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The aim of this paper is to show that the spontaneous sliding of drops forming
from an interfacial instability on the surface of a wall-bounded fluid film is caused
by a symmetry-breaking secondary instability. As an example, we consider a water
film suspended from a ceiling that drains into drops due to the Rayleigh–Taylor
instability. Loss of symmetry is observed after the film has attained a quasi-steady
state, following the buckling of the thin residual film separating two drops, whereby
two extremely thin secondary troughs are generated. Instability emanates from these
secondary troughs, which are very sensitive to surface curvature perturbations because
drainage there is dominated by capillary pressure gradients. We have performed two
types of linear stability analysis. Firstly, applying the frozen-time approximation to the
quasi-steady base state and assuming exponential temporal growth, we have identified
a single, asymmetric, unstable eigenmode, constituting a concerted sliding motion of
the large drops and secondary troughs. Secondly, applying transient stability analysis
to the time-dependent base state, we have found that the latter is unstable at all times
after the residual film has buckled, and that localized pulses at the secondary troughs
are most effective in triggering the aforementioned sliding eigenmode. The onset of
sliding is controlled by the level of ambient noise, but, in the range studied, always
occurs in the quasi-steady regime of the base state. The sliding instability is also
observed in a very thin gas film underneath a liquid layer, which we have checked
for physical properties encountered underneath Leidenfrost drops. In contrast, adding
Marangoni stresses to the problem substantially modifies the draining mechanism and
can suppress the sliding instability.

Key words: capillary flows, instability, thin films

1. Introduction
It is known that large-amplitude humps forming from an interfacial instability

on the surface of a wall-bounded fluid film can spontaneously slide and break
the symmetry of the solution. This has been observed for drops on a liquid film
suspended from a ceiling (Glasner 2007), bubbles underneath a settling liquid droplet
(Lister, Morrison & Rallison 2006a) and collars on mucus films within pulmonary
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(a) (b)

Slip boundary

Slip boundary

FIGURE 1. Problem sketch and notations: x, y, h, D and Λ have been non-dimensionalized
with the average film thickness h0, so h̄=

∫ Λ
0 h dx/Λ= 1. The film spans Λ= 2

√
2 π/
√

Bo
with Bo = |ρ1 − ρ2| h2

0 g/σ , i.e. the most-amplified wavelength of the Rayleigh–Taylor
instability for a passive atmosphere. A slip boundary at y = D, with 1 � D � Λ,
mimics an unconfined outer phase. (a) Water film suspended from a ceiling: Bo= 0.134
(h0 = 1 mm, ρ1 = 998.2 kg m−3, ρ2 = 1.2 kg m−3, µ1 = 10−3 Pa s, µ2 = 1.8× 10−5 Pa s,
σ = 0.073 N m−1, D= 4); (b) gas film underneath a liquid layer with properties according
to experiments of Burton et al. (2012): Bo = 0.0016 (h0 = 100 µm, ρ1 = 0.47 kg m−3,
ρ2 = 958.4 kg m−3, µ1 = 1.8 × 10−5 Pa s, µ2 = 0.28 × 10−3 Pa s, σ = 0.059 N m−1,
D= 10).

capillaries (Dietze & Ruyer-Quil 2015). Lister et al. (2006a) have conjectured that
sliding results from an instability. This has prompted us to revisit the problem by
investigating the stability of the symmetrical nonlinear base state (Hammond 1983)
from which the sliding motion departs. We do this for the representative case of
a liquid film suspended from a ceiling subject to the Rayleigh–Taylor instability
(figure 1a). Several new contributions have come out of our stability analysis: (i) we
show that sliding results from a secondary instability of the nonlinear base state;
(ii) through a frozen-time analysis, we identify a single unstable, unsymmetrical,
exponentially growing eigenmode, that constitutes a concerted sliding motion of
large-amplitude humps and the residual film that separates them; (iii) we explain the
governing mechanism of the sliding instability, i.e. why there is a positive feedback
amplifying the aforementioned eigenmode; (iv) through transient stability analysis, we
show that the sliding eigenmode is most-effectively triggered by locally perturbing
the very thin secondary troughs which form on the residual film; and (v) that the
base state is unstable to such perturbations well before a quasi-steady state is reached
but that sliding is effectively observed only within this regime.

Basic features of the sliding instability are illustrated in figure 2, which depicts
the key stages in the evolution of a suspended water film (the orientation of the
graph is flipped vertically relative to figure 1a). After the initial development of
the Rayleigh–Taylor instability (figure 2a–c), the thin residual film in between
large drops flattens as it approaches the no-slip wall and then buckles, forming a
central secondary hump out of which fluid drains symmetrically into the drops, via
extremely thin secondary troughs (figure 2d–f and supplementary movie 1 available
at https://doi.org/10.1017/jfm.2018.724). This flow is maintained in the face of strong
viscous stresses by capillary pressure gradients associated with curvature variations
of the interface across the troughs. At this stage, the film’s evolution is quasi-steady
and its symmetry is closely linked to the shapes of the two secondary troughs, which
remain mutually symmetric for a very long time. Eventually, however, symmetry is
lost and the film begins to slide (figure 2g–i and supplementary movie 2). As will be
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FIGURE 2. Evolution of the suspended water film (figure 1a, Bo = 0.134) from an
unstable flat surface perturbed symmetrically at the wavelength Λ = 2

√
2 π/
√

Bo. The
orientation of the graphs is flipped vertically with respect to figure 1(a). Plus signs mark
the wall and the middle of the domain. Early on (a–c), growth of the Rayleigh–Taylor
instability is progressive. Then, it slows under the increasing influence of the wall, causing
the trough to flatten (d) and buckle (e). The resulting quasi-steady two-trough shape
( f ) spontaneously loses symmetry (g), causing the film to slide to the left (h,i). Two
supplementary movies, movie 1 and movie 2, show these evolution stages in action.

shown later, the asymmetry initially appears as a flattening and thinning of one trough
and simultaneous curving and thickening of the other. This creates a flow imbalance
within the secondary hump, more fluid is drained through the thicker trough, which
feeds back onto the shape of the film in a manner reinforcing the initial asymmetry.

From an energetic point of view, the primary instability guides the film from its
initial state toward a lower-energy static equilibrium state consisting of sinusoidal
drops separated by a zero-thickness film (Yiantsios & Higgins 1989; Lister et al.
2006b). To reach this state, the residual film in between drops needs to fully drain
through the secondary troughs. We have found that the total drainage rate is larger
when these troughs are unsymmetric, i.e. when one is thinner than the other. In the
face of viscous drag, it is easier for the fluid to drain through one thick trough rather
than two thin ones (figure 12). Thus, unsymmetric drainage is energetically favourable
over symmetric drainage, i.e. the lower-energy droplet state can be reached faster.
However, explaining the spontaneous emergence of this asymmetry and its evolution
into a concerted sliding motion requires a stability analysis.

We first focus on the simple case of a single fluid phase and use a combination of
numerical simulations and linear stability analyses to identify the essential ingredients
necessary for sliding. This insight allows us to anticipate other, more complex,
situations in which sliding should occur. At the same time, it also suggests ways to
suppress sliding. We pursue both these avenues: (i) we demonstrate that all features
of the sliding instability are retained in the case of a very thin gas film underneath a
liquid layer (figure 1b), assuming physical properties typically encountered underneath
Leidenfrost drops (Burton et al. 2012) but without accounting for evaporation. Such
drops are known to move autonomously even on flat surfaces (Ma, Liétor-Santos &
Burton 2015); (ii) we show that sliding can be suppressed by thermal Marangoni
stresses and we identify which ingredients of the instability mechanism this negates,
explaining why sliding does not occur in the traditional Marangoni problem (Boos &
Thess 1999; Oron 2000).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

72
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.724


114 G. F. Dietze, J. R. Picardo and R. Narayanan

To set our study in the context of previous research, we discuss four works in
particular. Yiantsios & Higgins (1989) considered a viscous fluid film underneath a
heavier fluid in the limit of Stokes flow. When an asymmetric initial perturbation
was applied to the flat-film base state, large differently sized humps produced by the
primary Rayleigh–Taylor instability were observed to slide along the wall, whereas,
when the initial perturbation was symmetrical, the film evolved toward a perfectly
symmetrical quasi-steady state. Based on the results of our study, this quasi-steady
state would ultimately have become unstable and slid if the simulation had been
continued. We have verified this with our own calculation and this finding contradicts
Yiantsios and Higgins, who believed that drops could not begin to slide from their
symmetrical initial conditions.

Lister et al. (2006b) observed liquid collars sliding on an annular fluid film coating
the outer surface of a cylinder of radius R and subject to the Plateau–Rayleigh
instability. A lubrication equation was obtained in the limit of a small film thickness
to tube radius ratio, in which case the mathematical description collapses to that
of a Rayleigh–Taylor problem. Simulations with this equation were performed on
a domain representing one half of a symmetrically perturbed film of wavelength Λ.
Symmetry conditions were imposed at the lateral boundaries of this domain. No
sliding was observed on short domains, i.e. when the wavelength Λ was lower or
equal to twice the cutoff wavelength Λc = 2πR of the primary instability. In that
case, which is the one we consider here, there is a single possible final equilibrium
state (Hammond 1983; Yiantsios & Higgins 1989) and sliding can only occur due
to a spontaneous loss of symmetry of the corresponding quasi-steady state. This was
precluded in the simulations of Lister et al. (2006b) because they used symmetrical
boundary conditions. On longer domains, i.e. when Λ > 2Λc, Lister et al. (2006b)
did observe sliding. This resulted from an asymmetric distribution of differently sized
humps emerging from the nonlinear evolution of the primary instability. These humps
had the freedom to move, because, for Λ > 2Λc, there exist an infinite number of
possible final states, which differ in terms of the number, volume and separation of
sinusoidal equilibrium humps (Yiantsios & Higgins 1989).

For very long domains, Lister et al. (2006b) found that a sliding hump can
repeatedly bounce back and forth between two neighbours pinned to the symmetric
domain boundaries. As the hump slides, it peels off the thin film lying in front
of it and re-deposits a thinner film at its trailing edge. It was shown that the film
thickness there obeys the Landau–Levich equation (Landau & Levich 1942), where
only variations of longitudinal curvature and radial viscous diffusion intervene.

In a companion paper, Lister et al. (2006a) applied their lubrication equation to
describe the drainage of a fluid film underneath a droplet settling toward a wall. In
particular, the authors report one simulation where a bubble forming underneath the
droplet spontaneously slides, and they deduce that this must result from an instability.

The fourth study is that of Glasner (2007), who used a lubrication equation to
simulate two-dimensional drops sliding on a liquid film suspended from a permeable
ceiling that continuously supplies additional fluid. In the case of multiple drops,
collisions occur and the author showed that these are always repulsive, confirming the
observations of Lister et al. (2006b). Most of Glasner’s simulations were started from
a nonlinear asymmetrical initial condition which, according to the author, guaranteed
the migration of droplets. However, in one simulation, the initial condition consisted
of a weak (unspecified) asymmetrical perturbation of the uniform film. Interestingly,
although slight asymmetry was present at the start, droplets slid only after a
quasi-steady seemingly symmetrical state had been reached (the above-mentioned
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simulation of Lister et al. (2006a) behaved the same way). This raises the question
whether the transient evolution toward a quasi-steady state is stable with respect to
sliding. We answer this question in the present manuscript by applying transient
stability analysis (Schmid 2007; Balestra, Brun & Gallaire 2016).

Glasner (2007) also introduced a reduced model to describe the dynamics of sliding
drops. This model consists of a drop in static equilibrium situated between two thin
films of uniform but different thickness, which are connected to the drop by so-called
internal layers. Based on a thought experiment, the author demonstrated that it is
energetically favourable for the drop to slide toward the thicker rather than toward the
thinner film. However, it remained to be shown whether a sliding drop is energetically
favourable over a purely symmetrical non-sliding evolution. Our current manuscript
provides this missing information by showing that drops slide as the result of a
secondary instability, drainage toward their final equilibrium state occurring quicker
than in a symmetric evolution.

We point out that observing sliding in a particular numerical experiment is not
the same as performing a linear stability analysis of the symmetrical base state from
which the sliding motion departs. A stability analysis allows the identification of
the most unstable among all possible perturbations. This perturbation maximizes
destabilizing versus stabilizing contributions and thus allows the identification of the
instability mechanism. Our frozen-time analysis has uncovered a single exponentially
growing sliding eigenmode and our transient analysis has shown that this mode is
most-effectively triggered by locally perturbing the secondary troughs.

We study the sliding instability with a long-wave model obtained in the framework
of the weighted residual integral boundary layer (WRIBL) method (Ruyer-Quil &
Manneville 2002). We use this model to simulate the evolution of an initially flat-film
surface subjected to an unstable symmetrical perturbation of wavelength Λ. We
distinguish two types of simulations. The first type represents the entire wavelength
Λ and a periodicity condition is imposed at the lateral boundaries of the domain. The
film is thus allowed to slide sideways as a whole, shifting its centre of gravity, but
nothing in the initial arrangement orients toward such an event. Sliding, if it occurs,
is triggered by numerical noise as the result of an instability. Such simulations allow
us to identify when symmetry is lost. The second type of simulation represents Λ/2
and symmetry conditions are imposed at the domain boundaries. This allows us to
produce a perfectly symmetrical base state, upon which we then perform a stability
analysis (after having mirrored the solution onto the full wavelength Λ).

Our WRIBL model in its full form accounts for inertia, longitudinal viscous
diffusion, and the interaction with an outer phase. By comparing results in the
limit of creeping flow with the full-model prediction, we show that inertia, although
affecting the early dynamics of the film, does not trigger sliding before a quasi-steady
state is reached and does not alter this state. The dominant physics of the sliding
instability can thus be treated in the framework of lubrication theory and we use an
appropriate simplified version of our model for most of the remaining manuscript.
We then revert back to the full model to treat the related problem of a gas film
underneath a much more viscous liquid layer (figure 1b), which we consider in § 8.
Throughout the manuscript, full model will be used to refer to the full form of the
WRIBL model, notwithstanding that this still constitutes an approximation of the
Navier–Stokes equations.

All our calculations concern films of either liquid water (figure 1a) or water vapour
(figure 1b). In both cases, the observed minimal film thickness upon sliding is at least
two orders of magnitude greater than the range of long-range van der Waals forces,
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which is of the order of ≈10 nm (Bonn 2009; Israelachvili 2011). Thus, sliding is
expected to occur before spinodal film rupture and the sliding instability ought to be
experimentally observable. Parameters for the studied cases, which are specified in the
caption of figure 1 and will remain unchanged throughout, are chosen accordingly.

Our manuscript is structured as follows. In § 2, we present the employed
mathematical models and introduce our scaling. We then focus on the problem of a
water film suspended from a ceiling (figure 1a). In § 3, we describe the kinematics
of the film evolution, from the linear stage of the primary instability, through the
nonlinear symmetrical quasi-steady state, up to the onset of sliding. In § 4, we
discuss the draining mechanisms leading up to the quasi-steady state. In § 5, we
perform a frozen-time linear stability analysis of this quasi-steady state and, in § 6,
we deconstruct the mechanism of the sliding instability. In § 7, we investigate the
stability of the evolving base state using transient stability analysis, and determine the
sensitivity of the sliding onset to noise. In § 8, we show that the sliding instability
also occurs in a gas film underneath a liquid (figure 1b), assuming physical properties
typically encountered underneath Leidenfrost drops (Burton et al. 2012). Conversely,
we demonstrate in § 9 that adding thermal Marangoni stresses can suppress the sliding
instability mechanism. Conclusions are drawn in § 10.

2. Mathematical models
We consider the two configurations in figures 1(a) and 1(b), where both phases

consist of Newtonian fluids with constant density ρi and viscosity µi (the subscript
i = 1, 2 differentiates between the two phases), and where g designates gravitational
acceleration. The surface tension σ will be assumed constant except in § 9, where we
will study the additional effect of thermal Marangoni stresses. We assume that the
(dimensionless) film thickness h is small compared to the (dimensionless) wavelength
Λ and use the weighted residual integral boundary layer (WRIBL) model of Dietze
& Ruyer-Quil (2013), which accounts for inertia, longitudinal viscous diffusion and
inter-phase coupling. In dimensionless form, this reads:

∂th=−∂xq1, qtot(t)= q1 + q2, (2.1a,b)

Re{Si∂tqi + Fijqi∂xqj +Gijqiqj∂xh} = ±(1−Πρ)∂xh− Bo−1∂x[κ] + (Cj1 −ΠµCj2)qj

+ Jj qj(∂xh)2 +Kj∂xqj∂xh+ Ljqj∂xxh+Mj∂xxqj,

(2.1c)

where i and j are to be permuted through the phase indices 1 and 2 using Einstein
summation. In (2.1), h designates the film thickness, qi the phase-specific flow
rate per unit width and κ = ∂xxh the interfacial curvature (at second order in the
long-wave expansion). Following Yiantsios & Higgins (1989), we have used for
non-dimensionalization the length scale L = h0, corresponding to the average film
thickness, the velocity scale U =|1ρ|gh2

0/µ1 with 1ρ=ρ1−ρ2, obtained by balancing
viscous drag and gravity, and the time scale T = L/U = µ1/|1ρ|/g/h0. This choice
yields the Reynolds number Re=Uh0|1ρ|/µ1 and the Bond number Bo= |1ρ|gh2

0/σ ,
which are completed by the density and viscosity ratios Πρ = ρ2/ρ1 and Πµ=µ2/µ1.
At places, we will also relate the dimensionless horizontal coordinate x to the
dimensionless wavelength Λ.

In (2.1c), the sign of the gravity term (first term on the right-hand side) is positive
for the suspended film (figure 1a) and negative for the gas film (figure 1b). The
coefficients Fij, Gij, Cij, Sj, Jj, Kj and Mj are known functions of h and the domain
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height D. Our coefficients are slightly different than in Dietze & Ruyer-Quil (2013), as
we impose a slip boundary at y=D (∂yu|D= v|D= 0) instead of a wall (the coefficient
definitions have been provided in a Mathematicar file in the supplementary material).
The slip boundary is sufficiently far to prevent influencing the large humps produced
by the primary instability, i.e. D� 1, and sufficiently close to satisfy the long-wave
approximation in both layers, i.e. D� Λ. We have verified for both the suspended
film (figure 1a, D= 4= 0.16Λ) and the gas film (figure 1b, D= 10= 0.04Λ) that the
quasi-steady state reached prior to sliding is virtually insensitive to D. In this sense,
our simulations mimic an unconfined outer phase.

We solve (2.1) numerically, using second-order central differences for spatial and
the Crank–Nicolson method for time discretization, and linearizing nonlinear terms
around the old time step. In terms of boundary conditions, we distinguish two
cases: (i) periodic simulations on a domain of length Λ, where ∂xih|x=0 = ∂xih|x=Λ,
∂xiq|x=0 = ∂xiq|x=Λ and the film is free to slide, and (ii) symmetric simulations on a
domain of length Λ/2, where ∂xh= ∂xxxh= 0 (implying q= 0) at x= 0 and Λ/2, in
order to capture the non-sliding quasi-steady solution. The dimensionless wavelength
Λ is set to the most-amplified wavelength of the Rayleigh–Taylor instability for a
passive outer phase Λ =

√
2Λc, where Λc = 2π/

√
Bo is the corresponding cutoff

wavelength. This quantity is convenient because it is known in closed form and, for
all our simulations, it differs by less than 0.5 per cent from the actual most-amplified
wavelength (i.e. for an active outer phase). We will loosely refer to

√
2Λc as the

most-amplified wavelength of the Rayleigh–Taylor instability.
For the suspended water film, which we mainly focus on, we have used the

full model (2.1) as a reference to identify those ingredients that are sufficient for
the sliding instability, i.e. gravity, surface tension and cross-wise (y-direction) viscous
diffusion. Retaining only these ingredients in (2.1), we obtain the following simplified
model:

∂th=−∂xq, (2.2a)

q=
1
3

[
h3∂xh+

1
Bo

h3∂xxxh
]
, (2.2b)

where the outer phase is neglected (Πρ = Πµ = 0) and thus the phase index has
been dropped. The Bond number reduces to Bo = ρ1gh2

0/σ and remains the sole
dimensionless group. We will use (2.2) for our stability analysis and most of the
discussions in §§ 3–7. We point out that it is the same as the lubrication equation in
Lister et al. (2006b).

In § 9, we will study the effect of additional thermal Marangoni stresses due to
heating the suspended film from the bounding wall, assuming ∂Tσ < 0. To account
for this, equation (2.2b) needs to be extended:

q=
1
3

[
h3∂xh+

1
Bo

h3∂xxxh
]
+

1
2

Ma
Bo

h2∂xθ |h, (2.3)

where Ma = ∂Tσ(Tw − T∞)/σ designates a modified Marangoni number, θ |h =
(T|h − Tw)/(Tw − T∞) = −Bi h/(1 + Bi h) the dimensionless film surface temperature,
Bi = H h0/k1 the Biot number and Tw and T∞ the wall and ambient temperature.
The Biot number contains the interfacial heat transfer coefficient H and the thermal
conductivity k1. We point out that (2.3) was previously used in Alexeev & Oron
(2007), where the film was cooled from the wall, and thus Marangoni stresses were
stabilizing (Ma > 0) in terms of the primary instability, as opposed to our case (we
will set Ma=−0.2).
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In § 8, we will show that a very thin gas film underneath a (much more viscous)
liquid layer is also prone to the sliding instability. For this configuration, we will use
the full model (2.1) in order to account for viscous coupling with the outer phase.

All our simulations were started from a symmetric initial condition:

h|t=0 = 1+ ε cos(2πx/Λ), (2.4)

with a very small relative perturbation amplitude ε = 0.0009. When using the full
model (2.1), the initial flow rate q|t=0 was computed from the inertialess limit
(2.2b) using (2.4). Our initial condition ensures that sliding, if it occurs, does so
spontaneously.

3. Kinematics of the sliding instability

For the time being, we focus on the configuration of a suspended water film of
average thickness h0= 1 mm and Bo= 0.134 which is surrounded by air, as illustrated
in figure 1(a) (see caption for other properties). We have simulated the evolution
of this film with the full (2.1) and simplified (2.2) models, starting from the fully
symmetrical initial condition (2.4) (perturbation amplitude ε= 0.0009), using periodic
boundary conditions on a domain spanning the wavelength Λ = 2

√
2π/
√

Bo = 24.2
and discretized with 1001 grid points. Figure 3 shows how the film evolves from the
symmetrical initial state to an asymmetrical sliding state through four characteristic
stages, which are also discernible in figure 2. In contrast to figure 1(a), gravity points
upward in figures 2 and 3.

Figures 3(a) and 3(b) represent time traces of the position xmin and thickness hmin of
the film surface minimum. Different symbols refer to different evolution stages, which
are illustrated through surface profiles in figures 3(c)–3( f ). Data were obtained with
the inertialess model (2.2), except for the dashed lines in figures 3(a) and 3(b), which
correspond to the full model (2.1), and the red line in figure 3(b), which was obtained
from a simulation of the full Navier–Stokes equations (detailed at the end of § 3). For
convenience, we have normalized x with the domain length Λ. The large values of t
in figures 3(a) and 3(b) occur because sliding sets in very late in terms of the typical
time scales of viscous capillary–gravity flows (Yiantsios & Higgins 1989; Lister et al.
2006b; Glasner 2007).

The first three evolution stages in figure 3 have been discussed in detail by
Yiantsios & Higgins (1989) and so we recap them only briefly. In the first stage
(crosses in figures 3a and 3b), growth of the surface perturbation is progressive and
the corresponding spatial profiles (figure 3c) exhibit a single trough that increasingly
thins while remaining in the middle of the domain. During the second stage (filled
circles in figures 3a and 3b), the film surface around the trough flattens and then
buckles upon further approaching the wall, forming two secondary troughs enclosing
a secondary hump in the middle (figure 3d, where the range of the abscissa has
been reduced). In figures 3(a) and 3(b), it is the left secondary trough that is
tracked from the buckling event onwards. This secondary trough (and its twin
on the other side) moves outward and increasingly thins. At the same time, the
secondary hump in the middle grows more pronounced. This evolution continues for
some time but increasingly slows down, until the film reaches a quasi-steady state
(diamonds in figures 3a and 3b), constituting the third evolution stage. Corresponding
surface profiles in figure 3(e) change only very slightly over a considerable time
interval. In particular, the locations of the secondary troughs remain virtually fixed.
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FIGURE 3. (Colour online) Kinematics of the sliding sequence for the suspended water
film (see figure 1a): h0 = 1 mm, Bo= 0.134, Λ= 24.2. In (a,b), dashed lines correspond
to the full model (2.1), solid lines to (2.2), and the red solid line in (b) to a simulation
of the full Navier–Stokes equations (discussed at the end of § 3). Symbols refer to
characteristic stages in (c–f ), where profiles evolve from dashed to dot–dashed lines. The
horizontal coordinate x has been related to the (dimensionless) domain length Λ. (a) Time
trace of the trough position (left trough after buckling); (b) film thickness at trough
position corresponding to (a); (c) surface profiles during first stage: progressive growth;
(d) flattening and buckling of the film surface; (e) quasi-steady two-trough shape (see
also supplementary movie 1); ( f ) loss of symmetry and sliding (see also supplementary
movie 2).

The supplementary movie 1 shows the first three evolution stages in action (the
ordinate has been scaled logarithmically to highlight the secondary troughs).

In the fourth evolution stage (open circles in figures 3a and 3b), the quasi-steady
buckled-film surface spontaneously loses its symmetry, causing the entire film to slide
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to the left (figure 3f ). The supplementary movie 2 shows these events in action (the
ordinate has again been scaled logarithmically). The speed of the sliding motion, based
on the displacement of the right trough in figure 3( f ), is roughly c = 1.2 × 10−4

(corresponding to a dimensional value of 1.2 mm s−1).
We now focus on the loss of symmetry with the help of figure 4 by comparing

our periodic simulation (dashed and dot–dot–dashed lines in figures 4a–4c) with
a symmetric simulation on a domain spanning Λ/2 (solid lines in figures 4a–4c).
Although the symmetric simulation represents only one of the secondary troughs, we
have produced the other by mirroring the simulation data to the other side. Comparing
the two solutions in figure 4(a), we conclude that symmetry is lost at t ≈ 7 × 104,
when the periodic simulation departs from the symmetric one in that both the left
and right secondary troughs move to the left. At the same time, the film thickness
at the left secondary trough starts to decrease, while it increases at the right trough
(figure 4b). During the leftward migration of the secondary troughs, the film is peeled
off on their right and deposited on their left, in accordance with the motion described
by Lister et al. (2006b). This is comparable to a track vehicle putting down its chains
while moving forward.

At the left trough, deposition occurs faster than peeling and thus the trough
becomes increasingly flat, whereas the opposite occurs at the right trough, which
becomes increasingly curved. Quantitative evidence of this is shown in figure 4(c),
which plots time traces of the surface curvature ∂xxh at the two troughs. Comparing
the periodic with the symmetric data after the film surface has buckled (unshaded
region), shows that, at the onset of sliding (t ≈ 7 × 104), the curvature at the left
secondary trough (dot–dot–dashed line) suddenly decreases, i.e. the trough flattens,
while it increases at the right secondary trough (dashed line). By contrast, ∂xxh in the
symmetric simulation (solid line) never ceases to increase, as the film converges to
its final equilibrium state shown in figure 4(e).

To verify that the simplified model (2.2) does not preclude any dominant physical
effects, we return to figures 3(a) and 3(b), where we have also included results
obtained with the full model (2.1), represented with dashed lines. We see that
both calculations evolve exactly to the same quasi-steady state (diamonds on solid
line). After that, sliding sets in slightly later for the full-model calculation, but the
ensuing evolution is the same. However, before reaching the quasi-steady regime,
the full model produces a number of oscillations that consist in the secondary
troughs periodically moving toward and away from each other (see figure 5). These
oscillations result from inertia, but they do not cause any loss of symmetry before
the quasi-steady state has been reached.

We have validated our full model (2.1) with a direct numerical simulation (DNS)
based on the full Navier–Stokes equations (diamonds in figure 5 and red line in
figure 3b). The DNS was performed with the finite-volume code Gerris (Popinet 2009),
using periodic boundary conditions and adaptive grid refinement. Grid refinement was
limited to a minimum cell size of 1x = 1y = 0.004. As a result, the DNS data in
figure 3(b) can be trusted as long as hmin > 0.016, when the thickness of the secondary
troughs is resolved by at least 4 grid points. We have continued our DNS past this
point and, although the accuracy of the ensuing data is open to discussion, they do
exhibit the same sliding behaviour as the full model (dashed line in figure 3b), albeit
earlier.

In figures 2–4, sliding occurs in leftward direction, but the film is equally likely
to slide to the right. The direction in a given computational run is decided by
uncontrollable numerical noise, which perturbs the unstable film and sets off the
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FIGURE 4. Symmetry loss of the quasi-steady state in figure 3(e). Panels (a-c) compare
the periodic simulation (discontinuous lines) to a symmetric simulation on a domain
spanning Λ/2 (solid lines). Dashed lines correspond to the right secondary trough
and dot–dot–dashed lines to the left secondary trough. Open circles mark time points
highlighted in figure 3(a). (a) Trough positions; (b) film thickness at the troughs;
(c) surface curvature ∂xxh at the troughs; (d) film surface in the two-trough region
immediately after symmetry loss (t = 6.8 × 104 until t = 10.5 × 104); (e) symmetric
simulation showing evolution to final equilibrium state (4.1), represented as a dashed line.
The supplementary movie 2 shows the loss of symmetry and sliding motion in action.

sliding motion. We will see later, from our linear stability analysis, just what sort of
perturbation in this noise is needed for the sliding to occur and how sensitive the
sliding onset is with respect to the noise level.

4. Draining mechanisms

In the absence of noisy perturbations, the buckled film in figure 3(e) would evolve
in a perfectly symmetrical manner until attaining its final equilibrium state. In our
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FIGURE 5. Inertia-driven oscillations of the buckled film in figure 3. Solid lines represent
data obtained from the periodic simulation of the full model (2.1) and diamonds represent
a corresponding DNS of the Navier–Stokes equations using the code Gerris (Popinet 2009).
(a) Time traces of the secondary trough positions (DNS data are only shown at two time
points); (b) surface profiles at the two characteristic time points marked by diamonds in
figure 5(a).

case, where Λ< 2Λc, this final state consists of two sinusoidal drop halves spanning
the cutoff wavelength Λc = 2π/

√
Bo of the Rayleigh–Taylor instability and separated

by a zero-thickness film segment (Hammond 1983). It is obtained by setting (2.2b) to
zero and the left half of this symmetric solution is given by:

h=
Λ

Λc
[1+ cos(2πx/Λc)] for 0 6 x 6Λc/2, (4.1a)

h= 0 for Λc/2 6 x 6Λ/2. (4.1b)

The final state is represented with a blue line in figures 6(a), 6(b), 6(e) and 6( f ).
We use figure 6 to discuss the draining mechanisms driving evolution toward this
state. It represents surface plots and profiles of the driving pressure gradient at four
characteristic time points, as obtained from the symmetric simulation of (2.2) for the
conditions in figure 3. In the surface plots 6(a), 6(b), 6(e) and 6( f ), the red line
represents the initial condition (2.4). In the corresponding pressure gradient plots
(figure 6c,d,g,h), solid lines represent the full pressure gradient ∂xp, dot–dot–dashed
lines the contribution of gravity ∂xp|g, and dashed lines the capillary contribution
∂xp|σ according to:

∂xp=−∂xh︸ ︷︷ ︸
∂xp|g

−
1

Bo
∂xxxh︸ ︷︷ ︸
−∂xp|σ

. (4.2)

The driving pressure gradient ∂xp is always counteracted by viscous drag, which
moderates the action of ∂xp on the flow rate through the term h3/3:

q=−
h3

3
∂xp=

h3

3
∂xh︸ ︷︷ ︸

q|g

+
h3

3
1

Bo
∂xxxh︸ ︷︷ ︸

q|σ

. (4.3)
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FIGURE 6. (Colour online) Symmetric simulation of the suspended water film (figure 1a):
h0 = 1 mm, Bo = 0.134. Capillary and gravity-induced drainage driving the film from
the initial condition to the final equilibrium state. (a,b,e, f ) Surface profiles at four
characteristic time points (t = 427, 641, 1068, 6.4 × 104). Solid lines: solution of (2.2)
using symmetry conditions on a domain of length Λ/2 (data were mirrored onto the
full-wavelength domain); red and blue lines: initial condition (2.4) and final equilibrium
state (4.1); (c,d,g,h) profiles of the pressure gradient. Solid line: full pressure gradient
(4.2); dot–dot–dashed: gravity-induced contribution ∂xp|g; dashed: capillary contribution
∂xp|σ . Open circles in (e–h) highlight loci of the secondary troughs.
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In order for the weakly deformed film in figure 6(a) to reach its final equilibrium
state, the liquid contained underneath the trough region needs to be fully drained
to the main hump. During the first evolution stage (figure 6a), the pressure gradient
for this is provided by gravity, which symmetrically drives liquid outward from
underneath the initial single trough (dot–dot–dashed line in figure 6c), while capillarity
counteracts this drainage (dashed line in figure 6c).

When the trough becomes sufficiently thin (figure 6b), viscous drag causes the
film surface there to flatten (Yiantsios & Higgins 1989), and this attenuates the
gravity-induced flow rate contribution q|g = (h3/3)∂xh. Gravity alone can no longer
drain sufficient liquid from underneath the trough to accommodate the growth of the
main hump, where viscous drag is much weaker and the initial balance of power is
maintained (figure 6d). At the same time, flattening of the trough region increases
|∂xxxh| such that the capillary flow rate contribution q|σ = (h3/3/Bo)∂xxxh now helps
and even dominates drainage there.

As the trough becomes even thinner (figure 6e), capillary drainage needs to further
increase, in order to continue draining sufficient liquid to the main hump, and this
eventually requires the film surface to buckle (Yiantsios & Higgins 1989). Drainage
in the region between the newly formed secondary troughs is now entirely driven by
capillarity, the sign of ∂xp|g = −∂xh having changed due to the inversion of surface
slope (figure 6g).

In figure 6( f ), showing the quasi-steady state, the film has almost attained its final
equilibrium state (blue line). In particular, the width of the main hump has reached
the cutoff wavelength of the Rayleigh–Taylor instability Λc = 2π/

√
Bo and thus the

position of the secondary troughs is fixed from now on. To fully reach the final state,
all liquid remaining in the secondary hump needs to be drained into the main hump
through the very thin secondary troughs. This drainage is entirely driven by capillarity,
as ∂xp and ∂xp|σ are virtually identical around the troughs (dashed and solid lines in
figure 6h).

Moreover, the pressure gradient is considerable only around the secondary troughs,
where it exhibits large-magnitude pulses (figure 6h). By contrast, ∂xp is almost exactly
zero within the main hump and thus the latter is virtually in static equilibrium. This
results from the slowness of the drag-limited draining process in the trough region,
allowing the main hump to always relax toward equilibrium (Hammond 1983). In fact,
the main hump closely follows the sinusoidal profile given by (4.1a) (blue line in
figure 6f ), which is the neutral mode of the Rayleigh–Taylor instability at the cutoff
wavelength Λc. It is thus neutrally stable toward a pure translation and stable toward
any other volume-preserving perturbation and can be displaced with minimal energy
input.

Within the secondary hump, ∂xp is also very small but its magnitude increases
noticeably toward the secondary troughs (figure 6h). According to Hammond (1983),
the secondary hump continually adjusts to the short sinusoidal equilibrium shape
known as a lobe (Lister et al. 2006a). However, such a lobe exhibits a finite slope at
its extremities and thus cannot connect smoothly to the secondary troughs, as opposed
to the equilibrium solution of the main hump (4.1a), the slope of which decreases to
zero at the troughs. Also, the pressure within the lobe is higher than that within the
main hump (Lister et al. 2006b). Therefore, lobes eventually drain out completely
and the final state of the film cannot include lobes (Yiantsios & Higgins 1989).

Further change of the quasi-steady state in figure 6( f ) is driven by capillary pressure
gradients ∂xp|σ = −(1/Bo)∂xxxh, which are governed by surface curvature variations.
When symmetry is imposed, they drive the film toward its final equilibrium state
by symmetrically draining the remaining liquid from underneath the secondary hump,
otherwise they drive the sliding motion of the film (Lister et al. 2006a).
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5. Frozen-time linear stability analysis
We have shown in figures 4(a)–4(c) that the quasi-steady buckled-film surface

obtained from our periodic simulation loses symmetry roughly at t = 7 × 104, when
the left secondary trough starts to thin and flatten and the right trough starts to thicken
and curve with respect to a fully symmetric simulation. Figure 7(a) represents surface
profiles corresponding to this time, as obtained from the periodic (crosses) and
symmetric (solid line) simulation, respectively (symmetric data were mirrored onto
the full length of the periodic domain). We have checked that both simulations have
fully converged in terms of grid resolution (1001 grid points per wavelength Λ).

We now perform a linear stability analysis upon the perfectly symmetric surface
profile in figure 7(a) (solid line). We designate this profile as base profile and denote
it H(x), neglecting its temporal evolution, which is extremely slow. This amounts to
a so-called frozen-time approach. Next, we perturb the base profile infinitesimally,
introducing the linear film thickness perturbation h∗(x, t), which is assumed to grow
exponentially:

h(x, t)=H(x)+ h∗(x, t)=H(x)+ ĥ(x) exp(ηt). (5.1)

Upon inserting (5.1) into (2.2) and linearizing in terms of ĥ, an eigenvalue problem
with eigenvalue η and eigenfunction ĥ is obtained:

ηĥ=−∂x

[
H3

3

(
∂xĥ+

1
Bo
∂xxxĥ

)
+H2

(
∂xH +

1
Bo
∂xxxH

)
ĥ
]
. (5.2)

We choose a Fourier series ansatz with N = 100 for the eigenfunction ĥ:

ĥ(x)=
N∑

j=1

Aj cos( j2πx/Λ)+ Bj sin( j2πx/Λ), (5.3)

and solve the eigenvalue problem with the Galerkin approach (Boyd 1989). We then
identify the most-unstable (greatest η) eigenfunctions for two perturbation types:
(i) asymmetric perturbations, when Aj = 0; and (ii) symmetric perturbations, when
Bj = 0.

Figure 7(b) represents the thus obtained eigenfunctions (solid black lines). The
asymmetric eigenfunction is associated with a positive eigenvalue η = 1.8 × 10−4.
This proves that the film is subject to a symmetry-breaking secondary instability,
secondary in the sense that it occurs after the primary Rayleigh–Taylor instability
has developed. We call this instability sliding instability. It is associated with a very
particular eigenfunction. In fact, the unsymmetric eigenfunction in figure 7(b) is the
sole unstable unsymmetric eigenmode. Moreover, it is the sole unstable eigenmode
altogether, as all symmetric eigenfunctions are stable, the greatest symmetric
eigenvalue being negative η=−1.9× 10−5 (figure 7b).

Crosses in figure 7(b) represent the actual perturbation associated with the loss of
symmetry of the periodic simulation. This is easily obtained by taking the difference
between the periodic and symmetric surface profiles in figure 7(a). Good agreement in
figure 7(b) between the actual perturbation (crosses) and the asymmetric eigenfunction
(solid black line) validates both our frozen-time decomposition (5.1) and our Fourier
series ansatz (5.3). Validity of the frozen-time approach is further confirmed by the
fact that our greatest eigenvalue η= 1.8× 10−4 is an order of magnitude greater than
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FIGURE 7. (Colour online) Frozen-time linear stability analysis of the suspended water
film (h0 = 1 mm, Bo = 0.134) at the time of symmetry loss in figure 4(a): t = 7 × 104.
Open circles mark loci of secondary troughs. (a) Solid line: base state H(x) obtained
from symmetric simulation on domain of length Λ/2 (501 grid points) and mirrored
onto full-wavelength domain; crosses: profile from periodic simulation on domain of
length Λ (1001 grid points) after loss of symmetry; (b) linear stability results. Solid
lines: most-unstable asymmetric (Aj = 0) and symmetric (Bj = 0) eigenfunctions ĥ(x) (5.3)
obtained from linear stability analysis of the perfectly symmetric profile in (a) (solid
line there); asterisks: actual perturbation associated with symmetry loss, i.e. difference
between periodic and symmetric profiles in (a); red-dashed line: perturbation resulting
from pure translation of base profile H(x) with speed c, i.e. ∂th=−c∂xH; (c) perturbation
profiles from (b) normalized with local film thickness H(x); (d) time derivative of surface
curvature ∂t(∂xxh)= η∂xxĥ associated with most-unstable eigenfunctions in (b).

the actual growth rate of the base state at the secondary troughs. We also point out
that our stability results have been checked for convergence in terms of N in (5.3).
Moreover, the same results were obtained independently by the first two authors and
were additionally cross-checked by the second author with a pseudo-spectral solver.

To better understand how the asymmetric eigenfunction ĥ(x) in figure 7(b) affects
the base profile H(x) in figure 7(a), we have included an additional curve in
figure 7(b). The red-dashed line there represents a pure translation of H(x) at constant
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speed c, in which case the perturbed film thickness would satisfy ∂th = −c∂xH. It
turns out that ĥ(x) corresponds exactly to such a translation within the main hump, as
the solid black and red-dashed lines in figure 7(b) collapse there. Differences between
the two curves are more apparent when normalizing with the base profile H(x), and
this is represented in figure 7(c). We see that the red-dashed and black solid lines
almost perfectly coincide within the main hump. This is because the main hump has
virtually attained its sinusoidal equilibrium shape of width Λc, corresponding to the
neutral mode of the Rayleigh–Taylor instability (see § 4). This mode is neutrally stable
toward a pure translation and stable toward all other volume-preserving perturbations.
Pure translation is thus the only symmetry-breaking option for the main hump and it
requires a minimal energy input. It also means that the main hump does not actively
contribute to the sliding instability mechanism.

By contrast, at the secondary troughs, ĥ/H, which through (5.1) sets the linear
growth rate ∂th/H= (ĥ/H)η exp(η t), cannot be represented by a pure translation. Such
a translation would impose ∂th = −c∂xH = 0 at the troughs, but our eigenfunction
ĥ/H is clearly non-zero there (open circles in figure 7c). At the left trough, ĥ/H < 0
implying ∂th/H< 0, thus the trough is pushed down and further thins, whereas, at the
right trough, ĥ/H > 0 implying ∂th/H > 0, thus the trough is pulled up and further
thickens.

Closer investigation of the ĥ/H profile in figure 7(c) shows that the film at the
trough locus itself is less affected than the immediate surroundings. Indeed, the
film is more strongly pushed down to the left of the left trough and more strongly
pulled up to the right of the right trough. This tends to move the trough loci
leftward, constituting a sliding motion. It also produces a localized surface curvature
decrease/increase at the left/right secondary trough. In figure 7(d), we have plotted
η∂xxĥ, which according to (5.1) is proportional to the time derivative of the perturbed
surface curvature ∂t(∂xxh) = η∂xxĥ exp(ηt). This quantity displays highly localized
pulses at the secondary troughs, evidencing a flattening of the left and a curving of
the right trough.

6. Mechanism of the sliding instability
We seek to identify the positive feedback mechanism causing amplification of the

unstable perturbation ĥ/H in figure 7(c) and we focus on the secondary troughs, as
the main hump does not actively participate in the instability mechanism (see § 5).
Additional evidence for the dynamical importance of the secondary troughs is provided
by the transient stability analysis in § 7.

Figure 8(a) represents an enlarged view of the buckled portion of the surface profile
H(x) used for the stability analysis (black line). The thick red line corresponds to
the final equilibrium state (4.1) toward which the film evolves by draining the
remaining liquid from the secondary hump through the troughs. Drainage is governed
by a balance between the driving capillary pressure gradient ∂xP|σ = −(1/Bo)∂xxxH,
generated through variations in surface curvature ∂xxH, and viscous drag, which scales
with 1/H3. Because the secondary troughs are so thin, and viscous drag there is so
strong, a very steep ∂xxH profile is established to drive liquid through them. This is
plotted with a solid black line in figure 8(b), whereas the thick red line corresponds to
the final equilibrium state, with a ∂xxH discontinuity at the juncture of the sinusoidal
and zero-thickness film segments (Yiantsios & Higgins 1989). Dashed lines indicate
the evolution toward this state.
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FIGURE 8. (Colour online) Feedback mechanism amplifying the action of the unstable
eigenfunction ĥ in figure 7(c). (a) Zoomed view of the base profile H(x) (figure 7a). Open
circles mark loci of secondary troughs, asterisks loci of growth rate extrema (e), and the
thick red line represents the final equilibrium state (4.1); (b) surface curvature profiles ∂xxH
corresponding to (a). Dashed lines indicate evolution toward equilibrium state; (c) pressure
gradient perturbation amplitude according to (6.1a,b). Solid line: total amplitude ∂xp̂; dots:
capillary contribution ∂xp̂|σ ; dot–dashed: gravity-induced contribution ∂xp̂|g; (d) flow rate
perturbation amplitude. Solid line: total amplitude q̂; dashes: pressure gradient contribution
q̂|p = −(1/3)∂xp̂H3; dot–dot–dashed: viscous drag contribution q̂|h = −∂xpH2ĥ; (e) initial
growth rate of the perturbation ηĥ/H =−∂xq̂.

Due to the steepness of the base state curvature profile (solid black line in
figure 8b), the localized ∂xxĥ pulses caused by the unstable eigenfunction (figure 7d)
produce large opposite-sign perturbations of the third derivative ∂xxxĥ either side of the
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secondary troughs. These translate into perturbation extrema of the capillary pressure
gradient ∂xp̂|σ ∝ ∂xxxĥ that destabilize the film, as shown in figure 8(c).

In this panel, we have represented the linear response of the driving pressure
gradient (4.2) to the perturbed film thickness h (5.1):

∂xp= ∂xP+ ∂xp̂ exp(ηt), ∂xp̂=−∂xĥ︸ ︷︷ ︸
∂xp̂|g

−
1

Bo
∂xxxĥ︸ ︷︷ ︸
−∂xp̂|σ

, (6.1a,b)

where, as in (5.1), ∂xp corresponds to the perturbed quantity, ∂xp̂ to the perturbation
amplitude, and ∂xP to the quasi-steady base state. The total perturbation amplitude ∂xp̂
is plotted with a solid black line in figure 8(c), whereas the dot–dashed line represents
the gravity-induced constituent ∂xp̂|g, and filled circles the capillary constituent ∂xp̂|σ .
We see that the pressure perturbation is dominated by its capillary contribution ∂xp̂|σ .

The sign difference of the ∂xp̂ extrema either side of the secondary troughs acts to
produce a disparity of flow rate disturbances there. We show this in figure 8(d),
which represents the linear response of the flow rate q = −(h3/3)∂xp (4.3) to
the perturbed film thickness h (5.1). The solid line corresponds to the total flow
rate perturbation amplitude q̂, the dashed line to the contribution of the pressure
perturbation q̂|p = −(1/3)∂xp̂H3 and the dot–dot–dashed line to the contribution of
the viscous drag perturbation q̂|h =−∂xpH2ĥ. The effect of the pressure perturbation
alone (q̂|p, dashed line) is to reduce the flow toward the left trough and to increase
the flow away from it (note that the base flow rate around the left trough is negative,
i.e. to the left), which tends to drive the left trough to thin (and vice versa for the
right trough), amplifying the action of the unstable eigenfunction ĥ/H. At the same
time, ĥ/H alters the viscous drag around the secondary troughs and this has the
opposite effect on the flow rate disturbances (q̂|h, dot–dashed line). Indeed, around
the left trough, viscous drag is increased to a greater extent on its left than on its
right, and thus the flow away from the trough is reduced more than the flow toward it
(the opposite holds at the right trough). However, the net result of the two opposing
effects on the total flow rate perturbation q̂ (solid line) is to increase the flow rate
difference across the left trough and to reduce it across the right one.

The spatial variation of q̂ (solid line in figure 8d) governs growth and decay of the
film thickness through the continuity equation (2.2a), yielding the growth rate ηĥ/H=
−∂xq̂, which we have plotted in figure 8(e). Concentrating on the left secondary trough
(opposite arguments apply to the right trough), we see that the growth rate minimum
is not situated at the trough locus itself but slightly to the left, while there is a smaller
local maximum slightly to the right. This has two consequences. First, it causes the
trough to move even further to the left, amplifying the action of the ĥ/H perturbation
in figure 7(c). Second, the film is deposited more rapidly on the left of the trough
than it is peeled off on the right and this further reduces the local surface curvature,
amplifying the action of the ∂xxĥ perturbation in figure 7(d).

These two positive feedbacks are caused by the way in which the flow rate
perturbations in figure 8(d) behave around the trough. The pressure-related perturbation
q̂|p alone (dashed line) tends to produce a growth rate minimum at the trough locus
itself, where ∂xq̂|p is strongest. However, the drag-related flow rate perturbation
q̂|h (dot–dot–dashed line) strongly counteracts this effect in the immediate vicinity
of the trough, as its slope is opposed. Outside of this region, the relevance of the
drag-related perturbation rapidly decays with increasing film thickness (and decreasing
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magnitude of ĥ/H). Indeed, while the magnitude of q̂|p keeps increasing to the left
of the left trough, that of q̂|h slowly decreases after having reached a maximum. This
shifts the total growth rate minimum to the left of the trough locus (left-most star in
figure 8e).

The growth rate maximum to the right of the left trough (also marked by a star in
figure 8e) occurs for the same reasons. However, it is smaller in magnitude because
of the asymmetric shape of the trough region, which connects the steep front of the
main hump to the weakly sloped flank of the secondary hump. The thickness of the
base state increases more rapidly to the left of the trough than to the right and so the
double-pulsed pressure perturbation ∂xp̂ (figure 8c) unfolds its effect on the flow rate
differently on either side (see q̂|p marked by dashed line in figure 8d).

Although the engine of the sliding instability is the capillary-induced migration
of the secondary troughs, its most-visible consequence is the translation of the main
hump, which contains most of the liquid. At first sight, it is surprising that the
inconspicuous secondary troughs drive the main hump and not vice versa. However,
the main hump has virtually attained a static equilibrium shape (i.e. the cutoff mode
of the primary instability) that is neutrally stable toward a pure translation and stable
toward all other volume-preserving perturbations. On the one hand, this means that
only a minimal driving force is required to move the main hump and thus the
latter follows the motion dictated by the secondary troughs. The actual driving force
moving the hump results from a capillary pressure difference built up around it by the
curvature perturbations in figure 7(d). These induce a greater pressure in the trailing
edge of the main hump (left flank in figure 7a) and a lower one in the leading edge
(right flank in figure 7a). On the other hand, by resisting all other volume-preserving
perturbations, the main hump selects the possible sliding instability modes. In
particular, the hump’s width is fixed and thus it resists compression/expansion. The
two secondary troughs, which in our periodic setting enclose the main hump, are
thus required to move in concert in the same direction. They are coupled in that the
left one must be perturbed in the exact opposite manner than the right one. This
requires the corresponding eigenfunction to be point symmetric about the main hump,
a condition satisfied by the unstable mode uncovered in figure 7(c).

7. Transient stability analysis and the onset of sliding
The frozen-time analysis has demonstrated that the film is susceptible to a secondary

sliding instability and shed light on the mechanisms involved. However, this method
cannot be applied at earlier times when the film evolves more rapidly. Therefore, to
investigate the onset of sliding, we relax the assumption of a frozen base state and
instead linearize (2.2) around the time-evolving base state H(x, t):

∂th∗ + ∂xq∗ = 0,

q∗ =
1
3

H3

[
∂xh∗ +

1
Bo
∂xxxh∗

]
+ h∗H2

[
∂xH +

1
Bo
∂xxxH

]
,

 (7.1)

where h∗ and q∗ denote the linear perturbations of film thickness and flow rate.
We begin by computing the linear noise response of the perfectly symmetrical base
state, starting from three representative time points ti = 1922, 20 000 and 70 000
(see figure 3a to situate ti in the evolution of the sliding film), for which the
profiles H(x, ti) are plotted in figure 9(a) (a logarithmic ordinate is chosen for better
distinction).
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FIGURE 9. (Colour online) Transient instability and the onset of sliding. (a) Surface
profiles H(x, ti) of the perfectly symmetrical base state at three representative time points
(see figure 3a): ti = 1922 (red), 20 000 (green) and 70 000 (blue). A logarithmic ordinate
is used for better distinction; (b) long-term linear responses h∗(x, ti + T) to a noisy
perturbation (black line) of the H(x, ti) profiles over time horizons T = 2000 (red), 6000
(green) and 10 000 (blue). Solutions to (7.1) while advancing the base state H(x, t) from
ti to ti + T; (c) most-unstable perturbations (solid lines) from transient stability analysis
(Balestra et al. 2016) applied to the H(x, ti) profiles over relatively short time horizons
T = 200 (red) and 1000 (green/blue). Dashed lines represents corresponding responses
h∗(x, ti + T), rescaled for a clear comparison; (d) nonlinear response of the periodic
simulation in figure 3(a) to an injection of noise hnoise (7.6) at t= 683. Time traces of the
centre of mass xC are represented for different noise levels ε=max(hnoise)−min(hnoise)=
0 (solid), 1.3 × 10−4 (dashed), 1.3 × 10−3 (dotted), 1.3 × 10−2 (dot–dashed) and 0.04
(dot–dot–dashed). These correspond to the typical surface roughness of different materials,
ranging from glass to steel.

We solve (7.1) for h∗(x, t), starting from a noisy initial condition h∗(x, ti) = hnoise
(defined in (7.6) and represented by a black line in figure 9b), while advancing H(x, t)
from t= ti to t= ti+T over a relatively long time horizon T (see caption of figure 11).
Coloured lines in figure 9(b) represent the obtained linear responses h∗(x, ti+ T). For
all three cases, the noisy initial perturbation evolves into a sliding mode similar to
the eigenfunction obtained with the frozen-time approach (see figure 7b). The growth
rate is largest for the earliest (red line, ti= 1922) and lowest for the latest (blue line,
ti = 70 000) base state profile H(x, ti).
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Next, we follow the transient stability analysis outlined in Balestra et al. (2016) (see
also Schmid 2007) to identify the most-unstable perturbations associated with the base
state profiles H(x, ti). We repeatedly solve the direct problem (7.1) from an iteratively
improved initial condition:

h∗(x, ti)=
1
2

h†(x, ti)G(T)
∫ L

0
h∗old(x, ti)

2 dx, (7.2)

obtained by solving the adjoint problem:

∂th†
−

1
3

[
∂x(qH3)+

1
Bo
∂xxx(qH3)

]
+ qH2

[
∂xH +

1
Bo
∂xxxH

]
= 0,

q= ∂xh†,

 (7.3)

starting from the end condition:

h†(x, ti + T)= 2
h∗(x, ti + T)∫ L

0
h∗(x, ti)

2 dx
, (7.4)

and stepping backwards in time from ti + T to ti. The procedure converges to a
maximal value of the gain G(T):

G(T)=

∫ L

0
h∗(x, ti)

2 dx∫ L

0
h∗(x, ti + T)2 dx

, (7.5)

which quantifies growth over the time horizon T . Figure 9(c) represents the thus-
obtained most-unstable perturbations h∗(x, ti) for the three base state profiles H(x, ti)
in figure 9(a) over relatively short time horizons T (see caption).

All h∗(x, ti) profiles display localized pulses that respectively thin and thicken the
two secondary troughs. Over the time horizon T , they all evolve toward the sliding
eigenmode obtained with our frozen-time analysis (5.1), as shown by the dashed
lines in figure 11(c), which represent the linear responses h∗(x, ti + T). Thus, the
most-unstable scenario identified through our transient analysis exhibits the same
long-time asymptotic behaviour, i.e. a concerted sliding motion of the entire film.
This sliding eigenmode, which grows in a shape-preserving form, is most-effectively
triggered by localized asymmetric disturbances at the secondary troughs, highlighting
the importance of these regions for the onset of sliding.

Applying the transient analysis at earlier times, we have observed a qualitative
change in the behaviour of the film near the time of buckling. In the pre-buckling
regime, the most-unstable disturbance corresponds to a pure translation that merely
produces a phase shift in the evolving film. It is only after buckling has occurred
that the most-unstable disturbance mode takes on the non-trivial, localized form
shown in figure 9(c). Thereafter, it remains virtually unchanged in form, with a
gain G(T) that is always greater than unity. In fact, we find that G(T) is lower
for later ti, which is probably due to the increase in viscous stresses. Thus, there
is no intrinsic/inherent fixed time for the onset of sliding. Rather, the onset of a
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macroscopically visible sliding motion is controlled by the level of ambient noise,
e.g. due to surface roughness or pressure fluctuations. To demonstrate this, we have
solved our nonlinear model (2.2), subject to periodic boundary conditions and starting
from the initial condition (2.4), while injecting synthetic noise at a specific time
tnoise = 683, i.e. just after the film surface has buckled (see figure 3a). This is done
through the random film thickness perturbation hnoise (Chang, Demekhin & Kalaidin
1996):

hnoise = ε

N∑
j=1

cos( j1kx− ϕrand), 1k= 100kc/N, kc =
√

Bo, (7.6)

which consists of sinusoidal modes of random phase shift ϕrand that cover 100 times
the unstable range of the primary instability. By changing the coefficient ε, the noise
level ε = max(hnoise) − min(hnoise) was varied in five simulation runs: ε = 0, 1.3 ×
10−4, 1.3× 10−3, 1.3× 10−2 and 0.04. These values correspond to the typical surface
roughness of different materials, ranging from glass to steel. Figure 9(d) represents
time traces of the position xC of the film’s centre of mass (initially in the middle of
the domain, i.e. xC/L= 0.5), as obtained from the five runs. The onset of sliding is
considerably precipitated with increasing noise level but, in the range studied, always
occurs in the quasi-steady regime of the base state (t> 2× 10−4, see figure 3a). Thus,
although linear theory suggests that the film is susceptible to sliding at any time after
buckling, nonlinearly, we find that the sliding eigenmode is only able to emerge after
the film has slowed down to a quasi-steady state with quasi-equilibrium humps and
sharp secondary troughs.

8. Gas film underneath a liquid layer
The ingredients of the sliding instability, identified for a suspended liquid film in § 6,

are quite general and can be found in other systems as well, albeit in the presence of
additional effects that may call for more complex models. One such scenario, which
involves two active fluid phases, is related to the spontaneous motion of Leidenfrost
drops on a heated surface. Liquid in contact with the hot surface evaporates to
form a thin vapour film that supports the drop. Burton et al. (2012) measured the
vapour film underneath a Leidenfrost drop made of water and showed that the
vapour–liquid interface is buckled, similar to what we have observed in figure 3(d)
for the suspended water film. In a follow-up paper, Ma et al. (2015) mention that
the smooth aluminium substrate heating their Leidenfrost drop was curved ‘in order
to keep drops stationary and suppress the buoyancy-driven Rayleigh–Taylor instability
in the vapor layer’. They also contend that the dynamical traits of Leidenfrost drops,
such as self-propulsion (Linke et al. 2006; Quéré 2013), depend ‘on a sensitive
coupling between deformations of the liquid/vapor interface and lubrication flow in
the thin (≈100 µm) vapor layer’. Most recently, experiments of Ma, Liétor-Santos &
Burton (2017) have shown that the oscillatory dynamics of Leidenfrost drops, which
is linked to the drainage of vapour below the drop, depends only on the capillary
length of the liquid, ‘indicating a purely hydrodynamic (non-thermal) origin for the
oscillations’.

These experimental observations have prompted us to check whether a vapour film
underneath a liquid layer, such as illustrated in figure 1(b), is prone to the sliding
instability in a purely hydrodynamical sense, i.e. without accounting for evaporation.
We consider the parameters quantified in the caption of figure 1(b), which are based
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FIGURE 10. Spontaneous sliding of a very thin gas film underneath a liquid layer (see
sketch in figure 1b), as simulated with the full model (2.1). Fluid properties (see caption of
figure 1b for values) correspond to a water vapour film underneath a water drop, according
to the experiments of Burton et al. (2012). The mean film thickness is h0 = 100 µm
and the Bond number Bo= 0.0016. The domain length corresponds to the most-amplified
wavelength of the Rayleigh–Taylor instability Λ = 2

√
2π/
√

Bo. (a) Logarithmic profiles
of the film surface. Solid lines: profiles just before and after the onset of sliding; circles:
suspended water film from figure 3; (b) film thickness time traces at the left and right
secondary troughs. Solid: full model (2.1), dashed: full model in the limit Πµ → 0,
dot–dot–dashed: simplified model (2.2).

on the experiments of Burton et al. (2012), i.e. the gas layer consists of water
vapour and the liquid layer of liquid water. The physical properties of the liquid
(µ2, ρ2) and the surface tension σ were evaluated at the experimental saturation
temperature T = 100 ◦C, whereas the vapour properties (µ1, ρ1) were evaluated at
T= 235 ◦C, corresponding to the average between the experimental wall and saturation
temperatures. The mean vapour thickness was set to h0 = 100 µm, yielding a Bond
number of Bo= 0.0016 comparable to the experiments.

We have performed a periodic simulation of this configuration with our full model
(2.1), which accounts for coupling between the thin gas film and the much more
viscous liquid phase, the viscosity ratio being Πµ = 2 × 103. The domain length
was set to Λ = 2

√
2π/
√

Bo (the most-amplified wavelength of the Rayleigh–Taylor
instability) and its height D = 10 was chosen so large that the liquid phase is
quasi-unconfined.

Our simulation has shown that the vapour film indeed slides spontaneously,
displaying all the characteristic features of the sliding instability identified in § 6.
Figure 10(a) represents the vapour film surface at two characteristic time points,
just before and somewhat after the onset of sliding. We have additionally included
a profile of the suspended water film from § 3 just before it slides (symbols in
figure 10a). We have chosen logarithmic scaling on the ordinate to accentuate any
differences between the vapour film and the suspended water film. At the sliding
onset, the surface profiles for the two cases, which have been scaled horizontally
with the domain length Λ = 2

√
2π/
√

Bo, are virtually identical. This follows from
capillary pressure gradients dominating the long-time evolution of the film, in which
case (2.2) reduces to ∂th∝ ∂x(h3∂xxxh) after rescaling the horizontal coordinate x with
Λ and adjusting the time scale accordingly.
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The sliding onset for the vapour film is discernible in figure 10(b), showing time
traces of the film thickness at the two secondary troughs. The role of viscous coupling
is evidenced by comparing the full-model prediction (2.1) (solid line) with the limit
Πµ → 0 (dashed line). Viscous stresses in the outer phase, through their action at
the gas–liquid interface, modify the velocity profile and the associated viscous drag
within the gas film. As a result, the onset of sliding is significantly delayed. These
stresses also suppress the inertia-induced oscillation of the secondary troughs which
had been observed for the suspended water film in figure 3(b) and figure 5. However,
they do not qualitatively alter the loss of symmetry and sliding. In figure 10(b), we
have also included the prediction of the simplified model (2.2) for completeness (see
dot–dot–dashed line).

Our simplified analysis is far from proving that the sliding instability is linked to
the spontaneous motion of Leidenfrost drops. Nonetheless, it has identified a possible
mechanism. To verify whether this mechanism holds underneath a Leidenfrost drop,
further analysis needs to include evaporation. The effect of evaporation may be
stabilizing in that it tends to thicken a trough that has been thinned by a perturbation.
On the other hand, it creates additional fluid within the secondary hump that needs to
be drained through the troughs and this should be destabilizing. Evaporation maintains
the interface at uniform temperature. This precludes the development of Marangoni
stresses, which normally play a key role in the evolution of heated films. This is the
subject of the next section, in which we show that such stresses can suppress the
sliding instability.

9. Suppression of sliding by Marangoni stresses

Let us revisit the suspended liquid film in figure 1(a), but with the wall at a higher
temperature than the ambient passive gas. Then modulations of the film thickness will
result in temperature variations along the interface, which will in turn produce thermal
Marangoni stresses. Since they act along the interface, the effect of these stresses on
fluid drainage will be very different from that of capillary pressure gradients, which
act within the bulk of the fluid. In fact, as we will show, these stresses can completely
suppress sliding provided the wall is sufficiently hot.

In this analysis, we assume that surface tension decreases with temperature,
∂Tσ < 0, in which case the problem is governed by (2.3), where the modified
Marangoni number Ma = ∂Tσ(Tw − T∞)/σ is negative. The Marangoni effect is
thus destabilizing in terms of the primary instability. We have performed periodic
simulations of (2.3) using the same parameter values as in § 3 (see caption of
figure 1a), additionally setting the Biot number to Bi= 1 and increasing the magnitude
of Ma< 0 step by step from zero.

Our simulations have shown that sliding is suppressed above a certain threshold
value for |Ma|. Instead of sliding, the film undergoes a cascade of buckling events
that constantly produce new generations of humps and associated troughs, as has been
observed in the traditional Marangoni problem (Boos & Thess 1999; Oron 2000). We
focus our remaining discussion on a representative simulation for Ma=−0.2, results
of which are plotted in figure 11. We have also provided a supplementary movie,
movie 3, which shows the buckling cascade in action (therein, the ordinate has been
scaled logarithmically to highlight the evolution of the troughs).

Figure 11(a) represents the film surface after three buckling events. The inset shows
an enlarged view of the boxed region surrounding the left tertiary hump, which results
from the second buckling event. Figure 11(b) displays the time evolution of this
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FIGURE 11. (Colour online) Suppression of sliding by thermal Marangoni stresses.
Heating the suspended water film from the wall suppresses the sliding instability and
instead causes a cascade of buckling events (see also supplementary movie 3) similar
to the traditional Marangoni problem (Boos & Thess 1999; Oron 2000). Numerical
simulation of (2.3) using Ma=−0.2, Bi= 1.0 and Bo= 0.134 (see caption of figure 1a
for other quantities). (a) Surface profile after three buckling events (t = 2 × 104). Inset
shows enlarged view of boxed region around left tertiary hump; (b) formation of left
tertiary hump from second buckling event; (c) formation of left-most quaternary hump
(boxed region in inset of (a)) from third buckling event; (d) flow rate contributions (9.1)
(normalized with h3) corresponding to the thick red profile in (b). Open circles mark
loci of tertiary troughs. Thick red solid line: total flow rate q; dashed: thermocapillary
contribution q|Ma; dot–dot–dashed: capillary contribution q|σ . Thick red profiles all
correspond to same time.

second buckling event, from the dot–dashed unbuckled profile to the thick red profile,
where the tertiary hump and associated troughs have already formed. Subsequently,
the tertiary troughs (marked by open circles in figure 11b) undergo a third buckling
event, forming quaternary humps and troughs. This is shown in figure 11(c) for the
left-most tertiary trough.

We now focus on the thick red profile in figure 11(b), which results from the second
buckling event, and evaluate the different flow rate contributions:

q= q|g + q|σ −
1
2

Ma
Bo

h2∂xh
Bi

(1+ Bi h)2︸ ︷︷ ︸
−q|Ma

, (9.1)
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where q|Ma denotes the contribution due to Marangoni stresses and q|g and q|σ are
defined according to (4.3). These contributions are plotted in figure 11(d), where we
have normalized q with h3. The thick red line corresponds to the total flow rate q,
the dot–dot–dashed line to the capillary contribution q|σ , and the dashed line to the
thermocapillary contribution q|Ma, while q|g is negligible and thus not plotted.

Considering the region around the left tertiary trough (left-most open circles in
figures 11b and 11d), we see that the thermocapillary contribution q|Ma (dashed line
in figure 11d) is significant compared to the capillary one (dot–dot–dashed line). In
contrast to the isothermal case in figure 6(h), drainage is thus not dominated by
variations in surface curvature ∂xxh. Instead, the surface slope ∂xh, which determines
q|Ma in (9.1), also plays an important role. We have verified that this holds for
subsequent buckling events.

The reason q|Ma remains relevant even when the film is very thin, in contrast to q|g
(4.3) which is also proportional to ∂xh but subsides after producing the first buckling
event (see figure 6), is that it scales with h2 instead of h3. The Marangoni effect,
which acts at the film surface, is less hindered by viscous drag.

Thermocapillary drainage q|Ma ∝ ∂xh is fundamentally different from capillary
drainage in that it is symmetric about the troughs (where ∂xh = 0). That is, liquid
underneath a trough is driven away to both sides, as evidenced by the profile of q|Ma
(dashed line) around the left-most tertiary trough in figure 11(d). Marangoni stresses
thus help capillary drainage on one side of a trough and counteract it on the other
and this is responsible for both the buckling cascade and the suppression of sliding.

Closer investigation of figures 11(b) and 11(c) shows that the buckling events from
the second one onward differ from the first buckling event (figure 3d) in that the
buckling trough does not split into two new identical daughter troughs on either side.
Instead, a new trough forms always on the inside of the original trough, which itself
moves outward. This follows from the competition between thermocapillary q|Ma and
capillary q|σ drainage, which produces a divergence point (q= 0) to the right of the
left-most tertiary trough in figure 11(d) (see thick red line). From this divergence
point, liquid is drained to either side, ultimately producing a quaternary trough there,
when the slope of the secondary hump ∂xh, which scales q|Ma in (9.1), has sufficiently
grown.

Marangoni stresses, which in the present case are sufficiently strong to compete
with capillary drainage, are also directly responsible for suppressing the sliding
instability. First, they prevent the film from attaining a quasi-steady state. In fact,
equation (2.3) possesses no steady solution for Ma < 0, in contrast to the final
equilibrium state for the isothermal case (4.1). Instead, the film repeatedly buckles,
producing ever thinner troughs, which would eventually disjoin due to long-range van
der Waals forces between the wall and the film surface. Thereby, the fact that the
width of the main hump is no longer constrained by an equilibrium state allows it to
be increasingly compressed by the two adjacent troughs, which increasingly approach
one another following each buckling event.

Second, Marangoni stresses counteract the way in which the film surface around
a secondary trough would be modified by a sliding motion. Such a motion would
peel off the film on the inside of an outward sliding secondary trough, whereas
thermocapillary buckling would pull it down in the process of forming a new tertiary
trough (see figure 11b). Third, the growth rate contribution of Marangoni stresses (in
the small h limit):

∂th/h|Ma ≈
Ma Bi

Bo
(∂xh)2 +

1
2

Ma Bi
Bo

h∂xxh, (9.2)
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reduces to a single term proportional to the surface curvature ∂xxh (second term above)
when evaluated at a trough (where ∂xh= 0). For Ma< 0, this term tends to increase
the thickness of a flattened secondary trough and reduce it at a curved trough, thereby
opposing the positive feedback mechanism of the sliding instability discussed in § 6.

10. Conclusion

We have identified a secondary instability that causes the spontaneous sliding
motion of large drops forming on the surface of a wall-bounded fluid film draining
due to an interfacial instability. The sliding instability is observed when the thin
residual film in between two drops has buckled due to viscous drag and fluid is
forced to drain through the thus formed extremely thin secondary troughs. It requires
the following ingredients: (i) the dominance of capillary pressure gradients in draining
fluid through the secondary troughs; and (ii) a large gradient of the surface curvature
across the secondary troughs. The onset of the sliding motion is observed after the
draining film has reached a quasi-steady state, where the very slow growth of the
sliding instability can make a difference and where the large drops have virtually
attained a static equilibrium that is neutrally stable toward translation and stable
toward all other volume-preserving perturbations.

We have performed a frozen-time stability analysis of the quasi-steady base
state and uncovered a single unstable eigenmode, which constitutes a concerted
sliding motion of the large drops and secondary troughs. Instability emanates
from the secondary troughs, which are extremely sensitive to perturbations of the
surface curvature ∂xxh. The sliding eigenmode flattens one of the secondary troughs
(i.e. reduces ∂xxh there) and curves the other (i.e. increases ∂xxh there). At the flattened
trough, the flow toward it is reduced to a greater extent than the flow away from it,
due to changes in the curvature-controlled capillary pressure gradient either side of
the trough. As a result, the trough thins. However, the thinning rate is not maximal
at the trough itself but at a slightly outward position due to the asymmetric nature
of the trough region, which connects the steep front of the main hump to the weakly
sloped flank of the buckled-film portion. This causes the locus of the trough to move
outward. The trough is deformed in a way that amplifies the unstable perturbation,
i.e. it is further flattened, and we have explained the underlying positive feedback
mechanism (§ 6). The opposite happens at the other secondary trough. As a result,
the two secondary troughs slide in concert, displacing the large drops, which in a
periodic setting are situated in between them. Because these large drops have virtually
attained the neutral mode of the primary instability, they offer no resistance to the
translation, but they do impose a fixed distance between the troughs as their width is
constrained to the cutoff wavelength of the primary instability.

Using transient stability analysis, we have also investigated the stability of the
base state prior to the quasi-steady regime, finding that it is always unstable after
the film has buckled. The thus-identified most-unstable perturbations show that the
above-discussed sliding eigenmode can be triggered most effectively by pulse-shaped
perturbations that are localized at the secondary troughs. In the absence of a distinct
stable/unstable transition, the onset of sliding is controlled by ambient noise. However,
for noise levels studied here, which are based on the surface roughness of typical
materials, sliding is always observed in the quasi-steady regime.

From an energetic point of view, the primary instability guides the film from its
initial state toward a lower-energy static equilibrium state consisting of sinusoidal
drops separated by a zero-thickness film. To reach this state, the residual film in
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FIGURE 12. How sliding accelerates the drainage of liquid from the trough region of the
suspended water film (figure 1a): h0 = 1 mm; Bo= 0.134. (a) Time traces of the liquid
volume Vneck within the trough region (greyed region in (b)) for a non-sliding (dashed)
and a sliding (solid) solution; (b) corresponding logarithmic surface profiles at t= 105.

between drops needs to fully drain through the secondary troughs. The total drainage
rate is larger when these troughs are unsymmetric, i.e. when one is thinner than
the other. Indeed, in the face of viscous drag, it is easier for the fluid to drain
through one thick trough rather than two thin ones. This is shown for the suspended
water film in figure 12(a), representing time traces of the liquid volume contained
in this region, which we have highlighted as Vneck in figure 12(b). The solid line in
figure 12(a) corresponds to a sliding solution and the dashed line to a non-sliding
symmetric solution. We see that sliding significantly accelerates drainage and, thus,
it is the energetically favourable route toward the lower-energy final state.

Our analysis has been mostly focused on the case of a water film suspended from
a ceiling, but also applies to other configurations. We have shown this for a very thin
gas layer underneath a much more viscous liquid layer, assuming physical properties
typically encountered underneath Leidenfrost drops (Burton et al. 2012).

Marangoni stresses can entirely suppress the sliding instability by fundamentally
modifying the draining mechanism at the troughs. In that case, the film undergoes
a cascade of buckling events instead of sliding, similar to the traditional Marangoni
problem (Boos & Thess 1999; Oron 2000).

Finally, we note that the stability characteristics of nonlinear interfacial states can
be affected by the size of the periodic computation domain. For example, Duruk &
Oron (2016) and Frumkin & Oron (2016) obtain steady-state patterns that are unstable
on infinite domains, but stable on sufficiently small periodic domains. This is not
the case for the sliding instability studied here, which reveals its basic features in a
periodic domain containing a single wavelength, provided it is not smaller than the
cutoff wavelength Λc of the primary instability.
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