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The linear stability of two incompressible coaxial jets, separated by a thick duct
wall, is investigated by means of both a modal and a non-modal approach within a
global framework. The attention is focused on the range of unitary velocity ratios
for which an alternate vortex shedding from the duct wall is known to dominate
the flow. In spite of the inherent convective nature of jet flow instabilities, such
behaviour is shown to originate from an unstable global mode of the dynamics
linearised around the axisymmetric base flow. The corresponding wavemaker is
located in the recirculating-flow region formed behind the duct wall. At the same
time, the transient-growth analysis reveals that huge amplifications (up to 20 orders of
magnitude) of small flow perturbations at the nozzle exit can occur in the subcritical
regime, especially for high ratios between the outer and the inner velocities.
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1. Introduction

Coaxial jets are often employed as an effective way to rapidly mix two different
fluid streams, such as in industrial burners and airblast atomisers, to mention just two
examples. In addition to their mixing properties, these flows are also well known for
the possibility of reducing noise generation compared to the single jet configuration
(Williams, Ali & Anderson 1969), resulting in several aerospace applications. Both
noise and mixing properties strongly depend on the dynamics of the large-scale
vortical structures produced by the inherent instabilities of the flow field, whose deep
understanding is therefore relevant not only from the academic viewpoint.

The incompressible flow produced by two coaxial jets is characterised by several
non-dimensional parameters that are associated with the nozzle geometry and the
characteristics of the two incoming fluid streams: for instance the outer-to-inner pipe
diameter ratio, RD, the ratio between the maximum velocity of the outer and inner
jets, Ru, the boundary layer thickness at the nozzle exit and the free stream turbulence.

† Email address for correspondence: franco.auteri@polimi.it
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Linear global stability of two incompressible coaxial jets 887

Past experimental and numerical investigations (see for example Ko & Kwan
1976; Dahm, Clifford & Tryggvanson 1992; Rehab, Villermaux & Hopfinger 1997;
Villermaux & Rehab 2000; da Silva, Balarac & Metais 2003; Segalini & Talamelli
2011) have established the central role of Ru in the coupling between the inner and
outer shear layer instabilities. For Ru� 1 a strong interaction occurs which results in
the synchronised roll up of both the shear layers, the so-called lock-in phenomenon.
In this regime the coaxial jet dynamics is driven by the Kelvin–Helmholtz instability
of the outer shear layer (da Silva et al. 2003). Conversely for Ru � 1, a weak
interaction is observed where the outer stream mainly acts as a ‘coflow’ (Djeridane
1994), without substantially modifying either the inner jet dynamics or the main flow
instability, which is now driven by the inner jet shear layer (Segalini 2010). Within the
range of nearly unitary velocity ratios, the development of vortical structures in the
flow is strongly affected by the presence or absence of a thick duct wall separating
the two streams (Buresti, Petagna & Talamelli 1994; Segalini 2010). Indeed, in
the former case, the near flow field is dominated by an alternate vortex shedding
from the blunt edge of the separating wall, which considerably enhances the mixing
and entrainment processes of the two jets (Talamelli et al. 2013). The existence of
three different instability regimes has also been described in the experimental work
by Segalini & Talamelli (2011), based on an extensive analysis of the dominant
frequencies characterising the unsteady flow field. The authors have also provided
an effective relationship for the proper scaling of the shedding frequency in the
intermediate range of velocity ratios, 0.75 . Ru . 1.6, improving the previous one
proposed by Buresti et al. (1994).

Most of the studies addressing the coaxial jet stability properties have been
performed based on a local approach, using analytical and experimental velocity
profiles (Michalke 1993; Juniper & Candel 2003; Talamelli & Gavarini 2006; Gloor,
Obrist & Kleiser 2013). Within this framework, Talamelli & Gavarini (2006) have
investigated the inviscid stability properties of a family of axial velocity profiles,
varying several related parameters. In particular, the authors have shown that an
absolute axisymmetric instability occurs, and that it depends on the local minimum
velocity Ũw in the backflow region representing the duct wall wake. The existence
of this instability is also restricted to specific values of the velocity ratio, and it
was found that the range of Ru where the instability occurs shrinks around Ru ≈ 1.3
as Ũw is increased, i.e. while moving downstream of the nozzle. Both the lower
Ru instability threshold and the absolute instability frequency, approximately equal
to 0.5, are found to weakly depend on the momentum thickness of the boundary
layer. A quasi-linear dependence of the mode frequency on Ru is reported in the
same work, and a good agreement between numerical and experimental values of
the non-dimensional frequency is obtained when introducing a scaling based on the
average velocity of the two streams and on the duct wall wake thickness.

Besides the inherent convective nature of the jet flow instabilities, the existence
of a pocket of absolute instability and the annular vortex shedding observed in the
experiments suggest that, for certain values of Re and Ru, the instability of two
coaxial jets separated by a thick wall can be ascribed to the onset of an unstable
global mode. This mechanism, which leads to a Hopf bifurcation of the steady
axisymmetric base flow, is expected to be dominant in the range of unitary velocity
ratios, implying a ‘transition’ from a noise-amplifier to a fluid-oscillator behaviour
(Huerre & Rossi 1998). As pointed out by Talamelli et al. (2013), the onset of
self-excited oscillations of the whole flow field is of great interest, since it provides a
‘natural’ forcing mechanism of the flow, increasing the mixing without requiring the
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introduction of additional energy in the fluid system, such as in the case of an active
control device. At the same time, this self-excited instability can become a source of
loud noise (Olsen & Karchmer 1976). These observations motivate us to investigate
the stability properties of the coaxial jet flow using a global approach, thus accounting
for strong non-parallel effects in the near flow field caused by the thick separating
wall. Both modal and non-modal analyses are performed to characterise the different
instabilities of the flow in the range of 0.5.Ru . 2 and 1000.Re. 5000. On the one
hand, the non-modal analysis is more appropriate to describe the relevant instability
mechanisms when a noise-amplifier flow behaviour occurs (Garnaud et al. 2013). On
the other hand, the modal analysis is extended to consider the structural sensitivity
of the expected unstable global mode with respect to linearised perturbations. This
analysis is performed to identify those flow regions which are responsible for the
development of self-excited flow oscillations, as done by Giannetti & Luchini (2007)
for the cylinder wake. Finally, both axisymmetric and fully three-dimensional direct
numerical simulations (DNS) of the flow are performed to assess the validity and
relevance of the stability results.

The paper is organised as follows. The flow configuration and the governing
equations are introduced in § 2 where the different approaches employed to
characterise the flow stability properties are shortly recalled. Some details about
their numerical implementation are given in § 3, along with validation tests on the
single round jet configuration. The steady axisymmetric base flow is described in
§ 4. Results obtained from the modal stability analysis are discussed in § 5. More
precisely, § 5.1 presents the global eigenspectra computed for different perturbation
wavenumbers, with the identification of the unstable global mode responsible for
the onset of the vortex shedding in the range of nearly unitary velocity ratios. The
corresponding neutral curve is tracked in the parameter plane Re–Ru, thus defining the
domain of linear asymptotic instability of the axisymmetric base flow. The leading
direct and adjoint eigenfunctions are illustrated in § 5.2 together with the associated
wavemaker region. Then the transient dynamics of the linearised flow perturbations is
investigated in § 5.3. Finally, the results obtained from the direct numerical simulations
of the flow are compared with the modal stability results in § 6 and some conclusions
are drawn in § 7.

2. Mathematical formulation
2.1. Flow configuration

In the present paper we are concerned with the incompressible flow produced by
two coaxial jets in an unbounded region of quiescent fluid. The axisymmetric
computational domain Ωc and the adopted cylindrical coordinate system (r, θ, z)
are illustrated in figure 1. All lengths are made non-dimensional using the inner pipe
diameter D̃i. The flow configuration is chosen to be very similar to that investigated
by Segalini & Talamelli (2011), with an outer-to-inner pipe diameter ratio of RD = 2
and a non-dimensional thickness of the duct wall of s = 0.1. The main difference
with respect to the geometry employed by these authors consists in the presence of
the additional solid wall on the plane z = 0, which surrounds the annular pipe. The
flow dynamics is described by the unsteady incompressible Navier–Stokes equations
which are made dimensionless using D̃i, the maximum velocity Ũi of the inner fluid
stream at the pipe inlet and the constant density ρ̃:

∂U
∂t
+ (U · ∇)U+∇P−

1
Re
∇

2U= 0,
∇ ·U= 0.

}
(2.1)
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Linear global stability of two incompressible coaxial jets 889

FIGURE 1. (Colour online) Sketch of the computational domain Ωc (azimuthal
plane) employed for the investigation of the coaxial jet flow. All lengths are made
non-dimensional using the inner pipe diameter D̃i. The black thick line is used to represent
the solid wall boundary Γw while the blue shaded area denotes the region of mesh
refinement. The outer-to-inner pipe diameter ratio is fixed to RD = 2, while the thickness
of the duct wall is 0.1.

The Reynolds number Re is defined as Re= ŨiD̃i/ν̃, ν̃ being the kinematic viscosity
of the fluid. Therefore, the total flow state Q = {U, P}T is specified by the velocity
field U = U(r, θ, z, t) with components (Ur, Uθ , Uz)

T, and by the reduced pressure
field P = P(r, θ, z, t). With reference to figure 1, no-slip conditions are imposed on
the wall boundary Γw while the following condition is assumed on both Γt and Γo:

1
Re
∂U
∂n̂
− Pn̂= 0, (2.2)

where n̂ denotes the outward unit normal vector. On the inlet boundaries Γin,i and Γin,o,
the following Dirichlet conditions hold:

U|Γin,i =Uz,i(r)ẑ, U|Γin,o =Uz,o(r)ẑ, (2.3a,b)

with

Uz,i(r)= tanh [bi (1− 2r)] , (2.4a)

Uz,o(r)= Ru tanh
[

bo

(
1−

∣∣∣∣2r− (Ro,1 + Ro,2)

Ro,1 − Ro,2

∣∣∣∣)] , (2.4b)

where Ro,1 and Ro,2 denote the internal and external non-dimensional radii of the
annular duct and Ru represents the velocity ratio between the two jets, defined as
Ru=max Uz,o/max Uz,i. The two above analytical expressions are chosen to reproduce
the experimental velocity profiles reported in the work by Segalini (2010). More
precisely, the two parameters bi and bo are related to the thickness of the boundary
layers within the nozzle. In the present analysis both values are fixed to 5. Indeed
past works have shown that the pipe boundary layer features have only a weak
influence on the flow stability properties, especially in the vortex shedding regime
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(Talamelli & Gavarini 2006). The incompressible Navier–Stokes equations with the
aforementioned boundary conditions are solved numerically by Newton’s method to
compute the base flow Qb = {Ub(r, z), Pb(r, z)}T on top of which the linear stability
analysis is performed, as detailed in the next paragraph. In this respect, the base flow
represents the numerical approximation of an exact solution of the Navier–Stokes
equations, as done for the single jet by Garnaud et al. (2013).

2.2. Linear global stability
As already mentioned, the onset of the various flow instabilities is investigated by
performing a modal and a non-modal analysis of the linearised perturbations evolving
on top of the steady axisymmetric solution to (2.1), Qb. The axisymmetric hypothesis
is no longer valid for the total linearised perturbation field q = {u, p}T which is
expanded in Fourier modes of azimuthal wavenumber m ∈N,

q(r, θ, z, t)=
∞∑

m=−∞

qm(r, z, t)eimθ . (2.5)

The complex-conjugate symmetry qm = q∗
−m holds for these modes, and the notation

(·)∗ is employed here and in the following to indicate the complex-conjugate of a
given complex-valued quantity. At each wavenumber m, the corresponding perturbation
field qm = {um, pm}

T is governed by the linear dynamical system

B
∂qm

∂t
=Lmqm, (2.6)

where the operators B and Lm are expressed as follows:

Lmqm ≡

(
−Cm(um,Ub)+ Re−1

∇
2
mum −∇mpm

∇m · um

)
, B

∂qm

∂t
≡

(
∂um/∂t

0

)
, (2.7a,b)

with
Cm(um,Ub)= (Ub · ∇m)um + (um · ∇0)Ub. (2.8)

The notation ∇m(·), ∇m · (·) and ∇2
m(·) is used to indicate the Fourier transformed

gradient, divergence and vector Laplacian operators, respectively. For the linearised
flow field the same boundary conditions introduced in § 2.1 are applied with
homogeneous data, as follows from the linearisation of the original nonlinear
differential problem.

2.2.1. Global modes and wavemaker analysis
For each wavenumber m the modal stability analysis of the axisymmetric base flow

is performed by casting the perturbation field qm in the normal mode form qm(r, z, t)=
q̂m(r, z)eλt. This ansatz leads to the following generalised eigenvalue problem for the
global mode q̂m(r, z) and the associated eigenvalue λ= σ + iω ∈C:

λBq̂m =Lmq̂m, (2.9)

with σ and ω denoting the real and imaginary part of λ, respectively. A global
instability clearly arises when σ > 0 for some values of the governing parameters
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Re and Ru. The corresponding adjoint global modes q†
m(r, z, t) = q̂†

m(r, z)e−λ∗t are
introduced as well with

λ∗Bq̂†
m =L†

mq̂†
m, (2.10)

where L†
m is the adjoint operator of Lm with respect to the Hermitian scalar product

〈q†
m, qm〉Ωc =

∫
Ωc

(
q†

m

)∗
· qmr dr dz. (2.11)

In particular, when a global mode becomes unstable, leading to an oscillator-type
behaviour, the knowledge of both the direct and the adjoint eigenfunctions allows one
to identify the ‘core’ region of the self-excited instability mechanism (Giannetti &
Luchini 2007). This is achieved by performing a structural sensitivity analysis of the
eigenvalue problem (2.9) with respect to a ‘localised’ structural perturbation of the
operator Lm in the form of a localised feedback from the velocity field:

δLm =
1
r
δ(r− r0, z− z0)

(
C0 0
0 0

)
. (2.12)

Here C0 is a constant feedback tensor, (r0, z0) denote the coordinates of the point
in the azimuthal plane where the feedback acts and δ(r − r0, z − z0) is the two-
dimensional Dirac delta function. It is worthwhile to note that, consistently with the
axisymmetric nature of the underlying base flow, the considered structural perturbation
is localised in r and z but not in θ , with the wavemaker region resulting axisymmetric.
By employing the formulation adopted by Pralits, Brandt & Giannetti (2010), the
structural sensitivity analysis leads eventually to the definition of a sensitivity tensor
field Sm(r, z) for each considered wavenumber m

Sm(r, z)=
(û†

m)
∗
⊗ ûm

〈q̂†
m,Bq̂m〉Ωc

, (2.13)

where ⊗ denotes the dyadic product between two vector fields. A corresponding
scalar sensitivity map in the azimuthal plane (r, z) is easily obtained by plotting at
each spatial point a suitable norm of the tensor, such as, for instance, the Frobenius
norm, ‖Sm(r, z)‖F, which will be adopted in the present study. Other norm definitions
can be considered as well, since the wavemaker identification has been shown not
to depend on this particular choice (Camarri & Giannetti 2010; Carini, Giannetti &
Auteri 2014b).

2.2.2. Transient growth
In contrast with an oscillator-type dynamics, when the flow is dominated by a

noise-amplifier behaviour, a non-modal approach allows the characterisation of those
instabilities which are promoted by a relevant transient amplification of the linearised
perturbations, due to non-normal interactions among the stable eigenmodes. This
problem is commonly addressed by looking at the most amplified initial condition
um,0 = um(r, z, 0) over a finite time horizon τ , i.e. the optimal perturbation for τ
(Reddy & Henningson 1993; Schmid 2007). The optimal amplification factor for the
perturbation wavenumber m and a given time horizon τ , Gopt

m (τ ), is defined as

Gopt
m (τ )=max

um,0

‖um(r, z, τ )‖
‖um,0‖

, (2.14)
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with ‖um‖
2
=
∫
Ωc
|um|

2r dr dz. The velocity field at t = τ can be formally expressed
in terms of the initial condition um,0 by introducing the propagator Pm(τ ) associated
with the linearised system (2.6)

um|t=τ =BrPm(τ )qm,0 =BreLmτqm,0 =BreLmτBpum,0, (2.15)

where Br and Bp denote the restriction and prolongation operators between the total
flow state qm and the associated velocity field ‘component’ um:

Brqm = um, Bpum =

(
um
0

)
. (2.16a,b)

Both Gopt
m (τ ) and the optimal perturbation uopt

m,0 can be obtained as the leading
eigenpair of the following symmetric positive-definite eigenvalue problem

BrP†
m(τ )Pm(τ )Bpuopt

m,0 =Gopt
m (τ )

2uopt
m,0, (2.7)

where P†
m(τ ) is the adjoint propagator of Pm(τ ), i.e. P†

m(τ )= e−L
†
mτ .

3. Numerical methods
The steady solutions and the stability problems are numerically solved with PaStA,

a Fortran90 code written in primitive variables and based on the finite element method
(Canton 2013; Canton, Schlatter & Örlü 2016). The equations are discretised on an
unstructured, two-dimensional mesh composed of triangular elements, corresponding
to an azimuthal plane of the considered cylindrical domain. Standard Taylor–Hood
P2–P1 finite elements are employed for the unknown velocity and pressure fields. In
our numerical procedure the axisymmetric base flow is first computed by means of
Newton iterations and then, for each considered wavenumber m, the corresponding
global modes and optimal perturbations are extracted making use of the implicitly
restarted Arnoldi algorithm implemented in the ARPACK library (Lehoucq, Sorensen
& Yang 1998). More precisely a shift-invert spectral transformation is applied to
the eigenproblem (2.9), with the Jacobian matrix being fully assembled. In contrast,
a time stepper approach (Barkley, Blackburn & Sherwin 2008) is adopted for the
computation of the optimal perturbations, through direct-adjoint iterations coupled
to the aforementioned Arnoldi algorithm. The Crank–Nicolson time-scheme is used
for the time integration of both the direct and the adjoint systems. In particular, a
discrete adjoint approach at the spatial level is adopted, and the proper boundary
conditions for the adjoint problem are thus accounted for automatically. The LOCA
library of continuation algorithms (Salinger et al. 2002) is used to track the neutral
curve associated with the leading eigenmode in the parameter plane Re–Ru. All matrix
inversions are handled using the sparse LU solvers provided with the software library
MUMPS (Amestoy, Duff & L’Excellent 2000).

In order to assess the accuracy of our stability computations with respect to the
adopted discretisation, eleven meshes, characterised by different spatial extents, have
been employed. The main features of these meshes are reported in table 1. For all the
grids, a relevant portion of the inlet pipes has been modelled, with zi > 5, in order
to ensure the correct approximation of the physical adjoint eigenfunctions and of the
optimal perturbations, as recommended by Garnaud et al. (2013). In the rest of the
paper, we will present and discuss the results obtained using grids M60–M100,zi15. A

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

29
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.290


Linear global stability of two incompressible coaxial jets 893

Mesh zi zmax rmax Ne Ndofs

M40 5 40 5 196 530 1 287 172
M60 5 60 5 261 295 1 709 681
M80 5 80 5 326 344 2 134 043
M100 5 100 5 389 588 2 546 571
M120 5 120 5 454 746 2 971 638
M140 5 140 5 519 612 3 394 807
M160 5 160 5 584 999 3 821 366
M100,r10 5 100 10 455 805 2 977 209
M100,r15 5 100 15 529 701 3 457 757
M100,zi10 10 100 5 452 219 2 959 731
M100,zi15 15 100 5 515 040 3 374 126

TABLE 1. Characteristics of the meshes used in the present study. All the meshes are
named Mzmax so as to quickly recall the most important mesh parameter; where duplicates
are present the changing parameter is reported as a second subscript. Ne denotes the
total number of triangular elements while Ndofs denotes the corresponding total number
of degrees of freedom. All the meshes are characterised by a grid size 1` varying from
1`max = 0.4 close to the outflow border Γo, down to a minimum value of 1`min = 0.009
within the refinement zone (blue shaded area in figure 1); these sizes of the elements have
been determined following a mesh refinement independence study. See figure 1 for the
definition of the other parameters.

sensitivity analysis of these results with respect to the domain extents is reported in
appendix A. All the meshes are characterised by a grid size 1` varying from 1`=0.4
close to Γo, down to a minimum value of 1`=0.009 within the refinement zone (blue
shaded area in figure 1) these sizes of the elements have been determined following
a mesh refinement independence study.

Finally, nonlinear DNS of the considered flow have been carried out by means
of the spectral element code nek5000 (Fischer, Lottes & Kerkemeier 2008). As
in the case of the finite element method, a classical Galerkin approximation is
used to spatially discretise the governing equations. In this case, the velocity and
the pressure spaces are spanned by Lagrange polynomial interpolants based on
tensor-product arrays of Gauss–Lobatto–Legendre quadrature points in each local
element. The velocity polynomial degree is N, two times higher than that employed
for the pressure (PN–PN−2 formulation); in the present computations N = 6 is chosen
as a good compromise between accuracy and computational cost. Time integration
employs an explicit second-order extrapolation for the advection terms and an implicit
second-order backward differentiation for the viscous term. Both axisymmetric and
fully three-dimensional simulations are performed. For the axisymmetric case the
computational grid consists of 3920 elements, while for the three-dimensional case
the total number of elements is equal to 64 160 with 32 planes being employed in
the azimuthal direction.

3.1. Validation case: the single jet
The global stability properties of the flow produced by an incompressible, round
viscous jet have been carefully described by Garnaud et al. (2013). The same flow
configuration is considered here as a test case for our numerical set-up. Similarly
to the coaxial jet case, the governing equations are made dimensionless using the
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FIGURE 2. (Colour online) Sketch of the computational domain employed for the stability
analysis of the single jet configuration.

diameter D̃ of the nozzle and the maximum velocity Ũ at the inlet boundary of the
computational domain Γin, which is illustrated in figure 2. In order to reproduce the
results reported by these authors for Re = ŨD̃/ν = 1000, the same axial velocity
profile is assumed on Γin with

U|Γin =Uz(r)ẑ, Uz(r)= tanh [5 (1− r)] , (3.1a,b)

while on the remaining portions of ∂Ωc, the imposed boundary conditions are
unchanged with respect to the coaxial jet configuration. The computational domain
has the same spatial extent of that adopted by Garnaud et al. (2013), and contains
317 406 elements, corresponding to 2 072 740 degrees of freedom. The global mode
spectrum obtained for m = 0 is illustrated in figure 3(a), and it features all the
branches reported in the reference paper. In particular, the branch of modes b2,
which describes the advection of the vortical structures generated by the shear layer
instability downstream of the nozzle, is very well reproduced. The computed gains
for the optimal perturbations at m = 0 are illustrated in figure 3(b) as a function of
the time horizon τ . The results are once again in good agreement with the reference
ones (reported in the same figure), indicating a monotonic growth of the amplification
factor of up to three orders of magnitude.

4. Base flow
Before addressing the analysis of the linearised perturbation dynamics, the main

properties of the steady, axisymmetric base flow produced by the two coaxial jets are
shortly described. As mentioned, the base flow represents a numerical approximation
to an exact steady solution of the Navier–Stokes equations for the present flow
configuration. The inflow profiles are chosen to approximate those measured in
experiments employing converging nozzles (Talamelli & Gavarini 2006) and have a
top-hat shape similar to that employed in Garnaud et al. (2013) for laminar flow
analyses. It is worth mentioning that part of the stability analysis has also been
performed using fully developed Poiseuille velocity profiles at the inflow and the
results, not presented in this work for conciseness, were qualitatively unchanged.
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FIGURE 3. Modal and non-modal stability analyses of the single jet flow for Re= 1000
and m= 0. (a) Global eigenspectrum. (b) Gains associated with the optimal perturbations
as a function of the time horizon τ : present results (round circle) compared with those
reported by Garnaud et al. (2013) for the same configuration (continuous line).
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FIGURE 4. Variation of the base flow velocity profiles through the nozzle for Ru = 1
and different values of Re. (a) Axial velocity profile imposed at the inflow and resulting
velocity profiles close to the nozzle exit (z̄= 0.1). (b) Radial velocity profiles close to the
nozzle exit (z̄= 0.1).

By inspecting the base flow field, it can be observed that the axial velocity profile
prescribed on the inlet boundary Γin,i ∪ Γin,o gradually modifies through the nozzle
due to the boundary layer growth inside the pipes. A comparison between the axial
velocity profiles at the inlet and those resulting at the outlet of the nozzle is illustrated
in figure 4 for Ru = 1 and different values of Re. At the pipe outlet, the outer jet
displays a nearly parabolic profile with a well-defined peak, while for the inner fluid
stream, the ‘top-hat’ profile shape is almost preserved. As expected, these shape
modifications become more pronounced as the Reynolds number is reduced. For both
fluid streams the maximum inlet velocity is increased up to the 30 % at the nozzle exit,
while the ratio between the maxima is not significantly altered, due to a comparable
growth of the boundary layers. The exact values of the outlet–inlet maximum velocity
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FIGURE 5. (Colour online) Base flow axial velocity field in the proximity of the nozzle
for Re = 1000 and different values of Ru. White lines are used to represent the flow
streamlines while the grey shaded area corresponds to the duct wall separating the two
coaxial fluid streams. (a) Ru = 0.5. (b) Ru = 1. (c) Ru = 1.5. (d) Ru = 2. The same colour
scale is employed for all the panels and the colour bar is reported in figure (d).

Re 500 1000 1500 2000
Ri

u,e 1.285 1.177 1.130 1.104
Ro

u,e 1.290 1.273 1.245 1.220

TABLE 2. Outlet–inlet ratios of the maximum axial velocity component characterising the
base flow for Ru = 1 and different values of Re. See also figure 4 for z̄= 0.1.

ratios for the inner and outer fluid streams, Ri
u,e and Ro

u,e respectively, are reported in
table 2. Figure 4(b) also reports the radial component of the velocity field at the pipe
outlets as a function of the Reynolds number. It can be observed that Ur is about
one order of magnitude smaller than Uz and that the modulus of Ur is reduced by
increasing the Reynolds number.

The presence of a thick duct wall separating the two coaxial jet streams is
responsible for the flow separation at the nozzle exit, with the formation of a
closed region of recirculating fluid, as in the case of steady bluff-body wakes. The
local structure of the base flow is illustrated in figure 5 for Re = 1000 and four
different values of Ru. For Ru = 0.5 the wake is nearly symmetric with respect to
the duct wall centreline. However, by increasing Ru the flow topology undergoes a
substantial modification. Both vortical rings attached to the wall gradually shrink and
the one located on the outer stream side eventually disappears. In addition, a more
elongated region of low-speed fluid in the axial direction is observed and a third
slender vortex ring is formed away from the wall. It is worthwhile to note that this
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FIGURE 6. Axial and radial velocity profiles of the computed base flow for Re = 1000
and Ru = 1 at different stations along the z-axis. (a) Uz(r, z). (b) Ur(r, z).

change in the base flow topology occurs without any bifurcation of the initial state,
similarly to what observed by Carini, Giannetti & Auteri (2014a) in the flow past
two side-by-side circular cylinders at low Reynolds numbers.

Although the weakly non-parallel assumption can provide a good approximation in
the stability analysis of the considered flow, the separation which occurs behind the
duct wall introduces important non-parallel effects, especially in the region close to
the nozzle. These effects are better illustrated in figure 6, by comparing the axial
and radial velocity profiles extracted from the base flow at Re = 1000 and Ru = 1,
at different stations along the z-axis. As expected, the radial velocity component is
very small if compared with the axial one, being three orders of magnitude lower,
figure 6(b). However, the influence of the duct wall wake is still visible almost up to
z≈ 40, figure 6(a), and in the region downstream of the nozzle the variation of the
velocity profiles Uz and Ur profiles is not as slow as it is usually assumed to be under
the weakly non-parallel assumption. These observations further motivate the adoption
of a global approach in the stability analysis of the flow.

5. Stability analysis
5.1. Eigenspectrum

The computation of the global eigenspectrum of the linearised coaxial jet flow for
m= 0 reveals the presence of a pair of complex-conjugate eigenvalues which become
unstable over a wide range of the governing parameters, Re and Ru. This region of
instability is illustrated in figure 7(a) as a grey shaded area delimited by the neutral
curve of the considered mode (black line). The neutral curve is characterised by a
minimum value of the critical Reynolds number of Re= 1356 achieved for Ru≈ 1.27.
On its lower branch, for Ru < 1, the dependence of Ru at the instability threshold
becomes gradually weaker as Re is increased beyond Re = 3000, with a critical
velocity ratio Ru ≈ 0.5. Indeed, at low velocity ratios the flow is dominated by the
inner jet instability, approaching the behaviour of a single jet, which displays a stable
eigenspectrum for all Reynolds numbers (see, e.g., Garnaud et al. 2013). It appears
that for Ru . 0.5 the outer jet is essentially reduced to a co-flow for the inner jet and
its influence is not strong enough to alter the dynamics of the inner jet. This does
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FIGURE 7. Global stability analysis of the coaxial jet flow. Panel (a) depicts the neutral
curve associated with the leading axisymmetric mode in the Re–Ru plane. The minimum
critical Reynolds number, Re= 1356 for Ru≈ 1.27, is highlighted with a (red) dash-dotted
line. The round markers, Pi, highlight the values at which the spectra in figure 8 have
been computed. The dashed line represents the neutral curve as a function of the bulk
Reynolds number Reb, reported on the top x-axis. Panel (b) reports the Strouhal number
of the marginally stable mode along the neutral curve, plotted as a function of the critical
velocity ratio Ru. The continuous line corresponds to the frequency scaled with the inner
jet velocity, Sts = sωc/(2πUi), while the dashed line shows the same frequency scaled by
the bulk velocity, Sts,b = sωc/(2πUb), reported on the top x-axis.

not imply that Ru ≈ 0.5 is a strict lower minimum for the velocity ratio: the neutral
curve may have an horizontal asymptote for any value below 0.5.

It is observed that the critical base flow presents a pair of counter rotating vortex
rings, located in the wake of the separating wall (see figures 5 and 11), all along
the lower branch of the neutral curve. While these vortex rings are approximately of
the same size for Ru ≈ 0.505, the outer vortex ring shrinks when moving along the
lower branch of the neutral curve and increasing the velocity ratio, until disappearing
completely for Ru ≈ 0.90 and Re ≈ 1495. On the other hand, the topology of the
base flow is only slightly modified along the upper branch of the neutral curve, and
presents only one recirculating vortex, similarly to what was described for a subcritical
Re (see figure 5). It therefore seems that the onset of instability of the wake of the
separating wall is not related to a topological feature of the flow. The non-dimensional
critical mode frequency scaled using the wall duct thickness, Sts = sωc/(2πUi),
is illustrated in figure 7(b) as a function of Ru. Except for its behaviour in the
neighbourhood of Ru = 0.5, the mode frequency increases almost linearly with Ru in
analogy with what has been observed by Talamelli & Gavarini (2006). To further
investigate the similarity to the results by Talamelli & Gavarini (2006), figure 7(b)
also reports the Strouhal number referred to the bulk velocity of the two jets,
Sts,b = sωc/(2πUb). It can be observed that, when scaled by the mean velocity, the
mode frequency is approximately constant for Ru > 1, in agreement with figure 11
in Talamelli & Gavarini (2006), but Sts,b does not assume a constant value for low
velocity ratios, where non-parallelism effects appear to be more relevant.

Figure 8 illustrates the eigenspectra computed at the stations Pi along the neutral
curve of figure 7(a). In the same figure, the eigenvalues obtained for m= 1 and m= 2
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FIGURE 8. Global eigenspectrum computed at four different points along the neutral curve
for m= 0, 1, 2. (a) P1, Re= 5000 and Ru= 0.505. (b) P2, Re= 1420 and Ru= 1.0. (c) P3,
Re= 1386 and Ru = 1.5. (d) P4, Re= 1559 and Ru = 2.0.

are also reported. For these wavenumbers, i.e. m = 1, 2, all the eigenvalues have a
negative growth rate, thus confirming that the primary instability is axisymmetric.
In addition to the leading eigenvalue (black dot lying on the imaginary axis) and
in analogy with the single jet spectrum, figure 3(a), different mode branches are
observed in the spectrum for m= 0. More precisely, with reference to figure 8(b), the
branch b1 is composed by nearly steady modes associated with vortical structures in
the fluid region surrounding the jets, which are typical of parallel flows. In contrast,
the modes belonging to the branch b2 are localised within the jet shear layers.
Finally the branch b3 contains poorly conditioned eigenvalues, which are not exactly
recovered when changing the adopted complex shift in the eigenvalue computations.
Such branch structure is common to all the panels of figure 8.

The present results are in good agreement with those by Talamelli & Gavarini
(2006) for low velocity ratios. It is interesting to notice that the analysis by these
authors is mainly focused on null or small back flow in the separating wall region.
This seems to suggest that the structure of the counter rotating vortex rings has
a minor role for low values of Ru, where the instability may originate from
a synchronisation between the characteristic frequencies of the two shear layers
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separated by the duct wall, and therefore be mostly dependent on the velocity ratio
alone. On the other hand, Talamelli & Gavarini (2006) observe an upper Ru limit
for the instability (sensitive to the boundary layer thickness) which is not found in
the present global analysis. This discrepancy seems to suggest that the recirculation
region, and the non-parallelism of the flow, plays a more important role on the
instability for high velocity ratios. Even Talamelli & Gavarini (2006) recognise that
‘for velocity ratio Ru < 0.5 and Ru > 2.6 an absolute instability occurs only if a back
flow is generated in the wake region. For instance this effect may be obtained by
aspirating the flow in proximity of the separating wall’. The present analysis shows
that aspiration is not necessary, since the recirculation region behind the separating
wall naturally provides a back flow, but indicates the necessity for a fully non-parallel
base flow to correctly capture the nature of the instability.

It then appears that the global instability that sets in for Ru & 0.5 is related to the
presence of the blunt wall separating the two jets. This is confirmed by a global, linear
stability analysis, not reported in the present work for conciseness, showing that the
eigenvalue that becomes unstable is largely stable when the blunt wall is substituted by
a streamlined one. However, the physical origin of this instability is not entirely clear,
as it is not clear for cylinder flows. No discontinuous modifications in the structure
of the base flow can, in fact, be observed when crossing the neutral curve. Besides,
the same critical global mode is observed even for high velocity ratios, where the
topology of the recirculating region is fundamentally altered, presenting one vortex
ring instead of the two observed for low Ru. Moreover, the adopted scaling, where
the Reynolds number is insensitive to the velocity of the outer jet, being solely based
on the velocity of the inner jet, leads to a slow change of the critical Re with Ru in
the upper branch of the neutral curve. This is not the case if a different scaling is used
as, for example, by employing a Reynolds number based on the total bulk velocity of
the two jets. In this case, shown by the dashed line in figure 7(a), the dependence of
the upper branch of the neutral curve on the velocity ratio is stronger.

5.2. Leading global modes and the wavemaker
The direct global mode computed for Ru= 1 is represented in figures 9(a) and 9(b) by
means of the real part of its axial and radial velocity components, respectively. This
mode is formed by an array of counter-rotating vortex rings developing in the wake of
the separating duct wall. The amplitude of these structures grows downstream of the
nozzle, in the axial direction, reaching a maximum value at z≈ 11, after which they
slowly decay. The spatial structure of this eigenmode resembles that of the critical
eigenmode in the wake of a circular cylinder (Sipp & Lebedev 2007). Direct numerical
simulations, in fact, show an ‘annular’ alternating vortex street originating in the wake
of the duct wall. Such spatial structure substantially differs from that characterising the
shear layer modes belonging to branch b2, which display an exponential spatial growth
up to the outlet boundary of the computational domain, similarly to what observed by
Garnaud et al. (2013) for a single jet. The structure of the critical mode substantially
changes when moving along its neutral curve. Figure 9(c,d) represent the critical mode
for Ru= 2, Re= 1559. The maximum of the amplitude is located further downstream,
at z≈ 20, and the shape is qualitatively modified. This modification is reflected in the
DNS which shows a Kelvin–Helmholtz instability in the shear layer between the jets
and at the interface between the outer jet and the quiescent surrounding fluid.

Differently from the direct mode, the adjoint mode, illustrated in figure 10, results
essentially concentrated within the nozzle. Its spatial distribution is found in the form
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FIGURE 9. (Colour online) Direct global mode for m= 0. Panels (a) and (b) represent the
axial and radial velocity components, respectively, of the leading global mode at criticality
for Re= 1420,Ru= 1.0 (point P2 in figure 7). The same quantities are depicted in panels
(c) and (d) for the critical mode at Re = 1559, Ru = 2.0 (point P4 in figure 7). Note
that the figures only reproduce a portion of the computational domain which is always
characterised by zmax > 40. Mesh M60, with zmax = 60, was used for these particular fields.
The complete fields can be found at https://doi.org/10.1017/jfm.2017.290.
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FIGURE 10. (Colour online) Critical adjoint global mode for m = 0 represented by the
magnitude of the associated velocity field. (a) Re= 1420, Ru = 1.0. (b) Re= 1559, Ru =

2.0. Note that the figures only reproduce a portion of the computational domain which is
always characterised by zmin 6−5. Mesh M60, with zmin=−5, was used for these particular
fields. The complete fields can be found at https://doi.org/10.1017/jfm.2017.290.

of upstream inclined structures localised inside the pipe boundary layers, achieving a
maximum intensity close to the sharp corners of the duct wall. When the velocity ratio
is changed, the adjoint mode moves from the inner pipe, where it is mainly located
for low Ru, to the outer pipe, for Ru > 1.
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FIGURE 11. (Colour online) Structural sensitivity map ‖S0(r, z)‖F associated with the
critical global mode at four different points along the neutral curve. White lines are used
to represent the base flow streamlines. (a) P1, Re=5000 and Ru=0.505. (b) P2, Re=1420
and Ru = 1.0. (c) P3, Re = 1386 and Ru = 1.5. (d) P4, Re = 1559 and Ru = 2.0. (e) P4,
Re= 1559 and Ru= 2.0 (extended view). Note that the figures only reproduce a portion of
the computational domain which is always characterised by zmax > 40 and zmin 6−5. Mesh
M60, with zmax= 60 and zmin=−5, was used for these particular fields. The complete fields
can be found at https://doi.org/10.1017/jfm.2017.290.

The knowledge of both the direct and the adjoint modes allows us to identify
the regions of the flow where the considered instability originates, according to the
wavemaker analysis introduced by Giannetti & Luchini (2007). The ‘core’ of the
global instability can indeed be associated with the maximum values of the function
‖S0(r, z)‖F, defined in § 2. Figure 11 illustrates the sensitivity map computed along
the neutral curve. Except for the case at Ru= 2, the spatial distribution of ‖S0(r, z)‖F
results highly localised behind the duct wall, featuring negligible values both inside
the pipes and far from the nozzle. For Ru= 1, figure 11(b), the maximum intensity is
attained within a ‘double lobe’ structure which is nearly symmetric with respect to the
duct wall centreline. A similar shape of the wavemaker has been observed for several
two-dimensional bluff-body flow configurations at low Reynolds numbers (Giannetti &
Luchini 2007; Pralits et al. 2010; Carini et al. 2014b). Either decreasing or increasing
the velocity ratio, the wavemaker structure becomes distinctly asymmetric, as shown in
figure 11(a,c,d), featuring a single pocket of maximum sensitivity located on the side
of the faster flowing jet. Finally, by increasing the velocity ratio up to Ru= 2, another
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FIGURE 12. (Colour online) Gains associated with the optimal perturbations as a function
of τ for m= 0 and different values of Ru. (a) Re= 1000. (b) Re= 1250. The dashed (blue)
line shows the amplification of the same optimal perturbations attained on the nonlinear
flow Ru = 1.

peculiar modification of the sensitivity map occurs. As already mentioned, in this case
small but non-negligible values of the norm of the sensitivity tensor are observed over
a wide region downstream of the nozzle. A similar behaviour has also been reported
by Carini et al. (2014a) in a preliminary analysis of the secondary bifurcation of
the flow past two side-by-side circular cylinders. However, differently from that
case, in the present configuration the region of non-zero sensitivity values is entirely
contained within the adopted computational domain. An extended view is presented
in figure 11(e), and ensures the proper convergence of the computed mode with
respect to the downstream location of the outlet boundary. This is also confirmed by
the convergence study reported in the appendix A. Although the wavemaker extends
downstream of the nozzles for high velocity ratios, the most significant contribution
to the instability remains localised close to the separating wall. This observation is
confirmed by the work of Tammisola (2012) via a global and local analysis. The
author reports that, for a pair of two-dimensional jets, the downstream portion of the
wavemaker is not detected by a local stability analysis. This indicates that the ‘true’
wavemaker is the one close to the pipe exit, while the downstream area of sensitivity
is associated with the upstream reflection of perturbations generated by the ‘true’
wavemaker. In the present analysis the magnitude of the downstream portion of the
wavemaker is lower than that of the upstream portion, indicating that this effect is
not as prominent as in Tammisola (2012). The resemblance between the wavemakers
in the two works, however, suggests that even for coaxial jets at high velocity ratios
the downstream portion of the wake does not have a merely convective function, but
is coupled to the near wake dynamics.

5.3. Transient growth
The linearised flow dynamics is now investigated by means of a non-modal stability
analysis. The non-modal analysis is here restricted to axisymmetric perturbations
in the subcritical regime. Figure 12 illustrates the optimal gain curve Gopt

0 (τ )
computed for three different values of the velocity ratio, at Re= 1000 and Re= 1250
(figures 12(a) and 12(b), respectively). For Ru=0.5 the amplification factors are of the
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FIGURE 13. (Colour online) Spatial structures associated with the evolution of the optimal
perturbations at Re = 1000 depicted by means of the kinetic energy distribution |u|2/2
for different velocity ratios: (a,b) Ru = 0.5, (c,d) Ru = 1.0 and (e, f ) Ru = 1.5. In (a,c,e)
the optimal initial condition is displayed while in the (b,d,f ) the resulting linearised
flow response at the maximum amplification time (black filled symbols in figure 13a) is
illustrated. Note that the figures only reproduce a portion of the computational domain
which is always characterised by zmax > 40 and zmin 6 −5. Meshes M60 and M80, with
zmin =−5 and zmax = 60 and 80 respectively, were used for these particular fields.

same order as those characterising the single jet, already shown in figure 3(b). For low
velocity ratios the transient amplification of the linearised perturbations is essentially
driven by the inner shear layer response. In contrast, huge gains are obtained for a
unitary velocity ratio and Gopt

0 (τ ) further increases up to 20 orders of magnitude for
Ru = 1.5. When Ru = 1.0, the maximum amplification is reached at τ = 60, which
approximately corresponds to z = 34, while for Ru = 1.5, optimal perturbations are
still being amplified when they are advected outside of the computational domain.

These results are better illustrated in figure 13 for each considered velocity ratio
and Re = 1000. This figure depicts both the optimal initial perturbation and the
resulting linearised flow field at the maximum amplification time (corresponding to
the black filled symbols in figure 12a). In analogy with the critical adjoint mode
shape, the optimal perturbations are found to be highly localised at the corners of
the duct wall. In contrast to the adjoint modes, though, the regions of maximum
intensity are observed to be localised on the side of the stream with lower maximum
velocity for Ru 6= 1, while they are located on both jet sides for a unitary velocity
ratio. The difference between the results of the wavemaker analysis and those of the
transient-growth analysis might seem ‘surprising’ at first: the wavemaker displays
higher sensitivity to perturbations on the side of the faster flowing jet, while the
optimal initial perturbations are located on the inner side of the duct walls. It
should be noted, however, that the two analyses correspond to two different kinds
of instability. The structural sensitivity is associated with an intrinsic instability
mechanism: the base flow is unstable independently of external perturbations; the
transient growth, instead, is related to the input/output relationship between the
perturbations introduced into the flow and how they are transformed by the flow
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0–15 15

FIGURE 14. (Colour online) Flow snapshot of the fully developed unsteady coaxial jet
flow obtained from three-dimensional DNS at Ru = 1 and Re= 1500: iso-surfaces of the
λ2 criterion (λ2 = −0.5) coloured by the azimuthal component of the vorticity field. A
planar cut of the azimuthal vorticity field is also illustrated. The light grey shaded structure
corresponds to the nozzle geometry.

itself. This fundamental difference is reflected in the results of the present analysis:
the absolute instability is associated with the presence of a blunt separating wall and
to the interaction of the shear layers separating from it. In contrast, the convective
instability is associated with the transient growth of perturbations seeded within
the inlet ducts, near their walls, and amplified in the entrance region by a Orr
mechanism (Garnaud et al. 2013; Sipp & Marquet 2013) and in the jet region by the
Kelvin–Helmholtz instability mechanism. It is interesting to notice, here, the more
effective amplification of perturbations seeded near the external wall of the jets.

To assess the relevance of the linear optimal perturbations on the actual flow, the
same perturbations have been employed as initial condition in nonlinear simulations. It
should be noted that this operation is not connected to a nonlinear optimals analysis;
it is simply an exercise to assess the actual amplification of these perturbations. It
should not be forgotten that the nonlinear flow depends on the initial amplitude. The
results are illustrated in figure 12(a) for Ru = 1.0 and Re = 1000 setting the initial
amplitude of the velocity perturbation field to a value between 0.4 % and 2 % of the
base flow velocity, measured in the L∞ norm of the axial component. As expected,
the gains are lower in the nonlinear flow, and the kinetic energy saturates for τ >
30, forming a plateau. The amplification of these initial conditions, though, is still
considerably high, reaching a maximum value of 1.3× 105, two orders of magnitude
higher than the linear maximum for a single round jet. This is especially true since
quite large initial perturbations have been considered. Despite these enormous growths,
the nonlinear flow confirms its absolute stability, and returns to the steady state after
advecting the perturbations outside of the domain.

6. Direct numerical simulations

Direct numerical simulations of the two coaxial jets have been performed in order
to assess the onset of the unstable axisymmetric mode predicted by the linear global
stability analysis. Since the corresponding instability mechanism is expected to be
dominant only in the range of unitary velocity ratios, the DNS computations have been
focused on the value of Ru = 1. Figure 14 illustrates the vortex structures developing
in the unsteady fully three-dimensional flow field at Re = 1500. The structures are
represented by iso-surfaces of the λ2 criterion, for λ2 =−0.5, and coloured with the
corresponding value of the azimuthal component of the vorticity field. As can be
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FIGURE 15. Time history and frequency content of the radial velocity component
extracted from the DNS of the axisymmetric coaxial jet flow for Ru= 1 and two different
Reynolds numbers, i.e. Re = 1000 (a,d,g) and Re = 1500 (b,e,h). The velocity probes
are located at z = 2.0 and r = 0.25, 0.55, 0.8 corresponding to (a–c), (d–f ) and (g–i),
respectively. The third column shows the spectral content of the velocity signals for the
case at Re= 1500, for which a periodic solution is established.

observed in this figure, the flow does not feature any helical mode, thus confirming
the expected axisymmetric nature of the leading instability. Based on these results,
further DNS investigations are carried out under the axisymmetric constraint, which
allows us to considerably reduce the computational cost. The simulations have been
impulsively started from quiescent conditions and then advanced in time with a
non-dimensional time step of 1t= 1× 10−3 up to the achievement of either a steady
or unsteady condition. In order to evaluate the frequency of the instability, virtual
probes measuring the velocity components are introduced in the simulation. The
measurements are presented in figure 15 for three of the probes located at z = 2.0
and different radial positions: r = 0.25, 0.55 and 0.8, corresponding approximately
to the inner jet, the duct wall wake and the external jet. For Re = 1000 (a,d,g),
all the unsteady perturbations exponentially decay and the flow converges towards
the steady base state, in agreement with the instability threshold of Re ≈ 1420
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defined by the neutral curve of figure 7(a). In contrast beyond the neutral curve, for
Re = 1500 (figure 15b,e,h) a stable periodic solution is established. The frequency
content associated with the probe signals (figure 15c,f,i) is characterised by a main
peak occurring at the same non-dimensional frequency of Sts = 0.0924 for all the
probes. Such value of the vortex shedding frequency is in very good agreement with
the unstable global mode frequency of Sts = 0.0912 resulting from the linear stability
analysis, thus supporting the proposed interpretation of the ‘global’ nature and origin
of the considered flow instability. The higher frequency peaks appearing in the spectra
of figure 15(c, f,i) correspond to second- and third-order harmonics with 2Sts= 0.1847
and 3Sts = 0.2783.

7. Summary and conclusions

The linear stability of the incompressible flow produced by two coaxial fluid
streams separated by a thick duct wall has been investigated within a fully non-parallel
framework in order to properly account for the effects of the solid wall and of the jet
spreading. For such a configuration, and differently from the case of a single round
jet, the flow becomes globally unstable due to an oscillatory axisymmetric mode
associated with the vortex shedding in the wake of the duct wall. This finding agrees
with the existence of a finite region of absolute instability predicted by the local
stability analysis (Talamelli & Gavarini 2006). Despite the low Reynolds numbers
that characterise it, the instability mechanism discovered in the present analysis is
known to dominate the flow for nearly unitary velocity ratios for higher Reynolds
numbers (see, e.g. Segalini & Talamelli 2011). The characteristic annular alternating
vortex street is, in fact, dominating the large-scale motion up to at least Re= 13 800,
while being modulated by small-scale turbulence. It was found that the region of
linear instability corresponding to the global mode extends over a wide range of
the governing parameters, with a minimum critical Reynolds number of Re ≈ 1356
(Ru ≈ 1.27) and a lower threshold of Ru ≈ 0.5, which is almost independent of Re.
The spatial structure of the leading mode results remarkably different from that
characterising the jet shear layer modes, the former developing upstream of the
latter and featuring a well-defined maximum within the computational domain. By
inspecting the direct-adjoint product, the ‘core’ of this instability results located in
the separated flow region which forms in the near wake of the duct wall, showing
two pockets of maximum sensitivity on the two sides of the wake of the wall. As
the velocity ratio is increased or decreased, the shape of the wavemaker is modified,
featuring only one ‘lobe’ located on the side of the faster flowing stream.

A three-dimensional DNS at Ru= 1 and Re= 1500 has been performed to assess the
axisymmetric nature of the unsteady flow and further axisymmetric simulations have
been used to compare the vortex shedding frequency with the global mode frequency.
Good agreement was found for all values of the parameters, with a slight difference
of approximately 1.3 %.

Finally an optimal perturbation analysis has been carried out to complete the linear
global stability description of the flow. Quite surprisingly, huge gain factors are
found to characterise the transient response of the linearised flow dynamics at high
velocity ratios. The optimal growth far exceeds that of a single round jet, achieving
an amplification of up to 20 orders of magnitude. In analogy with the results of
Garnaud et al. (2013), optimal perturbations result highly localised around the sharp
corners of the nozzle. In particular it is interesting to note that, as the velocity ratio
is varied and differently from the wavemaker, their location shifts towards the side of
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FIGURE 16. (Colour online) Branch b2 of the global eigenspectrum computed using
meshes characterised by a different streamwise extent of the domain.

the lower-speed fluid stream. The same linear optimal perturbations were also used
as initial conditions in nonlinear simulations. In spite of the expected reduction in
the amplification attained by these perturbations, the gains remain considerably high,
reaching values which are two orders of magnitude higher than the linear maximum
for a single round jet.

Supplementary material
Supplementary material is available at https://doi.org/10.1017/jfm.2017.290.

Appendix A. Sensitivity to domain size and grid resolution
In order to investigate the influence of the domain size on the stability results,

several computations have been performed by varying both the radial and the axial
extension of the domain. All computations were carried out with the same local
mesh size, 1`, varying from 1` = 0.4 close to Γo, down to a minimum value of
1` = 0.009 within the refinement zone (blue shaded area in figure 1), these sizes
of the elements have been determined following a mesh refinement independence
study; the different features of the employed meshes are listed in table 1. As occurs
in the case of the single jet (Garnaud et al. 2013), the stable eigenvalues belonging
to the branch b2 of the spectrum, which are associated with exponential downstream
growing modes, are strongly influenced by the position of the outlet boundary. This is
confirmed in figure 16, which reports the branch b2 when computed by using meshes
characterised by an increasing axial length. When zmax > 100 (meshes M100–M160)
the overall displacement of this branch becomes smaller but the eigenvalues that
constitute it are joined by other ill-conditioned eigenvalues. In contrast, the leading
unstable eigenvalue displays a good convergence with respect to the spatial extension
of the domain: the first four significant digits of its frequency are, in fact, independent
on the mesh length, as shown in table 3 for Ru= 1 and Re= 1420. Similarly, table 4
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σ ω

M40 3.231422248× 10−4 5.72786478
M60 3.199831336× 10−4 5.72787783
M80 3.218508894× 10−4 5.72787597
M100 7.033327496× 10−4 5.72785716
M120 7.037579582× 10−4 5.72786021
M140 7.020678535× 10−4 5.72785978
M160 7.047876486× 10−4 5.72784736

TABLE 3. Computed leading eigenvalue for Ru = 1 and Re = 1420 using computational
domains of different length.

τ 12 16 20

M40 −6.91× 10−4
−1.21× 10−3

−1.97× 10−3

M60 3.30× 10−4
−1.36× 10−4

−9.38× 10−4

M80 3.34× 10−4
−1.31× 10−4

−9.30× 10−4

M100 6.83× 10−4 2.59× 10−4
−4.99× 10−4

M120 6.85× 10−4 2.62× 10−4
−4.97× 10−4

M140 — — —
M160 6.68× 10−4 2.45× 10−4

−5.14× 10−4

M100,r10 4.44× 10−2 4.00× 10−2 3.27× 10−2

M100,r15 1.04× 10−2
−6.77× 10−3

−2.58× 10−2

M100,zi10 1.34× 10−5 — —

TABLE 4. Variation of the computed gain factor Gopt
0 (τ ) for Ru= 1 and Re= 1000 obtained

using different computational domains, with respect to the reference M100,zi15 grid. The
variation is also normalised with respect to the values obtained with M100,zi15.

lists the variation of the amplification factor Gopt
0 (τ ) computed using the different

grids for Re = 1000 and three different values of τ . It is possible to observe that
Gopt

0 (τ ) shows very little sensitivity to domain size. This is explained by the fact that
all optimal perturbations are located in the nozzle region, with no contributions from
other areas of the domain.
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