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We prove that triangular configurations are plentiful in large subsets of Cartesian squares of

finite quasirandom groups from classes having the quasirandom ultraproduct property, for

example the class of finite simple groups. This is deduced from a strong double recurrence

theorem for two commuting measure-preserving actions of a minimally almost periodic (not

necessarily amenable or locally compact) group on a (not necessarily separable) probability

space.
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1. Introduction

By showing that any subset of PSL(2,Fq) with density at least 2|PSL(2,Fq)|8/9 contains a

subset of the form {g, x, gx}, Gowers [21, Theorem 3.3] answered negatively a question of

Babai and Sós [5] on the existence of a constant c > 0 such that every finite group G has

a subset of size at least c|G| that is product-free, meaning that it contains no subset of the

form {g, x, gx}. Gowers also showed [21, Lemma 5.1] that quasirandom groups constitute

the general setting for such a result; a finite group is D-quasirandom if and only if it has

no non-trivial representations over C of dimension less than D.

The non-existence of large product-free sets in infinite, amenable groups was investigated

in [8], where it was shown that G is minimally almost periodic (meaning that it has no

non-trivial, finite-dimensional, unitary representations over C) if and only if every subset

having positive density with respect to some Følner sequence contains a subset of the

form {g, x, gx}.

† Gratefully acknowledges the support of the NSF under grants DMS-1162073 and DMS-1500575.
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In both settings, the non-existence of large product-free sets is related to the absence

of finite-dimensional representations. It can also be related to the ergodic theory of group

actions. Indeed, given A ⊂ G, one can find in A a set of the form {g, x, gx} if and only if

there is g ∈ A such that A ∩ g−1A �= ∅ and one is now faced with a question of recurrence

for the action of G on itself by left multiplication. When G is finite, the Haar measure

on G is a natural invariant measure, while for countable amenable groups a version of

the Furstenberg correspondence principle (e.g. [6, Theorem 4.17]) can be used to phrase

the problem dynamically. In terms of ergodic theory, then, the question becomes one of

relating the representation theory of G to positivity of correlations μ(B ∩ (Tg)−1B) for an

action T of G on a probability space (X,B, μ).

With this framework in mind, the existence of more complicated configurations in

subsets of quasirandom groups was considered in [11], and in particular the question of

whether every large enough subset A of a D-quasirandom group contains a configuration

of the form {g, x, gx, xg} or, equivalently, whether A ∩ g−1A ∩ Ag−1 is non-empty for some

g ∈ A. Dynamically, this corresponds to positivity of a multiple correlation of the form

μ(B ∩ (Tg
1 )−1B ∩ (Tg

1 T
g
2 )−1B), (1.1)

where μ is normalized counting measure and T1, T2 are the commuting actions of G on

itself determined by left and right multiplication. It was shown, in the following strong

form, that the conjugation-invariant subsets of G are the only obstruction to the positivity

of such correlations.

Theorem 1.1 ([11, Theorem 5]). Let G be a finite, D-quasirandom group with normalized

Haar measure m, and let f1, f2, f3 : G → R be bounded in absolute value by 1. Then∫ ∣∣∣∣
∫
f1(x) · f2(xg) · f3(gx) dm(x) −

∫
f1 dm

∫
f2 · E(f3|IG) dm

∣∣∣∣ dm(g) � c(D),

where E(f3|IG) is the orthogonal projection in L2(G,m) of f3 on the conjugation-invariant

functions and c(D) is a quantity depending only on D that goes to zero as D → ∞.

By specializing to f1 = f2 = f3 = 1A, where A is a subset of a D-quasirandom group G,

it follows (see [11, Corollary 6]) that for any ε > 0 we have

|A|3
|G|3 − ε � |A ∩ gA ∩ Ag|

|G| � |A|2
|G|2 + ε

for all but at most ε−1c(D)|G| many g ∈ G, where c(D) → 0 as D → ∞. Thus, if |A| >
ε−1c(D)|G|, then there are g ∈ A for which many configurations of the form {x, gx, xg}
can be found in A.

Theorem 1.1 has recently been re-proved by Austin [3] without the use of ultra

quasirandom groups, yielding explicit bounds for c(D). In particular [3, Theorem 1]

implies that for any D-quasirandom group G and any A ⊂ G with |A|4 > 4D−1/8|G|4 we

have

m(A ∩ g−1A ∩ Ag−1) � m(A)3 − 4D−1/8

m(A)
> 0

https://doi.org/10.1017/S0963548316000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000250


Triangles in Cartesian Squares of Quasirandom Groups 163

for some g ∈ A. See also [25], where the bound in [3] was improved and Theorem 1.1 was

generalized to the setting of probability groups.

Correlations of the form (1.1) control the existence of many other types of configuration.

To describe a couple, in [13] positivity of (1.1) on average for arbitrary commuting actions

T1 and T2 of any countable, amenable group G on a probability space was proved and used

to exhibit triangular configurations of the form {(x, y), (gx, y), (gx, gy)} in any positive-

density subset of G× G, and in [12] the correlation (1.1) was shown to be larger than

μ(B)4 on average when T1 and T2 are any commuting actions of an amenable, minimally

almost periodic group having the property that the G× G action (g1, g2) 	→ T
g1

1 T
g2

2 is

ergodic. This was used to exhibit two-sided finite products sets in positive-density subsets

of such groups.

In this paper we show (see Theorem 1.5 below) that there are many triangles, that

is, configurations of the form {(x, y), (gx, y), (gx, gy)}, in large enough subsets of G× G

provided G is quasirandom enough. To do this we consider the behaviour of the correlation∫
f0(x, y) · f1(gx, y) · f2(gx, gy) d(m × m)(x, y) (1.2)

for functions f0, f1, f2 : G× G → R. As in [11] we do not work with a specific quasir-

andom group G directly, but instead consider the asymptotic behaviour of (1.2) along

quasirandom sequences of groups.

Definition. A sequence n 	→ Gn of finite, Dn-quasirandom groups is a quasirandom

sequence of groups if Dn → ∞ as n → ∞.

Given a quasirandom sequence n 	→ Gn of groups, we relate the asymptotic behaviour

of (1.2) to a correlation of the form∫
f0 · Tg

1 f1 · Tg
1 T

g
2 f2 dμ (1.3)

for commuting actions T1 and T2 of a limiting group G formed from the Gn on a

probability space (X,B, μ). One can see that if f0 and f1 are supported on disjoint T1-

invariant sets then (1.3) is zero, so the correlation depends on the conditional expectations

of f0 and f1 on the sub-σ-algebra of T1-invariant sets. Similarly, the result depends on

the expectations of f1 and f2 on the T2-invariant sets, and on the expectations of f0 and

f2 on the T1T2-invariant sets.

In order to make precise the dependence of (1.3) on the invariant sub-σ-algebras

mentioned above, one studies the limiting behaviour of (1.3) along some limiting scheme,

a method that has been in use ever since Furstenberg’s ergodic proof [19] of Szemerédi’s

theorem. Which limiting scheme is used, and which sub-σ-algebras control the limiting

behaviour, depends on the properties of the acting group G.

When G is countable and amenable one can use a Følner sequence N 	→ ΦN to average

(1.1). Austin [2] has shown, using his satedness technique (see Section 3), that when

(X,B, μ) is a standard probability space, one can find a potentially larger probability

space (Y ,D , ν), commuting actions S1 and S2 of G on (Y ,D , ν), and a measurable,
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measure-preserving map π : Y → X intertwining Ti and Si such that∫
f0 · Tg

1 f1 · Tg
1 T

g
2 f2 dμ

−
∫

E(f0 ◦ π|A1 ∨ A12) · Tg
1 E(f1 ◦ π|A1 ∨ A2) · Tg

1 T
g
2 E(f2 ◦ π|A12 ∨ A2) dν (1.4)

averaged along any Følner sequence in G converges to 0, where A1,A2 and A12 are the

sub-σ-algebras of D generated by the S1, S2 and S1S2-invariant functions in L2(Y ,D , ν)

respectively. The σ-algebras A1 ∨ A12, A1 ∨ A2 and A12 ∨ A2 are called characteristic factors

for the correlation (1.3). Austin also gave similar results for longer correlations.

When G is non-amenable, averaging along Følner sequences is unavailable. Recently,

limits along minimal idempotent ultrafilters (idempotents in the Stone–Čech compacti-

fication βG of G that belong to a minimal ideal: see Section 4 for details and [10] for

the relative merits of minimal idempotents) have been employed as a replacement. It was

shown in [10] that for any minimal idempotent ultrafilter p on a countable group G, we

have

lim
g→p

∫
f0 · Tg

1 f1 · Tg
1 T

g
2 f2 dμ−

∫
f0 · Tg

1 E(f1|C1) · Tg
1 T

g
2 E(f2|C12) dμ = 0, (1.5)

where C1 and C12 are the sub-σ-algebras corresponding to functions that are almost

periodic for T1 and T1T2 respectively over A2. When G is amenable, one can obtain

stronger combinatorial results by using minimal idempotent ultrafilters rather than Følner

sequences: this is because positivity of correlations along minimal idempotent ultrafilters

yields a larger set of g ∈ G for which (1.1) is positive (see [10] for details). For limits of

longer correlations along minimal idempotent ultrafilters there is no known description

of sub-σ-algebras for which an analogue of (1.5) holds. We remark that the difficulty

in adapting the techniques in either [2] or [10] lies in the apparent need to understand

certain measures that are not invariant, but merely asymptotically invariant along the

ultrafilter.

In this paper we combine Austin’s satedness techniques with limits along minimal

idempotent ultrafilters to obtain the expected characteristic factors for commuting actions

of minimally almost periodic groups.

Theorem 1.2. Let G be a minimally almost periodic group and let T1, T2 be commuting,

measure-preserving actions of G on a compact, Hausdorff probability space (X, μ) via homeo-

morphisms. For any ε > 0 and any f1 in L∞(X, μ) bounded by 1, there are commuting,

measure-preserving actions S1, S2 of G on a compact, Hausdorff probability space (Y , ν) and

an intertwining factor map π : Y → X such that∣∣∣∣limg→p

∫
f0 · Tg

1 f1 · Tg
1 T

g
2 f2 dμ

−
∫

E(f0 ◦ π|A1 ∨ A12) · Sg1 E(f1 ◦ π|A1 ∨ A2) · Sg1 S
g
2 E(f2 ◦ π|A12 ∨ A2) dν

∣∣∣∣ < ε,

for all minimal idempotent ultrafilters p on G and all f0, f2 in L∞(X, μ) bounded by 1.
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Note that the space X in Theorem 1.2 is not assumed to be metrizable, and that

the group G can be uncountable. For this reason we need to extend Austin’s notion

of satedness to such spaces; this generalization is carried out in Section 3. We then

combine Theorem 1.2 with an application of Gelfand theory to obtain the following

strong recurrence result.

Theorem 1.3. Let G be a minimally almost periodic group and let T1 and T2 be commuting

actions of G on a probability space (X,B, μ) by measurable, measure-preserving maps. If μ

is ergodic for the G× G action (g1, g2) 	→ T
g1

1 T
g2

2 then

lim
g→p

∫
f0 · Tg

1 f1 · Tg
1 T

g
2 f2 dμ �

(∫
f

1/4
0 f

1/4
1 f

1/4
2 dμ

)4

(1.6)

for any minimal idempotent ultrafilter p on G and any non-negative measurable functions f0,

f1, f2 on X.

We remark that by [15, Theorem B.1] the exponent in (1.6) cannot be improved to 3 in

general.

To deduce the existence of triangles in large enough subsets of quasirandom groups

from Theorem 1.3, we need to form a limiting group from a quasirandom sequence

n 	→ Gn. For any sequence n 	→ Gn of finite groups and any ultrafilter on N, one can

form their ultraproduct G, which can be given the structure of a probability group using

Loeb measure (for details on Loeb measure see e.g. [16]). When the sequence n 	→ Gn is

quasirandom, the group G is called an ultra quasirandom group. There are commuting

actions of G on the ultraproduct X of the sequence n 	→ Gn × Gn of groups that correspond

to left multiplication by Gn in the first and second coordinates of Gn × Gn respectively.

In the case that G is minimally almost periodic, we obtain the following result from

Theorem 1.3.

Theorem 1.4. Let n 	→ Gn be a sequence of finite groups such that their ultraproduct G is

minimally almost periodic, and let Ω be the ultraproduct of the groups Gn × Gn. Let L1 and

L2 be the actions of G on Ω induced by left multiplication in the first and second coordinates

respectively and let m be Loeb measure on Ω. For any minimal idempotent ultrafilter p on

G we have

lim
g→p

∫
f0 · Lg1f1 · Lg1L

g
2f2 dm �

(∫
f

1/4
0 f

1/4
1 f

1/4
2 dm

)4

for any non-negative measurable functions f0, f1, f2 on Ω.

Theorem 1.4 requires that the ultra quasirandom group determined by n 	→ Gn is

minimally almost periodic. In [11] it was shown that any ultraproduct of the sequence

n 	→ SL(2,Fpn ) is minimally almost periodic. More recently, work by Yang [26] provides

many examples of classes F of groups with the property that the ultraproduct of any

quasirandom sequence n 	→ Gn in F is minimally almost periodic. Such classes are called
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q.u.p. (quasirandom ultraproduct) classes. For example, the class of finite, quasisimple

groups is q.u.p. by [26, Corollary 1.12].

Theorem 1.5. Let F be a q.u.p. class of finite groups. For every 0 < α < 1 and every ε > 0

there exist D,K ∈ N such that for every D-quasirandom group G ∈ F and every A ⊂ G× G

with |A| � α|G|2 the set{
g ∈ G :

|A ∩ (1, g)−1A ∩ (g, g)−1A|
|G|2 > α4 − ε

}
(1.7)

has the property that at most K of its right shifts are needed to cover G.

It would be interesting to obtain a version of Theorem 1.5 with an explicit description

of D and K . Such a proof might also shed light on the question of how large the set (1.7)

can be: we conjecture that its density in G should tend to 1 as D → ∞ in analogy with

Theorem 1.1, but have been unable to prove this using our techniques.1 Combined with

the fact that the non-cyclic finite simple groups are quasirandom in the sense that the

minimal dimension of a non-trivial irreducible representation grows with the order of the

group (see [21, Theorem 4.7]), Theorem 1.5 yields the following consequence.

Corollary 1.6. For every 0 < α < 1 and every ε > 0, there exist N,K ∈ N such that for every

non-cyclic finite simple group G of order at least N and every A ⊂ G× G with |A| � α|G|2,
the set (1.7) has the property that at most K of its right shifts are needed to cover G.

We conclude by mentioning that an alternative method for forming a limiting group

from a quasirandom sequence is available when the sequence is increasing. Combinatori-

ally, it gives many g ∈ A for which A ∩ (1, g)−1A ∩ (g, g)−1A �= ∅, but does not give much

information about the size of the intersection. Given a sequence n 	→ Gn of groups such

that Gn ↪→ Gn+1 for all n ∈ N, the direct limit G is the union of the embeddings Gn ↪→ G

(see [23, p. 23]) and is therefore amenable. If, in addition, the sequence is quasirandom,

then G is minimally almost periodic. For such sequences we apply [12, Corollary 4.9] to

obtain the following combinatorial result.

Theorem 1.7. Let n 	→ Gn be a quasirandom sequence such that Gn ↪→ Gn+1 for all n ∈ N.

For every α > 0 and every ε > 0 there exists N ∈ N such that, for any n � N and any

A ⊂ Gn × Gn with |A| � α|Gn|2, there are (1 − ε)|Gn| many g ∈ Gn for which A ∩ (1, g)−1A ∩
(g, g)−1A is non-empty.

The rest of the paper runs as follows. In Section 2 we define the categories of dynamical

systems we will work with and recall the Jacobs–de Leeuw–Glicksberg decomposition. A

version of satedness suitable for our needs is developed in Section 3. In Sections 4 and

5 we present the necessary facts regarding minimal idempotent ultrafilters and minimally

almost periodic groups respectively. Theorem 1.2 is proved in Section 6 and Theorem 1.3

1 These problems were solved by Austin [4] after completion of this article.
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is proved in Section 7. Lastly, the combinatorial results mentioned above are proved in

Section 8.

We would like to thank the referees for constructive and thorough reports.

2. Topological and measure-preserving dynamical systems

In this section various categories of dynamical systems are defined that will be used

throughout the paper.

Definition. Let G be a discrete group. The objects of the category Ctop(G) are the left

actions T : G×X → X of G on compact, Hausdorff spaces X having the property that

each of the induced maps Tg : X → X is continuous. Objects in Ctop(G) will be called

systems and denoted X = (X,T ). Their defining continuous left actions will be called just

actions. The morphisms of the category Ctop are the continuous maps intertwining the G

actions on the domain and the codomain.

Note that the objects of Ctop(G) may be actions on non-metrizable topological spaces.

This level of generality is needed in order to handle actions of very large groups on the

Gelfand spaces of non-separable C∗-algebras, which will play a role in the next section.

In our applications the acting group will be G2 and an action in Ctop(G2) will be written

in the form (g1, g2) 	→ T
g1

1 T
g2

2 , where T1 and T2 are commuting G actions. We also write

T
g
12 = T

g
1 T

g
2 .

For any system X we let MX denote the set of Baire probability measures on X that

are T -invariant. (Recall that the Baire sets are the members of the σ-algebra generated

by the compact Gδ sets.) In view of the Riesz–Markov–Kakutani representation theorem,

this set can be seen as a subset of the dual of the space C(X) of continuous, real-valued

functions on X equipped with the uniform norm, and as such it is compact and convex

with respect to the weak∗ topology. The set of extreme points of MX is denoted by exMX.

It follows from the Radon–Nikodym theorem that the extreme points of MX are precisely

the ergodic measures, namely the measures for which every almost invariant Baire set has

measure either 0 or 1.

Definition. The objects of the category Cmeas are pairs (X, μ), where μ ∈ MX, called

measure-preserving systems. A morphism (Y, ν) → (X, μ) in Cmeas is any morphism π : Y →
X in Ctop such that πν = μ. When there is a morphism π : (Y, ν) → (X, μ) in Cmeas, we call

π the factor map, and say that (Y, ν) is an extension of (X, μ), or that (X, μ) is a factor of

(Y, ν). The category Cerg is the subcategory of Cmeas whose objects are the pairs (X, μ) for

which μ ∈ exMX. The objects of Cerg are called ergodic systems.

Lemma 2.1. Let ψ : Y → X be a morphism in Ctop and fix μ in exMX. Then M̃Y = {ν ∈
MY : ψν = μ} is a compact, convex set and its extreme points are ergodic measures on Y.

Proof. It is clearly closed and convex. To see that its extreme points are ergodic,

it suffices to show that ex M̃Y ⊂ exMY . Indeed, suppose λ ∈ ex M̃Y can be written as
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λ = cλ1 + (1 − c)λ2 with λ1, λ2 ∈ MY . Then cπ∗λ1 + (1 − c)π∗λ2 = μ, so by extremality of

μ in MX we have π∗λ1 = π∗λ2 = μ. By extremality of λ in M̃Y this implies λ1 = λ2 = λ.

We will be concerned with sub-σ-algebras of invariant sets. Given a measure space

(X,B, μ) and sets A,B ∈ B, write A ∼ B when μ(A�B) = 0.

Definition. Let (X, μ) be a measure-preserving system in Cmeas(G). A Baire subset B ⊂ X

is almost invariant with respect to μ if (Tg)−1B ∼ B for every g ∈ G. Write AμX for the

sub-σ-algebra generated by the almost invariant sets. If (X, μ) is a measure-preserving

system in Cmeas(G2) and i ∈ {1, 2, 12}, write Aμi X for the sub-σ-algebra generated by the Ti
almost invariant sets. Lastly, for any i, j ∈ {1, 2, 12} define Aμi,jX = Aμi X ∨ AμjX.

We conclude this section by recalling a general version of the splitting of L2(X, μ) into

almost periodic and weakly mixing parts that will be needed in the proof of Theorem 1.3.

Let G be a group and let (X, μ) be a measure-preserving system in Cmeas(G). Write H

for L2(X, μ). Consider the collection S = {Tg : g ∈ G} of unitary operators on H . The

closure with respect to the weak topology of any orbit of S is compact in the weak

topology, so S , in the terminology of [17], is a weakly almost periodic semigroup of

operators. Write S for the closure of S in the weak operator topology. Applying [17,

Corollary 4.12] allows us to write H = Ho + Hr where

Ho = {f ∈ H : 0 ∈ S f}

is the closed subspace of flight vectors, and

Hr = {f ∈ H : S f = S h for every h ∈ S f}

is the closed subspace of reversible vectors. Since S is a group, [17, Lemma 4.5] implies that

Hr is spanned by the finite-dimensional, S -invariant subspaces of H . The splitting Ho +

Hr is determined by the unique projection in the kernel of S . By [17, Theorem 2.3(iv)] this

kernel is self-adjoint, so the unique projection in the kernel is also self-adjoint, implying

that the above splitting is orthogonal.

Let (X1, μ1) and (X2, μ2) be measure-preserving systems in Cmeas(G) and let H1 and

H2 be the corresponding Hilbert spaces. The Hilbert space corresponding to the product

system (X1 × X2, μ1 × μ2) is H1 ⊗ H2. We will need the following result, which relates the

splittings of these Hilbert spaces, in the proof of Theorem 1.3.

Lemma 2.2. Let (X1, μ1) and (X2, μ2) be measure-preserving systems in Cmeas(G) and let

H1 and H2 be the associated L2-spaces. Let H be the L2-space of the product measure-

preserving system (X1 × X2, μ1 ⊗ μ2). Then H1,r ⊗ H2,r = Hr.

Proof. Write

Ho ⊕ Hr = H = (H1,r ⊗ H2,r) ⊕ (H1,o ⊗ H2,r) ⊕ (H1,r ⊗ H2,o) ⊕ (H1,o ⊗ H2,o)

and note that H1,r ⊗ H2,r ⊂ Hr, whereas if f ∈ H1,o and g ∈ H2, or if f ∈ H1 and

g ∈ H2,o, then f ⊗ g ∈ Ho.
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3. Satedness

Satedness, introduced by Austin [1, 2] to prove convergence of multiple ergodic averages,

is a property that a measure-preserving system may possess with respect to certain classes

of systems. For example, one could speak of satedness with respect to the class of

Kronecker systems. Although the concept depends critically on an invariant measure, it

will be convenient to consider classes defined by topological, rather than measure-theoretic

properties. We will therefore consider satedness with respect to idempotent classes, defined

below, in Ctop. Recall that a joining of objects X1, . . . ,Xn in Ctop is an object Z in Ctop

together with factor maps Z → Xi for each 1 � i � n.

Definition. An idempotent class in Ctop is a class that contains the one-point system, is

closed under joinings of finitely many systems, and is closed under arbitrary inverse limits.

It follows from Zorn’s lemma that every idempotent class I defines a map I : X 	→ IX

on Ctop that associates to every system its maximal factor in I . We remark that this map

can be seen as a natural transformation from the identity functor on Ctop.

The following idempotent classes on Ctop(G2) will play a crucial role in what follows.

Definition. Let G be a group and let X be a system in Ctop(G2). For i = 1, 2, 12 let Ii be

the idempotent class of systems on which the action Ti is trivial. Define Ii,j = Ii ∨ Ij for

any i, j ∈ {1, 2, 12}.

Note that for any μ ∈ MX the space L2(I1,2X, μ) is a priori smaller than L2(Aμ1,2X, μ).

We now turn to our version of satedness, which is based on Austin’s definition in

[2], but differs in that the energy increment (3.1) below is quantified, rather than being

required to vanish.

Definition. Let C be a subcategory of Cmeas and let I be an idempotent class (or, more

generally, a natural transformation from the identity functor in Ctop). A measure-preserving

system (X, μ) is called (ε, f, I) sated in C for ε � 0 and f ∈ L2(X, μ) if one of the following

equivalent conditions holds.

(i) For every extension π : (Y, ν) → (X, μ) in C we have

||Eν(f ◦ π|IY) − Eμ(f|IX) ◦ π||2 � ε. (3.1)

(ii) For every extension π : (Y, ν) → (X, μ) in C and every φ ∈ C(IY) we have∣∣∣∣
∫
f ◦ π · φ dν −

∫
Eμ(f|IX) ◦ π · φ dν

∣∣∣∣ � ε||φ||2. (3.2)

The conditions (3.1) and (3.2) are equivalent because ||v|| = sup{|〈v, w〉| : ||w|| = 1} in

any Hilbert space and C(IY) is dense in L2(IY, μ).

The following result shows that every measure-preserving system has an extension that

is sated up to any prescribed error. We will be able to do this without the use of inverse
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limits because the energy increment in (3.1) is only required to be small rather than to

vanish. This extends the applicability of satedness to categories where inverse limits may

not exist.

Theorem 3.1. Let C be a subcategory of Cmeas and let I be an idempotent class in Ctop,

or more generally a natural transformation from the identity functor in Ctop. Let (X, μ) be

a measure-preserving system in the category C . Then, for any ε > 0 and any f ∈ L2(X, μ),

there exists an extension ψ : (Y, ν) → (X, μ) of measure-preserving systems such that (Y, ν)

is (ε, f ◦ ψ, I) sated in C .

Proof. Fix ε > 0 and f ∈ L2(X, μ). Assume f �= 0 as otherwise the conclusion is immedi-

ate. We have

sup{||E(f ◦ ψ|IY)||2 : (Y, ν)
ψ

→ (X, μ) a morphism} � ||f||2 < ∞,

so there exists an extension ψ : (Y, ν) → (X, μ) such that ||E(f ◦ ψ|IY)|| is within ε/(2||f||2)
of the supremum above. For any further extension π : (Z, λ) → (Y, ν) we have

E(f ◦ ψ|IY) ◦ π = E(f ◦ ψ ◦ π|π−1(IY)) = E(E(f ◦ ψ ◦ π|IZ)|π−1(IY))

by functoriality of I . On the other hand, by the choice of Y we have

||E(f ◦ ψ|IY)||2 > ||E(f ◦ ψ ◦ π|IZ)||2 − δ.

Since the conditional expectation onto π−1(IY) is an orthogonal projection, this implies

||E(f ◦ ψ|IY) − E(f ◦ ψ ◦ π|IZ)||2 � 2||E(f ◦ ψ ◦ π|IZ)||2δ � 2||f||2δ,

so (Y, ν) is (ε, f ◦ ψ, I) sated provided δ < ε/(2||f||2).

Theorem 3.1 will be applied to the category Cerg of ergodic systems. However, we

will need satedness in the class of all measure-preserving systems. Switching between

these classes requires a version of the ergodic decomposition. Since we do not assume

metrizability of the compact spaces under consideration, we use the following Choquet-

type theorem. Recall that a function f from a convex set M to R is affine if f(tx+ (1 −
t)y) = tf(x) + (1 − t)f(y) for all 0 � t � 1 and all x, y ∈ M.

Theorem 3.2 (Choquet–Bishop–de Leeuw [22, p. 17]). Suppose that M is a compact convex

subset of a locally convex space and let μ ∈ M. Then there exists a probability measure η

on M that represents μ in the sense that

φ(μ) =

∫
φ dη

for every continuous affine function φ : M → R and such that η vanishes on every Baire

subset of M that is disjoint from exM.

In this version of the Choquet theorem the representing measure η is not unique, and

is only supported by the extreme points in a weak sense, but this will not be an issue.
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Lemma 3.3. Let (X, μ) be a measure-preserving system and F ⊂ L∞(X). Then there exists

an extension π : (Y, ν) → (X, μ) such that f ◦ π coincides with a continuous function on Y

ν-a.e. for every f ∈ F .

Proof. Let A be the minimal G-invariant C∗-subalgebra of L∞(X, μ) that contains C(X) ∪
F . Let Y be its Gelfand spectrum with the canonical G-action and the canonical projection

π onto X. We have a positive linear functional ν on A given by ν(g) =
∫
g dμ; this defines

a G-invariant probability measure on Y .

It remains to show that f ◦ π coincides with a continuous function ν-a.e. for every

f ∈ F . Fix f ∈ F; by duality it suffices to verify∫
(f ◦ π)g dν =

∫
f̃g dν (3.3)

for every g ∈ L1(Y , ν), where f̃ is the continuous function on Y corresponding to f viewed

as an element of A. Both f ◦ π and f̃ are bounded functions, so it suffices to verify this

identity for g in a dense subspace of L1(Y , ν). We claim that π∗ C(X) is one such subspace.

Indeed, C(Y ) is dense in L1(Y , ν) and C(X) is L1-dense in A. This implies that π∗ C(X) is

L1 dense in C(Y ). For every g ∈ C(X) we have g̃ = g ◦ π, so (3.3) boils down to∫
((fg) ◦ π) dν =

∫
fg dμ,

as desired.

Proposition 3.4. Let (X, μ) be (ε, f, I) sated in Cerg for some f ∈ L∞(X, μ) and ε � 0. Then

(X, μ) is also (ε, f, I) sated in Cmeas.

Proof. Let π : (Y, ν) → (X, μ) be an extension in Cmeas. We have to show (3.2) for every

φ ∈ C(IY). Passing to a further extension of (Y, ν) using Lemma 3.3, we may assume that

both f and f̃ = Eμ(f|IX) ◦ π (which are a priori merely bounded measurable functions)

admit representatives in C(Y ). While verifying∣∣∣∣
∫
fφ dν −

∫
f̃φ dν

∣∣∣∣ � ε||φ||L2(ν)

for every φ ∈ C(IY) there is no harm in replacing f and f̃ by their continuous

representatives.

Write M̃Y for the measures in MY that extend μ. By Lemma 2.1 it is a closed, convex

subset of MY whose extreme points are ergodic. Thus for any measure λ ∈ ex M̃Y we have∣∣∣∣
∫
fφ dλ−

∫
f̃φ dλ

∣∣∣∣ � ε||φ||L2(λ) (3.4)

by the satedness hypothesis. Now let η be a measure on M̃Y representing ν in the sense

of the Choquet–Bishop–de Leeuw theorem (Theorem 3.2). Consider the set

Λ =

{
λ ∈ M̃Y :

∣∣∣∣
∫
fφ dλ−

∫
f̃φ dλ

∣∣∣∣ > ε||φ||L2(λ)

}
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which is disjoint from ex M̃Y in view of (3.4), and Baire because it consists of those

measures λ where one continuous function of λ is larger than another. It follows that

η(Λ) = 0. Therefore∣∣∣∣
∫
fφ dν −

∫
f̃φ dν

∣∣∣∣ �
∫
M̃Y

∣∣∣∣
∫
fφ dλ−

∫
f̃φ dλ

∣∣∣∣ dη(λ)

=

∫
M̃Y\Λ

∣∣∣∣
∫
fφ dλ−

∫
f̃φ dλ

∣∣∣∣ dη(λ)

�
∫
M̃Y\Λ

ε||φ||L2(λ) dη(λ) � ε||φ||L2(ν)

by Hölder’s inequality.

4. Minimal idempotent ultrafilters

For any non-empty set X, write βX for the collection of ultrafilters on X. Recall that these

are the filters on X that are maximal with respect to containment, and can be thought of

as finitely additive {0, 1}-valued measures on X. We identify each x ∈ X with the principal

ultrafilter δx = {A ⊂ X : x ∈ A}. Upon equipping βX with the topology defined by the

base consisting of the clopen sets A = {p ∈ βX : A ∈ p} for any subset A of X, it becomes

a compact, Hausdorff topological space. It enjoys the following universal property, which

will be used repeatedly as a means to take limits along ultrafilters.

Proposition 4.1. Let X be a non-empty set. For any compact, Hausdorff topological space

Z and any map φ : X → Z , there is a continuous map βX → Z that agrees with φ on the

principal ultrafilters.

Given a map φ from X to a compact, Hausdorff space, we let

lim
x→p

φ(x)

denote the value at p ∈ βX of the extension provided by Proposition 4.1.

Let G be any group. One can make βG a semigroup by defining

p ∗ q = {A ⊂ G : {g ∈ G : Ag−1 ∈ p} ∈ q} (4.1)

for any p, q ∈ βG. Note that δg ∗ δh = δgh for any g, h ∈ G, so (4.1) extends multiplication

on G. The operation above makes βG a right semi-topological semigroup: for any fixed p

in βG the map q 	→ p ∗ q is continuous. Ellis’s lemma [18, Lemma 1] implies that there are

idempotents for (4.1) in any compact sub-semigroup of βG. The semigroup operation on

βG interacts with continuous actions of G on compact, Hausdorff spaces in the following

way (see [9, Lemma 6.1]).

Proposition 4.2. Let G be a group and let T : G×X → X be a right action of G on a

compact, Hausdorff space X via continuous maps. Then

lim
g→p ∗ q

Tgx = lim
g→q

lim
h→p

Tg(Thx)
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for all x ∈ X and all p, q ∈ βG. In particular, if p is idempotent then

lim
g→p

Tgx = lim
g→p

lim
h→p

Tg(Thx)

for all x ∈ X.

The following version of the van der Corput trick follows immediately from the proof

of [24, Lemma 4].

Proposition 4.3. Let G be a group and let H be a Hilbert space. For any sequence u :

G → H that is norm-bounded and any idempotent ultrafilter p on G, if∣∣∣lim
h→p

lim
g→p

〈u(hg), u(g)〉
∣∣∣ < ε,

then || limg→p u(g)||2 � ε, the latter limit being taken in the weak topology on H .

An idempotent ultrafilter p is minimal if it belongs to a minimal right ideal in βG.

Every non-zero right ideal contains a minimal right ideal, so Ellis’s lemma [18, Lemma 1]

implies that every right ideal contains a minimal idempotent ultrafilter (for details see e.g.

[10, Section 2]). The following lemma tells us that sets in minimal idempotent ultrafilters

have a certain largeness property. Recall that S ⊂ G is right syndetic if there is a finite

subset F of G for which SF = G.

Lemma 4.4 (see [7, Theorem 2.4]). Let G be a group and let p be a minimal idempotent

ultrafilter on G. For any A ∈ p, the set A−1A = {g−1h : g, h ∈ A} is right syndetic.

Proof. Fix A ∈ p. Let X be a minimal right ideal containing p. Since p ∗ βG is a

right ideal contained in X it must be equal to X, so continuity of the map q 	→ p ∗ q

implies X is compact. Consider the continuous right action T of G on X defined by

Tg(p) = p ∗ δg . The set U := A ∩X is open in X and contains p. We claim that the

collection {(Tg)−1U : g ∈ G} covers X. Indeed, if not then the complement V of its union

is a closed, non-empty, T -invariant subset of X. This implies that V is a right ideal,

because any q in V satisfies q ∗ βG = q ∗G = cl(q ∗G) ⊂ cl(V ) = V , where cl denotes the

closure of a set in βG.

Since the sets (Tg)−1U cover X, we can extract a finite subcover (Tg1 )−1U, . . . , (Tgn )−1U.

Thus, for every g ∈ G there is some 1 � i � n for which Tg(p) ∈ (Tgi )−1U. We can

rewrite this as p ∗ δggi ∈ U, which is the same as A(ggi)
−1 ∈ p. Putting F = {g1, . . . , gn},

we have proved that {g ∈ G : Ag−1 ∈ p} is right syndetic. Since A ∈ p, the larger set

{g ∈ G : Ag−1 ∩ A ∈ p} is also right syndetic. But g ∈ A−1A if and only if Ag−1 ∩ A is

non-empty, so A−1A ⊃ {g ∈ G : Ag−1 ∩ A ∈ p} is right syndetic, as desired.

A subset of a group G is a right central set if it belongs to some minimal idempotent

ultrafilter, and a right central∗ set if it belongs to every minimal idempotent ultrafilter.

Lemma 4.5. Let G be a group and let A ⊂ G be right central∗ set. Then A is right syndetic.
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Proof. Suppose A is not right syndetic. Then its complement B is right thick, meaning

that for every finite subset F of G there is some h ∈ G such that hF ⊂ B. This implies that

F = {Bg−1 : g ∈ G} is a filter, so there are ultrafilters on G containing F . The collection

I of ultrafilters that contain F is a closed subset of βG. Moreover, it is a right ideal, for

if p ⊃ F and q ∈ βG, then p ∗ q contains F by (4.1). As remarked above, any right ideal

contains a minimal right ideal, so there is a minimal idempotent in I . This implies that B

is right central, so A is not right central∗.

5. Minimally almost periodic groups

Let G be any group. Let Cb(G) denote the Banach space of all bounded functions

f : G → C equipped with the supremum norm. The G actions L and R on Cb(G), defined

by (Lgf)(x) = f(gx) and (Rgf)(x) = f(xg) respectively, are isometric. A function f ∈ Cb(G)

is called almost periodic if the subset {Lgf : g ∈ G} of Cb(G) is relatively compact. Given

a representation φ of G on a finite-dimensional, complex Hilbert space V and vectors

x, y in V , the function f(g) = 〈φ(g)x, y〉 is almost periodic. A group G is minimally almost

periodic if the only almost periodic functions on G are the constant functions.

The following result, a version of [10, Theorem 2.2], will be used repeatedly below.

Theorem 5.1. Let G be a minimally almost periodic group, let (X, μ) be a measure-preserving

system, and let p be a minimal idempotent ultrafilter on G. For any f in L2(X, μ) we have

lim
g→p

Tgf = E(f|AμX) (5.1)

in the weak topology of L2(X, μ).

Proof. Fix f ∈ L2(X, μ). Equipped with the weak topology, the unit ball of L2(X, μ) is

compact and Hausdorff so the limit in (5.1) makes sense via Proposition 4.1. Let φ be the

limit of the sequence Tgf along p. We first show that φ belongs to L2(X,AμX, μ).

We claim that the orbit {Tgφ : g ∈ G} is relatively compact in the norm topology. Fix

ε > 0. We have

lim
h→p

Thφ = lim
h→p

Th lim
g→p

Tgf = lim
g→p ∗ p

Tgf = φ

by Proposition 4.2 because p is idempotent. Combined with

||Tgφ− φ||2 = 〈Tgφ, T gφ〉 − 〈Tgφ, φ〉 − 〈φ,T gφ〉 + 〈φ,φ〉,

we see that

A := {g ∈ G : ||Tgφ− φ|| < ε/2} = A−1

belongs to p. Thus AA−1 is syndetic by Lemma 4.4. Let F ⊂ G be finite with AA−1F = G.

Fix g ∈ G and write g = ab−1k accordingly. We see that

||Tgφ− Tkφ|| = ||Tab−1

φ− φ|| = ||Taφ− Tbφ|| � ε,

so the orbit {Tgφ : g ∈ G} is covered by the balls of radius ε centred at Tkφ as k runs

through F .

https://doi.org/10.1017/S0963548316000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548316000250


Triangles in Cartesian Squares of Quasirandom Groups 175

It follows that for any ξ ∈ L2(X, μ) the function g 	→ 〈Tgφ, ξ〉 is almost periodic. It is

therefore constant because G is minimally almost periodic. Thus Tgφ = φ in L2(X, μ) for

every g ∈ G. Let ϕ be a representative of φ. We have Tgϕ ∼ ϕ for every g ∈ G, where ∼
denotes equality almost everywhere. Since AμX contains the measure zero sets, it follows

that ϕ is AμX-measurable and that φ ∈ L2(X,AμX, μ).

Lastly, for any ψ ∈ L2(X,AμX, μ) we have∫
φ · ψ dμ = lim

g→p

∫
Tgf · ψ dμ = lim

g→p

∫
f · (Tg)−1ψ dμ =

∫
f · ψ dμ,

so φ is the orthogonal projection of f on L2(X,AμX, μ).

6. Characteristic factors in sated systems

In this section we prove Theorem 1.2. To do so we need the following construction of

a relatively independent self-joining of a measure-preserving system (X, μ) in Cmeas(G2)

over Aμ2X, by which we mean a measure ν on X × X satisfying (6.1) below. Usually (see

e.g. [20, Chapter 5]) one would construct such a joining using a disintegration of μ over

Aμ2X, but the existence of such a disintegration is not clear when X is non-metrizable. In

our setting, the need for such a disintegration can be circumvented by using limits along

minimal idempotent ultrafilters to give an explicit description of the ergodic projection.

Lemma 6.1. Let G be a minimally almost periodic group and let (X, μ) be a measure-

preserving system in Cmeas(G). Then there exists a unique Baire measure ν on X ×X such

that ∫
f1 ⊗ f2 dν =

∫
E(f1|AμX) · E(f2|AμX) dμ (6.1)

for any f1, f2 ∈ C(X).

Proof. Uniqueness follows immediately by density of C(X) ⊗ C(X) in C(X2), so it remains

to show the existence. To this end fix a minimal idempotent ultrafilter p on G. Since G is

minimally almost periodic, Theorem 5.1 implies that

lim
g→p

T
g
2 f = E(f|AμX)

in the weak topology of L2(X, μ) for every f ∈ L2(X, μ).

Let δ : X → X2 be the diagonal embedding and let λ be the push-forward δμ. Define

an action R of G on X2 by Rg(x1, x2) = (x1, T
gx2). For any f1, f2 ∈ C(X) we have

lim
g→p

∫
f1 ⊗ f2 d(Rgλ) = lim

g→p

∫
f1 · Tgf2 dμ =

∫
E(f1|AμX) · E(f2|AμX) dμ

by the above. Since the space of Baire probability measures on X2 is a compact, Hausdorff

space, the sequence g 	→ Rgλ has a limit along p. Let ν be this limit. The above calculation

implies that ∫
f1 ⊗ f2 dν =

∫
E(f1|AμX) · E(f2|AμX) dμ

for all f1, f2 ∈ C(X), as desired.
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Given a measure-preserving system (X, μ) in Cmeas(G2), the measure ν obtained by

applying Lemma 6.1 to the measure-preserving system (X,T2, μ) in Cmeas(G) is called the

relatively independent self-joining of μ over Aμ2X. It follows immediately from (6.1) and

the properties of conditional expectation that ν is invariant under the commuting G

actions R1 = T1 × T12 and R2 = T2 × I . Thus (X2, R, ν) is a measure-preserving system

in Cmeas(G2). Lastly, writing π1 and π2 for the coordinate projections X2 → X, note that

(6.1) implies that π1ν = π2ν = μ because all three measures agree on C(X).

We now turn to the proof of Theorem 1.2, which begins with the following lemma.

Lemma 6.2. Let G be a discrete, minimally almost periodic group, and let p be a minimal

idempotent ultrafilter on G. Let (X, μ) be a measure-preserving system in Cmeas(G2), and let

f1 in C(X) be bounded by 1. Suppose that (X, μ) is (ε2, f1, I1,2) sated. Then∣∣∣∣limg→p

∫
f0 · Tg

1 f1 · Tg
12f2 dμ− lim

g→p

∫
f0 · Tg

1 E(f1|I1,2X) · Tg
12f2 dμ

∣∣∣∣ < ε

for any f0, f2 ∈ C(X) bounded by 1.

Proof. Define u : G → L2(X, μ) by u(g) = T
g
1 φ · Tg

12f2, where φ = f1 − E(f1|I1,2X). We

have

lim
g→p

〈u(hg), u(g)〉 = lim
g→p

∫
(φ · Th

1φ) · Tg
2 (f2 · Th

12f2) dμ

=

∫
E(φ · Th

1φ|Aμ2X) · E(f2 · Th
12f2|Aμ2X) dμ

for every h ∈ G by Theorem 5.1.

Let ν be the relatively independent self-joining of μ over Aμ2X, which exists by Lemma 6.1.

Write π1 and π2 for the coordinate projections X ×X → X. Define Y = (X ×X,R), where

R1 = T1 × T12 and R2 = T2 × I . We know from the above that (Y, ν) is a G× G system

and that π1 : (Y, ν) → (X, μ) is a factor map. Another application of Theorem 5.1 yields

lim
h→p

lim
g→p

〈u(hg), u(g)〉 = lim
h→p

∫
(φ⊗ f2) · Rh1(φ⊗ f2) dν

=

∫
φ ◦ π1 · f2 ◦ π2 · E(φ⊗ f2|Aν1Y) dν. (6.2)

We have f2 ◦ π2 ∈ C(I2Y). Passing to a further extension Z → Y, assume E(φ⊗ f2|Aν1Z)

has a representative in C(I1Z). By definition of (ε2, f1, I1,2) satedness it follows that (6.2)

is bounded by

ε2||f2||∞||φ⊗ f2||2 � ε2||f2||∞||φ||2||f2||∞ � ε2,

so ∣∣∣∣limg→p

∫
f0 · Tg

1 (f1 − E(f1|I1,2X)) · Tg
12f2 dμ

∣∣∣∣ � ε

by Proposition 4.3.
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Theorem 6.3. Let G be a minimally almost periodic group and let (X, μ) be a measure-

preserving system in Cerg(G2). For any ε > 0 and any f1 in L∞(X, μ) bounded by 1, there is

an extension π : (Y, ν) → (X, μ) in Cerg(G2) such that∣∣∣∣limg→p

∫
f0 · Tg

1 f1 · Tg
12f2 dμ

− lim
g→p

∫
E(f0 ◦ π|Aν1,12Y) · Tg

1 E(f1 ◦ π|I1,2Y) · Tg
12E(f2 ◦ π|Aν12,2Y) dν

∣∣∣∣ < ε

for all minimal idempotent ultrafilters p on G and all f0, f2 in L∞(X, μ) bounded by 1.

Proof. Let (X, μ) be a measure-preserving system in Cerg(G2) and fix f1 in L∞(X, μ)

bounded by 1. Fix ε > 0. By Theorem 3.1 and Proposition 3.4 we can find an extension

(Y, ν) of (X, μ) in Cerg(G2) via a factor map π that is (ε2, f1, I1,2) sated in Cmeas(G2).

Lemma 6.2 implies that∣∣∣∣limg→p

∫
f0 · Tg

1 f1 · Tg
12f2 dμ− lim

g→p

∫
(f0 ◦ π) · Tg

1 E(f1 ◦ π|I1,2Y) · Tg
12(f2 ◦ π) dν

∣∣∣∣ < ε (6.3)

for any f0, f2 in C(X) bounded by 1. By density and linearity we may assume

E(f1 ◦ π|I1,2Y) = h1h2,

where hi is Aνi Y-measurable. Under this assumption the second term in (6.3) becomes

lim
g→p

∫
(f0 ◦ π)h1 · Tg

12((f2 ◦ π)h2) dν =

∫
(f0 ◦ π)h1 · E((f2 ◦ π)h2|Aν12Y) dν

by Theorem 5.1. It follows that the above limit vanishes if f0 ◦ π ⊥ Aν1,12Y. Since conditional

expectation is self-adjoint, the above limit also vanishes if f2 ◦ π ⊥ Aν2,12Y, which gives the

desired result.

7. Strong recurrence

In this section we prove Theorem 1.3, which follows from Theorem 7.1 below by passing

to a continuous model as follows. Theorem 7.1 is a version of [12, Corollary 4.9] for limits

along minimal idempotent ultrafilters. Given an action S of a group G on a probability

space (X,B, μ) by measurable, measure-preserving maps, consider the space A of all

bounded, measurable functions on (X,B). Equipped with the supremum norm it becomes

a C∗-algebra. Let Ω be the Gelfand spectrum of A. Then C(Ω) and A are isomorphic as

C∗-algebras. The action S of G on (X,B, μ) induces an action T of G on Ω by continuous

maps. Moreover, the measure μ induces a bounded, linear functional on C(Ω) that can be

identified with a Baire probability measure on Ω that is T -invariant.

Theorem 7.1. Let G be a minimally almost periodic group and let (X, μ) be a measure-

preserving system in Cerg(G2). For any minimal idempotent ultrafilter p in βG we have

lim
g→p

∫
f0 · Tg

1 f1 · Tg
12f2 dμ �

(∫
f

1/4
0 f

1/4
1 f

1/4
2 dμ

)4

for any non-negative measurable functions f0, f1, f2 on X.
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Proof. By the monotone convergence theorem we may assume that the functions f0, f1, f2

are bounded. By Theorem 6.3 it suffices to show that

lim
g→p

∫
E(f|Aμ1,12X) · Tg

1 E(f|I1,2X) · Tg
12E(f|Aμ12,2X) dμ �

(∫
f

1/4
0 f

1/4
1 f

1/4
2 dμ

)4

for any ergodic measure-preserving system (X, μ) in Cerg(G2) and any non-negative

f0, f1, f2 ∈ L∞(X, μ). We prove that

g 	→
∫

E(f0|Aμ1,12X) · Tg
1 E(f1|I1,2X) · Tg

12E(f2|Aμ12,2X) dμ (7.1)

does not depend on g. Since any Aμ1,2X-measurable function can be approximated by

linear combinations of functions of the form ξ1ξ2, where ξi is Aμi X-measurable, we may

replace f0 above with h0,1h0,12, where hj,i is Aμi X-measurable, and similarly f1 and f2 by

h1,1h1,2 and h2,12h2,2 respectively. Then the above integral equals∫
h0,12h2,12 · h0,1h1,1 · Tg

12(h1,2h2,2) dμ,

and it therefore suffices to show that the sub-σ-algebras Aμ1X, Aμ2X, and Aμ12X are jointly

independent. Now let hi ∈ L∞(X, μ) be Aμi X-measurable for i = 1, 2, 12. We have to show∫
h1 · h2 · h12 dμ =

∫
h1 dμ

∫
h2 dμ

∫
h12 dμ.

From∫
h1 · h2 · h12 dμ =

∫
E(h1|Aμ1X) · E(h2|Aμ2X) · h12 dμ =

∫
h1 · h2 · E(h12|Aμ1,2X) dμ

and the fact that the conditional expectation onto Aμ1,2X commutes with T12 (since this

σ-algebra is T12-invariant), we may additionally assume that h12 is Aμ1,2X-measurable.

Ergodicity of (X, μ) implies that the sub-σ-algebras Aμ1X and Aμ2X are independent. Thus

L2(Aμ1,2X) ∼= L2(Aμ1X) ⊗ L2(Aμ2X)

and, thinking of h12 as an element of the right-hand side, we see that h12 is a member of

L2(Cμ2A
μ
1X) ⊗ L2(Cμ1A

μ
2X)

by Lemma 2.2. (Here Cμi denotes the σ-algebra of Ti almost periodic functions.) Since

G is minimally almost periodic, Cμ2A
μ
1X and Cμ1A

μ
2X are both the trivial σ-algebra. This

proves (7.1) is constant. Finally

lim
g→p

∫
E(f0|Aμ1,12X) · Tg

1 E(f1|I1,2X) · Tg
12E(f2|Aμ12,2X) dμ

=

∫
E(f0|Aμ1,12X) · E(f1|I1,2X) · E(f2|Aμ12,2X) dμ

�
(∫

f
1/4
0 f

1/4
1 f

1/4
2 dμ

)4

by Lemma A.1 in the Appendix.
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8. Combinatorial results

We begin by proving Theorem 1.5. Fix an ultrafilter on N for taking ultraproducts.

Let n 	→ Gn be a quasirandom sequence of finite groups. Let G be the ultraproduct of

the sequence n 	→ Gn and let Ω be the ultraproduct of the sequence n 	→ Gn × Gn. We

consider the commuting actions L1 and L2 of G on Ω defined by Lg1(x, y) = (gx, y) and

L
g
2(x, y) = (x, gy) respectively. The induced G× G action L is just the action of Ω on itself

by left multiplication. We first note that this action is ergodic with respect to the Loeb

measure m on Ω provided G is minimally almost periodic.

Lemma 8.1. If G is minimally almost periodic then the G× G action L on (Ω,m) is ergodic.

Proof. Given a Loeb-measurable subset B of Ω, we have m(B ∩ (Lx)−1B) = m(B)2 for

Loeb-a.e. x ∈ Ω by [11, Lemma 33]. Thus if B is almost invariant then m(B) ∈ {0, 1}.

In fact [11, Lemma 33] implies L is weak mixing, but we will not need this.

It will be convenient later to pass to a model of this action on a compact, Hausdorff

space. We do so by considering the C∗-algebra of bounded, measurable functions on Ω,

which can be represented as C(X) for some compact, Hausdorff topological space X. Let

B be the Baire sub-σ-algebra of X. The Loeb measure m on Ω passes to a probability

measure μ on (X,B), and the G actions L1 and L2 become actions T1 and T2 of G on X

by homeomorphisms. Write T for the induced G× G action (g1, g2) 	→ T (g1 ,g2) on X. Thus

we have a measure-preserving system (X, μ) in Cmeas(G2). This system is ergodic when G

is minimally almost periodic.

Proposition 8.2. If G is minimally almost periodic then (X, μ) is ergodic.

Proof. Fix a continuous function f on X and a minimal idempotent ultrafilter p on

G× G. By Theorem 5.1 we have

lim
g→p

∫
φ · Tgf dμ =

∫
φ · E(f|AμX) dμ

for any continuous φ. By evaluating the left-hand side on Ω rather than on X, we obtain

lim
g→p

∫
φ · Tgf dμ =

∫
φ dμ

∫
f dμ

by Theorem 5.1 and the previous lemma. Thus E(f|AμX) =
∫
f dμ. The same is true for

any function that can be approximated in L2(X,B, μ) by continuous functions.

Now we turn to the proof of Theorem 1.5.

Proof of Theorem 1.5. Suppose that the conclusion fails for some 0 < α < 1 and some

ε > 0. Then we can find sequences Dn → ∞ and Kn → ∞ in N, a sequence n 	→ Gn of
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Dn-quasirandom groups in F , and sets An ⊂ Gn × Gn with |An| � α|Gn|2 such that

Rn :=

{
g ∈ Gn :

|An ∩ (1, g)−1An ∩ (g, g)−1An|
|Gn|2

> α4 − ε

}

is not right Kn-syndetic. Since being right K-syndetic for some finite K is a first-order

property, it follows that the ultraproduct R of the sequence n 	→ Rn is not right K-syndetic

for any K , and therefore not right syndetic.

Let G be the ultraproduct of the sequence n 	→ Gn and let Ω be the ultraproduct of

the sequence n 	→ Gn × Gn. Since F is a quasirandom ultraproduct class, the group G is

minimally almost periodic. Let A be the internal subset of Ω determined by the sequence

n 	→ An. We have

R ⊇ {g ∈ G : μ(A ∩ (1, g)−1A ∩ (g, g)−1A) > α4 − ε/2},

where μ is the Loeb measure on Ω. But R is right central∗ by Theorem 7.1, and therefore

right syndetic by Lemma 4.5, giving the desired contradiction.

Proof of Theorem 1.7. Fix a quasirandom sequence n 	→ Gn with Gn ↪→ Gn+1 for all

n ∈ N. Suppose the theorem is false for some 0 < α < 1 and some ε > 0. Then we have a

sequence of sets An ⊂ Gn × Gn with |An| � α|Gn|2 and

|{g ∈ Gn : An ∩ (1, g)−1An ∩ (g, g)−1An �= ∅}| � (1 − ε)|Gn| (8.1)

for all n ∈ N.

Let G be the direct limit of the sequence n 	→ Gn. Put A = ∪{An : n ∈ N} in G× G. We

have

lim sup
N→∞

|A ∩ GN × GN |
|GN × GN | � α,

so A has positive upper density with respect to the Følner sequence N 	→ GN × GN in

G× G. By [15, Lemma 5.2] there is an ergodic action T of G× G on a compact, metric

probability space (X,B, μ), an open set U ⊂ X with μ(U) = dΦ(A), and a Følner sequence

Ψ on G× G such that

dΨ((g1, h1)
−1A ∩ · · · ∩ (gn, hn)

−1A) � μ((T (g1 ,h1))−1U ∩ · · · ∩ (T (gn,hn))−1U)

for all gn, hn ∈ G. In particular,

dΨ(A ∩ (1, g)−1A ∩ (g, g)−1A) � μ(U ∩ (Tg
1 )−1U ∩ (Tg

1 T
g
2 )−1U)

for all g ∈ G. It follows from [12, Corollary 4.9] that for every ε > 0 the set

{g ∈ G : dΨ(A ∩ (1, g)−1A ∩ (g, g)−1A) > 0}

has full density with respect to every Følner sequence in G. In particular, it has full

density with respect to the Følner sequence N 	→ GN × GN , contradicting (8.1) for n large

enough.
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Appendix: Chu’s inequality

We use the following slightly generalized version of Chu’s lower bound for a product of

conditional expectations [14, Lemma 1.6].

Lemma A.1. Let f0, . . . , fn be non-negative integrable functions on probability space

(X,B, μ) and let B1, . . . , Bn ⊂ B be arbitrary sub-σ-algebras. Then

∫
f0

n∏
i=1

E(fi|Bi) �
(∫ n∏

i=0

f
1
n+1
i

)n+1

.

The main advantage of the present formulation is the ability to take f0 ≡ 1.

Proof. Note that {fi > 0} ⊂ {E(fi|Bi) > 0} up to a set of measure zero for every i. By

Hölder’s inequality we have

∫ n∏
i=0

f
1
n+1
i =

∫ (
f

1
n+1
0

n∏
i=1

E(fi|Bi)
1
n+1

)
·

n∏
i=1

(
1{E(fi|Bi)>0}

fi

E(fi|Bi)

) 1
n+1

�
(∫

f0

n∏
i=1

E(fi|Bi)
) 1
n+1

·
n∏
i=1

(∫
{E(fi|Bi)>0}

fi

E(fi|Bi)

) 1
n+1

.

Since the functions E(fi|Bi)−1 are Bi-measurable, the fi may be replaced by their

expectations onto Bi in the integrals in the second factor. Thus we obtain

=

(∫
f0

n∏
i=1

E(fi|Bi)
) 1
n+1

·
n∏
i=1

|{E(fi|Bi) > 0}|
1
n+1

�
(∫

f0

n∏
i=1

E(fi|Bi)
) 1
n+1

.

It would be interesting to know whether the lower bound in Lemma A.1 is sharp for

some characteristic functions fi. There are two sources of inefficiency in its proof: the

Hölder inequality and the estimate |{E(fi|Bi)}| � 1. It is clear that the second source of

inefficiency can be easily eliminated. On the other hand, an example in which the Hölder

inequality gives a sharp estimate can be found in [15, Appendix B] (in hindsight this

provides an explanation for why that example, which was initially found numerically,

works). However, it is not clear whether both sources of inefficiency can be controlled

simultaneously.
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