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Abstract
Recent work on legislative politics has documented complex patterns of interaction 
and collaboration through the lens of network analysis. In a largely separate vein of 
research, the field experiment—with many applications in state legislatures—has 
emerged as an important approach in establishing causal identification in the study 
of legislative politics. The stable unit treatment value assumption (SUTVA)—the 
assumption that a unit’s outcome is unaffected by other units’ treatment statuses—
is required in conventional approaches to causal inference with experiments. When 
SUTVA is violated via networked social interaction, treatment effects spread to control 
units through the network structure. We review recently developed methods that can 
be used to account for interference in the analysis of data from field experiments on 
state legislatures. The methods we review require the researcher to specify a spillover 
model, according to which legislators influence each other, and specify the network 
through which spillover occurs. We discuss these and other specification steps in 
detail. We find mixed evidence for spillover effects in data from two previously 
published field experiments. Our replication analyses illustrate how researchers can 
use recently developed methods to test for interference effects, and support the case 
for considering interference effects in experiments on state legislatures.
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Introduction

Two recent streams of innovative research in legislative politics include the study of 
legislative networks and field experiments on legislatures—state legislatures, in par-
ticular. These two emerging approaches have evolved largely separate from one 
another, but we argue that they should be integrated due to the interdependence that 
arises between legislators based on processes such as cue-taking. In a study of cue-
taking in roll call votes in the California Assembly, Masket et al. (2008) aptly sum-
marize the importance of understanding sources of interdependence between legislators 
in accounting for legislative outcomes. Masket (2008, 302) notes that,

. . . there is a great deal of cue-taking in a legislature. Members defer in their judgment to 
trusted colleagues with expertise in particular issue areas.

Masket et al. (2008) find that a connection as informal as two legislators being desk 
mates in the legislative chamber increases the rate at which two legislators vote in 
agreement. Legislative networks research, which has grown significantly in recent 
years, has documented complex forms of interconnectedness that can be observed in 
patterns of cosponsorship (Fowler 2006; Kirkland 2011, 2013), shared campaign 
staff (Nyhan and Montgomery 2015), collaborative press events (Desmarais et al. 
2015), and caucus comembership (Victor and Ringe 2009). Any of these networks, 
and other forms of connections discussed below, could serve as conduits of interde-
pendence between legislators. What the legislative networks literature has been 
lacking is an approach to research design that is causally valid. Legislative networks 
literature provides theoretical justification for testing for interdependence, but the 
extent of interdependence between legislators is still an open question due to the 
challenges in identifying influence in networks with observational data (Shalizi and 
Thomas 2011).

Field experiments on state legislatures have emerged as a standard approach to 
causally valid research design in the study of legislators. Bergan (2009, 331) notes the 
value of experimentation for exactly this case, “Random assignment of legislators to 
treatment and control can eliminate the potential bias that results from groups strategi-
cally choosing whom to lobby.” Field experiments have explored the relationship 
between constituency opinion and roll call voting (Butler and Nickerson 2011), racial 
conditioning in legislator communications (Broockman 2013), and the effects of lob-
bying on roll call voting (Bergan and Cole 2015).

Despite the separate insights offered by legislative networks scholarship and legis-
lative field experiments, there is a degree of incompatibility in the assumptions under-
lying approaches in these two literatures. The interdependence between actors that 
represents a central concept in legislative networks research poses a challenge to the 
use of field experiments to identify causal effects. Network-based interdependence 
(i.e., influence, contagion) violates the stable unit treatment value assumption 
(SUTVA)—the assumption that a unit’s outcome is unaffected by other units’ treat-
ment statuses. SUTVA is a bedrock assumption in the conventional approach to causal 
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identification via randomized experiments (Sekhon 2008). If we take recent research 
on the role of networks in legislative decision-making seriously, simple randomization 
of treatment is likely not a robust method, as networked interdependence between 
legislators poses a high likelihood of interference. As Sekhon (2008, 5) notes, “When 
SUTVA is violated, an experiment will not yield unbiased estimates of the causal 
effect of interest.”

Virtually all research on legislative networks is based on observational data, 
lacking in design-based causal identification strategies (see Rogowski and Sinclair 
2012 for an exception). Due to the interconnectedness of actors, observational 
research on social networks presents myriad confounding problems that place con-
siderable limits on the feasibility of causal identification (Shalizi and Thomas 
2011). As such, confronting interference in legislative field experiments presents 
two related research opportunities. First, accounting for interference is a vital step 
in producing unbiased estimates of treatment effects in the presence of SUTVA 
violations. Second, studying interference in field experiments on legislators repre-
sents an approach to studying networked interdependence in legislatures with a 
more credible identification strategy than that which is attainable in observational 
research. A growing body of research seeks to study interference through experi-
mental interventions on networks (e.g., Aral and Walker 2014; Bapna and Umyarov 
2015; Bond et  al. 2012; Gerber, Green, and Larimer 2008; Muchnik, Aral, and 
Taylor 2013; Paluck 2011; ben-Aaron, Denny, Desmarais, and Wallach, 2017). 
These studies follow a variety of approaches to designing the interventions and 
testing for interference effects. However, it is clear that the field has not, as of yet, 
converged upon a consistent methodological framework for testing for causal 
effects in the presence of interference.

In this article, we review and illustrate a recently developed method that can be 
used to test for both direct and interference effects in experiments. This methodology, 
developed by Bowers, Fredrickson, and Panagopoulos (2013), allows the researcher to 
test for causal effects in experiments while relaxing SUTVA. Beyond the review of 
this methodology, we offer three contributions in this article. First, we provide a typol-
ogy of theoretical considerations that researchers can draw upon when formulating 
hypotheses regarding interference. Second, we provide a focused review of the net-
works through which scholars of legislative politics should consider specifying tests 
for interference. Third, we apply this methodology by analyzing data from past studies 
that involved field experiments on state legislatures.

A Design-Based Test for Network Effects Models

In this section, we review the methodology introduced by Bowers, Fredrickson, and 
Panagopoulos (BFP; 2013), which enables the researcher to test for both direct and 
interference effects, represented by models of effects. The five components required 
to test hypotheses using the BFP methodology include (1) a model of effects, (2) a 
network, (3) a randomization design, (4) a test statistic for evaluating the model of 
effects, and (5) a set of parameter values to evaluate. The model of effects describes 

https://doi.org/10.1177/1532440019859819 Published online by Cambridge University Press

https://doi.org/10.1177/1532440019859819


454	 State Politics & Policy Quarterly 19(4) 

how the treatment statuses assigned to subjects affect the direct recipients of treat-
ment and any or everyone else in the experiment (e.g., a legislator assigned to treat-
ment changes their behavior and that of their two closest neighbors in the network). 
The network provides the precise representation of the ties between units (e.g., a 
legislator’s two closest neighbors include those with whom they have cosponsored 
most frequently over the past 2 years). The randomization design gives the distribu-
tion according to which the treatment is assigned (e.g., each half of the Democrats 
and half of the Republicans are randomly assigned to receive a call from a constitu-
ent). The test statistic is a quantity that represents the difference between the out-
come observed and the outcome that would have been expected under the 
hypothesized parameter values and model of effects (e.g., if the treatment effect 
increased the directly treated legislators by 2 and their neighbors by 1, we could 
average the absolute values of the t statistics calculated in comparing isolated leg-
islators, directly treated legislators, and those who had treated neighbors). The test 
statistic should have a monotonic relationship to the presence of differences across 
experimental conditions (e.g., as a t statistic increases in absolute value, the differ-
ences between the samples increase). The set of parameter values is a large grid of 
values that reflects the bounds of what the researcher thinks the effects could have 
been (e.g., the treatment had an effect between reducing support for a bill by 30% 
and increasing support by 30%).

The BFP test is a randomization test (Basu 2011). The uncertainty in the outcomes 
in the experiment is attributed to the randomization distribution (i.e., the observed 
outcomes would have been different if and only if a different set of treatment assign-
ments had been drawn from the randomization distribution). Given the components 
described above, the process for carrying out the BFP test follows these steps:

1.	 Remove the hypothesized effects from the observed outcomes (e.g., deduct 2 
from the outcomes for all directly treated legislators and 1 from their neigh-
bors’ outcomes) to calculate observed adjusted outcomes.

2.	 Calculate the test statistic on the observed adjusted outcomes—call this the 
“observed test statistic.”

3.	 Draw a set of treatment assignments from the randomization distribution (e.g., 
take a random sample of half the Democrats and half the Republicans and 
synthetically assign treatment).

4.	 Remove the hypothesized effects, using the re-randomized treatment assign-
ments, from the observed outcomes to calculate the randomized adjusted 
outcomes.

5.	 Calculate the test statistic on the randomized adjusted outcomes—call this the 
“randomized test statistic” and store it.

6.	 Repeat Steps 3 and 4 many (e.g., 1,000) times.
7.	 Calculate the p value associated with the hypothesized parameter values as the 

proportion of randomized test statistics that are larger than the observed test 
statistics, assuming that large test statistics indicate greater differences across 
experimental conditions.
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The higher the p value associated with a parameter value, the greater the evidence for 
that parameter value. The intuition for this is that, if a parameter value is close to the 
truth, we should be able to use it to remove differences in outcomes that are attribut-
able to the treatment assignments. Recalculating the test statistics on randomized treat-
ment vectors provides a distribution of the test statistics under the condition in which 
we know that the re-randomized treatment did not affect the observed outcomes.

We illustrate the BFP test with a simple toy example. Consider an experiment in 
which the population under study is a legislature of nine legislators, connected through 
a legislative collaboration network. The collaboration network is depicted in Figure 1. 
The outcome under study in the experiment is the percentage of the legislation spon-
sored by a legislator that focuses on a particular policy issue (e.g., auto emissions 
limits). The treatment in the experiment is a well-studied advocacy campaign that is 
designed to shift a legislator’s attention toward this issue. Suppose we know, through 
past experimental research, that the direct effect of this treatment is an increase by 10 
percentage points in the percentage of sponsored legislation that focuses on this issue. 
We are only interested in studying the interference effects, and so we only randomize 
one legislator to the treatment to assure that there are some legislators who are isolated 
from the treatment (i.e., have no neighbors who are treated).

We represent the indirect effect as a change in the percentage of sponsored legisla-
tion focusing on the issue that is induced when a neighboring legislator is assigned to 
treatment. We will set the true indirect effect to be a 5-percentage point increase in the 
percent of sponsored legislation focusing on the issue. Assume that Legislator 5 is 
assigned to treatment. Legislator 5 is tied to Legislators 4, 2, 8, and 6. We present the 
effects of the experiment in the first few columns of Table 1. The column Y(0) gives 
the hypothetical outcome that we would observe if the treatment was not administered; 
we created this by drawing a 0 or 10 uniformly at random. Y(Z) gives the outcome 
observed under the assignment of treatment to Legislator 5. The other columns give 
the implied values that would have been observed if the treatment were not adminis-
tered, given the hypothesized indirect and known direct effect, and the legislator indi-
cated in the subscript being assigned to treatment.

In terms of the test statistic, in the current example, we will use the absolute value 
of a t statistic calculated by testing the difference between legislators that were in the 
control condition and isolated from (i.e., not connected to) the treated legislator, and 
legislators that were in the control condition and exposed to the treated legislator. The 

Figure 1.  Toy network of nine legislators.
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vector of outcomes used to calculate the test statistic is the vector of outcomes that 
results after removing the hypothesized effect of the experiment. To give an example 
of this implied control outcome, consider Legislator 2 and a hypothesized indirect 
effect of −6 (i.e., a 6-percentage point reduction in the percent of sponsored legislation 
focusing on the issue). Legislator 2’s true control/baseline value is 10. Legislator 2 
was exposed to the treated legislator in the experiment, and we, therefore, observed the 
outcome (i.e., Y(Z)) of 15 because the true indirect effect is 5. However, if we hypoth-
esize that the indirect effect is −6, this implies that Legislator 2’s control outcome is 
21, which we arrive at by subtracting the hypothesized indirect effect (−6) from 
Legislator 2’s observed value (15).

Using the BFP method, if the hypothesized parameter/effect value is close to the 
true value, the implied control outcomes will be similar across experimental condi-
tions, because removing the hypothesized effects will adjust the outcomes accurately 
according to how they were affected by the experiment. The test statistic is calculated 
for each re-randomized treatment regime, and reported in the last row of the table. The 
evidence for a parameter value is given by the proportion of absolute t statistics calcu-
lated on the randomized treatment regimes that are larger than the absolute t statistic 
calculated on the observed data. The higher this proportion, the greater the evidence 
for the hypothesized parameter value. Furthermore, any parameter value for which this 
proportion is greater than α is included in the 100 × (1 − α)% confidence interval (CI; 
e.g., parameter values with p > .05 are included in the 95% CI).

Considering the example data presented in Table 1, we see that there is very little 
evidence for the hypothesized effect value of −6. As seen in the Y5(0) column, and 
indicated by the absolute t-statistic value of 3.54, removing the hypothesized indi-
rect effect does not remove differences between control legislators who were 
exposed to the treated legislator and those who were not. The observed test-statistic 
value is not smaller than any of the values calculated when treatment is artificially 
reassigned to any of the other nodes, meaning that there is effectively zero evidence 
for an indirect effect of −6, and that the value –6 would not be included in the CI at 
any level less than 100%. This should be reassuring, as the true parameter value is 5. 
In contrast, the evidence for an indirect effect value of 6 is quite strong. At this 
value, the test statistic calculated on the observed data is 0.39—less than the values 
calculated on half of the outcome columns that result from artificially re-assigning 
treatment to the other legislators. The parameter value 6 would be included in CIs 
with levels greater than 50%. Real-world application of the BFP methodology, 
which we illustrate below, is much more complicated than in this toy example (e.g., 
we typically do not know the values of any parameters, and test many more than two 
parameter values), but this toy example illustrates the steps of hypothesizing models 
of effects and assessing their evidence.

Considerations in Testing for Interference

In this section, we offer a novel set of recommendations regarding theoretical consid-
erations that can be drawn upon by researchers when they design experiments in which 
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they plan to test for interference and/or specify tests to be conducted on data from field 
experiments that have already been conducted on legislatures. One of the virtues of 
controlled experiments, in which treatment allocation is randomized, is that the ran-
domization design can be used as the basis for inference in statistical tests (i.e., design-
based or randomization-based inference; Little and Rubin 2000). Testing using the 
Bowers et al. framework still relies on design-based inference, as the stochastic nature 
of the outcomes is assumed to arise from the distribution based on which the treatment 
was randomized. However, the hypothesis being tested is formulated as a model of 
causal direct and spillover effects. As these models of effects are more complicated 
than the conventional form of effects considered in experiments, researchers must put 
more thought into the functional forms that describe the relationship between the treat-
ment and outcome vectors. It is not possible to enumerate all of the choices available 
in specifying the model of effects, but we discuss a few salient dimensions below.

Network Selection

The methodology introduced by Bowers, Fredrickson, and Panagopoulos (2013) is 
applicable in any domain of experimental political science research in which interfer-
ence is suspected, and the networks through which interference might occur can be 
measured. There are two features of legislative politics that render methodology for 
testing interference particularly useful. First, because legislatures operate according to 
explicitly majoritarian reward systems, and it is feasible for any legislator to bargain 
with his or her colleagues to achieve a legislative goal, legislators face particularly 
strong incentives to influence each other (Bernhard and Sulkin 2013; Ferejohn 1986; 
Matthews 1959). Second, there is an active literature on legislative networks that 
offers several options to consider when testing for interference effects (Desmarais 
et al. 2015; Kirkland and Gross 2014). Example legislative networks that have been 
studied include similarity in roll call voting (Kim and Barnett 2012), bill cosponsor-
ship (Fowler 2006), overlapping committee membership (Porter et al. 2005), collabo-
ration in press events (Desmarais et al. 2015), comembership in caucuses (Victor and 
Ringe 2009), the proximity of members of Congress’s DC offices (Rogowski and 
Sinclair 2012), follower-followee connections among members of Congress on Twitter 
(Peng et al. 2016), the similarity of campaign contributions received by candidates for 
state legislature (Masket and Shor 2015), a survey to measure collaboration and social 
networks among members of the Brazilian national legislature (Wojcik 2017), demo-
graphic similarity between legislators’ constituencies (Bratton and Rouse 2011), and 
connections between legislative staffers (Ringe, Victor, and Gross 2013). In Table 2, 
we list the different networks that researchers might consider when investigating inter-
ference in legislative networks. This list is drawn directly from the literature. Given a 
set of prospective networks, such as these, researchers must consider through which 
single network, or combination of networks, spillover will occur.

The determination regarding which network(s) to consider in any particular appli-
cation is, of course, best made by the researchers carrying out the application. Selecting 
which network(s) to test is much like selecting which variables to include when 
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specifying a model—researchers should use a combination of theory and exploration. 
We discuss two dimensions of interference dynamics—exposure and uptake—that 
should help to inform this determination. Exposure refers to the degree to which the 
network governs legislators’ awareness regarding each others’ beliefs or behaviors. 
Uptake refers to the role of the network in determining which legislators would adopt 
each others’ beliefs or behaviors if exposed to them.1 Consider a legislator’s position 
on a major policy issue. It is likely that each legislator in a chamber is aware of each 
other legislator’s opinion on a major issue, so the network does not need to play a 
major role in exposure to govern interference. However, to influence each other on a 
major policy issue, legislators may need to see each other as closely aligned ideologi-
cally. For interference dynamics that do not require exposure through the network, but 
require uptake, researchers should look for networks that signal ideological similarity 
such as co-voting on bills. However, some interference dynamics for which uptake 
might be highly likely, such as reuse of issue framing in legislators’ public statements 
(Lin, Margolin, and Lazer 2016), or the adoption of strategies in responding to con-
stituent requests (Grose, Malhotra, and Parks Van Houweling 2015), would require 
legislators to be exposed to each other through explicit communication channels. In 
applications where the network needs to play an important role in signaling exposure, 
networks such as Twitter-follower networks and caucus comembership may be more 
appropriate. We can also think of networks that would signal both ideological align-
ment and explicit communication ties, such as coparticipation in press events and 
frequent bill cosponsorship (especially early stage, or original cosponsorships).

Note that there are two categories of processes through which interference can 
occur— spread of the treatment through a network (e.g., an influential lobbying com-
munication is sent to a legislator, and that legislator forwards the communication to 
others in their network) and spillover of effects (e.g., a lobbying communication influ-
ences a legislator’s vote, and others in that legislator’s network take cues from their 
vote). A useful thought experiment in selecting networks to use in tests of interference 

Table 2.  List of Legislative Networks Drawn from Past Research.

Networks in legislative politics Example

Roll call voting similarity Kim and Barnett (2012)
Bill cosponsorship Fowler (2006)
Overlapping committee membership Porter et al. (2005)
Collaboration in press events Desmarais et al. (2015)
Ideal point similarity Coppock (2014)
Comembership in legislative caucuses Victor and Ringe (2009)
Legislative staff sharing Ringe, Victor, and Gross (2013)
Spatial proximity of legislative offices Rogowski and Sinclair (2012)
Relationships in online social networks (e.g., Twitter) Peng et al. (2016)
Similarity in legislators’ campaign contributions Masket and Shor (2015)
Social network surveys administered to legislators Wojcik (2017)
Similarity in constituency demographics Bratton and Rouse (2011)

https://doi.org/10.1177/1532440019859819 Published online by Cambridge University Press

https://doi.org/10.1177/1532440019859819


460	 State Politics & Policy Quarterly 19(4) 

would be to consider which networks would facilitate the spread of treatments, and 
which networks would facilitate the spillover of effects. It is, of course, entirely pos-
sible that the researcher either hypothesizes that more than one network plays a role in 
interference, and/or is uncertain regarding which network best represents potential 
interference relationships. In the case that the researcher hypothesizes that multiple 
networks serve as vectors for interference, the researcher can either create a composite 
network (e.g., a network in which a tie indicates that two legislators serve on a com-
mittee together and frequently cosponsor the same legislation; e.g., Ansari, 
Koenigsberg, and Stahl 2011), or include multiple networks in the interference model. 
We caution that combining networks into a single composite would introduce mea-
surement error if interference only occurred through one or a small number of net-
works used in the composite. In the case that multiple models are evaluated that 
include different networks, the researcher should be cognizant of issues related to 
robustness and multiple testing bias (i.e., the increased likelihood of Type 2 inferential 
errors when running multiple tests of the same hypothesis). In future methodological 
research, it would be valuable to develop a Bonferroni-style adjustment (Cabin and 
Mitchell 2000) to avoid multiple testing bias with the BFP methodology.2

Interference Model Formulation

Unlike the review of legislative networks we provided in the previous section, our 
discussion here is applicable to research outside of legislative politics. In this sec-
tion, we focus on the mathematical structure of the model that describes how inter-
ference flows through the network. The interference model is a function that takes 
as its input a treatment regime (i.e., a vector that indicates the control/treatment 
status of each node [e.g., legislator] in the network), a network structure, and the 
outcomes under the uniformity trial (i.e., the outcome values in the case where each 
node is assigned to control), and outputs a vector of node outcomes that is condi-
tioned on the treatment regime via the network. In other words, the interference 
model transforms the uniformity trial into a vector of outcomes using the network 
and treatment regime. For a given focal node, the two components of the model that 
shape the change that results from the experiment include (1) the set of other nodes 
whose treatment status could influence the focal node via the network, and (2) the 
mathematical form of the function through which those other nodes’ treatment sta-
tuses affect the focal node. Given these two components, it is possible to calculate 
how any given treatment regime would affect a focal node’s outcome. We discuss 
two important considerations in formulating the interference model to be tested. 
First, we discuss the specification of the neighborhood, as defined on the network 
structure, of nodes whose treatment status may affect a focal node (e.g., a node’s 
outcome depends on the treatment statuses of all nodes that are at most two hops 
away). Second, we discuss the specification of the functional form through which 
neighbors affect a focal node (e.g., the outcome of a node is a linear function of the 
proportion of neighbors allocated to treatment).
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In Table 3, we illustrate how varying the interference model can result in different 
effects on a focal node. We depict two definitions of the neighborhood—one in which 
all nodes within two hops of the focal node affect the focal node, and one in which all 
nodes within three hops of a focal node affect the focal node. We also depict two defi-
nitions of the functional form of the interference effects. In one definition, all nodes in 
the neighborhood affect the node equally. In the other functional form, the effect of 
neighbors on the focal node decays with the neighbors’ distance from the focal node. 
Combining these two dimensions results in four alternative interference models.

Neighborhood selection.  Once the researcher decides which network—or combination 
of networks—to use in analysis, it is important to determine the neighborhood within 
which the effects of the treatment can be transmitted. For example, Bond et al. (2012) 
find that Facebook users’ voter turnout, as expressed on their Facebook walls, influ-
ences not only their Facebook friends’ turnout decisions, but also turnout of the friends 
of their friends. This means that the effects of a Facebook user’s turnout decision 
spread within a neighborhood of two hops through the friendship network. This speci-
fication decision becomes more complicated when the network is weighted (i.e., ties 
can take on many values rather than just being binary tie/no tie), as in the legislative 
networks that we consider in our applications. In the weighted network, case transmis-
sion is likely a function of connection strength, but may also disappear at some thresh-
old (e.g., the level of ideological distance that indicates opposition between two 
legislators). In our consideration of state legislative networks, we specify the neigh-
borhood in two ways when using the ideological similarity networks:

•• Entire network: Treatment effect can propagate through the entire network—
proportional to ideological similarity—to affect the outcome of control units.

•• K-nearest neighbors: Treatment effects can spread to control units from their K 
nearest neighbors, varying the value of K.

The definition of neighborhood depends on substantive knowledge about the inter-
action in a certain network. For example, a state legislature is a relatively small and 
internally familiar community. As such, everyone may potentially communicate with 
everyone else regarding major legislative tasks and actions. However, in looking at 

Table 3.  Alternative Models of Effects, Focusing on a Single Focal Node.

Two-hop neighborhood Three-hop neighborhood

Constant effect

Decaying effect

Note. The red triangle represents the focal node, on which the other nodes have various effects under 
each model. Square nodes are treated. The circle is a control node. The darker the node’s shading, the 
larger the effect it has on the focal node.
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interpersonal political communication networks among regular citizens, even the clos-
est of friends may fail to communicate about an election or other major political event.

Interference effect specification.  The above two specification steps—selecting the net-
work and the neighborhood—determine which units play a role in the interference 
reflected in the hypothesized model. Diffusion model specification involves defining 
how the treatment effect spreads through the network. We highlight two consider-
ations—the way in which treated and untreated neighbors factor into the interference 
effects, and the linearity of the interference model.

The first consideration regards whether a control unit influenced by the number of 
treated units with which it interacts (e.g., as in an epidemic network), or by the balance 
or proportion of its neighbors that are treated (e.g., as we would assume in a voting or 
opinion-spreading network). Bowers, Fredrickson, and Panagopoulos’s (2013) speci-
fication assumes treatment spreads as a function of the number of treated neighbors. 
Alternatively, the Voter Model—a classic mode of opinion dynamics in networks—
assumes that the proportion of treated neighbors is the relevant quantity (Valentini, 
Hamann, and Dorigo 2014). This specification choice likely comes down to whether 
the researcher assumes that the treatment and the lack of it are equally powerful forces, 
or whether change in the outcome can only result from exposure to treated units. If 
untreated neighbors can offset the effects of treated neighbors, it is likely the propor-
tion that matters. If units are influenced only by treated neighbors, it is likely the raw 
count of treated neighbors that is relevant.

Although a very familiar consideration in quantitative social science, functional 
form assumptions are also relevant in the specification of a model of network effects. 
It is important to determine whether the functional form of the propagation of treat-
ment effect should be linear or nonlinear. Does the second treated neighbor have the 
same effect on a node’s outcome as the first treated neighbor, or does the effect dimin-
ish? Or, alternatively, is it a threshold effect that only manifests when the number of 
treated neighbors reaches a critical level (e.g., a model in which a unit adopts the 
majority opinion among its neighbors)? Coppock (2014) adopts a linear functional 
form in specifying the way in which legislators learning about their districts’ opinions 
affects the votes of ideologically similar legislators. Alternatively, the classic 
Susceptible-Infected-Recovered (SIR) Model in epidemiology assumes a model in 
which the probability of transmission increases at a decreasing rate with the number of 
exposed neighbors to which a unit is exposed (Dodds and Watts 2004).

Replication Analyses: Testing for Network Effects

To illustrate the BFP methodology, we re-analyze results from two field experiments 
on state legislatures—Butler and Nickerson (2011) and Bergan and Cole (2015). The 
replication of Butler and Nickerson (2011) builds directly off the work of Coppock 
(2014). In each of the replications, we test causal models that include network effects. 
To test these models, we must specify their functional forms and select the data to use 
in measuring the network. For each replication, we consider two definitions of both 
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the network through which, and the functional form according to which, network 
effects are transmitted, as we do not have strong prior expectations regarding exactly 
which network or neighborhood should be included in the models of effects. Note, our 
replications are not intended to serve as a meta-analysis of interference in legislative 
field experiments, nor to provide evidence regarding whether there is or is not interfer-
ence in state legislatures, generally speaking. Rather, the purpose of the replications is 
to illustrate the considerations, steps, and process of testing for interference using the 
data produced by the experiments we replicate.

We present each replication in a separate section below. For each analysis, we pres-
ent point estimates from the BFP method (i.e., the vector of parameters with the high-
est p value), the 95% CI (i.e., the minimum and maximum parameter values that 
correspond to a p value more than .05), and the 90% CI.

Butler and Nickerson (2011)

Butler and Nickerson conducted an experiment on New Mexico legislators to study 
the effect on legislators’ votes of their constituents’ opinions regarding the votes. In 
2008, a special session of the New Mexico Legislature was called to vote on a bill 
regarding proposed spending plans for a budget surplus—a tax rebate. Butler and 
Nickerson conducted a large-scale phone survey to gather constituent opinions from 
across the state. Using matched-pair randomization—matching in terms of political 
party—35 out of 70 legislators were assigned to the treatment group. Legislators in the 
treatment group were sent a letter containing the district-specific support for the pro-
posed spending plan in their own districts. Butler and Nickerson find that the effects 
of the treatment on legislators’ votes were conditioned by the level of support for the 
measure indicated in the treatment message. In districts with high support for the tax 
rebate, the treatment had little effect. This is because legislators generally assumed 
that the tax rebate would be popular, and that constituents would support the measure. 
In districts with low support for the tax rebate (defined as districts with levels of sup-
port below the median district in percent supporting the bill), the treatment had a nega-
tive effect on the likelihood of voting in support for the measure, as legislators in 
low-support districts were presumably surprised and affected by the information that 
the plan was unpopular in their districts.

Coppock (2014) applied the BFP methodology to test for propagation of treatment 
in this experiment. The indirect effect estimates were not statistically significant 
(Coppock 2016), even when separating the sample into low- and high-support dis-
tricts. In the network that Coppock analyzed, the tie between legislators was given by 
their ideological similarity. Using this network, each legislator’s outcome is affected 
by every other legislator’s treatment status, but with varying weight based on ideologi-
cal similarity. Coppock used a linear model to represent the direct and indirect effects 
of the treatment on the outcome. Under the model assumed by Coppock,

y y z h G zi z i i i, , , ,= + + ( )0 1 2β β
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where yi,z is the observed outcome (i.e., 0/1 indicating vote against/for the bill), yi,0 is 
the outcome for i that would have been observed if each legislator were assigned to the 
control, β1 is the direct effect of the treatment, β2 is the indirect/interference effect, 
and hi(G, z) is a function of the network G and the vector of treatment assignments (z). 
Coppock defines hi(G,z) as the excess or beyond-expected sum of ideological similari-
ties of legislator i to legislators who were assigned to treatment. The steps used in 
calculating this “excess exposure” to the treatment are as follows:

1.	 Calculate W-NOMINATE ideology score (ideo) for each legislator using roll 
call vote data.

2.	 Calculate ideological similarity as Similarity
ideo ideo

i j
i j

,

| |
=

− −2

2
.

3.	 Calculate raw exposure as Raw exposure Similarity z j f ii j
n

i j j = ∑ × ==1 , , .
4.	 Coppock introduces an adjustment for the expected exposures of legislators. 

Adjusting for expected exposure removes endogeneity in the network expo-
sure function (hi(G,z)). Exposures are simulated under a large number of re-
randomizations of the treatment (10,000 in both Coppock’s and our application), 
and the average exposure value for each legislator is subtracted from the raw 
exposure value to give the excess exposure value (i.e., hi(G, z) = Raw exposu-
rei − Expected exposurei).

We follow Coppock in the adjustment of the exposure function for expected expo-
sure. We extend the model of effects used by Coppock (2014) to incorporate differential 
effects of low- and high-support treatment in one model, rather than running the analy-
sis for the two separate subpopulations. We take this approach because we assume that 
treatment of legislators in low-support districts can influence the outcomes of legisla-
tors in high-support districts and vice versa—a dynamic that is lost when splitting the 
sample into low- and high-support districts. The model of effects we use is

y y z l z l h G z l h G z li z i i i i i i i, , , , ,= + + − + × + × −( )( ) ( ) ( )0 1 2 3 41 1β β β β  

where li is an indicator (0/1) of whether legislator i is in a low-support district. This 
model form separates the direct and indirect effects based on whether the treatment 
delivered to the legislators incident to the treatment were in low- or high-support dis-
tricts. We hypothesize that exposure to low-support treatment (either direct or indirect) 
will reduce support for the bill, and exposure to high-support treatment (either direct 
or indirect) will increase support for the bill.

In part, to build on what Coppock has already contributed with this replication, 
and also to focus more closely on networks that indicate a higher likelihood of con-
tact/communication between legislators, we depart from Coppock in the definition of 
the networks. For each network, we consider both binary and weighted forms of the 
interference effect. First, we analyze a network in which two legislators are con-
nected based on copartisanship and co-committee membership. In the binary version, 
legislator i is exposed to legislator j’s treatment status if legislator i is of the same 
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party as legislator j and serves on at least one standing committee with legislator j 
during the session preceding the special session on the budget surplus. In the weighted 
version, legislator i is exposed to legislator j’s treatment status in proportion to the 
number of committees on which they served together if they are copartisans. We used 
the committee network based on the assumptions that (1) legislators will consider the 
preferences of constituents of their copartisans as relevant to their own votes, and (2) 
they are likely to be in contact with legislators with whom they regularly collaborate 
through committee assignments.3 The second network we consider is defined by the 
cohorts in which two legislators arrived in the legislature. In the binary version of the 
cohort network, legislator i is exposed to legislator j’s treatment status if they are 
copartisans and were elected in the same year. In the weighted version of the cohort 
network, legislator i is exposed to legislator j’s treatment status in proportion to 1/(1 
+|ci − c j|), where ci is the year in which legislator i was elected. The weighted cohort 
analysis reflects a different network neighborhood than the co-committee member-
ship network. If two legislators are copartisans, they are assumed to influence each 
other through cohort similarity (albeit at a rate that decreases with the difference 
between the two legislators’ cohorts). Cohort membership is used to proxy social ties 
between legislators.4

The next detail we need to fill in when it comes to applying the BFP methodology 
is the test statistic used in the analysis. To refresh, the test statistic should be designed 
to quantify the degree to which the outcome is unrelated to the experimental condi-
tions once the hypothesized effects have been removed from the observed outcome. 
We follow Coppock and Bowers, Fredrickson, and Aronow (2016) and use the follow-
ing steps to calculate the test statistic:

1.	 Estimate the outcome under control for each observation as yiˆ,0 = yi,z − [β1zili 
+ β2zi(1 − li)+ β3hi(G, z × l)+ β4hi(G, z × (1 − l))], where the β’s are given 
by their hypothesized values.

2.	 Fit the regression equation yiˆ,0 = γ0 + γ1zili + γ2zi(1 − li)+ γ3hi(G, z × l)+ 
γ4hi(G, z ×(1 − l), estimating the γ’s by ordinary least squares (OLS).

3.	 Set the test statistic equal to the residual sum of squares (RSS) = ∑i [yiˆ,0 − γ0 
− γ1zili − γ2zi(1 − li) − γ3hi(G, z × l) − γ4hi(G, z × (1 − l))]2.

The intuition behind using the RSS is that, if the hypothesized parameter values 
remove the effect of the experiment from yi,z, the RSS from regressing yiˆ,0 on vari-
ables defined by the model of effects will be high, as the effects of the experiment were 
removed from the dependent variable prior to running the regression on which the 
RSS is based.

The last detail of implementing the BFP framework regards the grid of hypothe-
sized parameters over which p values are calculated. Because the testing process does 
not involve an optimization routine, there is no way for the parameter values to be 
selected automatically. However, standard optimization methods can be used to 
approximate point estimates around which to expand the grid of hypothesized values. 
In our applications, the model of effects has a linear form, and we can use linear 
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regression to find the estimates around which to expand the grid. In terms of how far 
to expand the grid—there should be enough grid points that none of the point estimates 
are close to the boundaries of the grid.

Results for Butler and Nickerson (2011) data.  The results of the Butler and Nickerson 
(2011) replication are presented in Table 4. The first notable result is that each CI in 
each model includes zero. None of the parameter estimates are statistically signifi-
cantly different from zero at the .05 level. However, in most of the models, most of the 
parameters are of the expected sign. In each model, the effects of both low-support 
effects are negative, and the indirect high-support effect is positive. With the coparti-
san cohort network, in both the binary and weighted specifications, the indirect low-
support effect is statistically significant at the .10 level. To interpret our results, we 
look to the estimates from the binary network of same cohort copartisans. The low-
support effect of −.20 indicates that, for a legislator in a low-support district, being 
assigned to treatment reduces the probability of a legislator voting in favor of the bill 
by .20. Similarly, having a copartisan who was elected in the same cohort who is in a 
low-support district assigned to treatment, reduces the probability of voting in favor of 
the bill by .20. We note two central takeaways from this analysis. First, they represent 
moderate evidence of interference—especially via exposure to treated neighbors in 
low-support districts. Second, the BFP methodology exhibits relatively low statistical 
power, as the direct effects that are statistically significant in the original analyses by 
Butler and Nickerson are not significant in our analysis. This suggests that field exper-
iments on legislatures in which the researcher is interested in studying interference 

Table 4.  Results from Applying the BFP Methodology to the Replication of Butler and 
Nickerson (2011).

Binary ties Weighted ties

  Estimate 95% CI 90% CI Estimate 95% CI 90% CI

Results for Committee Copartisans Network
  Direct (L) −0.25 [−0.50, 0.03] [−0.50, 0.00] −0.30 [−0.50, 0.05] [−0.50, 0.01]
  Direct (H) 0.00 [−0.25, 0.45] [−0.20, 0.35] 0.00 [−0.30, 0.40] [−0.30, 0.35]
  Indirect (L) −0.05 [−0.15, 0.10] [−0.10, 0.05] −0.03 [−0.10, 0.10] [−0.10, 0.05]
  Indirect (H) 0.10 [−0.05, 0.20] [−0.03, 0.20] 0.05 [−0.10, 0.15] [−0.05, 0.10]
Results for Cohort Copartisans Network
  Direct (L) −0.20 [−0.50, 0.10] [−0.50, 0.05] −0.20 [−0.50, 0.05] [−0.50, 0.03]
  Direct (H) −0.10 [−0.40, 0.30] [−0.35, 0.25] −0.15 [−0.40, 0.15] [−0.35, 0.15]
  Indirect (L) −0.20 [−0.50, 0.01] [−0.50, –0.02] −0.20 [−0.45, 0.05] [−0.45, –0.02]
  Indirect (H) 0.05 [−0.15, 0.35] [−0.10, 0.35] 0.10 [−0.10, 0.35] [−0.05, 0.30]

Note. (L) indicates the effect of low-support treatment, and (H) indicates the effect of high-support 
treatment. The outcome variable is 0/1, where 1 indicates a vote in favor of the proposal to create a tax 
rebate to distribute a budget surplus (voted on in the New Mexico Legislature 2008). p Values calculated 
using 1,000 randomization iterations. There are 70 legislators in this dataset/network. CI = confidence 
interval. BFP = Bowers, Fredrickson, Panagopoulos.
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may require larger sample sizes (e.g., via administering treatment in multiple states, on 
multiple legislative proposals, and/or across both chambers).

Bergan and Cole (2015)

The second dataset we work with comes from an experiment on the Michigan legisla-
ture. This experiment was conducted on legislators from both chambers, in the context 
of antibullying legislation. Legislators were stratified based on six background vari-
ables. The treatments were calls from constituents expressing their support for the 
proposed bill. Treatment was given in three different doses, which differed in the num-
ber of calls placed to the given legislator. The results were that this treatment had a 
significant effect on the final vote on the bill. They observed a 12-percentage point 
increase in the likelihood of voting in favor of the antibullying bill for those treated.

These data have not been analyzed for indirect effects previously. However, because 
legislators consider legislation in the context of open communication and debate, and 
for supporters to assure that legislation passes they need the votes of their colleagues, 
we expect treatment effects of roll call votes to be characterized by interference. In our 
replication of Bergan and Cole (2015), we use a very similar model of interference, 
except the indicators for low support and high support are replaced by indicators for 
Democrat (D) and Republican (R). Bergan and Cole (2015) tested for, but did not find 
evidence, that partisanship or ideology moderated the effect of the treatment, but we 
incorporate partisan moderators into our model to allow for different effects of the 
advocacy treatment by party. Our model for the Bergan and Cole (2015) replication 
takes the following form:

y y z d z d h G z d h G z di z i i i i i i i, , , , ,( )= + + − + × + × −( ) ( ) ( )0 1 2 3 41 1β β β β  

where di is a 0/1 indicator of whether legislator i is a Democrat. We use the same test 
statistic as in the Butler and Nickerson (2011) replication.

As in the Butler and Nickerson (2011) replication, we consider two different net-
works and functional forms. We again test the copartisan cohort network.5 For the 
Bergan and Cole (2015) replication, we use cosponsorship instead of co-committee 
membership to measure formal legislative connection between legislators. In the 
binary form of the cosponsorship network, we include a tie between any two legisla-
tors who cosponsored two or more of the same bills.6 In the weighted form of the 
cosponsorship network, the effect of j’s treatment status on i is proportional to the 
number of bills that were cosponsored by both i and j. We do not have theoretical 
expectations regarding the different effects of committee comembership and cospon-
sorship in New Mexico and Michigan, the difference is driven by data availability.

Results for Bergan and Cole (2015) data.  The results of the Bergan and Cole (2015) 
replication are presented in Table 5. In this application, we find one statistically sig-
nificant (at the .10 level) interference effect—a reduction in the probability of voting 
for the bill by .10 from indirect exposure to treated Democrats in the copartisan binary 
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cohort network. The signs of the interference effects are mostly negative, which is 
counterintuitive, but could arise if exposure to other legislators who received the advo-
cacy call resulted in awareness that the call was part of an advocacy campaign and not 
an independent contact from a constituent. The signs of the direct effect estimates are 
consistently positive, as was found in the original analysis. However, the statistical 
significance of the direct effect estimates is not robust to the choice of network used to 
model the interference effects. The direct effects for both Democrats and Republicans 
are statistically significant at the .05 level in the copartisan cohort network, but not 
significant with the cosponsorship network. To draw a conclusion regarding the direct 
effects in the current analysis, we need to either make a theoretical argument that the 
model based on the copartisan cohort network is more valid, or note the lack of robust-
ness and need for further replication of the experiment to draw firm conclusions. The 
lack of robustness regarding direct effects in the current application provides further 
indication that, in experiments that may be subject to interference, we require larger 
samples to make sufficiently powerful inferences. Larger samples could be achieved 
by including more votes and/or legislatures in the experiment.

Conclusion

In this article, we have made the case that scholars who run field experiments on state 
legislatures should consider testing for interference. We provide guidance in specify-
ing these tests using the methods developed by Bowers, Fredrickson, and Panagopoulos 
(2013). Specifically, we discuss options for specifying the network(s) through which 

Table 5.  Results from Applying the BFP Methodology to the Replication of Bergan and Cole 
(2015).

Binary ties Weighted ties

  Estimate 95% CI 90% CI Estimate 95% CI 90% CI

Results for Cosponsorship Network
  Direct (D) 0.15 [−0.15, 0.40] [−0.10, 0.35] 0.10 [−0.15, 0.40] [−0.10, 0.40]
  Direct (R) 0.00 [−0.10, 0.40] [−0.10, 0.40] 0.10 [−0.05, 0.45] [−0.03, 0.40]
  Indirect (D) 0.00 [−0.10, 0.20] [−0.10, 0.15] 0.05 [−0.03, 0.20] [−0.03, 0.20]
  Indirect (R) −0.05 [−0.10, 0.10] [−0.10, 0.10] −0.15 [−0.20, 0.05] [−0.20, 0.05]
Results for Cohort Copartisans Network
  Direct (D) 0.40 [0.10, 0.50] [0.10, 0.50] 0.20 [0.05, 0.50] [0.10, 0.50]
  Direct (R) 0.20 [−0.03, 0.45] [0.00, 0.40] 0.50 [0.40, 0.50] [0.45, 0.50]
  Indirect (D) −0.10 [−0.20, 0.00] [−0.15, –0.01] −0.10 [−0.15, 0.03] [−0.10, 0.01]
  Indirect (R) −0.05 [−0.10, 0.05] [−0.10, 0.05] −0.20 [−0.20, 0.03] [−0.20, 0.03]

Note. (D) indicates the effect of Democrat treatment, and (R) indicates the effect of Republican 
treatment. The outcome variable is 0/1, where 1 indicates a vote in favor of the antibullying bill (voted 
on in both chambers of the Michigan Legislature 2011). p Values calculated using 1,000 randomization 
iterations. There are 144 legislators in the dataset/network. CI = confidence interval. BFP = Bowers, 
Fredrickson, Panagopoulos.
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interference occurs, selecting the neighborhood of legislators who affect the legislator 
through the network(s), and specifying the functional form according to which the 
interference effects manifest. We illustrate this approach with two in-depth replica-
tions. We do not find consistent evidence for interference effects in our replications. 
Our mixed findings regarding interference effects are attributable to an actual lack of 
interference in some contexts, a misspecification of the model of effects (which could 
include using the wrong network[s]), or sample sizes that are too small. Nonetheless, 
these replications serve to illustrate the variety of choices researchers have to make 
when testing for interference effects in experiments on state legislatures.

The results from our replication of field experiments on legislatures underscore the 
importance and complexity of accounting for interference. The replication and exten-
sion of Butler and Nickerson (2011) exhibited moderate evidence for interference—
through the copartisan cohort network, particularly. We also observed some evidence 
for interference through the copartisan cohort network in the re-analysis of data from 
Bergan and Cole (2015). One consistent finding from these two replications is that the 
copartisan cohort network exhibits the greatest evidence as a vector for interference. 
Our replication study is not intended to provide definitive evidence regarding whether 
or not state legislative field experiments are subject to interference effects. Rather, we 
illustrate a broad array of network and neighborhood definitions, and provide evidence 
that some experiments on state legislatures are characterized by interference effects, 
and some are not. Given that tools are now available for testing interference effects, 
researchers have little reason to assume SUTVA in legislative field experiments. In the 
replication materials for this article, we include an R package that implements func-
tions for carrying out the testing methodology developed by Bowers, Fredrickson, and 
Panagopoulos (2013).

One shortcoming of our replication analyses is that the experiments were designed 
and data collected with a focus on direct effects, assuming SUTVA. We retrospec-
tively constructed networks to use in testing for interference, relaxing SUTVA, 
which is not ideal as there are likely to be more appropriate networks for each indi-
vidual application. In future state legislative field experiments, researchers should 
consider collecting network data that characterize the patterns of interdependence 
between legislators that are most relevant to their experiments. Furthermore, in each 
of the studies we consider, half of the observations were allocated to treatment, and 
treatment allocation was uniform-at-random (within blocks). This is not the optimal 
randomization design if the researcher is interested in testing for and identifying 
interference effects. In experiments designed for testing interference effects, the 
optimal proportion assigned to treatment is typically much lower than 50% (Bowers 
et al. 2018). Furthermore, researchers can use the networks through which they think 
interference occurs to design higher powered experiments that incorporate the net-
work structure (Bowers, Fredrickson, and Aronow 2016). Higher powered experi-
ments can, of course, also be achieved through an expanded sample size. As we have 
noted above, when testing for interference, it may be advisable for the researcher to 
design an experiment that is applicable to multiple legislative actions and/or multi-
ple legislatures to expand the sample.
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Notes

1.	 The conceptual distinction between exposure and uptake is similar to Burt’s (1987) distinc-
tion between “cohesion” and “structural equivalence” in social contagion. According to 
Burt (1987), behavioral contagion can occur through direct interaction between individuals 
(cohesion), or through individuals’ perceptions of how those who are socially similar to 
them behave (structural equivalence).

2.	 The most basic form of Bonferroni adjustment could be used when testing with the 
Bowers, Fredrickson, and Panagopoulos’s (BFP) methodology, though the independent 
form of the Bonferonni adjustment is often overly conservative (Simes 1986). A method 
that accounts for the dependence across the tests using the BFP methodology would 
provide a more accurate and statistically powerful adjustment (Stevens, Al Masud, and 
Suyundikov 2017).

3.	 Records of standing committee membership in the 16 standing committees in place during 
the 2008 regular session was obtained by e-mail correspondence with the New Mexico 
Legislative Council service librarian.

4.	 Information about the cohort, in which every legislator joined the chamber of legislature 
they were serving on at the time of the experiment, was collected from https://www.nmle-
gis.gov.

5.	 Data on cohort membership were gathered from https://ballotpedia.org/Main_Page.
6.	 Data on co-sponsorship were gathered from https://www.quorum.us/.
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