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Abstract

This article is an attempt to improve the efficiency of procedures for compositional synthesis of design solutions using
building blocks. These procedures have found use in a wide range of applications, and are one of the most substantial
outcomes of research into automated synthesis of design solutions. Due to their combinatorial nature, these procedures
are highly inefficient in solving problems, especially when the database of building blocks for synthesis or the problem
size is large. Previous literature often focuses on improving only the algorithm part of a procedure, while it is both its
algorithm and database which together determine the overall efficiency of the procedure. This article uses a case study
to investigate and develop a set of rules for structuring and preprocessing a database of building blocks so as to improve
the efficiency of synthesis of design solutions using this database.

Keywords: Automated Compositional Synthesis; Concept Generation; Database Preprocessing; Efficient
Bidirectional Search; Engineering Design

1. INTRODUCTION ciples in mechanicalChakrabarti & Bligh, 1996) and me-
chatronic(Chakrabarti et al., 199®domains. A comparison
Compositional synthesis, where a set of building blocks ishbetween the solutions generated by the program and those
composed into networks as solutions for design problemssonsidered independently by the design@srgess et al.,
has been attempted for various domains of applicaRahl 1995 in a case study showed that the computer suggested a
& Beitz, 1984; Prabhu & Taylor, 1988; Hoover & Rinderle, wider range of interesting principles than designers consid-
1989; Ulrich & Seering, 1989; Finger & Rinderle, 1990; ered on their own. This demonstrated the potential of the
Hoeltzel & Chieng, 1990; Kota & Chiou, 1992; Malmqvist, procedure in supporting designers’ creative potential by ex-
1993; Chakrabarti & Bligh, 1994, 19861996; Welch &  posing them to new solutions.
Dixon, 1994; Sushkov et al., 1986 ach of these systems  The two parameters of a synthesis procedure that research-
requires a database of building blocks. Building blocks aresrs should be most concerned with aresifectivenesand
simpler, constituting elements of the solutions found in theefficiency Effectivenesss defined here as the capability of
domain of application. For instance, Ulrich and Seeringgenerating new and interesting concepts, and has been dealt
(1989 use generic physical systems elements, representegith elsewher¢Chakrabarti, 1998 One problem with com-
using bond graphg¢Paynter, 196} Hoover and Rinderle positional synthesis is its combinatorial nature, which makes
(1989 use gear-pairs, Chakrabarti and Blid®94 use mo- it inefficient in enumerating a comprehensive range of so-
tion elements, and Kota and Chigli992 use kinematic lutions. The importance of having a large database of wide-
pairs, represented as matrices, as building blocks. The atanging building blocks has long been recognized as useful
gorithms are essentially combinatorial in nature, often withfor generating new and interesting concepts, and work is in
a “generate and test” flavor. progress in several groups towards developing such data-
In some earlier papers, an algorithm was proposed fobases(Roth, 1970; Selutsky, 1987; Ishii et al., 1994;
exhaustive compositional synthesis of design solution prinTsourikov, 1995; Taura et al., 1996; Sushkov et al., 1996;
Chakrabarti et al., 1997; Khang, 19981owever, effi-
Reprint requests to: Amaresh Chakrabarti, Engineering Design Centr ciency of a synthesis procedure, which is defined here as
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becomes particularly important if it must do so using thesepressed as a composition of building blocks so that they are
large databases. connected via their inputs and outputs to transform the given
A synthesis procedure has two parts: a database of buildaput of the design problem into its required output. Each
ing blocks and an algorithm that uses this database for syruilding block therefore has an input and an output, and the
thesis. Previous efforts to improving efficiency have focusedouilding blocks constituting a solution principle transform
primarily on improving the algorithm. We wish to improve the given input into a number of intermediate inpattput
the efficiency of both the algorithm and the database to efvariables before producing the required output. An acceler-
fect an overall improvement in the procedure. In a previoumeter solution principle, for instance, can be a composi-
article(Chakrabarti, 1999 an attempt to improve the algo- tion of three building blocks, amertia block to transform
rithm was reported. Substantial improvement in efficiencythe input acceleration into an inertia forcespgring build-
was achieved by using bidirectional instead of unidirec-ing block to transform this force into a change in position,
tional search. However, the database used by such algand acapacitanceblock to alter the voltage across a capac-
rithms can still be poorly disposed towards solving a desigritor as a result of a change in capacitance due to the position
problem, and thus there may be room for improving furtherchange. A building block, in the context of the door locking
the performance of a procedure by improving the quality ofproblem, could be aamblock transforming the rotation of
its database, an area hardly researched before. the handle into a translational motion andiexrod block
Using a case study, this article investigates the role of théransferring this motion to a different output position. Alarge
database of building blocks in the effectiveness and effinumber of design solutions in existence, as well as a sub-
ciency of a compositional computational synthesis procestantial number of computer programs for design synthesis,
dure, and uses the results of this investigation to develop aare compositional in naturfe.g., Hoover & Rinderle, 1989;
approach for structuring and preprocessing a database sod#ich & Seering, 1989; Kota & Chiou, 1992Therefore,
to improve the efficiency of synthesis using this databasesolutions of this kindsee Fig. 2 are fairly generic in their
use in research and applications.

2. DESIGN PROBLEMS CONSIDERED
) ) 4. DATABASE OF BUILDING BLOCKS
The design problems considered here are those that can be

expressed using a function transforming a given input intd® databasés describgd here as a set of links between a set
a required output. For instance, a sensing problem can K& nodes. Nodes are inpldutput parameters, for example,
expressed in terms of the input signal to be sensegl., apceleratiorj and vo_Itage in the sample database shown in
acceleration in the case of an accelerometer propland ~ Figure 3. Directed links between the nodssown by ar-

an output mediuniChakrabarti et al., 1997n which this  fows in Fig. 3 represent the building blockse., physical
signal is to be sensdd.g., an electrical voltageln the med- devices_and effc_ects capable of tran;forming .the parameter
ical device domain, a drug infusion problem could be ex-from which the link starts, calleshput, into that in which it
pressed in terms of an input signal leading to an output effecgnds, termed itsutpuy. Each building block therefore has

of a drug flow of some amount. In a mechanical device do-&N input and an output node.

main, an example would be a door locking problem whereby

a given input motion of a door handle leads to a retraction; SyYNTHESIS ALGORITHMS

motion of the latch. Although not all design problems can ) ) ) -
be expressed using inputs and outputs, as noted by Umedde synthesis approaches have been described in detail in
and Tomiyama1997), this representation is useful in a large Chakrabarti(1996a). Here is a brief summary. The ap-

solution principles, that transform the input paraméség-

nal to be sensed in the case of sensing probjénts the
3. DESIGN SOLUTIONS CONSIDERED required output parametémedium in which it is to be
A design solution(also referred to as a solution principle S€NSedl In this definition, an acceleration sensing problem
within the scope of this research is one that can be exould be described using acceleration as an input, and cur-

rent or voltage as the output. A solution principle uses one
or a series of building blocks to transform the input into the
required output. If a database is described, as above, as a
network of directed links between a set of nodes, and two

input design output of its nodes are described as the input and output required

— ™ problem — of a given design problertin the case investigated these
are acceleration and voltage, respectiygellgen each solu-
tion generated would be one possible distinct route between
Fig. 1. The general form of design problems under consideration.  the input and output node. The way in which these routes
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Fig. 2. The general form of the design solutions considered.

are identified constitutes the synthesis algorithms. Unidiimplemented, and)Some of the building blocks in the data-
rectional search does this by progressively moving from thdase were not useful in solving the given problem.

input towards the output node, whereas bidirectional search

does this by progressing from both input and output node$.1.1. Major and minor parts of the function

towards each other. The major part of the function of an accelerometer is how
to get some known electrical output as a measure of accel-
6. A CASE STUDY eration, and the minor part is how to transform this electri-

cal output into a representative voltage. In this case study,
In this case study, a database of building blocks was creategthough many principles generated by the computer solved
by populating it with common building blocks identified by the major part of the function using a wide variety of ef-
analyzing various existing sensing devices. We calliiils  fects, many others were hardly different in the way they
dom populatiorof the database, as the population processgglyed this major part, although they solved the minor part
is not directed towards solving any specific synthesis prObUsing a variety of ways.
lem. The synthesis approaches, mentioned in Section 5, were p designer’s objective would naturally be to maximize
applied to this database to generate solution principles to ajhe variety of principles for the major function, and to avoid
acceleration-sensing problem. These principles were thefyasting time on finding creative alternatives for a minor
analyzed to see whether they were worth generating, anflart of the function. However, what is a major part for a
what caused their generation, so as to help encourage or avqggrticmar design case may well be the minor part in an-
their generation. The solutions generated were evaluated f@finer. Therefore, it is hard to specify what is major in a ge-

their worth by designers involved in the project. neric database. The strategy adopted is for the designer to
decide the major part of the function on a case-by-case ba-
6.1. Analysis of solutions sis, and solve this part with the help of synthesis. The route

envisaged is to allow designers the opportunity of dealing
The analysis of the solutions identified five distinct fea- jth more than one alternative output variable transform-
tures: 3 some solutions differed from others in terms of how jng to any of which will suffice as a solution to the problem.
they solved the major part of the required functions@me
differed only in terms of how they solved the minor partof g 1 o Principles which were different in terms
the function; 3 some were identical except for the granu- of the effects they used
larity with which they were described, oy #h terms of the

detailed differences as to how their transformations were, In this category, the principles were different in terms of

e underlying physical effects they used. For instance, con-
trast a piezo-type principlesee the top chain in Fig) 4vith
a strain-gauge-type principlé&ottom chain in Fig.  The
rel-permeability piezo type usenertia to transform the input acceleration
g — \ inductance

Permittivity————— capacitance

ap
A{ rotation accele

position _— AN ration . . voltage
=" current P force- stress- strain- | o} resist- »
\ mnertia 87 gires strain resist. voltage
resistance:
U voltage aCthele
; ration : voltage
strain P force- stress- strain- charge- ©
—f inertia -1 had = -} N
™ stress strain charge voltage

f charge

stress [ building blocks — = inputs/outputs

> ag-field
force g celeration magnetisation —% ¢
Fig. 4. The same transformation achieved by different building-block

Fig. 3. Asample database having 18 nodes and 35 ljbkiiding blocks. chains.
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into a force, &orce—stresduilding block to transform the 6.1.4. Principles that use alternative single building
force into a stress, and siress—strairblock to transform blocks to do the same transformation

this stress into a strain, just as the strain-gauge type does. In Tagke the example of transforming a rotation into a cur-
the piezo case, this strain is then converted into an electrient. This can be done using two alternative building blocks:
cal charge using a piezo effect, followed by a change of th@jther by Wiedemanreffect, or by aneddy-currentbased
charge into a voltage. Contrast this with the strain-gaugonfiguration. Such distinctions are useful at a later stage,
type, where the strain, by definition, causes a length deforgyhere a designer may wish to explore in more detail prin-
mation leading to a change in resistance, which changes volgiples that realize this transformation. The database there-
age using Ohm’s law. The two principles, therefore, use gore should be maintained such that only one building block
separate chain of physical effects to do the same transfogetween any two variables is used, even if the block may
mation: of strain to voltage. We must retain the capabilityhave alternative incarnations in reality. This is done to avoid

of generating principles of this kind. The wider the range ofguplication of solution principles, at this stage, in terms of
variables addressed by the building blocks in a databaseneir possible detailed realizations.

and the more connected they dwa building blocks that
can transform one variable to anothehe more will be the  6.1.5. Building blocks that were not useful
variety of alternative principles generated by using such a in solving a given problem

database. We tried to attain this by ensuring a large number By comparing the building blocks shared among the so-

of variables shared by the building blocks in the databasgjons generated with those in the database, it was found
and by a large number of relationships between ti88@ ¢ several in the database were not used in any solutions.
Chakrabarti, 1998 for further detajls As a database is described here as a network of relation-
o . . ships among a set of variables, and a given problem is de-
6.1.3. Principles that are different only in terms scribed in terms of two of its noddsne as input and the

of their granularity ; )
. ) . other as output, e.g., acceleration and voltage, respective-
Consider the effect of generating a position change as @/), the solutions expected to be generated using the data-

response o a force change. We could do this using a spring, 56 are given by the routes that are possible between these
(top part, Fig. 3, which describes this asfarce-to-position two nodes of this network. Therefore, there can be nodes

transformation, or we could d(_) this using Qcombin_a_tion %fand links in the network that are not part of these routes,
a force-to-stressstress-to-strainand astrain-to-position 5 therefore, not useful in solving this particular problem.
transformation(bottom part, Fig. B which is fundamen- ¢ jhstance, generation of solutions to fulfill a function of

tally how a spring works. If we keep all four of these build- transforming I(input) to O (outpu will not require any of

ing blocks in the database, we run into the danger Ofyq |inks in the database shown in Figure 6 other than those
duplication. Keeping only the force—position block doesshown using bold arrows. This implies that randomly pop-
not allow its constitutive building blocks to be used in Otherulating a database will not necessarily make it more effec-
prmqplgs. . . tive for solving all problems. One way of improving the
This is a good example of how efficiency and effective- efficiency of a synthesis process using a database, for solv-

ness are related. Avoiding duplication saves time{ as thﬁ]g a particular synthesis problem, would be to trim the data-
duplicates need not be generated, but how it is avoided dgy,e first by eliminating those building blocks from the

termines whether such efficiency comes at the expense Qfaiapase which cannot contribute to solving this problem,
effectiveness. It is decided that only building blocks that, 4 then use this trimmed database in the synthesis process.

are more basic will be kept in the database so as to avoigOr a given problem this trimming needs to be done only

compromise in effectiveness, for example, the building, e and then this trimmed database can be used as long as

blocks force—fto-strgss, str:esst;to—sr:ram, ar:_dhg strain-105,6 wishes to synthesize solutions using various numbers
position transtormation rather than the monolithic spring Nt 1y ,jiding blocks per solution, for this particular problem.

the above case. However, if one wishes to use the original database for syn-

force —pm spring |- position /V B \
A -~ » ¢
: \
force —w! force-stress |-l stress-strain -] strain-position [ position \ D\
O
E N,
[ building blocks — inputs/outputs —— building blocks

. . . . . A, B, C... database nodes
Fig. 5. The same transformation achieved by building blocks of different

granularity. Fig. 6. An example database of building blocks.
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thesizing solutions to a new problem, the original database L
needs to be trimmed for the new problem, after which this )/* H
new, trimmed database can be used in as many synthesis /K \
experiments as required, by simply specifying the required M
solution siz€(i.e., number of building blocks per solutipn
In this research, five such elimination rules have been de- L
veloped, and the resulting simplified database is tested for ’/f
its effectiveness by using it in generating solutions to a num- S K \

ber of pilot problems, where the solutions generated are comm

/;\”

pared with those generated for the same problems using the [—» ] —» 0 G
.. . . . F —

original database. If the solutions generated using the sim-

plified database contains all distinct solutions generated using —— building blocks

the original database, and uses less time and memory, then A, B, C... database nodes

this should demonstrate the potential of these simplifica- Fig. 8. Application of Rule 2 leads to elimination of link © D.
tions in improving efficiency of synthesis without sacrific-
ing effectiveness.

of which are connected to the same nd@ds in these cases
their use will lead to repetition of the same node, causing
This section introduces and illustrates, using examples, theedundancy; see Fig. 10

five rules that have been developed for preprocessing a data- Rule 5 Eliminate all the nodegand their links that are
base for a given problem. neither directly nor indirectly connected to the input or out-

Rule 1 Eliminate links directed towards the input node put nodes, where an indirect connection between two nodes
(as the task is to find ways of going from the input to theis defined as a connection between them via a set of links
output, and this link will not help in that; see Fig..7 and nodes.

Rule 2 Eliminate links directed away from the output node  This rule is hard to implement without prohibitive com-
(as the task is to find ways of going from the input to the putational expense, and if it could be implemented, this alone
output, and this link will not help in that; see Fig)..8 would be sufficient to prune the database, leaving only

Rule 3 Eliminate the links to each nodexcept the given useful building blocks for synthesis. However, an approxi-
input or required outpuitfor which all links are either di- mation of this has been implemented that is relatively inex-
rected towards the node or away from it. In these nodes, ipensive and works always except fiyrclescontaining both
is possible either to reach the node or leave the node, bumput and output nodesee Appendix A The approxima-
not both, and therefore impossible to go from one node tdion works like this. Suppose we wish to find those links
another(e.g., the input and outputia this node using these to/from node A(in the case in Fig. 11 there are only four
links (Fig. 9). links: links 1 and 2 have A as their output, and links 3 and 4

Rule 4 Eliminate each nodénd their links that is nei-  have A as their inputthat are not useful in the synthesis.
ther the given input nor the required output node, which ha§ hese would be those through which it is not possible to go
a single link towards it and a single link away from it, both from the given input to the required output. Now, suppose

6.2. Preprocessing rules

L )/41‘
H K
/ K / E
M \ X E ” M *\
\ —_— ] ——
] ———® ] — 0O _—->D\* G I I 0 N G
F —%
—  building blocks
—— > building blocks A, B, C... database nodes

A, B, C... database nodes . L L .
Fig. 9. Application of Rule 3 leads to elimination of links B> E and

Fig. 7. Application of Rule 1 leads to elimination of link M> I. D->F
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L L -
)/K’ Y K* *\
/ E / D —— — G

M \ M [—» ] —m= O F
[—» ) —» 0O * §Z tions fi de J considered
F /' G connections Irom node J considere:
L
L E
’/K* od K* *>G
iadl \ gz E M [——» ]~ 0 F
M
. ; 0 * \ g Z connections from node F considered
— - G
F g L -
— - building blocks K* \
A, B, C... database nodes G
M/I——> ] =0
Eig. 1((5). Application of Rule 4 leads to elimination of links & H and @ connections from node K considered
— G,
L
/ E\
G
. M —_— ] T

we find all the nodegwe call themback-setsthat can be I ! o ' A

reached by going backwards from A via each distinct link L connections from node G considered

from A; similarly, we find all the nodes that can be reached L

by going forward( forward-set$ from A via each distinct /

Imk frqm A. If any of thesg back-sets do not contain the| | ' o

given input node, then the link that connects this back-set t — P

A will not be useful in synthesis, and can be safely elimi- {_} connechions from Rode & consicere

nated. Slmllarly_, none of the I|_nks conne_ctmg Ato thg ] —

forward-sets which do not contain the required output will

be useful in synthesis, and can be safely eliminated. The
process investigates the links associated with each node, and
thereby eliminates isolated clusters of links and cycles that
will not contribute to the synthesis. Repeated application offi9. 12. Application of Rule 5 leads to elimination of all links butb J
this rule, along with rules 1-4 should eliminate all the links and J- 0.

that are not useful in solving a given problefig. 12).

—»  building blocks
A, B, C... database nodes

StTep 2: Label the required input and output nodesrgmut
andoutputnodes.

The algorithm contains three steps. Step 3: Apply the five preprocessing rules, so as to sim-
Step 1: By representing each building block in the data- plify the network by eliminating some of its nodes and links.
base as a directed link between the input and output of thEach time the network is changed by the application of some
building block, and the input and output of the building block rules, apply all the rules once again, until no further sim-
as two nodes, build a network of nodes and links to repreplification of the network is possible.

sent the database.

6.3. Preprocessing algorithm

7. ANALYSIS OF PERFORMANCE

7.1. Effect of preprocessing on computational
performance of the synthesis procedure

nodes from which
A can be reached
via link

nodes which can be
reached from A via

The method for evaluation is to test the following, which
together encapsulate the improvement expected of prepro-
cessing the databases.

link

1. Resource for uni-dir. algorithm preproc. DB< re-
source for uni-dir. algorithm- un-preproc. DB.

nodes from which
A can be reached
via link 2

nodes which can be
reached from A
link 4

2. Resource for bi-dir. algorithm un-preproc. DB<
Fig. 11. Implementing an approximate version of Rule 5. resource for uni-dir. algorithm- un-preproc. DB.
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bage collection and other ancillary activitie$he problem
solved was acceleration sensifas a transformation from
acceleration to voltageFrom Figure 13, it can be seen that
a tenfold reduction in memory required is achievedm-
pare the top two plojsby preprocessing the database be-
fore using unidirectional search for synthesis, when the
number of building blocks per solution synthesized is nine
(given bydepth of trean the Fig. 13. Similarly, a twofold
reduction in memory is achieved for the same solution size
by preprocessing the database before using bidirectional
search for synthesiscompare the bottom two plots in
Fig. 13. Together, the introduction of bidirectional search
instead of unidirectional search and of preprocessed data-
base instead of randomly populated database achieved a 33-
fold reduction in memory required. A similar trend has been
observed in reduction in computation tirfieig. 14).

However, the performance of the preprocessing algo-

Fig. 13. Memory performance of procedure with and without database prefithm itself is combinatorial. As seen in Figures 15 and 16,

processing.

3. Resource for bi-dir. algorithm- preproc. DB< re-
source for bi-dir. algorithm+ un-preproc. DB.

4. Resource for bi-dir. algorithm- preproc. DB< re-
source for uni-dir. algorithm- preproc. DB.

7.2. Results

preprocessing resource required increases faster than the in-
crease in the size of databases processed. Each plot in these
figures shows the preprocessing performance for a separate
problem(e.g., acceleration, pressure, or strain senskigw-

ever for a given design problem, a designer needs to pre-
process the database only once before carrying out a series
of synthesis experiments using the database. The larger this
seriegeach experiment constitutes generating solutions hav-
ing a given number of building blocks, which is a design-
er’s choice, the less is the initial computational investment
per experiment, and this gets increasingly justified as the

Figures 13 and 14 show the effect of database preprocesalowable size of solution§i.e., depth of treein Figs. 13
ing, respectively, on memory and time required for gener-and 14 increases. For instance, solving an acceleration sens-
ating the same set of solutions. In all figures in this sectionjng problem, using 9 building blocks per solution using an

memory is given in bytes and CPU time in secofttie ac-

unpreprocessed database having 57 links requires 500,000

tual user time is between 4 and 20 times more due to gamytes of memoryFig. 13, and preprocessing this database

4.5 T °
4 +| © uni-dir. search; no
preprocessing
3.5 +
o ® uni-dir. search;
.‘E_ 3 T preprocessing
S 2.5 1| A bi-dir. search; no
= preprocessing
5 2+
g‘ A bi-dir. search;
315t preprocessing
1 4+
(o]
0.5 + .3
04— o o o & § & § 4

depth of tree

500000 T Q
450000 +
> 400000 + | ® jcceleration sensing
S
g 350000 + | © pressure sensing
£
300000 + | A strain sensing Q
o
c
7 250000 + A
@
o
© 200000 +
° Q
& 150000 1
o A
100000 +
A
50000 + i
o] } } ! i
0 20 40 60 80

no of links in the initial databases

Fig. 14. Computational performance with and without database Fig. 15. Memory required in preprocessing with increase in size of data-

preprocessing.
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1.4 + 7 - o
2 © memory: uni-dir
1.2 + » g 61 search
B acceleration 25 PO .
g 1 sensing = time: uni-dir
= T o} o search
- o ) @ 4
ressure sensin -
2 o8 + P ’ " 5 || & memory: bi-dir o
— ‘ o -4
4 A strain sensing > search
8 82
g 06+ 5 A time: bi-dir a
e
Py . ° 5 . search o e 5, A A
E A o A A A
o 0.4 + A [ ] 4
° 0 : t {
0.2 + ™) A 0 5 10 15
o A depth of tree (d)
0 — f : 1
Fig. 17. Effect of preprocessing resources on performance on algorithms.
0 20 40 60 80

no of links in the initial databases

Fig. 16. Time required for preprocessing with increase in size of databaséncreased for unidirectional and bidirectional search. The

processed. plots for unidirectional search have a faster rate of growth
than bidirectional search. This means that preprocessing is
more profitable with unidirectional search than with bidirec-

requires 300,000 byte@ig. 15. However, using the pre- tional search: the CRR goes up to 7 for a maximum solution
processed database for bidirectional search requires abotiz€ Of 9 in unidirectional search whereas that for bidirec-

100,000 bytes, making the combination still more prc)ﬁt_tional search increases up to about 3. The rest of this sec-
able than using unpreprocessed bidirectional search. tion, therefore, investigates further how bidirectional search

To determine how an increase in solution size justifies'S &ffected by the preprocessing overhead.

the use of preprocessing, a parameter callgdulative re- Figure 18 shows how CRRs for memory and time for pro-

source ratio(CRR) is defined as: cessing using bidirectional search change with the maxi-
mum size of solutions searchéck., maximum depth of tree

CRR = CRAUD/(CRAPD+ RAPD), (1) searchefifor two problems using a database having 57 links

(i.e., building block$ before preprocessing. Although there
where CRAUD stands focumulative resource for algo- is considerable difference between the exact numbers in the
rithm using unpreprocessed databageis the total re- two problem cases, the overall trend is similar: both CRRs
source required for synthesizing solutions to a given problenneach the break even point at a moderate depth of 8-10, and
of all sizes up to the maximum specified, using an unpregrow up to 6 at a depth of 16, even for this small database.
processed database. CRAPD standsdoemulative re-
source for algorithm using preprocessed databdsis the
total resource required for synthesizing solutions for the same

6
problem of all sizes up to the same maximum required size, W A acceleration st
using the database after it is preprocessed for this problem. || sensing (time)
RAPD stands foresource for algorithm for preprocessing 7§ A acceleration
the databasgand is the resource required for preprocessing sensing (memory)

the database for this problem.

. B gstrain sensin
There can be two CRRs, one where the resource consid- 9

resource

ered is memory required, and the other where it is the pro- 3 4 ftime) Al af

cessing time. The value of a CRR shows how the resource £ H strain sensing A .

required by an algorithm that uses an unpreprocessed data-3 » 4  (Me™°™) N A .

base compares with the combined resource required by the % A" " i

same algorithm using a preprocessed database and by the® , | Aa" _of

algorithm for preprocessing the database. When CRR is 1, [ ; o®

the overall resource required for preprocessing and using a - mhBa . , .
preprocessed database breaks even with that using an un- i 5 1'0 1'5 2'0

preprocessed database. For any values of CRR larger than
1, preprocessing is more profitable for the size of solutions
Processed- Figure 17 ShPWS how the CRRS for memory arﬁﬁg. 18. Change in CRRs with maximum solution size in bidirectional
time change as the maximum allowable size of solutions isearch.

max depth of tree searched
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Figure 19 is a plot of the maximum size of solutions at 12 1 A
which the CRR for memory breaks even against the size of o A
the databases used for two problem cases using bidirec- 10+ o
tional search. Figure 20 is the corresponding plot for time
as a resource. Though the exact value of the CRRs depends
on the problem solved, the overall trend is similar: the max-
imum size of solutions at which resources break even de-
creases as the size of the database searched is increased.
Table 1 shows some of the data on which the figures cited
above are based. The first column shows the intial size of
some databases before preprocessing. The second column
shows the percentage reduction they undergo as a result of 0 ' 4 : .
preprocessing. The third and fourth columns show the max- 0 20 40 60 80
imum depth necessary for breaking even using these data- no of links in the database
bases for time and memory, respectively, as the resource.
Comparison of the results in the first two rows, for which Fig. 20. Maximum size of solutions searched at Time Breaking Even
the percentage reductions are higi% and 46%, respec- versusdatabase size.
tively), shows that the break-even depth is smaller for the
larger database. The same is true for the databases in rows
two and three. It appears that, for high values of percentagee. However, a fuller analysis is not available at this stage
reduction, an increase in database size leads to a reductiofiresearch.
in depth at the break-even point, making preprocessing in-
creasingly cost effective. However, comparison of rows thre
and four shows that even though the database size is larger SUMMARY, CONCLUSIONS AND
in row four, its percentage reduction is lower, almost halved, FURTHER WORK
and the depth at the break even point does decrease witfhis article uses an engineering case study to identify the
increase in database size. Similarly, if rows four and fivekinds of concepts generated by a computational composi-
are compared, it can be seen that, although the database st#gnal synthesis procedure, so as to develop ways of making
is larger in row five, its corresponding percentage reductiorthe database of building blocks used in the synthesis pro-
is lower. In this case, the break-even depth is either the samsess more effective and efficient. The case study reveals that,
(for memory or larger(for time) when the size of the data- as well as generating concepts that are genuinely different
base is larger. These two cases appear to illustrate that ffom each other and therefore should be retained for con-
percentage reduction is low, an increase in database size dasigleration in the conceptual design phase, the procedure also
not lead to a reduction in the depth required for breakinggenerates concepts that are in many ways duplicated and
even. The general indication from empirical results is thatneed to be avoided. It is also found that only part of the
as long as the percentage reduction in the size of the datatatabase is useful in solving a given problem, and therefore
base due to preprocessing is high, the larger the databagite remaining part of the database need not be considered
preprocessed, the more cost effective preprocessing wouid the synthesis of concepts for this problem.
Efficiency and effectiveness are related. Avoiding the gen-
eration of uninteresting solutions leads to the saving of com-
putational time, which amounts to generation of solutions

A acceleration
sensing

O strain sensing

depth at time break even
(o]

S 25+ O acceleration
> .
° A sensing
E 20 1 A strain sensing Table 1..Database reduction in preprocessing and resulting
e change in break-even depth
> 15 +
[ A A
g o o No. of Depth at Depth at
g 10T o A links in % reduction time memory
= DB before due to breaking breaking
s 54 preprocessing preprocessing even even
-
3 28 46 12 12
’ ' ) ) 44 47 11 11
0 20 40 60 80 57 38 9 9
no of links in the database 68 22 9 9

15 10 9
Fig. 19. Maximum size of solutions searched at memory Breaking Even

versusdatabase size.
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of a higher quality using less resources than before. Con- concepts in mechanical conceptual design. Part I: Knowledge repre-
; ; i1 ; _ sentationResearch in Engineering Design 6(3R7-141.

§|der|ng only those building b|OCKS that are usef_UI. in solv Chakrabarti, A., & Bligh, T.P(1996a). Functional synthesis of solution-

ing a given problem should also improve the efficiency of — concepts in mechanical conceptual design. Part II: Kind synttsis.

synthesis. search in Engineering Design 8(152—-62.
A number of rules for avoiding duplication of solutions Chakrabarti, A., & Bligh, T.P(1996). Functional synthesis of solution-

. . . concepts in mechanical conceptual design. Part Ill: Spatial configura-
are developed and used in populating and structuring data- tjon. Research in Engineering Design 8(2)6—124.

bases of building blocks for use in computational-synthesighakrabarti, A., & Bligh, T.P(1996). An approach to functional synthe-

procedures. Rules for avoiding consideration of building 'S of design concepts: Theory, application, and emerging research is-
blocks th | . Vi . bl | sues.Al in Engineering Design, Analysis and Manufacturing 10(4)
ocks that are useless in solving a given problem are also 313331,

developed, and are sewn together into an algorftinmple- ~ Chakrabarti, A., Johnson, A.L., & Kiriyama, T1997. An approach to

mented using Common-LISP on a LispWoW‘splatform automated synthesis of solution principles for micro-sensor designs.
. . . Proc. International Conference on Engineering Design ICED'97
(Harlequin, 1991 for preprocessing a database before using 125_12s.

it to synthesize solutions for a given problem. PreprocessFinger, S., & Rinderle, JR1990. A transformational approach for me-

ing provides a substantial savings of time and memory gg?géf%gﬁigi”eﬁg?oﬁ B?]?\f‘e?;ﬁghp?gg:?;f’igRePO” no. 24-

required for solving a given synthesis problem without SaCHariequin.(1991. LispWorks: The Reference Manyidlarlequin PLC, U.K.

rificing its effectiveness. Hoeltzel, D.A., & Chieng, W-H(1990. Knowledge-based approaches for
Being able to use large databases with a wide variety of gh7e (ér;eative synthesis of mechanisf@®mputer-Aided Design 22(1)

building blocks is critical in enhancing the potential of com- yoover, S.P., & Rinderle, JR1989. A synthesis strategy for mechanical
positional synthesis for generating innovative solutions, and devicesResearch in Engineering Design 1(87—103.

; ; s~ Shii, M., Tomiyama, T., & Yoshikawa, H(1994). A synthetic reasoning
many groups around the Worl.d are mv_ol_ved n devel_oplng method for conceptual design. Tlowards World Class Manufactur-
such databases. However, without efficient synthesis pro- ing (wozny, M., & Olling, G., Eds), (pp. 3-16. Elsevier Science,

cedures capable of handling these large databases, much North-Holland, Amsterdam.

i H i B ; ; i1 Khang, J.H.L(1998. Embodiment modelling with parameter trees. Ph.D.
of their potential for generating innovative solutions will Thesis. University of Cambridge, Cambridge, U.K.

remain Un'_'ealize_d- S_trUCturing these databal-ses using .th@ta, S., & Chiou, S.-J1992. Conceptual design of mechanisms based
rules mentioned in this paper and preprocessing them using on computational synthesis and simulati®esearch in Engineering

; ; itk im.  Design 4 75-87.
algorithms reported here before searching them with ImMalmqvist, J.(1993. Computer-aided conceptual design of energy-

proved search algorithms should enable effective and effi-  transforming technical systemBroc. Int. Conf. on Engineering De-
cient generation of solutions. sign, ICED’93 1541-1550.

However. the preprocessing algorithm is computation-Pah" G., & Beitz, W.(1984). Engineering Design: A Systematic Ap-
! proach Springer-Verlag, New York.

ally expensive, although |ess_ so than synthesis using Unprexaynter, H.M.(1961. Analysis and Design Of Engineering Systeffise
processed databases, especially when the same preprocessedIT Press, Cambridge, MA. _ _ _
database is used in a series of computational experiment8f2°hu, D-R., & Taylor, D.L(1988. Some issues in the generation of the

. . . topology of systems with constant power-flow input-output require-
Itis found that, in general, as the size of the database to be mEmS%VmC_ XSME Design Automati%n Conferendpe_48. put red

preprocessed increases, preprocessing becomes incre&sth, K. (1970. Systematik der Machinen und ihrer Mechanischen Ele-

; : ; ; mentaren Funktionerkeinwerktechnik 74453—-460.
mgly profltable as Iong asitleadstoa hlgh percentage Ogelutsky, A.B(Ed) (1987). Daring Formulae of CreativityKarelia, Petroza-

reduction in database size. Further work will be focused on sk, Russidin Russian.
making the preprocessing algorithm more efficient and exSushkov, V., Alberts, L., & Mars, N.J.(1996. Innovative Design Based
; ; ; ot on Sharable Physical Knowledge. Atificial Intelligence in Design
perimenting vv_|th larger databases to test the realistic effect '96. (Gero, J.S.. & Sudweeks F.. Eflspp. 723742 Kluwer Aca-
of these algorithms. demic, Dordrecht, The Netherlands.
Taura, T., Koyama, T., & Kawaguchi, T1996. Research on natural law
databaseloint Conf. Knowledge Based Software Engineering St
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which control its newnessTechnical Report No. CUED-C-EDC  The following figures show all the links in one of the data-

TR64, Cambridge University, Cambridge, U.K. _ bases preprocesséithe second data point from the left in
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Chakrabarti, A., & Bligh, T.P(1994. Functional synthesis of solution- in bold arrows in Fig. Al are deleted by the preprocessing
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- rel-permeability \
gap inductance

permittivity————gp. capacitance

positiof

resistance
// lighi_=> o W é\s

heat
stress /
force‘ﬂﬁ acceleration  magnetisation i
o temperature
- rot-velocity f

velocity = arca-rate =g flux-rate
flow-rate

current

radiation

pressure -

Fig. Al. The database before preprocessing has 44 links.

algorithm for an acceleration sensing problem defined as thatress is of no use, as it forces visiting the same node more
offinding routes from the acceleration node to the voltage nod¢éhan once. The links among temperature, heat, and radia-
in this database. Notice that light resistance and light>  tion form a cycle, using any of which would require visiting
voltage links are eliminated because the light node does nahe temperature node more than once during a move from
have any input link to it, which means there is no way of get-acceleration to voltage via temperature, and should be elim-
ting to this node from any other node. For a similar reasoninated. This leaves temperature as a node with output links
all links from flow-rate and from velocity node can be elim- only, and can also be eliminated. This completes the pro-
inated. Once these are eliminated, area-rate and rot-velocigess of preprocessingrig. A2).
also become nodes without input links, and can be elimi-
_na_lted, whi_ch_, in Furn, makes all links from flux-rate nod_e el- APPENDIX B: WHY CYCLES CANNOT BE
igible for elimination for the same reason. The voltagstrain DETECTED BY RULE 5
linkis eliminated because voltage cannot be reached using this
link. Similarly, force— acceleration link is of no use be- Figure B1 shows a cycle of links in some database, that is,
cause acceleration cannot be left using this link. As the onlya chain of links that has the same node as its output and
route from acceleration is viaforce, and as the only route froninput. This specific cycle contains those nodes | and O, which
pressure is via force, the pressusdorce and force» pres-  are the required input and output of a given problem. In this
sure links would be of no use in solving the problem of goingcase, we need to check each link in this cycle to see if it is
from acceleration to force, and can be eliminated. useful for going from the input to the output. The way we
Then, as the only route from acceleration is first throughdo this using Rule 5 is by going backward from each node
force and then through stress, the link connecting strain  to see whether the required input node can be reached with-
out repeat visit to any node. The link connecting the node
under consideration that initiated the backward movement
rel-permeability should, in this case, be considered useful. Similarly, going
sap /\>\s inductance forward from the node considered to check whether the out-

PermittivIy™——m capacitance put node can be reached without revisiting any node in this

current

resistance

voltage /
strain b
A
f charge
stress

f

fmw'«—m magnetisation—"_ mag-field I - 0
Fig. A2. The same database after preprocessing has 35 links. Fig. B1. A cycle of links containing the input and the output node.
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ward movement was initiated. Scrutinizing the cycle inUniversity in 1991. He has since been associated with the
Figure B1 reveals that no link in this figure, exceptl O,  Engineering Design Centre at Cambridge University, as a
is useful for transforming | to O. However, starting from Senior Research Associate. In 1994, his software Func-
any of their nodes, | and O can be reached by going backSION won a prize in the UK Morgans-Grampian Manufac-
wards and forwards, respectively, that is, by applying Rule 5turing Industry Achievements Awards competition. His main
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