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Abstract
Chen et al. (2014), studied a discrete semi-Markov risk model that covers existing risk models such
as the compound binomial model and the compound Markov binomial model. We consider their
model and build numerical algorithms that provide approximations to the probability of ultimate
ruin and the probability and severity of ruin in a continuous time two-state Markov-modulated risk
model. We then study the finite time ruin probability for a discrete m-state model and show how we
can approximate the density of the time of ruin in a continuous time Markov-modulated model with
more than two states.
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1. Introduction

In the classical risk model, claims occur as a Poisson process and the distribution of individual claims is
fixed, meaning that in this model neither claim arrival intensities nor the individual claim amount
distribution change over time. For some situations it may be more realistic to relax these assumptions and
to let the arrival intensities and claim amount distribution change. This issue was addressed for the first
time by Ammeter (1948). He considered a model that starts each year with a new claims intensity which
is independent of past intensities. An alternative model assumes that the arrival intensities are governed
by a continuous time Markov chain on a finite state space which models, for example, a changing
financial environment. Discussions of risk models in a Markovian environment can be found in, for
example, Reinhard (1984), Asmussen (1989), Grandell (1991) and Asmussen & Albrecher (2010).

In this paper we study Markov-modulated risk models. In the continuous time model, the arrival
intensities and the distribution of the individual claim amounts in different time intervals depend
on a state process, representing, for example, different weather, economic, or environmental
conditions, and therefore can be considered more flexible than the classical risk model. There is
much research that considers ruin-related quantities in the framework of the continuous time
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Markov-modulated model. However, there are few papers that contain explicit solutions for
ruin-related quantities, and these mostly relate to the case of two states. Lu & Li (2005) find an
expression for the Laplace transform of the infinite time survival probability. They invert
this transform when there are two states in the cases when individual claims are exponentially
distributed and when the individual claim amount distributions belong to the Kn family (so that
the Laplace transform of each individual claim amount density is the ratio of polynomials in the
transform argument, with the degree of the denominator polynomial being higher). Lu (2006)
expands work by Snoussi (2002) on the probability and severity of ruin. She obtains explicit
solutions in the case of exponential and mixed Erlang individual claim amount distributions
when there are two states. Ng & Yang (2006) consider the joint distribution of the surplus prior to
ruin and the deficit at ruin, and obtain explicit solutions when the initial surplus is zero when
individual claim amounts are phase-type distributed. Li & Lu (2008) construct a Gerber–Shiu
function and obtain explicit solutions in the case when the initial surplus is zero. Reinhard (1984)
considers the finite time ruin probability and obtains formulae, but does not illustrate their
application. Li et al. (2014) also consider finite time ruin problems, give formulae for the density of
the time of ruin, and consider the computational issues associated with the application of their
results. Many results in the literature seem difficult to apply in the case of more than two states. For
example, Lu (2006) derives a set of equations satisfied by the Laplace transforms of the probability
and severity of ruin functions. It does not seem like a straightforward exercise to invert these,
even numerically.

For the discrete time model, the main studies we build on are by Reinhard & Snoussi (2002) who
consider the probability and severity of ruin, and by Chen et al. (2014) who consider the case of two
states and obtain a recursion scheme for calculating ultimate ruin probabilities, which includes
equations satisfied by the ruin probabilities when the initial surplus is zero. Building on these studies,
our purpose is to apply a discrete time model that can provide approximations to ruin-related
quantities in a continuous time Markov-modulated risk model for which explicit solutions do not
exist. Our techniques are based on numerical algorithms presented by Dickson & Waters (1991,
1992); see also De Vylder & Goovaerts (1988). We show how we can adapt these algorithms and
find approximations to the probability of ruin in both infinite and finite time, and to the probability
and severity of ruin.

This paper is organised as follows. In section 2 we present notation and state definitions. In section 3
we provide recursive formulae for the probability of ruin and the probability and severity of ruin for
a discrete two-state Markov-modulated model. Then, in section 4 we show how we can apply
the results in section 3 to approximate the corresponding quantities in a continuous time
Markov-modulated model. Finally, in section 5 we consider the finite time ruin probability for a
model with m≥2 states, and we briefly discuss how we can bound/approximate the ultimate ruin
probability for such a model.

2. Models and Notation

We denote the surplus of an insurance company in continuous time by {U(t)}t≥ 0 and define it as
U(t) = u+ ct − S(t), where SðtÞ=PNðtÞ

i=1 Xi and N(t) is the number of claims that have occurred up to
time t. Let {J(t)}t≥ 0 be a homogeneous, irreducible and aperiodic continuous time Markov process
representing different environments in which the insurer operates (e.g. financial conditions or
weather conditions). This process has a finite state space M = {1,…, m}, and intensity matrix
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A = (αij)i,j∈M, where αii := −αi, for i∈M, and π = (π1,… , πm) is the unique stationary probability
distribution of {J(t)}t≥ 0, given by

πi =
ðλiηiÞ=αiPm

j= 1
ðλjηjÞ=αj

(2.1)

where ηi is the unique stationary probability distribution of the embedded Markov chain with
transition probabilities qii = 0 and qij = αij/αi; see Reinhard (1984). In this model, in the time interval
(t, t+ dt) claims occur according to a Poisson process with intensity λi if J(s) = i for all s in (t, t +dt),
and the corresponding claim amounts have distribution function Fi and density function fi, with finite
mean mi. The initial surplus is u and c is the premium income per unit of time. We assume that c is
fixed regardless of the state of the environment process and satisfies the positive loading condition
(see e.g. Albrecher & Boxma, 2005):

Xm
i= 1

πimj < c
Xm
i= 1

πi
λi

(2.2)

Define Tu = infft : UðtÞ < 0 Uj ð0Þ= ug, with Tu = ∞ ifU(t)≥0 for all t≥0 to be the time of ruin given
initial surplus u. Then, the probability that ruin occurs in infinite time due to a claim in state j, given
initial state i and initial surplus u, is defined by ψij(u) = Pr(Tu<∞, J(Tu) = j│U(0) = u, J(0) = i).
Further, the probability that ruin occurs in infinite time given initial surplus u and initial environment
state i is given by ψ iðuÞ= PrðTu <1 j Uð0Þ=u; Jð0Þ= iÞ and δi(u) = 1−ψi(u). We denote by ψi(u, t)
the probability of ruin in finite time and define it by ψ iðu; tÞ= PrðTu ≤ t j Uð0Þ= u; Jð0Þ= iÞ.
Also, we define Hijðu; yÞ=Pr Tu <1 and j U Tuð Þ j ≤ y; J Tuð Þ= j j Uð0Þ= u; Jð0Þ= ið Þ to be the
probability that ruin occurs in state j and that the deficit at ruin, or the severity of ruin, is at
most y, given initial state i. Then hijðu; yÞ= ∂

∂yHijðu; yÞ is its defective density, and
Hiðu; yÞ= Pr Tu <1 and j U Tuð Þ j ≤ y j Uð0Þ= u; Jð0Þ= ið Þ is the probability that ruin occurs and
that the deficit at the time of ruin is at most y, given initial state i, and Hiðu; yÞ=

Pm
j=1 Hijðu; yÞ.

We now introduce our discrete time model that can be used to approximate the continuous time
Markov-modulated model. In this model, the insurer’s surplus at time n, n = 1, 2, 3,… is denoted by
Ud(n) and is defined as UdðnÞ= u + n�Pn

i= 1 Yi, where u is a non-negative integer representing the
insurer’s initial surplus, the premium income per unit time is 1 (so that n is the total premium income
up to time n), and Yi denotes the insurer’s aggregate claim amount in the ith time period. Let {Jn}n∈N

be a homogeneous, irreducible and aperiodic Markov chain with a finite state space M = {1,… , m}
and transition probabilities pij = Pr Jn= j j Jn�1 = i; Jk fork≤n�1ð Þ, for i, j∈M. The conditional joint
distribution of Yn and Jn given the previous state Jn−1 is defined by

gijðxÞ= Pr Yn = x; Jn =j j Jn�1 = i; Jk;Ykf g; for k≤n�1ð Þ= pijgjðxÞ
for x = 0, 1, 2,… , where

P1
x=0 gijðxÞ= pij, with giðxÞ=

Pm
j=1 gijðxÞ, and GiðyÞ=

Pm
j=1

Py
x=0 gijðxÞ

for y = 0, 1, 2,…. Further, ~gijðsÞ=
P1

x=0 s
xgijðxÞ. For all i, j∈M and n = 1, 2, 3,… , we define

μij =
P1

x= 1 xgijðxÞ and μi =
Pm

j=1 μij. We assume that the net profit condition holds, namelyPm
j=1 ~πjμj < 1, where f~πjgmj=1 is the unique stationary distribution of fpijgmi;j=1.

Let Td
u =minfn≥ 1 : UdðnÞ≤ 0 j Udð0Þ= ug denote the time of ruin given initial surplus u, with

Td
u =1 if Ud(n)>0 for n = 1, 2, 3,…. We remark that as our aim in this paper is to approximate the

continuous time Markov-modulated model we assume that ruin occurs when the surplus falls to zero
or below zero in line with Dickson & Waters (1991, 1992) who found that such a definition gives a
better approximation to ruin probabilities in the classical risk model (which is a special case of the
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continuous time Markov-modulated risk model). This contrasts with Chen et al. (2014) who
assumed that ruin occurs on the first occasion that the surplus is strictly negative.

Denote by ψd
i ðuÞ the ultimate probability of ruin given initial surplus u and initial environment state i

which is given by

ψd
i ðuÞ= PrðTd

u <1 j Udð0Þ= u; J0 = iÞ=1�δdi ðuÞ
where δdi ðuÞ is the probability of survival. Also, we denote by ψd

i ðu; tÞ the finite time probab-
ility of ruin given initial surplus u and initial environment state i which is given by
ψd
i ðu; tÞ= PrðTd

u ≤ t j Udð0Þ= u; J0 = iÞ. Further, we define the probability that ruin occurs in state j
and the insurer’s deficit at ruin is at most y, given initial environment state i, as

Hd
ij ðu; yÞ= PrðTd

u <1; j UðTd
u Þ j < y; JTd

u
= j j Udð0Þ= u; J0 = iÞ

with the probability mass function being hdijðu; yÞ, and let hdi ðu; yÞ=
Pm

j=1 h
d
ijðu; yÞ. Further,

Hd
i ðu; yÞ=

Pm
j=1 H

d
ij ðu; yÞ.

3. The Probability of Ruin and the Probability and Severity of Ruin

In this section, we consider the discrete time model and present recursive formulae for ψd
i ðuÞ and

hdi ðu; yÞ when m = 2. As our recursive formulae need initial values, we first give expressions for
ψd
i ð0Þ and hdi ð0; yÞ, and then provide results which we can use to calculate the ultimate ruin

probability and the probability and severity of ruin.

3.1. Initial values ψd
i ð0Þ and hdijð0; yÞ

Chen et al. (2014) derived two equations that define the relationship between δd1ð0Þ and δd2ð0Þ under
their definition of ruin. Here, we develop the equivalent of their equations for our definition of ruin.
The first equation ((3.1) below) is obtained by a different approach, but for the second equation
((3.2) below) we can use the method of generating functions as in Chen et al. (2014).

Theorem 3.1 When m = 2, δd1ð0Þ and δd2ð0Þ satisfy
p12δd2ð0Þ + p21δd1ð0Þ= p12ð1�μ2Þ + p21ð1�μ1Þ (3.1)

and

~g11ðρÞð~g22ðρÞ�ρÞ�~g12ðρÞ~g21ðρÞð Þδd1ð0Þ= ~g12ðρÞ~g22ðρÞ�~g12ðρÞð~g22ðρÞ�ρÞð Þδd2ð0Þ (3.2)

where ρ∈ (0, 1) is the solution to

L1ðsÞ= ~g11ðsÞ�sð Þ ~g22ðsÞ�sð Þ�~g12ðsÞ~g21ðsÞ= 0 (3.3)

We remark that the existence of ρ is shown by Chen et al. (2014).

Proof: By considering what can happen in the first time period we have

ψd
i ðuÞ=

X2
j=1

Xu
x=0

gijðxÞψd
j ðu + 1�xÞ +

X2
j= 1

X1
x= u+ 1

gijðxÞ (3.4)

We now assume that
P1

u= 0 ψ
d
i ðuÞ<1, and we discuss conditions under which this assumption holds

in the Appendix.
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Summing over u from 0 to ∞ in (3.4) and changing the order of summations on the right-hand side
we obtain

ψd
1ð0Þ +

X1
u=1

ψd
1ðuÞ= p11

X1
u=1

ψd
1ðuÞ + μ11 + p12

X1
u=1

ψd
2ðuÞ + μ12 (3.5)

and

ψd
2ð0Þ +

X1
u=1

ψd
2ðuÞ= p21

X1
u=1

ψd
1ðuÞ + μ21 + p22

X1
u=1

ψd
2ðuÞ + μ22 (3.6)

Rearranging, formula (3.1) follows.

We can build the second relationship between δd1ð0Þ and δd2ð0Þ using the method of generating
functions used by Chen et al. (2014). As the techniques are very similar, we omit the details.

The next result gives the initial values hdijð0; yÞ. This result holds under the assumptions

A1. p22 p11>p12 p21, and

A2. p21A11ð1; yÞ + p12A21 1; yð Þ< p21hd11ð0; yÞ + p12hd21ð0; yÞ, where we define

Aij (s, y)=
P1
u=0

su +1gijðu + 1 + yÞ.

We comment on these assumptions after the proof of Theorem 3.2.

Theorem 3.2 When m = 2, for y = 0, 1, 2,… , hd11ð0; yÞ and hd21ð0; yÞ satisfy
p12hd21ð0; yÞ + p21hd11ð0; yÞ= p12 p21�G21ðyÞð Þ + p21 p11�G11ðyÞð Þ (3.7)

and

hd11ð0; yÞ ~g11ðρÞ ~g22ðρÞ�ρð Þ�~g12ðρÞ~g21ðρÞð Þ + ~g12ðρÞA21ðρ; yÞ

= hd21ð0; yÞ ~g12ðρÞ~g22ðρÞ�~g12ðρÞ ~g22ðρÞ�ρð Þð Þ + ~g22ðρÞ�ρð ÞA11ðρ; yÞ ð3:8Þ
Further, hd22ð0; yÞ and hd12ð0; yÞ satisfy

p12hd22ð0; yÞ + p21hd12ð0; yÞ= p12 p22�G22ðyÞð Þ + p21 p12�G12ðyÞð Þ (3.9)

and

hd12ð0; yÞ ~g11ðρÞ ~g22ðρÞ�ρð Þ�~g12ðρÞ~g21ðρÞð Þ + ~g12ðρÞA22ðρ; yÞ

= hd22ð0; yÞ ~g12ðρÞ~g22ðρÞ�~g12ðρÞ ~g22ðρÞ�ρð Þð Þ + ~g22ðρÞ�ρð ÞA12ðρ; yÞ ð3:10Þ
where ρ is the solution to equation (3.3).

Proof: We adapt ideas in Reinhard & Snoussi (2002) to our definition of ruin and write

hdijðu; yÞ=
X2
l=1

Xu
x=0

gilðxÞhdljðu + 1�x; yÞ + gijðu + 1 + yÞ (3.11)

Assuming
P1

u=0 h
d
ijðu; yÞ<1 (which holds if

P1
u=0 ψ

d
i ðuÞ<1), summing over u then changing the

order of summation on the right-hand side and solving a system of equations, yields formulae (3.7)
and (3.9).
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We next apply the method of generating functions used by Chen et al. (2014) to build the second pair
of equations. Multiplying formula (3.11) by su +1 and summing over u yields:

X1
u=0

su+ 1hdijðu; yÞ=
X2
l= 1

X1
u=0

Xu
x=0

su+ 1gilðxÞhdljðu + 1�x; yÞ +
X1
u=0

su +1gijðu + 1 + yÞ (3.12)

We define ~hdijðs; yÞ=
P1

u=0 s
uhdijðu; yÞ, and set n = u +1 in the first term on the right-hand side of

(3.12) to get

s~hdijðs; yÞ=
X2
l=1

X1
n=1

Xn�1

x=0

sngilðxÞhdljðn�x; yÞ +Aijðs; yÞ

Hence

s~hdijðs; yÞ=
X2
l=1

~gilðsÞ~hdljðs; yÞ�eijðs; yÞ +Aijðs; yÞ (3.13)

where eijðs; yÞ=
P2

l=1 ~gilðsÞhdljð0; yÞ. We can write (3.13) for i = 1, 2 and j = 1 as

ð~g11ðsÞ�sÞ~hd11ðs; yÞ + ~g12ðsÞ~hd21ðs; yÞ= e11ðs; yÞ�A11ðs; yÞ
~g21ðsÞ~hd11ðs; yÞ + ð~g22ðsÞ�sÞ~hd21ðs; yÞ= e21ðs; yÞ�A21ðs; yÞ

8<
:

giving

~g11ðsÞ�sð Þ ~g22ðsÞ�sð Þ�~g12ðsÞ~g21ðsÞð Þ~hd11ðs; yÞ
= ~g22ðsÞ�sð Þe11ðs; yÞ�~g12ðsÞe21ðs; yÞ + ~g12ðsÞA21ðs; yÞ� ~g22ðsÞ�sð ÞA11ðs; yÞ ð3:14Þ

Similarly, for i = 1, 2 and j = 2 we have

ð~g11ðsÞ�sÞ~hd12ðs; yÞ + ~g12ðsÞ~hd22ðs; yÞ= e12ðs; yÞ�A12ðs; yÞ
~g21ðsÞ~hd12ðs; yÞ + ð~g22ðsÞ�sÞ~hd22ðs; yÞ= e22ðs; yÞ�A22ðs; yÞ

8<
:

giving

~g11ðsÞ�sð Þ ~g22ðsÞ�sð Þ�~g12ðsÞ~g21ðsÞð Þ~hd12ðs; yÞ
= ~g22ðsÞ�sð Þe12 s; yð Þ�~g12ðsÞe22ðs; yÞ + ~g12ðsÞA22ðs; yÞ� ~g22ðsÞ�sð ÞA12ðs; yÞ ð3:15Þ

Inserting for e11(s, y) and e21(s, y), we can write equation (3.14) as L1ðsÞ~hd11ðs; yÞ=Lð1Þ
2 ðs; yÞ, where

L1(s) is given by (3.3), and

Lð1Þ
2 ðs; yÞ= ~g22ðsÞ�sð Þ~g11ðsÞ�~g12ðsÞ~g21ðsÞð Þhd11ð0; yÞ + ~g12ðsÞA21ðs; yÞ

+ ~g22ðsÞ�sð Þ~g12ðsÞ�~g12ðsÞ~g22ðsÞð Þhd21 0; yð Þ� ~g22ðsÞ�sð ÞA11ðs; yÞ ð3:16Þ
Similarly, equation (3.15) can be written as L1ðsÞ~hd12ðs; yÞ=Lð2Þ

2 s; yð Þ, where

Lð2Þ
2 s; yð Þ= ~g22ðsÞ�sð Þ~g11ðsÞ�~g12ðsÞ~g21ðsÞð Þhd12ð0; yÞ + ~g12ðsÞA22 s; yð Þ

+ ~g22ðsÞ�sð Þ~g12ðsÞ�~g12ðsÞ~g22ðsÞð Þhd22ð0; yÞ� ~g22ðsÞ�sð ÞA12ðs; yÞ
Setting s = 0 in equation (3.16), and noting that Aij(0, y) = 0, we have

Lð1Þ
2 ð0; yÞ= g22ð0Þg11ð0Þ�g12ð0Þg21ð0Þð Þhd11ð0; yÞ
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Also, setting s = 1 in equation (3.16) gives

Lð1Þ
2 ð1; yÞ=�p21hd11ð0; yÞ + p12A21ð1; yÞ�p12hd21ð0; yÞ + p21A11ð1; yÞ (3.17)

We note that Lð1Þ
2 ð0; yÞ> 0 under assumption A1, and Lð1Þ

2 ð1; yÞ< 0 under assumption A2. So we can
conclude that there exists ρ∈ (0, 1) such that L1ðρÞ=Lð1Þ

2 ðρ; yÞ=0, and by the same argument that
L1ðρÞ=Lð2Þ

2 ðρ; yÞ=0. Therefore, we can find the second pair of equations that defines the relationship
between h11(0, y), h21(0, y) and h12(0, y), h22(0, y).

We cannot give any intuitive explanations of assumptions A1 and A2. In our application of the
results in Theorem 3.2, we will choose parameters such that the probability of a change of state is
very small regardless of the initial state, meaning that A1 will easily be satisfied. We found that A2
was always satisfied under our parameter choices. We remark that this assumption suggests that
there is not a simple extension of formula (3.5) in Dickson & Waters (1992).

We remark that the approach of Chen et al. (2014) can be used to obtain equation (3.7). This
approach does not require the assumption

P1
u=0 h

d
ij u; yð Þ<1, but the proof is longer.

3.2. The probability of ultimate ruin

Chen et al. (2014) developed recursive formulae for the probability of ultimate ruin in their discrete
time model with m = 2. Using exactly the same ideas, but with our definition of ruin, our result that
corresponds to equation (3) of Chen et al. (2014) is

ψd
i ðuÞ=

X2
j= 1

Xu
x= 0

gijðxÞψd
j ðu + 1�xÞ +

X2
j=1

X1
x=u +1

gijðxÞ

for i = 1, 2. Proceeding with this formula, we have encountered the problem of numerical instability.
This problem arises because the application of these two formulae involves subtracting many terms,
which is a reason for a recursion scheme to be unstable. See Panjer & Wang (1993) for a discussion
of this issue in the casem = 1. To address this problem, we apply ideas from Dickson et al. (1995) to
obtain the following result.

Theorem 3.3 When m = 2, for u = 1, 2, 3,… , we have

ψd
1ðuÞ= f�1 1�hd22 0; 0ð Þ

� �
ψd
1ð0Þ + hd12 0; 0ð Þψd

2ð0Þ
�

+
Xu�1

x=1

ψd
1 u�xð Þ 1�hd22 0; 0ð Þ

� �
hd11 0; xð Þ + hd12 0; 0ð Þhd21 0; xð Þ

� �

+
Xu�1

x=1

ψd
2ðu�xÞ 1�hd22 0; 0ð Þ

� �
hd12 0; xð Þ + hd12 0; 0ð Þhd22 0; xð Þ

� �

� 1�hd22 0; 0ð Þ
� �Xu�1

x=0

hd1ð0; xÞ�hd12 0; 0ð Þ
Xu�1

x=0

hd2 0; xð Þ
!

ð3:18Þ
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and

ψd
2ðuÞ= f�1

 
1�hd11 0; 0ð Þ
� �

ψd
2ð0Þ + hd21 0; 0ð Þψd

1ð0Þ

+
Xu�1

x=1

ψd
1 u�xð Þ 1�hd11 0; 0ð Þ

� �
hd21 0; xð Þ + hd21 0; 0ð Þhd11 0; xð Þ

� �

+
Xu�1

x= 1

ψd
2 u�xð Þ 1�hd11 0; 0ð Þ

� �
hd22 0; xð Þ + hd21 0; 0ð Þhd12 0; xð Þ

� �

� 1�hd11 0; 0ð Þ
� �Xu�1

x=0

hd2 0; xð Þ�hd21 0; 0ð Þ
Xu�1

x= 0

hd1 0; xð Þ
!

ð3:19Þ

where f = 1�hd11 0; 0ð Þ� �
1�hd22 0; 0ð Þ� ��hd12 0; 0ð Þhd21 0; 0ð Þ.

Proof: By considering the amount of the first drop below u (should such a drop take place) and
whether or not it is accompanied by a change of environment state, we have

ψd
i ðuÞ=

X2
j=1

Xu�1

x=0

hdijð0; xÞψd
j ðu�xÞ +

X2
j=1

X1
x= u

hdijð0; xÞ

We remark that we include 0 as a possible drop amount as this is consistent with our definition of
ruin. By noting that ψd

i ð0Þ=
P1

x=0 h
d
i 0; xð Þ, we can write

ψd
1ðuÞ= hd11 0; 0ð Þψd

1ðuÞ + hd12 0; 0ð Þψd
2ðuÞ +

Xu�1

x= 1

hd11 0; xð Þψd
1 u�xð Þ

+
Xu�1

x= 1

hd12 0; xð Þψd
2 u�xð Þ +ψ1ð0Þ�

Xu�1

x=0

hd1 0; xð Þ

with a similar equation for ψd
2ðuÞ. Rearranging and solving this pair of equations gives the result.

We have not experienced any numerical instability with formulae (3.18) and (3.19) as discussed by
Dickson et al. (1995) for the approximation of the classical risk model. These formulae can be
applied provided that we know the values of ψd

i ð0Þ and hdijð0; 0Þ for i, j = 1, 2.

Unfortunately, we were unable to find formulae for the ultimate ruin probability when m>2.
This issue arises because we need m equations to find the initial values for an m-state model.
In section 5.2, we suggest a method that gives us a bound/approximation for the ultimate ruin
probability for a model with m> 2 states.

3.3. The probability and severity of ruin

We now derive recursive formulae for the probability and severity of ruin function in our discrete
time model with m = 2. For this, we adapt the ideas underlying equation (4.2) of Dickson et al.
(1995), which was used to approximate the probability and severity of ruin function in the classical
risk model. The next theorem gives expressions for the probability and severity of ruin function in
our discrete time model, from which we can approximate Hi(u, y) in the continuous time Markov-
modulated risk model.
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Theorem 3.4 When m = 2, for u = 1, 2, 3,… and y = 0, 1, 2,… we have

Hd
1ðu; yÞ= f�1

 
1�hd22 0; 0ð Þ
� �

Hd
1 0; u + yð Þ�Hd

1 0; uð Þ
� �

+ hd12 0; 0ð Þ Hd
2 0; u + yð Þ�Hd

2 0; uð Þ
� �

+
Xu�1

x=1

Hd
1 u�x; yð Þ hd11 0; xð Þ 1�hd22 0; 0ð Þ

� �
+ hd12 0; 0ð Þhd21 0; xð Þ

� �

+
Xu�1

x=1

Hd
2 u�x; yð Þ hd12 0; xð Þ 1�hd22 0; 0ð Þ

� �
+ hd12 0; 0ð Þhd22 0; xð Þ

� �!
ð3:20Þ

and

Hd
2 u; yð Þ= f�1

 
hd21 0; 0ð Þ Hd

1 0; u + yð Þ�Hd
1 0; uð Þ

� �

+ 1�hd11 0; 0ð Þ
� �

Hd
2 0; u + yð Þ�Hd

2 0; uð Þ
� �

+
Xu�1

x=1

Hd
1 u�x; yð Þ 1�hd11 0; 0ð Þ

� �
hd21 0; xð Þ + hd21 0; 0ð Þhd11 0; xð Þ

� �

+
Xu�1

x=1

Hd
2 u�x; yð Þ 1�hd11 0; 0ð Þ

� �
hd22 0; xð Þ + hd21 0; 0ð Þhd120; x

� �!
ð3:21Þ

where f = 1�hd11 0; 0ð Þ� �
1�hd22 0; 0ð Þ� ��hd12 0; 0ð Þhd21 0; 0ð Þ.

Proof: Using the same approach as in the proof of the previous theorem, we obtain

Hd
i u; yð Þ=

X2
j= 1

Xu�1

x=0

hdij 0; xð ÞHd
j u�x; yð Þ +

X2
j=1

Xu + y�1

x= u

hdij 0; xð Þ

=Hd
i 0; u + yð Þ�Hd

i 0; uð Þ +
X2
j= 1

Xu�1

x= 0

hdij 0; xð ÞHd
j u�x; yð Þ

Noting that Hd
i 0; yð Þ= Py�1

x=0
hdi 0; xð Þ, we have

Hd
1 u; yð Þ=Hd

1 0; u + yð Þ�Hd
1 0; uð Þ + hd11 0; 0ð ÞHd

1 u; yð Þ + h12 0; 0ð ÞHd
2 u; yð Þ

+
Xu�1

x= 1

hd11 0; xð ÞHd
1 u�x; yð Þ +

Xu�1

x=1

hd12 0; xð ÞHd
2 u�x; yð Þ

with a similar equation for Hd
2 u; yð Þ. Rearranging and solving this pair of equations gives equations

(3.20) and (3.21).

In the next section, we apply these algorithms to approximate the ultimate ruin probability and the
probability and severity of ruin in the continuous time Markov-modulated model.

4. Numerical Illustrations

We now adapt the ideas of Dickson &Waters (1991, 1992) who approximate the probability of ruin
and the probability and severity of ruin in the classical risk model to obtain approximations to the
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corresponding quantities in the continuous time Markov-modulated model. Following their
approach we first scale the individual claim amount distributions using a scaling factor β, then we
discretise these distributions using the mean-preserving discretisation method introduced by
De Vylder & Goovaerts (1988). Following the rescaling of the claim size distribution, we similarly
scale c, then work in time units of length 1/(cβ) so that the premium income per unit time is 1. We
remark that a consequence of a single scaling factor, β, for the individual claim amount distributions
is that if these distributions have different means, we are effectively discretising on different fractions
of the mean individual claim amount. Consequently, to obtain accurate approximations, larger
values of β are needed than in the case of approximations to the classical risk model.

We consider two individual claim amount distributions: exponential with mean 1/γi, i = 1, 2, for
which explicit results can be obtained in the continuous time case (and therefore we can compare our
approximate values with the exact values), and Pareto with parameters ai and bi for which we cannot
find explicit results other than in the case u = 0.

After we discretise the scaled individual claim amount distributions the next step is to apply Panjer’s
(1981) recursion formula to calculate the aggregate claim amount distributions in states 1 and 2
given fpijg2i;j= 1. We then compute the initial values. Equations (3.2), (3.8), and (3.10) are based on
the probability generating functions of the aggregate claim amount with parameter ρ and in order to
find ρ we need to solve L1(ρ) = 0 from formula (3.3). The probability generating function of the
claim amount distribution has an explicit form in the case of the discretised exponential distribu-
tions. Therefore, we can calculate ~gijðsÞ in (3.3) and solve L1(ρ) = 0 to find ρ. However, an explicit
form for the probability generating function of the discretised Pareto distribution does not exist, and
we need to find ρ by numerical methods such as the Newton–Raphson method. For this we require to
truncate the summation in the formula for the probability generating function. Suppose fi is the
discretised version of fi and let L be the truncation point. Then we choose L such that
F iðLÞ=

P1
i=L +1 fiðxÞ< ϵ, where ϵ is a small strictly positive value.

As the sojourn times in states 1 and 2 in the continuous time model are exponentially distributed,
and as we will choose β so that our time intervals are very short, we calculate the transition
probability matrix as

e�α1=cβ 1�e�α1=cβ

1�e�α2=cβ e�α2=cβ

 !

In our numerical examples, we consider the situations in which α1 takes values of 0.1, 0.3, 0.5, 0.7, 0.9,
and α2 = 0.5 is fixed. Letting Si denote aggregate claims per unit time in state i for i = 1, 2, we consider
three different relationships between E[S1] and E[S2] as listed below. Further, in the continuous time
model we set both the arrival rate and the mean individual claim amount in state 1 as 1, that is,
λ1 = m1 = 1. Our numerical illustrations are based on the following six cases for the continuous time
model (the first three are for exponential claims, and the next three for Pareto claims):

1. E[S1] = E[S2]: λ1 = 1, λ2 = 2, γ1 = 1, γ2 = 2,

2. E[S1]>E[S2]: λ1 = 1, λ2 = 0.5, γ1 = 1, γ2 = 2,

3. E[S1]<E[S2]: λ1 = 1, λ2 = 2, γ1 = 1, γ2 = 0.5,

4. E[S1] = E[S2]: λ1 = 1, λ2 = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 1,

5. E[S1]>E[S2]: λ1 = 1, λ2 = 0.5, a1 = 2, b1 = 1, a2 = 3, b2 = 1,

6. E[S1]<E[S2]: λ1 = 1, λ2 = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 4.
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Further, we assume that the implied premium loading factor is 0.1 so that the positive loading
condition given by (2.2) is satisfied.

Our experiments with different scaling factors has led us to choose β = 300. The final consideration is
the truncation point. We have tested different values of L and found that the calculated value of ρ is not
highly sensitive to L and that it does not impact approximations. Since the choice of L affects the
running time of the computer programs, we used (scaled) L = 3,000 in all our numerical examples.

4.1. Approximations to ψ1(u) and ψ2(u)

Tables 1–3 show exact and approximate values for the ultimate ruin probability in the continuous
time model when the individual claim amounts are exponentially distributed. To find ψi(u) we have
applied the methods of Li & Lu (2008). The key for these tables is as follows:

(1) denotes the approximation to ψ1(u),

(2) denotes the exact value of ψ1(u),

(3) denotes the ratio of the value in (1) to that in (2),

(4) denotes the approximation to ψ2(u),

(5) denotes the exact value of ψ2(u),

(6) denotes the ratio of the value in (4) to that in (5).

We note the following points about Tables 1–3.

(i) In Tables 1 and 3 most of the approximations agree with the exact values up to four decimal
places with the best results being obtained in Table 1 when α1 = α2 = 0.5. The approximations
in Table 2 are in agreement with the exact values up to three decimal places. In this table we get
better approximations when α1<0.9.

(ii) The ratios of the approximate values to the exact values do not show consistent patterns. For
example, in Table 2 when α1 = 0.7, 0.9, the ratios are greater than 1, whereas for α1 = 0.1, 0.3, 0.5,
the ratios are mostly less than 1. In Table 3, unlike in Table 2, when α1 = 0.1, 0.3, 0.5, the ruin
probability is overstated and when α1 = 0.7, 0.9, and u = 0, 10, all the approximations understate
the exact values. We cannot observe any pattern for the ratios with different values of u and α1 in
Table 1.

(iii) Generally, we observe that the approximation in the case of exponential claims performs better
for small values of u and α1.

(iv) Regarding the relationship between ψ1(u) and ψ2(u) we can see that as u increases, ψ1(u) gets
closer to ψ2(u). In Table 2, where E[S1]>E[S2], values of ψ1(u) are always greater than ψ2(u).
In Table 3, where E[S1]<E[S2], ψ1(u) is always less than ψ2(u), but in Table 1, where E[S1] =
E[S2], we cannot identify any consistent pattern between ψ1(u) and ψ2(u) except that for a given
value of u if ψ1(u)>ψ2(u), this relationship will hold across the table regardless of the mean of
the sojourn time. In fact, we can see that the values of ψ1(u) and ψ2(u) are very close.

Tables 4–6 show the approximate values of ψi(u) in the continuous time model for claim sizes with
Pareto distributions, and the key to these tables is the same as in Tables 1–3.

Unlike in the classical risk model, the expression for the ruin probability when u = 0 is dependent on the
individual claim amount distributions, as ψij(0) depends on the Laplace transform of the claim amount
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distributions in the continuous time case (and on their probability generating functions in the discrete
time case). However, we can see that ruin probabilities when u = 0 for exponential and Pareto
claims are fairly close for Cases 1 and 4, Cases 2 and 5, and Cases 3 and 6. We can identify a similar
pattern between the approximate values of the ruin probability with claim amounts following
Pareto distributions and claim amounts following exponential distributions. For example, in Table 5
when α1 = 0.7, 0.9, the ruin probability when u = 0 is overstated, whereas for α1 = 0.1, 0.3, it is
understated, which is different to Table 6 in which the ruin probability is overstated for α1 = 0.1, 0.3,
and understated for α1 = 0.7, 0.9. In addition, similar to Table 1 no particular pattern can be observed
for Table 5.

We conclude from these tables that our algorithm provides good approximations to the exact values
in the continuous time Markov-modulated model.

4.2. Approximations to H1(u, y) and H2(u, y)

Tables 7–9 (exponential claims) and Tables 10–12 (Pareto claims) show approximations to the
probability and severity of ruin for initial surplus levels u = 0 and u = 20. We performed calcula-
tions for different values of y, but only show the results for y = 3. In the case of exponential claims,
we can calculate exact values of the probability and severity of ruin in the continuous time model

Table 1. Exponential claims, with E[S1] = E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.90491 0.89968 0.89682 0.89523 0.89438
(2) 0.90491 0.89967 0.89680 0.89520 0.89434
(3) 1.00000 1.00001 1.00002 1.00003 1.00004
(4) 0.92997 0.92477 0.92136 0.91899 0.91727
(5) 0.92999 0.92479 0.92139 0.91901 0.91728
(6) 0.99998 0.99998 0.99997 0.99998 0.99999

10 (1) 0.33750 0.29784 0.27182 0.25346 0.23982
(2) 0.33750 0.29784 0.27183 0.25345 0.23979
(3) 1.00000 1.00000 0.99996 1.00004 1.00013
(4) 0.33434 0.29514 0.26949 0.25141 0.23799
(5) 0.33434 0.29515 0.26949 0.25139 0.23796
(6) 1.00000 1.00003 1.00000 1.00008 1.00013

30 (1) 0.04686 0.03248 0.02479 0.02014 0.01707
(2) 0.04685 0.03247 0.02480 0.02014 0.01706
(3) 1.00021 1.00031 0.99960 1.00000 1.00059
(4) 0.04642 0.03219 0.02458 0.01998 0.01694
(5) 0.04641 0.03218 0.02459 0.01997 0.01693
(6) 1.00022 1.00031 0.99959 1.00050 1.00059

60 (1) 0.00242 0.00117 0.00068 0.00045 0.00032
(2) 0.00241 0.00116 0.00069 0.00045 0.00032
(3) 1.00415 1.00862 0.98551 1.00000 1.00000
(4) 0.00240 0.00116 0.00068 0.00045 0.00032
(5) 0.00238 0.00115 0.00069 0.00045 0.00032
(6) 1.00840 1.00870 0.98551 1.00000 1.00000
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when u≥0 by applying the memoryless property of the exponential distribution to write

Hij u; yð Þ=ψ ijðuÞ 1�e�γj yð Þ (4.1)

for i, j = 1, 2. The key for these tables is as follows:

(1) denotes the approximation to H1(u, y),

(2) denotes the exact value of H1(u, y),

(3) denotes the ratio of the value in (1) to that in (2),

(4) denotes the approximation to H2(u, y),

(5) denotes the exact value of H2(u, y),

(6) denotes the ratio of the value in (4) to that in (5).

We note the following points about Tables 7–9.

(i) In Table 8 the approximations for α1 = 0.1, 0.3, 0.5 understate the exact values, and for
α1 = 0.7, 0.9 overstate the exact values when u>0. This is in line with what we had observed
for the ruin probability.

Table 2. Exponential claims, with E[S1]>E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.7906 c = 0.6875 c = 0.6188 c = 0.5696

0 (1) 0.92023 0.92661 0.92758 0.92723 0.92652
(2) 0.92031 0.92673 0.92765 0.92719 0.92633
(3) 0.99991 0.99987 0.99992 1.00004 1.00021
(4) 0.85296 0.87965 0.89060 0.89640 0.89995
(5) 0.85300 0.87970 0.89053 0.89616 0.89951
(6) 0.99995 0.99994 1.00008 1.00027 1.00049

10 (1) 0.40758 0.42361 0.41468 0.40028 0.38531
(2) 0.40788 0.42406 0.41479 0.39979 0.38404
(3) 0.99926 0.99894 0.99973 1.00123 1.00331
(4) 0.36584 0.39128 0.38818 0.37779 0.36577
(5) 0.36609 0.39166 0.38820 0.37719 0.36437
(6) 0.99932 0.99903 0.99995 1.00159 1.00384

30 (1) 0.08007 0.08887 0.08337 0.07518 0.06728
(2) 0.08023 0.08914 0.08342 0.07491 0.06663
(3) 0.99801 0.99697 0.99940 1.00360 1.00976
(4) 0.07187 0.08209 0.07804 0.07096 0.06387
(5) 0.07201 0.08233 0.07807 0.07067 0.06322
(6) 0.99806 0.99708 0.99962 1.00410 1.01028

60 (1) 0.00698 0.00854 0.00752 0.00612 0.00491
(2) 0.00700 0.00861 0.00751 0.00608 0.00482
(3) 0.99714 0.99187 1.00133 1.00658 1.01867
(4) 0.00626 0.00789 0.00704 0.00578 0.00466
(5) 0.00628 0.00795 0.00703 0.00573 0.00457
(6) 0.99682 0.99245 1.00142 1.00873 1.01969
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(ii) In Table 9 all approximations for α1 = 0.5, 0.7, 0.9 understate the exact values and in this case
the approximation performs better than in other cases.

(iii) Regarding the relationship between H1(u, y) and H2(u, y), we can see that similar to the
probability of ruin, as u increases the values for H1(u, y) and H2(u, y) become closer to

Table 4. Pareto claims when E[S1] = E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.90486 0.89971 0.89703 0.89562 0.89492
(2) 0.90485 0.89970 0.89701 0.89559 0.89488
(3) 1.00001 1.00001 1.00002 1.00003 1.00004
(4) 0.93026 0.92472 0.92115 0.91872 0.91697
(5) 0.93028 0.92474 0.92118 0.91874 0.91699
(6) 0.99998 0.99998 0.99997 0.99998 0.99998

10 (1) 0.59768 0.55358 0.52211 0.49853 0.48019
(4) 0.59668 0.55265 0.52126 0.49775 0.47947

Table 3. Exponential claims, with E[S1]<E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.6500 c = 2.3375 c = 2.7500 c = 3.0250 c = 3.2214

0 (1) 0.89881 0.88536 0.87870 0.87592 0.87521
(2) 0.89869 0.88529 0.87868 0.87592 0.87523
(3) 1.00013 1.00008 1.00002 1.00000 0.99998
(4) 0.96109 0.94876 0.93948 0.93274 0.92785
(5) 0.96108 0.94876 0.93950 0.93278 0.92790
(6) 1.00001 1.00000 0.99998 0.99996 0.99995

10 (1) 0.60098 0.61654 0.60085 0.58770 0.57856
(2) 0.60061 0.61637 0.60083 0.58779 0.57871
(3) 1.00062 1.00028 1.00003 0.99985 0.99974
(4) 0.71205 0.69814 0.67009 0.64819 0.63220
(5) 0.71184 0.69801 0.67002 0.64819 0.63227
(6) 1.00030 1.00019 1.00010 1.00000 0.99989

30 (1) 0.32830 0.33550 0.30716 0.28504 0.26959
(2) 0.32787 0.33515 0.30690 0.28492 0.26961
(3) 1.00131 1.00104 1.00085 1.00042 0.99993
(4) 0.38953 0.38005 0.34277 0.31460 0.29479
(5) 0.38914 0.37959 0.34226 0.31421 0.29457
(6) 1.00100 1.00121 1.00149 1.00124 1.00075

60 (1) 0.13286 0.13502 0.11278 0.09673 0.08608
(2) 0.13252 0.13441 0.11205 0.09616 0.08573
(3) 1.00257 1.00454 1.00651 1.00593 1.00408
(4) 0.15765 0.15308 0.12609 0.10704 0.09439
(5) 0.15728 0.15223 0.12496 0.10604 0.09367
(6) 1.00235 1.00558 1.00904 1.00943 1.00769
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each other. In Tables 7 and 8 we observe that H1(u, y)<H2(u, y) for a given value of u, but
there is no such relationship between H1(u, y) and H2(u, y) in Table 9.

Tables 10–12 show approximations to the probability and severity of ruin when claim amounts
follow Pareto distributions. The exact values in the case u = 0 have been calculated using techni-
ques described in Li & Lu (2008). We note that all approximations for u = 0 are less than the
exact values. In Table 10 we note that H1(0, y)<H2(0, y), while H1(20, y)>H2(20, y). However, in
Table 11, where E[S1]>E[S2], H1(u, y)>H2(u, y), while in Table 12, where E[S1]<E[S2],
H1(u, y)<H2(u, y).

Overall, our algorithm performs well and provides good approximations. Calculations for other
values of y showed a similar trend to that observed in Dickson & Waters (1992) for the classical risk
model, namely that in the case of exponential claims, the quality of the approximations improved
as y increased.

5. The Probability of Ruin in Finite Time

In this section, we consider the probability of ruin in finite time. First, we provide recursive formulae
which can be used to approximate ψi(u, t) for i∈M. Then, we explain how we can adapt the

Table 5. Pareto claims when E[S1]>E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.7906 c = 0.6875 c = 0.6188 c = 0.5696

0 (1) 0.91660 0.92231 0.92389 0.92416 0.92396
(2) 0.91668 0.92242 0.92394 0.92410 0.92375
(3) 0.99991 0.99988 0.99995 1.00006 1.00023
(4) 0.87111 0.88682 0.89430 0.89860 0.90137
(5) 0.87116 0.88688 0.89425 0.89838 0.90095
(6) 0.99994 0.99993 1.00006 1.00024 1.00047

10 (1) 0.63301 0.62837 0.61737 0.60536 0.59376
(4) 0.61139 0.61124 0.60304 0.59297 0.58281

Table 6. Pareto claims when E[S1]<E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.6500 c = 2.3375 c = 2.7500 c = 3.0250 c = 3.2214

0 (1) 0.89905 0.88658 0.88077 0.87845 0.87790
(2) 0.89894 0.88651 0.88075 0.87845 0.87792
(3) 1.00012 1.00008 1.00002 1.00000 0.99998
(4) 0.95988 0.94672 0.93741 0.93094 0.92636
(5) 0.95987 0.94672 0.93743 0.93098 0.92641
(6) 1.00001 1.00000 0.99998 0.99996 0.99995

10 (1) 0.69679 0.69378 0.68181 0.67334 0.66785
(4) 0.77097 0.75055 0.72959 0.71469 0.70428

Ruin problems in Markov-modulated risk models

37

https://doi.org/10.1017/S1748499517000124 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499517000124


truncation method of De Vylder & Goovaerts (1988) to improve the computational efficiency of our
numerical algorithm.

Theorem 5.1 For u = 0, 1, 2,…

ψd
i u; 1ð Þ=

Xm
j=1

X1
x=u +1

gijðxÞ= 1�GiðuÞ (5.1)

and for t>1

ψd
i u; tð Þ=ψd

i u; 1ð Þ +
Xm
j=1

Xu
x=0

gijðxÞψd
j u + 1�x; t�1ð Þ (5.2)

Table 7. Exponential claims, y = 3 and E[S1] = E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.86249 0.86209 0.86292 0.86428 0.86583
(2) 0.86268 0.86224 0.86305 0.86437 0.86590
(3) 0.99978 0.99983 0.99985 0.99990 0.99992
(4) 0.91246 0.90935 0.90750 0.90633 0.90557
(5) 0.91260 0.90948 0.90762 0.90645 0.90568
(6) 0.99985 0.99986 0.99987 0.99987 0.99988

20 (1) 0.11995 0.09442 0.07918 0.06917 0.06213
(2) 0.11997 0.09443 0.07920 0.06917 0.06212
(3) 0.99983 0.99989 0.99975 1.00000 1.00161
(4) 0.11883 0.09356 0.07850 0.06861 0.06165
(5) 0.11885 0.09357 0.07852 0.06861 0.06165
(6) 0.99983 0.99989 0.99975 1.00000 1.00000

Table 8. Exponential claims, y = 3 and E[S1]>E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.7906 c = 0.6875 c = 0.6188 c = 0.5696

0 (1) 0.87473 0.88217 0.88470 0.88605 0.88703
(2) 0.87503 0.88255 0.88505 0.88631 0.88717
(3) 0.99966 0.99957 0.99960 0.99971 0.99984
(4) 0.81989 0.84734 0.85963 0.86685 0.87178
(5) 0.82010 0.84760 0.85981 0.86689 0.87163
(6) 0.99974 0.99969 0.99979 0.99995 1.00017

20 (1) 0.17167 0.18457 0.17709 0.16544 0.15376
(2) 0.17195 0.18500 0.17723 0.16510 0.15283
(3) 0.99837 0.99768 0.99921 1.00206 1.00609
(4) 0.15409 0.17048 0.16577 0.15615 0.14596
(5) 0.15434 0.17086 0.16586 0.15577 0.14500
(6) 0.99838 0.99778 0.99946 1.00244 1.00662
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Proof: We first consider ψd
i ðu; 1Þ. For ruin to occur in the first time period, we require that the

aggregate claim amount in the first time period exceeds u. Hence (5.1) follows. For t>1 we note that
if ruin occurs at or before time t, then either

(i) Y1>u so that ruin occurs at time 1, or

(ii) Y1 = x, for x = 0, 1, 2,… , u, and ruin occurs in the next t− 1 time periods, from surplus level
u +1 − x at time 1.

Thus (5.2) follows.

We can use formulae (5.1) and (5.2) to calculate finite time ruin probabilities recursively. First, we
need to calculate ψd

i ðw; 1Þ for w = 0, 1, 2,… , u + t− 1 from (5.1) for i = 1, 2,… , m, then using
equation (5.2) we calculate ψd

i ðw; 2Þ for w = 0, 1, 2,… , u+ t− 2 and i = 1, 2,… , m. We continue
this process until we calculate ψd

i ðw; tÞ for w = 0, 1, 2,… , u for i = 1, 2,… , m. This method
requires much computation time, particularly when the values of u and t are large. Since many of the

Table 9. Exponential claims, y = 3 and E[S1]<E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.6500 c = 2.3375 c = 2.7500 c = 3.0250 c = 3.2214

0 (1) 0.79895 0.75472 0.73680 0.72761 0.72245
(2) 0.79917 0.75496 0.73705 0.72787 0.72272
(3) 0.99972 0.99968 0.99966 0.99964 0.99963
(4) 0.76636 0.74824 0.73811 0.73138 0.72665
(5) 0.76690 0.74865 0.73848 0.73173 0.72699
(6) 0.99930 0.99945 0.99950 0.99952 0.99953

20 (1) 0.35466 0.35726 0.33614 0.31972 0.30824
(2) 0.35643 0.35735 0.33632 0.31995 0.30851
(3) 0.99503 0.99975 0.99946 0.99928 0.99912
(4) 0.42078 0.40457 0.37483 0.35256 0.33676
(5) 0.42085 0.40473 0.37507 0.35284 0.33707
(6) 0.99983 0.99960 0.99936 0.99921 0.99908

Table 10. Pareto claims, y = 3 and E[S1] = E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.69467 0.71521 0.73073 0.74289 0.75270
(2) 0.69479 0.71530 0.73080 0.74295 0.75275
(3) 0.99983 0.99987 0.99990 0.99992 0.99993
(4) 0.78721 0.79629 0.80311 0.80842 0.81268
(5) 0.78740 0.79647 0.80329 0.80861 0.81287
(6) 0.99976 0.99977 0.99978 0.99977 0.99977

20 (1) 0.15715 0.14883 0.14273 0.13806 0.13436
(4) 0.15682 0.14852 0.14245 0.13779 0.13411
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probabilities used in the calculations will be very small, we can reduce the number of calculations
involved by adapting the truncation method of De Vylder & Goovaerts (1988) which is based on
ignoring small probabilities. Let ki,1 be the least integer such that Gi(ki,1)≥1 − ϵ, where ϵ is a small
positive value. Then let

gϵijðxÞ=
gijðxÞ for x= 0; 1; 2; ¼; ki;1

0 for x= ki;1 + 1; ki;1 + 2; ¼

(

and

ψdϵ
i u; 1ð Þ=

1�GiðuÞ for u= 0; 1; 2; ¼; ki;1

0 for u= ki;1 + 1; ki;1 + 2; ¼

(
(5.3)

Further, let ki,t be the least integer such that ψd
i ðki;t; t�1Þ≥ ϵ. Then we will calculate ψd

j ðu; tÞ
for u = 0, 1, 2,… , kj,t, and otherwise set it equal 0. Thus, we can evaluate the finite time ruin
probability from

ψdϵ
i u; tð Þ=ψdϵ

i u; 1ð Þ +
Xm
j=1

XU
x=L

gϵijðxÞψdϵ
j u + 1�x; t�1ð Þ (5.4)

Table 11. Pareto claims, y = 3 and E[S1]>E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.7906 c = 0.6875 c = 0.6188 c = 0.5696

0 (1) 0.70405 0.72886 0.74278 0.75221 0.75938
(2) 0.70427 0.72916 0.74308 0.75247 0.75956
(3) 0.99969 0.99959 0.99960 0.99965 0.99976
(4) 0.61814 0.66207 0.68865 0.70713 0.72106
(5) 0.61824 0.66220 0.68873 0.70711 0.72092
(6) 0.99984 0.99980 0.99988 1.00003 1.00019

20 (1) 0.17240 0.17801 0.17698 0.17414 0.17094
(4) 0.16431 0.17147 0.17154 0.16949 0.16688

Table 12. Pareto claims, y = 3 and E[S1]<E[S2].

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.6500 c = 2.3375 c = 2.7500 c = 3.0250 c = 3.2214

0 (1) 0.63841 0.60345 0.58913 0.58258 0.57965
(2) 0.63855 0.60359 0.58927 0.58272 0.57979
(3) 0.99978 0.99977 0.99976 0.99976 0.99976
(4) 0.71220 0.68090 0.66275 0.65112 0.64320
(5) 0.71266 0.68124 0.66306 0.65141 0.64347
(6) 0.99935 0.99950 0.99953 0.99955 0.99958

20 (1) 0.26647 0.27051 0.25973 0.25157 0.24605
(4) 0.30738 0.29875 0.28207 0.27018 0.26202
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where L = max(0, u+ 1 −kj,t − 1) and U = min(u, ki,1). We can demonstrate that similar to the
classical risk model, the error introduced by using (5.3) and (5.4) in place of (5.1) and (5.2) can be
bounded. We have ψd

i u; 1ð Þ�ϵ≤ψdϵ
i u; 1ð Þ≤ψd

i u; 1ð Þ and for t = 2, 3,…

ψd
i u; tð Þ�2tϵ≤ψdϵ

i u; tð Þ≤ψd
i u; tð Þ

As the proof contains no new ideas, we omit it. See De Vylder & Goovaerts (1988) or Dickson &
Waters (1991) for details.

5.1. The density of the time to ruin

Define

wi u; tð Þ= ∂
∂t
ψ i u; tð Þ

to be the (defective) density of the time of ruin in the continuous time Markov-modulated model
(given initial state i). Adjusting the approach of Dickson & Waters (2002), we can approximate
wi(u, t) at time t = j/cβ by

cβ ψ i u;
j
cβ

� �
�ψ i u;

j�1
cβ

� �� 	
(5.5)

for j = 1, 2,… , and we can approximate ψi(u, j/(cβ)) using formulae (5.3) and (5.4). Dividing this by
our approximation to ψi(u) from the algorithm described in section 4 gives us an approximation to
the proper density of the time of ruin.

We now illustrate the density of the time of ruin for four of six cases that we discussed in section 4.
In all figures α1 = 0.1, α2 = 0.5, β = 20, and the implied loading factor is 0.1. We remark that
the accuracy of the approximations for the scaling factor 20 is only up to two decimal places.
However, this precision is sufficient for our purpose here, which is to illustrate the shape of the
density functions.

Figures 1 and 2 show our approximations to the proper density of the time of ruin for
exponential claim amounts. For these figures, we have chosen the initial surplus such that
the ultimate ruin probability is in the range of practical interest. Figure 1 shows the situation when
E[S1]>E[S2], ψ1(40) = 0.03418 and ψ2(40) = 0.03071. In Figure 2 we have ψ1(120) = 0.02304
and ψ2(120) = 0.02721. This figure presents the density of the time of ruin, given that ruin occurs
when E[S1]<E[S2]. Figures 3 and 4 illustrate the density of the time of ruin, given that ruin occurs
when claim amounts follow Pareto distributions and the initial surplus is 40. The pattern of these
graphs is the same as the graphs for the exponential claim amounts. We can observe that the
common feature of all these figures is that they are all positively skewed and the skewness is
heightened when claim amounts follow Pareto distributions. These figures are consistent with
plots of the density of the time of ruin in the classical risk model; see, for example, Dickson &
Waters (2002).

Although we have not shown them here, the graphs of the density of the time of ruin when E[S1] =
E[S2] virtually coincide, which is perhaps not surprising given that in this case the ultimate ruin
probabilities in states 1 and 2 are very close.
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5.2. The density of the ruin time for m> 2

We now apply our numerical procedure to the case m>2. There is nothing new in the application
of our algorithms except the calculation of the transition probabilities for which we suggest the
following two methods, and our experiments show both give very similar results:

(i) pii = e�αi=cβ and pij = 1�e�αi=cβ
� �

αij=αi for i≠ j,

(ii) pii = 1 − αi/cβ and pij = αij/cβ for i≠ j.

We remark that method (i) is in fact the method that we have used in our numerical calculations for
the case m = 2, and the calculations for this section are based on this approach.

We consider a three-state model with the following intensity matrix:

�0:6 0:2 0:4

0:1 �0:3 0:2

0:5 0:3 �0:8

0
BB@

1
CCA

We calculate c = 1.1355 in the continuous time model so that relationship (2.2) is satisfied and set
β = 20. Figure 5 shows our approximation to the (defective) density of the time of ruin when λi = 1
for i = 1, 2, 3 and individual claim amounts are exponentially distributed with means 1, 0.5 and 2.
Figure 6 illustrates the situation when individual claim amounts follow Pareto distributions with
parameters a1 = 2, b1 = 1, a2 = 3, b2 = 1 and a3 = 2, b3 = 1 and λ1 = λ2 = 1 and λ3 = 2. We
observe that the common features of Figures 5 and 6 are that they are positively skewed and the
graph for the (defective) density of the time of ruin in state 3, where E[S3] is higher than the expected
aggregate claim amount in the two other states, is located on the top and for state 2, where E[S2] is
less than that in states 1 and 3, is at the bottom with the graph for state 1, where E[S3]>E[S1]>
E[S2], being in the middle.

If we let the finite time period be sufficiently large, the cumulative distribution function of the time of
ruin can give us an approximation to the ultimate ruin probability for an m-state model; at the very
least it provides a lower bound. We observed different features in the case of exponential and
Pareto claims, with the distribution function of the time of ruin appearing to converge for smaller

Figure 1. Case 2: ψ1(40) = 0.03418 and ψ2(40) = 0.03071.
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Figure 2. Case 3: ψ1(120) = 0.02304 and ψ2(120) = 0.02721.

Figure 3. Case 5: ψ1(40) = 0.34427 and ψ2(40) = 0.33677.

Figure 4. Case 6: ψ1(40) = 0.43292 and ψ2(40) = 0.47021.
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values of t in the case of exponential claims. For example, our observation from graphs of the
cumulative distribution function of the time of ruin for individual claim amounts with the above
exponential distributions suggests that ψi(10) for i = 1, 2 and 3 is close to 0.559, 0.524 and 0.581,
respectively, and when individual claim amounts follow the above Pareto distributions we can say
that good lower bounds for ψi(10) for i = 1, 2 and 3 are 0.608, 0.583 and 0.622, respectively.
This method can be extended easily to m>3. However, we cannot verify the accuracy of the
resulting ψi(u) values.

We remark that Li et al. (2014) considered the density of the time of ruin in the continuous time
Markov-modulated model. They derived a general expression for wi(u, t) and, using numerical
integration, implemented their formulae for u = 0, 5 when claim amounts in state 1 follow an
exponential distribution and in state 2 follow an Erlang(2) distribution. As with the classical risk
model, the formula for the (defective) density of the time of ruin in the Markov-modulated risk
model, is expressed in terms of the density of the aggregate claim amount. However, in contrast to

Figure 5. Exponential claims.

Figure 6. Pareto claims.
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the classical risk model, the solution to the integro-differential equation that is satisfied by the
distribution of the aggregate claim amount does not lead to a neat expression. This issue arises as we
must calculate the aggregate claims distributions in matrix form under the Markov-modulated
risk model. In general, it appears that our approach for the approximation of wi(u, t) is more
straightforward than their numerical integration.
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Appendix

In the proofs of Theorems 3.1 and 3.2 we assumed that
P1

u=0 ψ
d
i ðuÞ<1: We now state conditions

under which this is true.

Let dLi be a discrete random variable representing the maximum aggregate loss, given initial state i,
i = 1, 2. Then the distribution function of dLi is δdi ðuÞ, and the first moment is given by

E dLi

h i
=
X1
u=0

ψd
i ðuÞ=

X1
u=0

Pr dLi >u
� �

Therefore, we can conclude that
P1

u=0 ψ
d
i ðuÞ<1, if E[dLi] exists. The next result gives an

expression for E[dLi] and is motivated by the ideas of Dufresne (1988).

Theorem For i = 1, 2, the first moment of the maximum aggregate loss is given by

E dLi

h i
=�J

0
ið1Þ

where

J1 sð Þ= 1 + 1�s�1
� �

ψd
1 0ð Þ�

~g11 sð Þ +ψd
2 0ð Þ~g12 sð ÞÞ�~g1 sð Þ + s�1~g12 sð ÞJ2 sð Þ

1�s�1~g11 sð Þ (A.1)

and

J2 sð Þ= 1 + 1�s�1
� �

ψd
1 0ð Þ�

~g21 sð Þ +ψd
2 0ð Þ~g22 sð ÞÞ�~g2 sð Þ + s�1~g21 sð ÞJ1 sð Þ

1�s�1~g22 sð Þ (A.2)

Proof: We begin with

ψd
i ðuÞ=

X2
j=1

gijð0Þψd
j u + 1ð Þ +

X2
j= 1

Xu
x= 1

gijðxÞψd
j u + 1�xð Þ +

X2
j=1

X1
x=u +1

gijðxÞ

and define

dið0Þ=ψd
i ð0Þ

=
X2
j=1

gijð0Þψd
j ð1Þ +

X2
j=1

Xu
x=1

gijðxÞψd
j 1�xð Þ +

X2
j=1

X1
x= u+ 1

gijðxÞ ðA:3Þ
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and

diðuÞ=ψd
i ðuÞ�ψd

i u�1ð Þ

=
X2
j=1

gijð0Þψd
j u + 1ð Þ +

X2
j=1

Xu
x=1

gijðxÞψd
j u + 1�xð Þ + 1�GiðuÞ

�
X2
j=1

gijð0Þψd
j ðuÞ�

X2
j= 1

Xu�1

x= 1

gijðxÞψd
j u�xð Þ�1 +Gi u�1ð Þ ðA:4Þ

Then, by noting that ψd
i ð1Þ= dið1Þ + dið0Þ, equation (A.4) can be written as

diðuÞ=
X2
j=1

gijð0Þdj u + 1ð Þ +
X2
j=1

gijðuÞdjð0Þ +
X2
j=1

Xu
x=1

gijðxÞdj u + 1�xð Þ�giðuÞ (A.5)

Further, we define JiðsÞ=dið0Þ +
P1
n=1

sndiðnÞ. Then, by (A.3) and with the usual convention thatPb
j= a = 0 when b< a, we have

JiðsÞ=
X2
j=1

gijð0Þ djð1Þ + djð0Þ
� �

+ 1�gið0Þ +
X2
j=1

X1
n=1

sn gijð0Þdjðn + 1
� �

+ gijðnÞdjð0Þ�giðnÞ +
Xn
x=1

gijðxÞdj n + 1�xÞð Þ

=
X2
j=1

gijð0Þ djð1Þ + djð0Þ
� �

+ 1�gið0Þ +
X2
j=1

~gijðsÞ�gijð0Þ
� �

djð0Þ

+ s�1
X2
j= 1

gijð0Þ JjðsÞ�sdj 1ð Þ�djð0ÞÞ�ð~giðsÞ�gið0Þ
� �

+ s�1
X2
j= 1

~gijðsÞ�gijð0ÞÞðJjðsÞ�djð0Þ
� � ðA:6Þ

Rearranging (A.6), formulae (A.1) and (A.2) follow.

Applying formulae (A.1) and (A.2), we find

E dL1

h i
=

�1
2p21p212ðμ2�1Þ + 2p12p221ðμ1�1Þ 2ψd

1ð0Þ½p221 p11�μ11ð Þ
n

+ p212p21 1�μ2ð Þ + p11p221 μ1�1ð Þ� + 2ψd
2ð0Þ½p12p221 1�μ1ð Þ

+ p212 p22�μ22ð Þ + p12p221 μ1�1ð Þ� + μ1p221 1 + p11�2μ11ð Þ

+ μ2p
2
12 1 + p22�2μ22ð Þ�p12p21 μ2ð Þ1p21 + μ2ð Þ2p12

� ��2μ1p
2
21 μ1�1ð Þ

o
ðA:7Þ
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where ðμ2Þi=
P2
j=1

P1
x=1

x2gijðxÞ for i = 1, 2, and

E dL2

h i
=

�1
2p21p212 μ2�1ð Þ + 2p12p221 μ1�1ð Þ 2ψd

1ð0Þ½p221 p11�μ11ð Þ
n

+ p212p21 1�μ2ð Þ�p11p21p12 μ2�1ð Þ� + 2ψd
2ð0Þ½p12p221 1�μ1ð Þ

+ p212 p22�μ22ð Þ�p21p212 μ2�1ð Þ��μ1p
2
21 1 + p11�2μ11ð Þ

�μ2p
2
12 1 + p22�2μ22ð Þ + p12p21ððμ2Þ1p21 + ðμ2Þ2p12Þ + 2μ1p21p12 μ2�1ð Þ

o
ðA:8Þ

From (A.7) and (A.8) we can conclude that E[dL1] and E[dL2] exist on the condition that the
moments, that is (μ2)i exist for i = 1, 2. From remark 2 in Chen et al. (2014) we note that the
denominators in each of (A.7) and (A.8) are negative.
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