in a relational database, and by inferring actions
upon them from the lexical and syntactical properties of the
verbs.

We have succinctly described the type of language of the
repair notes, and presented the four main modules of
SNAGIE, our natural language information extraction sys-
tem for processing those notes: the lexicon, the knowledge
base, the syntactical analyzer, and finally the semantic in-
terpretation evaluator. Through the description of each mod-
ule, we have shown with examples how the free-text notes

are processed, from the morpholexical analysis to the se-
mantic expression’s evaluation, with an aim at finding what
pieces of equipment were involved in a repair and what was
done to them. We have developed a basic implementation
of the four modules which demonstrates the feasibility of
our approach.

Still, much work remains to be done. The lexicon is fairly
complete. Yet we intend to process a number of other doc-
uments, namely the SGML version of the Trouble Shooting
Manual of Airbus and the Unit Numerical Index file from
Air Canada, with an aim at discovering other nouns for part
names, and links between UNI numbers and Airbus part
numbers. We also intend to add a facility that will pick the
unknown words during the morpholexical analysis and save
the words and all the information pertaining to the repair
notes where they were found, such that after the off-line
definition of those words by the system manager, the notes
will be analyzed again. The morphological analyzer and the
parser are fully operational. The grammar remains to be
completed. For the moment, it contains the set of rules that
are needed for treating the kinds of sentences given as ex-
amples throughout this article. As for the knowledge base,
we have to complete an index table that links the main
nouns of the items’ descriptions in the IPC to secondary
words and to the chapters’ and sections’ titles. The imple-
mentation of the semantic interpretation evaluator is a con-

Table 2. Summary of the syntactic analysis of the sentence “#1 EIU RESET”

Extracting information from free-text notes 303

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

tinuing process, along with that of the grammar, and its
capabilities will grow as we add new grammar rules with
new semantic expressions.

Avalidation process has also to be implemented. This pro-
cess will be twofold. When the system modules have been
developed at a more operational level, a test group of several
hundred notes will be fed to our system and the results eval-
uated by the knowledge engineer and system developer man-
ually.This is part of the knowledge-engineering process.That
will allow us to pinpoint where the system fails and misses
and where to bring corrections. When the system is decided
operational, with an acceptable percentage of failures and
misses, the resulting extracted information will have to be
validated by domain experts before it is used in cases for di-
agnosis and repair suggestions.

REFERENCES

Alshawi, H., Ed.~1992!. The core language engine. Cambridge, MA: MIT
Press.

Appelt, D.E. ~1999!. Introduction to information extraction.AI-
Communications 12(3), 161–172.

Boguraev, B., Briscoe, E., Carroll, J., Carter, D., & Grover, C.~1987!. The
derivation of a grammatically indexed lexicon from the Longman Dic-

tionary of Contemporary English.Proc. 25th Annual Meeting of the
Association for Computational Linguistics, 193–200.

Boguraev, B., Carroll, J., Briscoe, E., & Grover, C.~1988!. Software sup-
port for practical grammar development.Proc. 12th International Con-
ference of Computational Linguistics, 54–58.

Briscoe, E., Grover, C., Boguraev, B., & Carroll, J.~1987a!. Feature de-
faults, propagation and reentrancy. InCategories, Polymorphism and
Unification ~Klein, E., & van Benthem, J., Eds.!, pp. 19–34. Centre for
Cognitive Science, University of Edinburgh.

Briscoe, E., Grover, C., Boguraev, B., & Carroll, J.~1987b!. A formalism
and environment for the development of a large grammar of English.
Proc. 10th International Joint Conference on Artificial Intelligence,
703–708.

Carroll, J., Briscoe, E., & Grover, C.~1991!. A Development Environment
for Large Natural Language Grammars. Technical Report No. 233,
Computer Laboratory, University of Cambridge, UK.

Carroll, J., & Grover, C.~1989!. The derivation of a large computational
lexicon for English from LDOCE. InComputational Lexicography for
Natural Language Processing~Boguraev, B., & Briscoe, E., Eds.!,
pp. 117–134. Harlow, UK: Longman.

Davidson, D.~1967!. The logical form of action sentences. InThe Logic of
Decision and Action~Rescher, N., Ed.!, pp. 81–95. Pittsburgh, PA:
University of Pittsburgh Press.

Dowty, D., Wall, R., & Peters, S.~1981!. Introduction to Montague Se-
mantics. Dordrecht, Germany: Reidel.

Farley, B.~1999!. From free-text repair action message to automated case
generation.Proc. 1999 AAAI Spring Symposium: AI in Equipment Main-
tenance Service and Support. Technical Report SS-99-04, Menlo Park,
CA: AAAI Press.

Gazdar, G., Klein, E., Pullum, G., & Sag, I.~1985!. Generalized Phrase
Structure Grammar. Oxford, UK: Blackwell.

Table 3. Summary of the semantics and results for the sentence “#1 EIU
RESET”

304 B. Farley

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

Gazdar, G., & Mellish, C.~1989!. Natural Language Processing in Pro-
log. An Introduction to Computational Linguistics. Addison-Wesley,
Reading, Massachusetts.

Grover, C., Carroll, J., & Briscoe, E.~1993!. The Alvey Natural Language
Tools Grammar~4th release!. Technical Report 284, Computer Labo-
ratory, Cambridge University, UK.

Lehnert, W., Soderland, S., Aronow, D., Feng F., & Shmueli, A.~1994!.
Inductive text classification for medical applications.Journal for Ex-
perimental and Theoretical Artificial Intelligence (JETAI) 7(1), 49–80.

Parsons, T.~1990!. Events in the Semantics of English: A Study in Sub-
atomic Semantics. Cambridge, MA: MIT Press.

Ritchie, G., Black, A., Pulman, S., & Russell, G.~1987!. The Edinburgh0
Cambridge Morphological Analyser and Dictionary System. Software
Paper No. 10, Department of Artificial Intelligence, University of
Edinburgh.

Soderland, S.G.~1996!. CRYSTAL: Learning Domain-specific Text Analy-
sis Rules. Technical Report TC-43, Center for Intelligent Information
Retrieval, University of Massachusetts.

Sterling, L., & Shapiro, E.~1994!. The Art of Prolog. Cambridge, MA:
MIT Press.

Wylie, R., Orchard, R., Halasz, M., & Dubé, F.~1997!. IDS: Improving

aircraft fleet maintenance.Proc. 14th National Conference on Artifi-
cial Intelligence and Innovative Applications of Artificial Intelligence
(IAAI-97), 1078–1085.

Benoit Farley has a Master’s degree in Applied Sciences
from Université de Sherbrooke, Province of Québec, Can-
ada. As a research officer at the National Research Council
of Canada, he has worked successively in Computer As-
sisted Learning, on Natural Language Front Ends to Expert-
Tutoring Systems, on a Natural Language Interface to a
3-D visualization system, and in Natural Language Infor-
mation Extraction. One of his main interests lies in the
determination of information from diverse electronically
formatted documents, and its utilization in practical natural-
language-based systems.

Extracting information from free-text notes 305

https://doi.org/10.1017/S0890060401154041 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060401154041

