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FRANÇOISE PÈNE† and DAMIEN THOMINE‡
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Abstract. Zd -extensions of probability-preserving dynamical systems are themselves
dynamical systems preserving an infinite measure, and generalize random walks. Using the
method of moments, we prove a generalized central limit theorem for additive functionals
of the extension of integral zero, under spectral assumptions. As a corollary, we get the
fact that Green–Kubo’s formula is invariant under induction. This allows us to relate the
hitting probability of sites with the symmetrized potential kernel, giving an alternative
proof and generalizing a theorem of Spitzer. Finally, this relation is used to improve, in
turn, the assumptions of the generalized central limit theorem. Applications to Lorentz
gases in finite horizon and to the geodesic flow on Abelian covers of compact manifolds
of negative curvature are discussed.
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1. Introduction
Given a recurrent random walk (Sn) on Zd , with d ∈ {1, 2}, a natural question is how
much time the walker spends in any region of the space—the so-called occupation times.
More generally, one may choose an observable f : Zd

→ R, and consider the Birkhoff
averages n−1 ∑n−1

k=0 f (Sk). When f is summable and the walk is well-behaved, it is known
that a−1

n
∑n−1

k=0 f (Sk) converges in distribution to a Mittag–Leffler random variable, for
well-chosen coefficients (an)n≥0 [45]. This behaviour generalizes to null-recurrent Markov
processes [1, 21].
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When f has integral zero, this family of results is not sharp enough, and we must
look at a higher order. In the same way that a central limit theorem replaces the weak
law of large numbers, one can get a generalized central limit theorem for observables of
null-recurrent Markov processes. Typically, a−1/2

n
∑n−1

k=0 f (Sk) converges in distribution,
with an explicit limit. The story of these central limit theorems starts from Dobrushin [23]
where (Sn) is the simple random walk on Z. Then these results were generalized to Markov
processes [36, 38, 41], and later included invariance principles [10, 11, 37].

In this article, we are interested not in Markov processes, but in a family of dynamical
systems preserving an infinite measure: Zd -extensions, which are a generalization of
random walks. Starting from a dynamical system preserving a probability measure
(A, µ, T ) and a function F : A→ Zd , we work with the transformation T̃ : (x, p) 7→
(T (x), p + F(x)) on A × Zd . This class of systems includes random walks on Zd , as
well as, for instance, Lorentz gases [14, 15] and the geodesic flow on Abelian covers
of complete manifolds [39, 53, 59]. Given an observable f : A × Zd

→ R, we want to
understand the limit in the distribution of

∑n−1
k=0 f ◦ T̃ k .

In two previous works by the second-named author [67, 68], adapting previous
methods [18–20], the case where (A, µ, T ) is a Gibbs–Markov map was investigated. In
the current article, we are able to get a generalized central limit theorem under spectral
hypotheses on the transfer operator of the system (A, µ, T ), which has much wider
applications. The downside is that we need the observable f (x, p) to depend only on p
and decay fast enough at infinity. This is Theorem 2.4, which we prove using the method
of moments. The computation of the asymptotics of the moments for this specific problem
is, to our knowledge, new; but this method has proven to be very fruitful for closely related
questions, such as the distributional limit of occupation times [1, 5, 54, 64, 65]. We then
apply Theorem 2.4 to Lorentz gases with finite horizon.

An interesting corollary of Theorem 2.4 and [68, Theorem 6.8] is that, for Zd -extensions
of Gibbs–Markov maps, Green–Kubo’s formula—which appears as the asymptotic
variance in the central limit theorem—is invariant under induction. This is the content
of Corollary 2.13. By choosing the observable f carefully, in Theorem 2.7 we are able
to relate the probability that an excursion from A × {0} hits a site A × {p}, and the
symmetrized potential kernel associated to the Zd -extension. Our proof relies on the first
hitting time of small target statistics. This method provides a new proof of an earlier
proposition by Spitzer [61, Ch. III.11, P5], and generalizes it to Zd -extensions (for which
harmonic analysis as used in [61] does not make sense). Finally, the estimates from
Theorem 2.7 are used to relax the assumptions from [68]: in Theorem 2.11, the observables
need only to decay polynomially at infinity, instead of having bounded support. We apply
it to the geodesic flow on Abelian covers of compact manifolds with negative curvature.

This article is organized as follow. We present our setting and our results in §2, as well
as our applications to Lorentz gases (§2.4.1) and to geodesic flows (§2.4.2). In §3 we
present our spectral assumptions, and prove Theorem 2.4 using the method of moments.
In §4 we prove Theorems 2.7 and 2.11, and in §5 the two applications mentioned above.
We discuss Green–Kubo’s formula in the Appendix.
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2. Main results
2.1. Setting and goals. We consider conservative ergodic dynamical systems given
by Zd -extensions of probability-preserving dynamical systems, where the underlying
dynamical system is sufficiently hyperbolic and d ∈ {1, 2}. We shall deem a system
hyperbolic enough if its transfer operator satisfies good properties. For some applications,
we use the stronger assumption that the underlying dynamical system is Gibbs–Markov.

Let (A, µ, T ) be a probability-preserving dynamical system. Let F : A→ Zd with d ∈
{1, 2} be a µ-integrable function such that

∫
A F dµ= 0. The Zd -extension ( Ã, µ̃, T̃ ) of

(A, µ, T ) with step function F is the dynamical system given by the following.
• Ã := A × Zd ;
• µ̃ :=

∑
p∈Zd µ⊗ δp;

• T̃ (x, p)= (T (x), p + F(x)).
Note that T̃ preserves the infinite measure µ̃. We shall always assume that ( Ã, µ̃, T̃ ) is
ergodic. If (A, µ, T ) has a Markov partition π , we may also assume that the step function
F is σ(π)-measurable—that is, constant almost everywhere on elements of the partition.
We then say that ( Ã, µ̃, T̃ ) is a Markovian Zd -extension of (A, µ, T ).

Let Sn := ST
n F :=

∑n−1
k=0 F ◦ T k be the second coordinate of T̃ n(x, 0). Heuristically,

the sequence (Sn)n≥0, under the distribution µ, behaves much like a random walk, the
randomness being generated by the dynamical system (A, µ, T ). Indeed, this family of
extensions includes every random walk on Zd , as well as some physically or geometrically
interesting systems such as Lorentz gases (§2.4.1) or the geodesic flow on Zd -periodic
manifolds of negative curvature (§2.4.2)†.

In the present paper, we will make assumptions ensuring the convergence in distribution
of (Sn/an)n to a Lévy stable distribution, for some normalizing sequence (an)n . Our main
goals are the following:
(A) Given f : Ã→ R integrable and such that

∫
Ã f dµ̃= 0, we are interested in the

asymptotic behaviour of the ergodic sum

ST̃
n f =

n−1∑
k=0

f ◦ T̃ k,

as n→+∞. More precisely, we are looking for a non-trivial strong convergence in
distribution:

ST̃
n f
An

dist.
⇒ σ( f )Y with An :=

√√√√ n∑
k=1

a−d
k , (2.1)

where σ( f ) is some constant, which depends on the pushforward of the measure µ̃
by ( f ◦ T̃ n)n≥0, whereas the random variable Y depends only on‡ the distribution
of (F ◦ T k)k (with respect to µ).

(B) In the context of Gibbs–Markov maps, we consider the probability α(p)−1, starting
from A × {0} endowed with the measure µ, to visit A × {p} before coming back

† Up to some lengthy, but in our case not particularly challenging, legwork to go from discrete time to continuous
time.
‡ Up to a constant, Y actually depends only on the index α of the Lévy stable distribution that is the limit of
(Sn/an)n .
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to A × {0}. By applying the limit theorems we have proved before to f p(x, q) :=
(1{p} − 1{0})(q), we are able to prove that

α(p)∼
σ( f p)

2
as p→∞,

which provides a new proof of [61, Ch. III.11, P5], and generalizes it to systems that
are not random walks.

The next sub-sections present in more details these two goals, and the precise statements
we get.

2.2. Distributional limit theorems.

2.2.1. Convergence and limit distributions. When working with spaces endowed with
an infinite measure, there is no natural notion of convergence in distribution. We shall
instead use the notion of strong convergence in distribution. The reader may consult e.g.
[1, Ch. 3.6] for an introduction to this notion and applications to ergodic dynamical
systems whose invariant measure is infinite.

Definition 2.1. (Strong convergence in distribution) Let ( Ã, µ̃) be a measured space. Let
(Xn)n≥0 be a sequence of measurable functions from Ã to R. Let X be a real-valued
random variable. We say that (Xn) converges strongly in distribution to X if, for every
probability measure ν� µ̃,

Xn→n→+∞ X in distribution on ( Ã, ν).

Now that we have defined our mode of convergence, we introduce our limit objects:
Mittag–Leffler random variables, and Mittag–Leffler–Gaussian mixtures.

Definition 2.2. (ML and MLGM random variables) Let γ ∈ [0, 1]. Let X be a non-negative
real-valued random variable. We say that X follows a standard Mittag–Leffler distribution
of index γ if, for all z ∈ C (or all z ∈ B(0, 1) if α = 0),

E[ezX
] =

+∞∑
n=0

0(1+ γ )nzn

0(1+ nγ )
.

If this is the case, we shall write that X has a ML(γ ) distribution.
Let X be a real-valued random variable. We say that X follows a standard Mittag–

Leffler–Gaussian mixture distribution of index γ if X has the same distribution as
√

Y · Z ,
where Y and Z are two independent random variables with respective distribution ML(γ )
and standard normal N (0, 1). If this is the case, we shall write that X has a MLGM(γ )
distribution. See [66, Ch. 1.4] for a partial description of the MLGM distributions.

For γ = 0, these distributions take more common forms: a ML(0) distribution is
an exponential distribution of parameter 1, while a MLGM(0) distribution is a Laplace
distribution of parameter 1/

√
2, with density 2−(1/2)e−

√
2|x | with respect to the Lebesgue

measure. A ML(1/2) random variable is the absolute value of a centered Gaussian of
variance π/2.
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2.2.2. Main distributional theorem. Mittag–Leffler distributions appear when one
studies the distributional convergence of the local time of null recurrent Markov processes,
or chaotic enough σ -finite ergodic dynamical systems. For the Brownian motion, the result
goes back to Lévy [45], and to Darling–Kac’s theorem for Markov chains [21]. We refer
the reader to [47] for α-stable Lévy processes, and to [1, Corollary 3.7.3] for dynamical
systems in infinite ergodic theory. For instance [1, Corollary 3.7.3] and Hopf’s ergodic
theorem [32, §14, Individueller Ergodensatz für Abbildungen] yield the following.

PROPOSITION 2.3. Let ( Ã, µ̃, T̃ ) be a measure-preserving transformation of a σ -finite
measure space. Assume that T̃ is pointwise dual ergodic with return sequence (an)n (see [1,
Ch. 3.5] for definitions). Assume that (an)n has regular variation of index α ∈ [0, 1], i.e.
an = n1/αL(n) for some sequence L, which varies slowly at infinity. Then, for all f ∈
L1( Ã, µ̃),

ST̃
n f
an
⇒

∫
Ã

f dµ̃ · Y,

where Y is a standard ML(α) random variable and the convergence is strong in
distribution.

However, this kind of result is not sharp enough when the integral of the observable f
is zero. We want to get more precise asymptotics, that is to say, some kind of central limit
theorem for observables of σ -finite ergodic dynamical systems whose integral is 0. We
need to add some regularity condition on the observable f , as well as stronger integrability
conditions—as is usual in ergodic theory, for instance to get a central limit theorem
[48, 49]. In this article, we shall prove the following result.

THEOREM 2.4. Let ( Ã, µ̃, T̃ ) be an ergodic and aperiodic Zd -extension of (A, µ, T ) with
step function F and α ∈ [d, 2]. Assume Hypothesis 3.1. Let (an)n be an α−1-regularly
varying sequence of positive numbers and Y be an α-stable random variable Y such that

Sn/an
distrib.
⇒ Y.

Let An :=

√∑n
k=1 a

−d
k . Let β : Zd

→ R be such that:

•
∑

p∈Zd |p|(α−d)/2+ε
|β(p)|<+∞ for some ε > 0;

•
∑

p∈Zd β(p)= 0.
Let f (x, p) := β(p). Then the following sum over k is absolutely convergent:

σ 2
G K ( f, Ã, µ̃, T̃ )=

∫
Ã

f 2 dµ̃+ 2
∑
k≥1

∫
Ã

f · f ◦ T̃ k dµ̃. (2.2)

Moreover,
ST̃

n f
√
8(0)An

⇒ σG K ( f, Ã, µ̃, T̃ )Y, (2.3)

where Y is a standard MLGM(1− d/α) random variable and the convergence is strong
in distribution, and where 8 is the continuous version of the density function of Y .

Under the hypotheses of Theorem 2.4, we have, in addition,

σ 2
G K ( f, Ã, µ̃, T̃ )=

∑
a∈Zd

β(a)2 + 2
∑
k≥1

∑
a,b∈Zd

β(a)β(b)µ(Sk = a − b). (2.4)
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Remark 2.5. For a definition of aperiodicity in the setting of Gibbs–Markov maps, see
Definition 4.9. An assumption of aperiodicity is not necessary in the statement in the
theorem, but appears as a result of Hypothesis 3.1, and we prefer to make this assumption
explicit.

We do not expect aperiodicity to be necessary in the statement of Theorem 2.4, up
to the necessary modification in Hypothesis 3.1. Proving this generalization would be
straightforward if f were allowed to depend on x ; however, allowing such a dependence
would make the proof of Theorem 2.4 much more difficult. We choose to leave the non-
aperiodic case aside, except for a couple of later results, Theorems 2.7 and 2.11.

Theorem 2.4 shall be proved in §3 with the method of moments and is based on
refinements of the local limit theorem for Sn , which says that P(Sn = 0)∼8(0)a−d

n .

Under our hypotheses, the normalization
√
8(0)An is equivalent to

√∑n−1
k=0 µ(Sk = 0).

See e.g. [4] for a spectral proof of the local limit theorem, which holds under
Hypothesis 3.1, and implies the equivalence of the normalizations.

In special cases, the normalization An can be made explicit:

An ∼



√
α

α − 1
n
an

if d = 1 and α > 1,√
log n if d = α and an ∼ n1/α,√
log log n if d = α and an ∼ (n log n)1/α.

2.2.3. Symmetrized potential kernel. The case when f = f p of Theorem 2.4 is
especially interesting. Then the computation of σG K ( f p, Ã, µ̃, T̃ ) boils down to an
estimation of the symmetrized potential kernel g of the Zd -extension:

σ 2
G K ( f p, Ã, µ̃, T̃ )= 2g(p)− 2,

with
g(p) :=

∑
n≥0

(2µ(Sn = 0)− µ(Sn = p)− µ(Sn =−p)),

which is well-defined under the assumptions of Theorem 2.4. We estimate the asymptotic
growth of g(p) in §3.5, adapting the methods of [61] to dynamical systems. We get the
following.

PROPOSITION 2.6. Let ( Ã, µ̃, T̃ ) be an ergodic, aperiodic Zd -extension of (A, µ, T )
with step function F. Let (B, ‖ · ‖B) be a complex Banach space of functions defined
on A. Assume Hypothesis 3.1 holds with (B, ‖ · ‖B) and α ∈ [d, 2]. If α = d, let I be the
functions defined by equation (3.55).

If d = 1 and α ∈ (1, 2],

g(p)∼p→∞
1

ϑ(1+ ζ 2)0(α) sin((α − 1)π/2)
|p|α−1

L(|p|)
.

If d = α = 1,

g(p)∼p→∞
2

πϑ(1+ ζ 2)
I (|p|−1).
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If d = α = 2,

g(p)∼p→∞
2

π
√

det(6)
I (|p|−1).

2.3. Hitting probabilities of excursions. We leave aside for a moment the distributional
asymptotics of the Birkhoff sums, and focus on the probability that an excursion hits a
given site (§4). We now assume that (A, µ, T ) is a Gibbs–Markov map. The leading
theme of this section is the study of the probability that an excursion from A × {0} hits
A × {p}, and its asymptotics as p goes to infinity.

2.3.1. Induced transformations. Let us describe the terminology. We define ϕ{0} : A→
N+ ∪ {∞}, where ϕ{0}(x) is the length of an excursion starting from (x, 0):

ϕ{0}(x) := inf{k > 0 : Sk(x)= 0}.

Then, define the corresponding induced map by T̃{0}(x) := T ϕ{0}(x)(x), which is well-

defined for µ-almost every x ∈ A. Note that (A, µ, T̃{0}) is a measure-preserving ergodic
dynamical system [34]. For any observable f : Ã→ R and any x ∈ A, let

f{0}(x) :=
ϕ{0}(x)−1∑

k=0

f ◦ T̃ k(x, 0).

Let us introduce a few more objects: the time Np that an excursion from A × {0} spends
at A × {p}, and the inverse probability α(p) that an excursion from A × {0} hits A × {p},
and the number of times N0,p that the system goes back to A × {0} before hitting A × {p}.
Formally,

Np(x) := #{k = 0, . . . , ϕ{0}(x)− 1 : Sk(x)= p} = 1+ f p,{0}(x),

α(p) := µ(Np > 0)−1
= µ(∃0≤ k < ϕ(x) : Sk(x)= p)−1,

and
N0,p(x) := inf{n ≥ 0 : T n

{0}(x) ∈ {Np > 0}}.

The following theorem explains how these quantities are related in the limit p→∞.

THEOREM 2.7. Let ( Ã, µ̃, T̃ ) be a conservative and ergodic† Markovian Zd -extension of
a Gibbs–Markov map (A, µ, T ). Then the following are true.
• As p→+∞,

α(p) = α(−p)∼ Eµ[Np|Np > 0] ∼ Eµ[N0,p]

∼
σ 2

G K ( f p,{0}, A, µ, T̃{0})
2

∼
Eµ[ f 2

p,{0}]

2
.

• The conditional distributions of α(p)−1 Np given {Np > 0} have exponential tails,
uniformly in p: there exist C ≥ 0 and κ > 0 such that, for every t > 0,

sup
p∈Zd

µ((α(p))−1 Np > t |Np > 0)≤ Ce−κt .

† The extension needs not be aperiodic for this theorem.
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• The random variables α(p)−1 Np conditioned on {Np > 0} converge in distribution
and in moments to an exponential random variable of parameter 1 as p goes to infinity.
In particular, for all q > 1,

Eµ[| f p,{0}|
q
] ∼ 0(1+ q)α(p)q−1.

The equality α(p)= α(−p) holds for any recurrent group extension of a probability-
preserving dynamical system. The remaining points rely much more on the Gibbs–Markov
structure.

The proof of Theorem 2.7 rests on two main points: the exponential tightness
of α(p)−1 Np given {Np > 0} (§4.3), and its convergence to an exponential random
variable (§4.4). The later point is an interesting application of the general fact that, for
many hyperbolic dynamical systems, the hitting time of small balls, once renormalized,
converges in distribution to an exponential random variable (see e.g. the reviews [17, 30,
58]). Once we have tightness and convergence in distribution, we can evaluate the moments
of Np.

For random walks, many estimates are more explicit. For instance, the conditional
distribution of Np given {Np > 0} is geometric, so its moments are exactly known (as
functions of α(p)). With this improvement, one can recover part of [61, Ch. III.11, P5]—
that is, the equivalents in Theorem 2.7 and Corollary 2.9 can be made into equalities:

α(p) = α(−p)= Eµ[Np|Np > 0] = 1+ Eµ[N0,p]

= 1+
σ 2

G K ( f p,{0}, A, µ, T̃{0})
2

= 1+
Eµ[ f 2

p,{0}]

2
= g(p).

2.3.2. Induction invariance of the Green–Kubo formula. While Theorem 2.7 gives
asymptotic relationships between many quantities, it does not provide any way to
effectively compute them. For random walks, α(p) and g(p) are related through a
probabilistic interpretation of the symmetrized potential kernel.

PROPOSITION 2.8. [61, Ch. III.11, P5] Consider an ergodic aperiodic random walk on
Z2. For all p ∈ Z2,

α(p)= g(p).

We are able to generalize this proposition to a larger class of dynamical systems.
To our knowledge, our proof of Proposition 2.8 is new even for random walks. We
leverage Theorem 2.4 and [68, Theorem 6.8]. Whenever the hypotheses of these theorems
coincide, their conclusions must be the same. Hence, the scaling factors before the MLGM
distribution must be the same, that is,

σ 2
G K ( f, Ã, µ̃, T̃ )= σ 2

G K ( f{0}, A, µ, T̃{0}). (2.5)

If we apply this observation to f = f p, we get the following.

COROLLARY 2.9. Let ( Ã, µ̃, T̃ ) be an aperiodic Markovian Zd -extension of a Gibbs–
Markov map (A, π, λ, µ, T ) with step function F. Assume that the extension is ergodic,
conservative, and either of the following hypotheses.
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• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].
• d = 1 and

∫
A eiuF dµ= e−ϑ |u|[1−iζ sgn(u)]L(|u|−1)

+ o(|u|L(|u|−1)) at 0, for some real
numbers ϑ > 0 and ζ ∈ R and some function L with slow variation.

• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random
variable.

Then, as p→+∞,
α(p)∼ g(p).

Remark 2.10. (1-stable laws) The description of the distributions in the basin of attraction
of a 1-stable law is notoriously difficult [2]. As in Hypothesis 3.1, we choose to make a
spectral assumption. It does not capture all such distributions, but includes e.g. symmetric
distributions. We believe that this assumption can be significantly weakened if needed.

2.3.3. An improved distributional limit theorem. Proposition 2.6 provides a first-order
estimate of α(p), depending on the tails of F . We can use this estimate to run an (improved
version of an) argument by Csáki, Csörgő, Földes and Révész [18, Lemma 3.1]. we get
more explicit integrability conditions than in [68, Theorem 6.8] for observables of Zd -
extensions, which yields a new distributional limit theorem. Note that aperiodicity is not
required for this result.

THEOREM 2.11. Let ( Ã, µ̃, T̃ ) be a Markovian Zd -extension of a Gibbs–Markov map
(A, π, λ, µ, T ) with step function F. Assume that the extension is ergodic, conservative,
and either of the following hypotheses.
• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].
• d = 1 and

∫
A eiuF dµ= e−ϑ |u|[1−iζ sgn(u)]L(|u|−1)

+ o(|u|L(|u|−1)) at 0, for some real
numbers ϑ > 0 and ζ ∈ R and some function L with slow variation.

• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random
variable.

Let f : Ã→ R be such that:
• the family of function ( f (·, p))p∈Zd is uniformly locally η-Hölder for some η > 0;
•

∫
Ã(1+ |p|)

(α−d)/2+ε
‖ f (·, p)‖Lq (A,µ)dµ̃(x, p) <+∞ for some ε > 0 and q > 2;

•
∫

Ã f dµ̃= 0.
Then,

ST̃
n f

√
8(0)An

⇒ σG K ( f{0}, A, µ, T̃{0})Y, (2.6)

where Y is a standard MLGM(1− d/α) random variable, the convergence is strong in
distribution, and

σ 2
G K ( f{0}, A, µ, T̃{0}) := lim

n→+∞

∫
A

f 2
{0}dµ+ 2

n∑
k=1

∫
A

f{0} · f{0} ◦ T̃ k
{0} dµ,

where the limit is taken in the Cesàro sense.

Remark 2.12. (Optimal exponent in the summability assumption) We consider the case
when d = 1 and α = 2. In [18] and some subsequent works by the same authors, the
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condition required for f is ∑
p∈G

|p|1+ε|β(p)|<+∞. (2.7)

The reason is that the authors used Jensen’s inequality in their proof [18, Lemma 2.1],
which is in this context less efficient than Minkowski’s inequality, which we used in
the proof of Lemma 4.19. This small modification can be implemented in their proof,
which improves by a factor 2 some requirements in their works, e.g. [18, Theorem 1] and
[19, Example 3.3].

Finally, the hypotheses of Theorem 2.4 and of Theorem 2.11 have a greater overlap
than those of Theorem 2.4 and [68, Theorem 6.8], so we can improve the observation in
equation (2.5).

COROLLARY 2.13. (Induction invariance of the Green–Kubo formula) Let
(A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Assume that the step function
F : A→ Zd is σ(π)-measurable, integrable, aperiodic, and that

∫
A Fdµ= 0. We also

assume that the distribution of F with respect to µ is in the domain of attraction of an
α-stable distribution, and that the Markovian Zd -extension ( Ã, µ̃, T̃ ) is conservative and
ergodic.

Let β : Zd
→ R be such that:

•
∑

p∈Zd |p|(α−d)/2+ε
|β(p)|<+∞ for some ε > 0;

•
∑

p∈Zd β(p)= 0.
Let f (x, p) := β(p). Then,

σG K ( f, Ã, µ̃, T̃ )= σG K ( f{0}, A, µ, T̃{0}). (2.8)

See Appendix A for a discussion of this corollary.

2.4. Applications. To finish this introduction, we present some applications of our
results to more concrete dynamical systems: the geodesic flow on Abelian covers in
negative curvature, and Lorentz gases (i.e. periodic planar billiards). The proofs can be
found in §5.

2.4.1. Periodic planar billiard systems. Lorentz gases—that is, periodic or quasi-
periodic convex billiards—are classical dynamical systems, whose initial motivation
comes from the modelization of a gas of electrons in a metal. The electron is then seen
as bouncing on the atoms of the metal, which act as scatterers.

In the plane and with a finite horizon, Lorentz gases exhibit classical diffusion, and
the trajectory of a particle behaves much like a random walk in the Euclidean space.
For instance, the trajectories are chaotic [60], satisfy a central limit theorem [14, 15], a
local limit theorem [62], an almost sure invariance principle [27] (i.e. the renormalized
trajectories converge in a strong sense to the trajectories of a Brownian motion), etc. We
refer the reader to [16] for more information of billiards. While the infinite horizon case
is also well-known [22, 63], it presents many non-trivial difficulties, so we shall restrict
ourselves to finite horizon planar billiards.
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FIGURE 1. A Sinai billiard with finite horizon.

FIGURE 2. A single collision.

Choose a Z2-periodic locally finite configuration of obstacles (p + Oi : i ∈ I, p ∈ Z2),
where I is a finite set. We assume that the obstacles Oi + p are convex open sets, with
pairwise disjoint closures (so that there is no cusp), that their boundaries are C3 and have
non-vanishing curvature. We assume moreover that the horizon is finite: every line in R2

meets at least one obstacle (Figure 1). The billiard domain is the complement in R2 of the
union of the obstacles Q := R2

\
⋃

i∈I,p∈Z2(p + Oi ).
We consider a point particle moving at unit speed in the billiard domain Q, bouncing

on obstacles with the classical reflection law: the incident angle equals the reflected angle
and going straight on between two collisions (Figure 2). This is the billiard flow, whose
configuration space is (up to a set of zero measure) Q × S1. Now, consider this model
at collision times; the configuration space is then given by � := ∂Q × [−π/2, π/2]. The
space� is endowed with the Liouville measure ν̃, which has density cos(φ) in (x, φ) with
respect to the Lebesgue measure (see the picture), and is invariant under the collision map.

For every p ∈ Z2, we call cell any set Cp :=
⋃

i∈I(p + ∂Oi ) and attribute to this cell a
value β(p) given by a function β : Z2

→ R (Figure 3). We assume that the particle wins
the value β(p) associated to Cp each time it touches it. We are interested in the behaviour,
as n→+∞, of the total amount Yn won by the particle after the nth reflection.

We write Sn(x) for the index in Z2 of the cell touched at the nth reflection time by
a particle starting from x ∈�. Recall that (Sn/

√
n)n converges strongly in distribution

(with respect to the Lebesgue measure on �) to a centered Gaussian random variable with
positive definite covariance matrix 6 [14, 15, 70].
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FIGURE 3. A periodic billiard table, and the observable β.

If β is summable and
∑

p∈Z2 β(p) 6= 0, then Yn/ log(n) converges strongly
in distribution to (

∑
p∈Z2 β(p) 6= 0)E , where E has a non-degenerate exponential

distribution. This follows e.g. from [1, Corollary 3.7.3] and Young’s construction [70],
and is also done in [22]. In another direction, if (β(p))p∈Z2 is a sequence of independent
identically distributed random variables independent of the billiard, the asymptotic
behaviour of (Yn) is markedly different [51].

We present two applications of Theorem 2.4, the first for (hidden) Z-extensions, and the
second for Z2-extensions.

COROLLARY 2.14. With the above notation, assume that:
• β(a, b)= β̃(a) for some function β̃;
• there exists ε > 0 such that

∑
p∈Z |p|

1/2+ε
|β̃|(p) <+∞;

•
∑

p∈Z β̃(p)= 0.
Then,

lim
n→+∞

1
n1/4Yn = σ( f )Y,

where the convergence is strong in distribution on (�, Leb), the random variable Y
follows standard MLGM(1/2) distribution, and

σ( f )2 =

√
2

π61,1

∑
k∈Z

∑
a,b∈Z2

β(a)β(b)ν̃(Sk = a − b|C0).

In addition, σ( f )= 0 if and only if f is a coboundary.

COROLLARY 2.15. With the above notation, assume that:
• there exists ε > 0 such that

∑
p∈Z2 |p|ε|β|(p) <+∞;

•
∑

p∈Z2 β(p)= 0.
Then,

lim
n→+∞

1√
log(n)

Yn = σ( f )Y,
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where the convergence is strong in distribution on (�, Leb), the random variable Y
follows a Laplace distribution of parameter 1/

√
2, and

σ( f )2 =
1

2π
√

det(6)

∑
k∈Z

∑
a,b∈Z2

β(a)β(b)ν̃(Sk = a − b|C0).

In addition, σ( f )= 0 if and only if f is a coboundary.

2.4.2. Geodesic flow on Abelian covers. The geodesic flow on a connected, compact
manifold with negative sectional curvature is a well-known example of a hyperbolic
dynamical system. The geodesic flow on Abelian covers of such manifolds provides a
class of dynamical systems, which preserve a σ -finite measure, for instance the Liouville
measure. They are also more tractable than billiards, as they do not have singularities.
These geodesic flows have been studied extensively, for instance to count periodic orbits
on the basis manifold of given length in a given homology class [39, 53, 59]. There are
extensions to Anosov flows [8] as well as to surfaces with cusps [3]. Finally, let us mention
that the geodesic flow on periodic manifolds is also used to study the horocycle flow on
the same manifolds [7, 42–44].

Limit theorems for observables with integral zero have already been obtained in this
context [68], but the improvement we get with Theorem 2.11 translates into a limit
theorem, which is valid for a wider class of observables. Instead of having compact
support, the observables need only to decay polynomially fast at infinity.

Let M be a compact, connected manifold with a Riemannian metric of negative
sectional curvature. Let $ : N → M be a connected Zd -cover of M . Given a Gibbs
measure µM on T 1 M , we endow T 1 N with a σ -finite measure µN by lifting µM locally.
We refer the reader to [50, Ch. 11.6] for more details about Gibbs measures in this context.

Let (gt )t∈R be the geodesic flow on T 1 N . In §5.2, we shall prove the following
proposition, which is a generalization of [68, Proposition 6.12].

PROPOSITION 2.16. Let µN be the lift of a Gibbs measure µM corresponding to a Hölder
potential. Assume that the extension (N , (gt ), µN ) is ergodic and recurrent. Fix x0 ∈ T 1 N.
Let f be a real-valued Hölder function on T 1 N. Assume that:
• there exists ε > 0 such that

∫
T 1 N d(x0, x)1−d/2+ε

| f |(x) dµN (x) <+∞;
•

∫
T 1 N f dµN = 0.

If d = 1, there exists σ( f )≥ 0 such that

lim
t→+∞

1
t1/4

∫ t

0
f ◦ gs(x, v) ds = σ( f )Y1/2,

where the convergence is strong in distribution on (T 1 N , µN ), and Y1/2 follows a standard
MLGM(1/2) distribution.

If d = 2, there exists σ( f )≥ 0 such that

lim
t→+∞

1√
log(t)

∫ t

0
f ◦ gs(x, v) ds = σ( f )Y0,

where the convergence is strong in distribution on (T 1 N , µN ), and Y0 follows a standard
MLGM(0) distribution.

In both cases, σ( f )= 0 if and only if f is a measurable coboundary.
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Remark 2.17. (Recurrent extensions of Gibbs measures) Given a Hölder potential F :
T 1 M→ C, let F̂(x, v) := F(x,−v). We say that the potential is reversible if F and F̂
are cohomologous, that is, if there exists a Hölder function u such that

∫ t
0 f ◦ gs ds =

u ◦ gt − u for all t . In this case, we also say that F − F̂ is a Hölder coboundary. We say
that a Gibbs measure is reversible if it is associated to a reversible potential.

For instance, both the Liouville measure and the maximal entropy measure are
reversible, because the associated potentials (constants for the maximal entropy measure,
and the log-Jacobian of the flow restricted to the unstable direction for the Liouville
measure) are reversible.

If µM is a reversible Gibbs measure and d ∈ {1, 2}, then the geodesic flow on
(T 1 N , µN ) is both ergodic and recurrent (see [55] for the constant curvature case, although
the proof works as well in variable curvature).

The only difference between Proposition 2.16 and [68, Proposition 6.12]
is that the assumption that f has compact support is relaxed to∫

T 1 N d(x0, x)1−d/2+ε
| f |(x) dµN (x) <+∞ for some ε > 0.

Note that our work gives us more information on this system; for instance, Theorem 2.7
can be adapted to yield an asymptotic equivalence of the probability that, starting from
some nice Poincaré section A1, the geodesic flow reaches a faraway Poincaré section A2

before returning to A1. However, the geometric interpretation of these sections is less
evident than for others systems, such as billiards.

3. Theorem 2.4: assumptions and proof
This section is mostly devoted to the proof of Theorem 2.4. It is organized as follows.
The spectral hypotheses are presented in §3.1. The following three subsections contain,
respectively, a sketch of the proof of Theorem 2.4, the full proof of the theorem, and a
proof of the more technical estimates we use. Finally, in §3.5 we prove Proposition 2.6.

3.1. General spectral assumptions. Let P be the transfer operator associated to h 7→
h ◦ T , that is,∫

A
P f · g dµ=

∫
A

f · g ◦ T dµ for all f ∈ L1(A, µ), for all g ∈ L∞(A, µ).

We consider the family (Pu)u∈Td of operators defined by Pu : h 7→ P(ei〈u,F〉h), where
〈·, ·〉 stands for the usual scalar product in Rd . Note that

Pk
u (h)= Pk(ei〈u,Sk 〉h). (3.1)

We make the following assumptions. Thanks to perturbation theorems (see namely [28,
31, 40, 48, 49] for the general method, and [4] for an application to Gibbs–Markov maps),
they hold for a wide variety of hyperbolic dynamical systems.

Hypothesis 3.1. (Spectral hypotheses) The stochastic process (Sn)n is recurrent. There
exists an integer M ≥ 1 and a µ-essential partition of A in M measurable sub-sets
(A j ) j∈Z/MZ such that T (A j )= A j+1 for all j ∈ Z/MZ (M = 1 if T is mixing).

There exists a complex Banach space (B, ‖ · ‖B) of functions defined on A, on which
P acts continuously, and such that:
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• Eµ[·] defines a linear continuous form on B;
• 1 ∈ B and for every j , the multiplication by 1A j belongs to L(B, B),

where (L(B, B), ‖ · ‖L(B,B)) stands for the Banach space of linear continuous
endomorphisms of B;

• there exist a neighbourhood U of 0 in Td , two constants C > 0 and r ∈ (0, 1), two
continuous functions λ· :U → C and 5· :U → L(B, B) such that, for all u ∈U ,

Pu = λu5u + Ru, (3.2)

with

5u Ru = Ru5u = 0, (3.3)

5M+1
u =5u, (3.4)

λ0 = 1, (3.5)

50 = M
∑

j∈Z/MZ
Eµ[1A j ·]1A j+1 , (3.6)

sup
v∈U
‖Rk

v‖L(B,B) ≤ Crk, (3.7)

sup
v∈[−π,π ]d\U

‖Pk
v ‖L(B,B) ≤ Crk

; (3.8)

• if d = 1, there exists α ∈ [1, 2] such that, for all u ∈U ,

λu = e−ψ(u)L(|u|
−1)
+ o(|u|αL(|u|−1)),

as u goes to 0, where ψ(u)= ϑ |u|α[1− iζ sgn(u)] for some real numbers ϑ > 0 and
ζ ∈ R such that |ζ | ≤ tan (πα)/2 if α > 1. We set 6 := 1;

• if d = 2, there exists an invertible positive symmetric matrix6 such that, for all u ∈U ,

λu = e−ψ(
√
6u)L(|

√
6u|−1)

+ o(|u|2L(|u|−1)),

as u goes to 0, where ψ(u) := |u|2/2 and L is slowly varying at infinity. We set ϑ :=
1/2.

Hypothesis 3.1 implies the ergodicity of T and the mixing of (T M )|A j for all j ∈ Z/MZ
as soon as B is dense in L1(A, µ). If the system is not mixing, then it is expected that
the transfer operators has multiple eigenvalues of modulus 1. The following proposition
asserts that, in this case, the standard spectral techniques yield a decomposition as in
equation (3.2).

PROPOSITION 3.2. Assume the beginning of Hypothesis 3.1 and its first two items,
and that (A0, µ(·|A0), (T M )|A0) is mixing. Assume in addition that there exist a
neighbourhood U of 0 in Td , two constants C > 0 and r ∈ (0, 1) and continuous functions
λ̃·, λ0,·, . . . , λK−1,· :U → C and 5̃·, 50,·, . . . , 5K−1,·, R̃·, R· :U → L(B, B) such
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that, for all u ∈U

Pu =
∑

j∈Z/KZ
λ j,u5 j,u + Ru,

5 j,u Ru = Ru Pj,u = 0,

5 j,u5 j ′,u = δ j, j ′5 j,u,

|λ j,0| = 1

sup
v∈U
‖Rk

v‖L(B,B) ≤ Crk,

and 1A0 P M
u (1A0)= λ̃u5̃u + R̃u , with

λ̃0 = 1,

5̃2
u = 5̃u,

5̃0 = µ(·|A0)1A0 ,

5̃u R̃u = R̃u5̃u = 0,

‖R̃k
u‖L(B,B) ≤ Crk .

Then Pu = λu5u + Ru for all u ∈U, and the equations (3.3)–(3.7) are satisfied. If
moreover u 7→ Pu is continuous on Td and Pu admits no eigenvalue of modulus 1 for
u 6= 0, then equation (3.8) is also satisfied, up to an increase of C > 0 and r ∈ (0, 1).

Proof. Up to taking a smaller U , we assume that |λ j,·|> C1/Mr and |λ̃·|> Cr M . Then
λ̃u = λ

M
j,u for every j ∈ Z/MZ, and 5̃u =

∑
j∈Z/MZ 1A05 j,u(1A0 ·). Hence we can take

K = M and, up to a permutation of indices, we assume that λ j,u = λuξ
j with ξ := e2iπ/M

and λ0 = 1 (P1= 1 ensures that 1 is an eigenvalue of P0, and this convention yields
equation (3.5)). Hence Pu = λu5u + Ru , with

λu := λ0,u,

5u :=
∑

j∈Z/MZ
ξ j5 j,u .

Note that 5u Ru = Ru5u = 0 and that 5M+1
u =

∑
j∈Z/MZ ξ

j (M+1)5 j,u =5u , which
proves equations (3.3) and (3.4). In the general case, it remains to prove (3.6).

Let f be an eigenvector for the eigenvalue ξ j of P . For all k ∈ Z/MZ,

P(1Ak f )= ξ j 1Ak+1 f, (3.9)

so that P M (1Ak f )= 1Ak f . Since T M is mixing, f must be constant on each Ak ; using
equation (3.9), we get that f is proportional to

∑
k∈Z/MZ ξ

− jk1Ak . We conclude that

5 j,0 =
∑

k∈Z/MZ
ξ− jk1AkEµ

[ ∑
`∈Z/MZ

ξ j`1A` ·

]
,

and from there that 50 = M
∑

j∈Z/MZ ξ
j5 j,0 =

∑
k∈Z/MZ 1Ak+1Eµ[1Ak ·].

Finally, equation (3.8) comes from [4]. �
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For every n, we set
an := inf{x > 0 : n|x |−αL(x)≥ 1}, (3.10)

so that nL(an)∼ aαn . The sequence (an) is then regularly varying of index 1/α.
Under Hypothesis 3.1, Eµ[ei〈t,Sn〉/an ] ∼ (λt/an )

n
∼ e−ψ(

√
6t) for every t ∈ Rd . Thus,

the sequence (Sn/an)n converges in distribution to an α-stable random variable with
characteristic function e−ψ(

√
6·).

3.2. Strategy of the proof. Given the length of the proof and the technicality of some of
its parts, we give here a brief outline of how the method of moments can be applied to our
problem.

Let Zn(β)(x) :=
∑n

k=1 β(S
T
n F(x)) be the Birkhoff sum of β starting from (x, 0). The

proof consists in showing the convergence for every m of the mth moment of Zn(β):

Eµ
[(

Zn(β)

An

)m]
= Eµ

[(∑n
k=1

∑
a∈Zd β(a)1{Sk=a}

An

)m]
= A−m

n

n∑
k1,...,km=1

∑
a1,...,am∈Zd

β(a1) · · · β(am)µ(Sk1 = a1, . . . , Skm = am).

Hence we have to deal with quantities of the following form:∑
1≤k1<···<kq≤n

∑
a1,...,aq∈Zd

β(a1)
N1 · · · β(aq)

Nqµ(Sk1 = a1, . . . , Skq = aq),

where N1 + · · · + Nq = m. Let us write An;q;N1,...,Nq for this quantity, which behaves
roughly as ∑

1≤k1<···<kq≤n

∑
a1,...,aq∈Zd

β(a1)
N1 · · · β(aq)

Nq

× µ(Sk1 = a1)µ(Sk2−k1 = a2 − a1) · · · µ(Skq−kq−1 = aq − aq−1).

This equation would actually be exact if (Sn)n were a random walk. Then, put k0 := 0 and
`i := ki − ki − 1, so that

An;q;N1,...,Nq ∼

∑
`1+···+`q≤n

∑
a1,...,aq∈Zd

q∏
i=1

(β(ai )
Niµ(S`i = ai − ai−1)).

We prove that
An;q;N1,...,Nq = O(Am

n )

and even that
An;q;N1,...,Nq = o(Am

n )

except if (N1, . . . , Nq) is made of 2s and of pairs of consecutive 1s and of nothing else,
which implies that m is even. In particular, for all odd m,

Eµ[Zm
n ] = o(Am

n ).

This is the content of Lemma 3.4, which is by far the most technical part of our proof.
This is also the point where we use the fact that β has zero sum; otherwise, we would get
An;q;N1,...,Nq =2(A

2m
n ) for (N1, . . . , Nq)= (1, . . . , 1).
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If (N1, . . . , Nq) is made of 2s and disjoint pairs of consecutive 1, then it contains
(m − q) times the value 2 and (q − m/2) pairs (Ni , Ni+1)= (1, 1). Then, we shall prove
that

An;q;N1,...,Nq ∼

∑
`1+···+`m/2≤n

m−q∏
i=1

(∑
a∈Zd

β(a)2µ(S`i = a)
)

×

m/2∏
i=m−q+1

(∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b − a)µ(S`i = a)
)

∼

∑
`1+···+`m/2≤n

m−q∏
i=1

(∑
a∈Zd

β(a)2ca−d
`i

)

×

m/2∏
i=m−q+1

(∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b − a)ca−d
`i

)

∼ cm/2
(∑

a∈Zd

β(a)2
)m−q(∑

`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = b − a)
)q−m/2

×

∑
`1+···+`m/2≤n

m/2∏
i=1

a−d
`i

∼ Km,q

( n∑
`=1

a−d
`

)m/2

= Km,qA
m
n ,

where the constants c and Km,q are explicit and yield the MLGM random variables.

3.3. Proof of Theorem 2.4. In this section we prove Theorem 2.4. To prove the strong
convergence in distribution, it is actually sufficient to prove the convergence in distribution
with respect to some absolutely continuous probability measure [72, Theorem 1]. At first,
we prove the convergence of (ST̃

n f/An)n under the probability measure µ0 := µ⊗ δ0, i.e.
the convergence of (Zn(β)/An)n under the probability measure µ, where

Zn(β)=

n∑
k=1

β(Sk).

We use the method of moments. Let m ≥ 0 be an integer, which is fixed for the
remainder of this proof. Then, for all n

Eµ[Zn(β)
m
] = Eµ

[( n∑
k=1

β(Sk)

)m]

=

n∑
k1,...,km=1

∑
d1,...,dm∈Zd

Eµ
[ m∏

s=1

β(ds)1{Sks=ds }

]
.

We delete the terms that are null, and regroup those that are equal. Let us consider one
of the terms

∏m
s=1 β(ds)1{Sks=ds }. We may assume that ds = ds′ as soon as ks = ks′ ;
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otherwise, 1{Sks=ds }1{Sks′
=ds′ }
= 0 and the whole product is zero. Let q := #{k1, . . . , km}.

Then {k1, . . . , km} = {n1, . . . , nq} with 1≤ n1 < · · ·< nq ≤ n. We set N j := #{i =
1, . . . , m : ki = n j } for the multiplicity of n j in (k1, . . . , km), and a j := di if ki = n j .
We write a := (a1, . . . , aq), N := (N1, . . . , Nq) and n := (n1, . . . , nq), and set, by
convention, n0 := 0 and a0 := 0. Observe that

m∏
s=1

β(ds)1{Sks=ds } =

q∏
j=1

β(a j )
N j 1{Sn j=a j }

and that the number of m-uplets (k1, . . . , km) giving the same pair (n, N) is equal to
the number cN of maps φ : {1, . . . , m} → {1, . . . , q} such that |φ−1({ j})| = N j for all
j ∈ {1, . . . , q}. Hence

Eµ[Zn(β)
m
] =

m∑
q=1

∑
N j≥1

N1+···+Nq=m

cN
∑

1≤n1<···<nq≤n

∑
a∈(Zd )q

Eµ
[ q∏

j=1

(β(a j )
N j 1{Sn j=a j })

]
.

For all n ≥ 1, for all 1≤ q ≤ m and for all N= (N j )1≤ j≤q such that N j ≥ 1 and∑q
j=1 N j = m, we define

An;q;N :=
∑

1≤n1<···<nq≤n

∑
a∈(Zd )q

Eµ
[ q∏

j=1

(β(a j )
N j 1{Sn j=a j })

]

=

∑
1≤n1<···<nq≤n

∑
a∈(Zd )q

Eµ
[ q∏

j=1

(β(a j )
N j 1{Sn j−Sn j−1=a j−a j−1})

]
,

so that

Eµ[Zn(β)
m
] =

m∑
q=1

∑
N j≥1

N1+···+Nq=m

cN An;q,N. (3.11)

Instead of working with a sequence of times (n j ) and positions (a j ), it shall be more
convenient to work with time increments and position increments. Let 1≤ n1 < · · ·<

nq ≤ n. We can describe this sequence with integers (`1, . . . , `q) by taking `1 := n1 and
` j := n j − n j−1 for all 2≤ j ≤ q . In what follows, sequences (`1, . . . , `q) ∈ {1, . . . , n}q

and sequences (n1, . . . , nq) such that 1≤ n1 < · · ·< nq ≤ n shall be related in this way.
Let Eq,n be the set defined by

Eq,n =

{
`= (`1, . . . , `q) ∈ {1, . . . , n}q :

q∑
j=1

` j ≤ n
}
.

Then summing over all n= (n1, . . . , nq) such that 1≤ n1 < · · ·< nq ≤ n is the same as
summing over all ` in Eq,n , whence

An;q;N =
∑

a∈(Zd )q

[( q∏
j=1

β(a j )
N j

) ∑
`∈Eq,n

Eµ
[ q∏

j=1

1{S` j=a j−a j−1} ◦ T n j−1

]]
. (3.12)
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A single coefficient An;q;N is the contribution to the mth moment of Zn(β) by paths of
length q and with weights (N j ). Our goal is to find a sub-family of such weighted paths,
which is manageable enough so that we can estimate the behaviour of the An;q;N, and
large enough so that it makes for almost all Eµ[Zn(β)

m
] as n goes to infinity. However,

in order to benefit from the fact that
∑

a∈Zd β(a)= 0, we use transfer operators, and a
decomposition, which leverages this equality to make some further simplifications†.

For all ` ∈ N and a ∈ Zd , we define an operator Q`,a acting on B by

Q`,a(h) := P`(1{S`=a}h)=
1

(2π)d

∫
[−π,π ]d

e−i〈u,a〉P`u (h) du,

where we used (3.1) to establish the second formula. For 1≤ q ′ ≤ q, we write

Dq ′ :=

q ′∏
j=1

(1{S` j=a j−a j−1} ◦ T n j−1).

Recall that Pk(g ◦ T k
· h)= g Pk(h). Hence, by induction,

Pnq (Dq)= Pnq (1{S`q=aq−aq−1} ◦ T nq−1 · Dq−1)

= Pnq−nq−1(1{S`q=aq−aq−1}P
nq−1(Dq−1))

= Q`q ,aq−aq−1(P
nq−1(Dq−1))

= · · ·

= Q`q ,aq−aq−1 · · · Q`1,a1−a0(1).

Plugging this identity into equation (3.12) yields

An;q;N =
∑

a∈(Zd )q

[( q∏
j=1

β(a j )
N j

) ∑
`∈Eq,n

Eµ[Q`q ,aq−aq−1 · · · Q`1,a1−a0(1)]
]
. (3.13)

We further split the operators Q`,a . Let us write

Q`,a = Q(0)
`,a + Q(1)

`,a, (3.14)

with

Q(0)
`,a :=8(0)

5`0

ad
`

Q(1)
`,a = ε`,a +

8(a/a`)−8(0)
ad
`

5`0 with ‖ε`,a‖ = o(a−d
` ),

where 50 is as in Hypothesis 3.1, which we know is possible thanks to Lemma 3.6.

† If β has a non-zero integral, different terms dominate, and the moments grow faster. It is thus essential to cancel
out these ‘first-order terms’.
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We introduce these operators Q(0)
`,a and Q(1)

`,a into (3.13), creating new data we need to
track: the index of the operator we use at each point in the weighted path. Fix n, q and N.
Given ε = (ε1, . . . , εq) ∈ {0, 1}q and s ∈ Zd , write

Bε
s,`,N :=

∑
a0,...,aq∈Zd

a0=s

( q∏
i=1

β(ai )
Ni

)
Q
(εq )

`q ,aq−aq−1
· · · Q(ε1)

`1,a1−a0
,

bε
s,`,N(·) := Eµ[Bε

s,`,N(·)]

=

∑
a0,...,aq∈Zd

a0=s

Eµ[β(aq)
Nq Q

(εq )

`q ,aq−aq−1
β(aq−1)

Nq−1 . . . β(a1)
N1 Q(ε1)

`1,a1−s(·)],

(3.15)

Aε
n;q;N :=

∑
`∈Eq,n

bε
0,`,N(1),

so that
An;q;N =

∑
ε∈{0,1}q

Aε
n;q;N =

∑
ε∈{0,1}q

∑
`∈Eq,n

bε
0,`,N(1).

The datum s ∈ Zd is the starting point of a weighted path. Later on, we shall estimate
Bε

s,`,N and bε
s,`,N on pieces of the weighted path (a0, . . . , aq), in which case the point s

will not always be 0. The quantity Aε
n;q;N is related to An;q;N and therefore shall only be

estimated for the whole path (a0, . . . , aq) with, as before, the convention a0 = 0, so in its
definition we always take s = 0.

Now, the main question is: for which data (q, N, ε) do the coefficients Aε
n;q;N, seen as

functions of n, grow the fastest? One would want to use the larger operator Q(0)
`,a whenever

possible, and to use the lowest possible weights whenever possible (because lower weights
means larger value of q , so a faster combinatorial growth). A priori, the best possible
choice would be ε = (0, . . . , 0) and N= (1, . . . , 1). That is indeed true for observables
β with a non-zero integral. However, in our case, the fact that

∑
a∈Zd β(a)= 0 induces a

cancellation, which makes the corresponding coefficient vanish. This can be seen with the
following elementary properties.

PROPERTIES 3.3. Consider a single linear form bε
s,`,N. For all 1≤ i ≤ q, the terms on the

right side of Q(εi )
`i ,ai−ai−1

in equation (3.15) depend only on a1, . . . , ai−1, and the terms on
its left side only depend on ai , . . . , aq . Hence, the following is true.

(i) Since Q(0)
`,a does not depend on a, the value of b(0,ε)s,(`0,`),(N0,N) does not depend on s.

Without loss of generality, we shall choose s to be 0 when ε1 = 0.
(ii) b(0)s,(`),(1)(·)=8(0)a

−d
`

∑
a∈Zd β(a)Eµ[·] = 0 and

b(0)s,(`),(N )(·)=8(0)a
−d
`

∑
a∈Zd β(a)NEµ[·] for all `, N ≥ 1.
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(iii) b(ε,0,ε
′)

s,(`,`0,`
′),(N,N0,N′)

=
∑

j∈Z/MZ Eµ[1A j Bε
s,`,N(·)]Eµ[B

(0,ε′)
0,(`0,`

′),(N0,N′)
(1A j+`0

)], i.e.

b(ε,0,ε
′)

s,(`,`0,`
′),(N,N0,N′)

(·)=
∑

j∈Z/MZ
bε

s,`,N(1A j ·)b
(0,ε′)
0,(`0,`

′),(N0,N′)
(1A j+|`|1

),

since Q(εi )
`i ,ai−ai−1

(1A j ·)= 1A j+`i
Q(εi )
`i ,ai−ai−1

(·).

(iv) In particular, b(ε,0)s,(`,`0),(N,1) = 0, and

b(ε,0,0,ε
′)

s,(`,`0,`
′

0,`
′),(N,1,N ′0,N′)

=

∑
j∈Z/MZ

bε
s,`,N(1A j ·)b

(0)
0,(`0),(1)

(1A j+|`|1)b
(0,ε′)
0,(`′0,`

′),(N ′0,N′)
(1A j+|`|1+`0

)= 0.

(v) b(0,1,...,1)s,(`1,...,`q ),(N1,N2,...,Nq )
(1A j )

=8(0)a−d
`1

∑
a1∈Zd

β(a1)
N1b(1,...,1)a1,(`2,...,`q ),(N2,...,Nq )

(1A j+`1
).

(vi) Applying point (v) and the fact that
∑

a,b∈Zd β(a)β(b)Eµ[Q(0)
`′,a−b(1)] = 0, we get

b(0,1)s,(`,`′),(1,1)(1A j )=8(0)a
−d
`

∑
a,b∈Zd

β(a)β(b)Eµ[Q`′,a−b(1A j+`)]

=8(0)a−d
`

∑
a,b∈Zd

β(a)β(b)µ(A j+`; S`′ = a − b).

Given a sequence ε ∈ {0, 1}q , we can iterate point (iii) above to cut bε
s,`,N into smaller

pieces, for which 0 may only appear at the beginning of the associated sequences of
indices, and then use point (v) to transform the heading εi = 0. Write m1 < m2 <

· · ·< mK for the indices i ∈ {1, . . . , q} such that εi = 0. We use the conventions that
mK+1 := q + 1 and εq+1 := 0, that bε

s,`,N ≡ 1 if q = 0, and that an empty product is also
equal to 1. Then

bε
s,`,N(1) =

∑
j∈Z/MZ

b(1,...,1)s,(`1,...,`m1−1),(N1,...,Nm1−1)
(1A j )

×

K∏
i=1

b(0,1,...,1)0,(`mi ,...,`mi+1−1),(Nmi ,...,Nmi+1−1)
(1A j+`1+···+`mi

)

= (M8(0))K
∑

j∈Z/MZ
b(1,...,1)s,(`1,...,`m1−1),(N1,...,Nm1−1)

(1A j )

×

K∏
i=1

a−d
`mi

∑
a∈Zd

β(a)Nmi b(1,...,1)a,(`mi+1,...,`mi+1−1),(Nmi+1,...,Nmi+1−1)
(1A j+`1+···+`mi

).
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We sum over ` ∈ Eq,n , and get

|Aε
n,q,N| ≤

∑
`∈{1,...,n}q

|bε
0,`,N(1)|

≤ (M8(0))K
( ∑
(`1,...,`m1−1)

∈{1,...,n}m1−1

sup
j∈Z/MZ

|b(1,...,1)0,(`1,...,`m1−1),(N1,...,Nm1−1)
(1A j )|

)
(3.16)

×

K∏
i=1

(
A2

n

∑
(`mi+1,...,`mi+1−1)

∈{1,...,n}mi+1−mi−1

sup
j∈Z/MZ

×

∣∣∣∣∑
a∈Zd

β(a)Nmi b(1,...,1)a,(`mi+1,...,`mi+1−1),(Nmi+1,...,Nmi+1−1)
(1A j )

∣∣∣∣). (3.17)

Fix ω ∈ (0, 1] such that (α − d)/2< ω < (α − d)/2+ ε, and η ∈ (0, ω] such that ω +
η ≤ (α − d)/2+ ε. The control of (3.16) and of (3.17) shall be done with the following
technical lemma, the proof of which is postponed until §3.4.

LEMMA 3.4. Under the assumptions of Theorem 2.4 and with the previous notation, for
every q ≥ 1 and N= (N1, . . . , Nq) ∈ N

q
+, for every j ∈ Z/MZ,

sup
a∈Zd

1
1+ |a|η

∑
`∈{1,...,n}q

|b(1,...,1)a,`,N (1A j )| = o(A
N1+···+Nq
n ), (3.18)

n∑
`=1

∣∣∣∣∑
a∈Zd

β(a)b(1)a,(`),(N )(1A j )

∣∣∣∣= {O(1) if q = 1, N = 1,
o(An) if q = 1, N ≥ 2,

(3.19)

∑
`∈{1,...,n}q

∣∣∣∣∑
a∈Zd

β(a)b(1,...,1)a,`,N (1A j )

∣∣∣∣= o(A
N1+···+Nq−1
n ) if q ≥ 2. (3.20)

Equation (3.19) implies in particular that
∑n
`=1 |

∑
a,b∈Zd β(a)β(b)Eµ[Q(1)

`,a−b(1)]| is
bounded independently of n. Since

∑
a,b∈Zd β(a)β(b)Eµ[Q(0)

`,a−b(1)] = 0 for all `, we get
that

∑
`≥0

∑
a,b∈Zd β(a)β(b)µ(S` = b − a) is absolutely convergent in `, as claimed in

Theorem 2.4.
We consider the following condition on the sequences ε and N:

m1 = 1,

for all i ∈ {1, . . . , K },


Nmi ∈ {1, 2}
Nmi = 1 ⇒ mi+1 = mi + 2, N1+mi = 1,
Nmi = 2 ⇒ mi+1 = mi + 1.

(3.21)

Note that this condition implies that m = 2K .

COROLLARY 3.5. Use the assumptions of Theorem 2.4 and the previous notation. Let
m ≥ 1, q ≥ 1 and N1, . . . , Nq ∈ N+ be such that N1 + · · · + Nq = m. If condition (3.21)
holds, then

|Aε
n,q,N| = O(Am

n );
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otherwise,
|Aε

n,q,N| = o(Am
n ).

In particular, {
Eµ[Zn(β)

m
] = O(Am

n ) for all m ∈ 2N,
Eµ[Zn(β)

m
] = o(Am

n ) for all m ∈ 2N+ 1.
(3.22)

Proof. Due to equation (3.18), the term (3.16) is an o(A
N1+···+Nm1−1
n ) if m1 6= 1, and an

O(1)= O(A
N1+···+Nm1−1
n ) if m1 = 1.

Let us now estimate the term (3.17). Due to equation (3.18), since
∑

a∈Zd |a|η|β(a)|<
+∞, for all N0 ≥ 2 and q ≥ 1, for all N1, . . . , Nq ≥ 1,

A2
n

∑
`∈{1,...,n}q

sup
j∈Z/MZ

∣∣∣∣∑
a∈Zd

β(a)N0b(1,...,1)a,`,(N1,...,Nq )
(1A j )

∣∣∣∣= o(A
N0+N1+···+Nq
n ).

Due to equation (3.19), this estimate holds when N0 ≥ 3 and q = 0; due to equation (3.20),
this estimate holds when N0 = 1 and q ≥ 2.

The two remaining cases are N0 = 2, q = 0 and N0 = q = 1. When N0 = 2 and q = 0,
we have a upper bound in O(A2

n)= O(A
N0+···+Nq
n ). When q = N0 = N1 = 1, the same

upper bound is given by equation (3.19). If q = N0 = 1 and N1 ≥ 2, then equation (3.19)
yields a upper bound in o(A3

n)= o(A
N0+···+Nq
n ).

Hence, the term (3.17) is in O(A2K
n )= O(A

Nm1+···+Nq
n ) if, for every i ∈ {1, . . . , K },

we are in one of two cases:
• Nmi = 1, mi+1 = mi + 2 and N1+mi = 1;
• Nmi = 2, mi+1 = mi + 1.

Otherwise, (3.17) is in o(A
Nm1+···+Nq
n ). In particular,

|Aε
n,q,N| = O(Am

n ).

Furthermore, if condition (3.21) is not satisfied, either (3.16) is an o(A
N1+···+Nm1−1
n ) or one

of the terms in (3.17) is an o(A
Nm1+···+Nmi+1−1
n ), so |Aε

n,q,N| = o(Am
n ). This is the case, in

particular, if m is odd. �

Condition (3.21) can be rewritten:
• maxi Ni ≤ 2;
• εi = 0 as soon as Ni = 2;
• there exists J ⊂ {1, . . . , q} such that {i : Ni = 1} =

⊔
j∈J { j, j + 1};

• ε j = 0 and ε j+1 = 1 for all j ∈ J .
Assume now that m ≥ 0 is even. Let us write G(q) for the set of N= (N1, . . . , Nq) ∈

{1, 2}q such that N1 + · · · + Nq = m and {i ∈ {1, . . . , q} : Ni = 1} is the disjoint union
of pairs of the form { j, j + 1}. Given N ∈ G(q), there exists a unique ε(N) ∈ {0, 1}q

such that (ε(N), N) satisfies condition (3.21). Note that q = |{i : εi = 0, Ni = 2}| +
2|{i : εi = 0, Ni = 1}| and m/2= |{i : εi = 0, Ni = 2}| + |{i : εi = 0, Ni = 1}|, so that
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|{i : εi = 0, Ni = 1}| = q − m/2 and |{i : Ni = 2}| = m − q. Then

bε(N)
0;`,N(1) =

∑
j∈Z/MZ

( ∏
i :Ni=2

b(0)(`i ),(2)
(1A j+`1+···+`i

)

)

×

( ∏
i :Ni=1,εi=0

b(0,1)(`i ,`i+1),(1,1)
(1A j+`1+···+`i

)

)
.

Let Ẽq,n be the set of q-uplets of integers (`1, . . . , `q) ∈ {1, . . . , n}q such that
M
∑q

i=1d`i/Me ≤ n. Using points (ii) and (vi) in properties 3.3, we get

Aε(N)
n;q;N = (M8(0))

m/2
∑

j∈Z/MZ

∑
`∈Eq,n

( ∏
i :Ni=2

∑
a∈Zd β(a)2

Mad
`i

)

×

( ∏
i :Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)µ(A j+`1+···+`i ; S`i+1 = a − b)

ad
`i

)

= o(Am
n )+8(0)

m/2
∑

j∈Z/MZ

∑
`∈Ẽq,n

( ∏
i :Ni=2

∑
a∈Zd β(a)2

ad
`i

)

×

( ∏
i :Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)

∑M
k=1 µ(A j+`1+···+b`i /McM+k; S`i+1 = a − b)

ad
d` j /MeM

)

= o(Am
n )+8(0)

m/2
∑

`∈Ẽq,n

( ∏
i :Ni=2

∑
a∈Zd β(a)2

ad
`i

)

×

( ∏
i :Ni=1,εi=0

∑
a,b∈Zd β(a)β(b)µ(S`i+1 = a − b)

ad
d`i /MeM

)

= o(Am
n )+8(0)

m/2
(∑

a∈Zd

β(a)2
)m−q ∑

`1,...,`q−m/2≥1

×

[(q−m/2∏
i=1

∑
a,b∈Zd

β(a)β(b)µ(S`i = a − b)
)

×

( ∑
`′∈E

m/2,n−
∑q−m/2

i=1 `i

m/2∏
i=1

1
ad
`′i

)]
.

The sequence (An) has regular variation. Due to Lemma 3.7, for all `1, . . . , `q−m/2 ≥ 1,

∑
`′∈E

m/2,n−
∑q−m/2

i=1 `i

m/2∏
j=1

a−d
`′j
∼ Am

n
0(1+ (α − d)/α)m/2

0(1+ m/2(α − d)/α)
as n→+∞.
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Hence, by the dominated convergence theorem,

Aε(N)
n;q;N ∼ Am

n 8(0)
m/2
(∑

a∈Zd

β(a)2
)m−q

×

(∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a − b)
)q−m/2

0(1+ (α − d)/α)m/2

0(1+ (m)/2(α − d)/α)
.

If N /∈ G(q), or N ∈ G(q) but ε 6= ε(N), we have already seen that Aε
n;q;N = o(Am

n ).
Therefore, by equation (3.11),

Eµ[Zn(β)
m
] ∼

m∑
q=1

∑
N∈G(q)

cN Aε(N)
n;q;N.

For fixed q, the value of cN does not depend on N ∈ G(q), as the multiset of weights is the
same. There are 2−(m−q)m! maps from {1, . . . , m} to {1, . . . , q} such that 1, . . . , m − q
each have two preimages, and m − q + 1, . . . , q each have one preimage. Thus,

for all m ∈ 2Z, Eµ[Zn(β)
m
] ∼ m!

m∑
q=1

2−(m−q)
∑

N∈G(q)
Aε(N)

n;q;N.

For fixed q , there are
( m/2

q−m/2

)
sequences N ∈ G(q): each such sequence is the

concatenation of m/2 blocs of two different kinds, with r := q − m/2 blocs of one kind.
Thus, for even m,

Eµ[Zn(β)
m
] ∼ Am

n m!8(0)m/2
0(1+ (α − d)/α)m/2

0(1+ m/2(α − d)/α)

×

m/2∑
r=0

(
m/2

r

)(∑
a∈Zd β(a)2

2

)m/2−r

×

(∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a − b)
)r

= Am
n m!

0(1+ (α − d)/α)m/2

0(1+ (m/2)(α − d)/α)

×

[
8(0)

2

(∑
a∈Zd

β(a)2 + 2
∑
`≥1

∑
a,b∈Zd

β(a)β(b)µ(S` = a − b)
)]m/2

= Am
n

m!0(1+ (α − d)/α)m/2

2m/20(1+ (m/2)(α − d)/α)
8(0)m/2σG K (β, Ã, µ̃, T̃ )m .

Let Y be a random variable with a standard MLGM(1− α/d) distribution. Its distribution
function is even, so all its odd moments are 0. Let Y have a standard Mittag–Leffler
distribution of parameter 1− α/d and N be a standard Gaussian random variable. Then
the even moments of Y are

E[Ym
] = E[Y m/2

]E[N m
] =

(m/2)!0(1+ (α − d)/α)m/2

0(1+ (m/2)(α − d)/α)
m!

2m/2(m/2)!

=
m!0(1+ (α − d)/α)m/2

2m/20(1+ (m/2)(α − d)/α)
,

https://doi.org/10.1017/etds.2018.136 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.136


1920 F. Pène and D. Thomine

so that, for even m:

Eµ[Zn(β)
m
] ∼ Am

n E[(
√
8(0)σG K (β, Ã, µ̃, T̃ )Y)m].

We already know that Eµ[Zn(β)
m
] = o(Am

n ) for odd m. Hence, all the moments of
(Zn(β)/An)n converge to the moments of

√
8(0)σG K (β, Ã, µ̃, T̃ )Y . Since,∑

m≥0

[
0(1+ m/2(α − d)/α)

m!0(1+ (α − d)/α)m/2

]1/2m

=+∞,

Carleman’s criterion is satisfied [24, Ch. XV.4], so (Zn(β)/An)n converges in distribution
to
√
8(0)σG K (β, Ã, µ̃, T̃ )Y , when A × Z is endowed with the probability measure

µ× δ0.
Finally, remark that∣∣∣∣Zn(β)

An
◦ T̃ −

Zn(β)

An

∣∣∣∣≤ 2‖β‖∞
An

→n→+∞ 0,

so by [72, Theorem 1], the sequence (Zn(β)/An)n converges strongly in distribution to
√
8(0)σG K (β, Ã, µ̃, T̃ )Y .

3.4. Technical lemmas. In the previous section, we used three technical lemmas, whose
proofs would have been too long to include in our main line of reasoning. Their statements
and proofs follow.

We begin with Lemma 3.6, which we used to control each part of the decomposition
Q`,a = Q(0)

`,a + Q(1)
`,a . Recall that8 is the continuous version of the density function of the

stable distribution with characteristic function e−ψ(
√
6·). Since µ(S` = a)= Eµ[Q`,a(1)]

for a ∈ Zd , the following lemma can be understood as a strong form of the the local limit
theorem for (S`)`≥1.

LEMMA 3.6. Assume Hypothesis 3.1. Let a ∈ Zd . For every positive integer `,

Q`,a(h)=
8(a/a`)

ad
`

5`0(h)+ ε`,a(h),

with supa∈Zd ‖ε`,a‖B→B = o(a−d
` ).

Moreover, for every ω ∈ (0, 1],

sup
a,p∈Zd

p 6=0

|p|−ω‖Q`,a − Q`,a−p‖ = O(a−(d+ω)k ), (3.23)

and
‖Q`,a−p − Q`,a − Q`,−p + Q`,0‖ = O((|a| |p|)ωa−(d+2ω)

` ). (3.24)

Proof of Lemma 3.6. Recall that Q`,a(h)= 1/(2π)d
∫
Td e−i〈u,a〉P`u (h) du. From

Hypothesis 3.1, and up to taking a smaller neighbourhood U , there exist constants
C0, c0 > 0 such that ‖Pu‖L(B) ≤ C0 and

max{|λu |, |e−`ψ(
√
6u)L(|

√
6u|−1)

|} ≤ e−c0|u|αL(|u|−1),

for all u ∈U .
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Let ε ∈ (0, α). Since L is slowly varying at infinity and 6 is invertible, by
Karamata [35] (or Potter’s bound [9, Theorem 1.5.6]), there exists `0 ≥ 0 such that, for
every `≥ `0 and v ∈U ,

2
|v|ε
≤

∣∣∣∣ L(a`/|v|)
L(a`)

∣∣∣∣≤ |v|ε2
.

Since nL(an)∼ aαn , up to choosing a larger `0, for every `≥ `0 and v ∈U ,

|v|α−ε ≤ `
|v|α

aα`
L
(
a`

|v|

)
≤ |v|α+ε. (3.25)

We begin with the first point of the lemma. Let a ∈ Zd and `≥ `0 be an integer. By
Hypothesis 3.1,

Q`,a =
1

(2π)d

∫
Td

e−i〈u,a〉P`u du =
1

(2π)d

∫
U

e−i〈u,a〉λ`u5
`
u du + O(r`), (3.26)

and, for every u ∈U ,

‖λ`u5
`
u − e−`ψ(

√
6u)L(|

√
6u|−1)5`0‖

≤ |λu |
`
‖5`u −5

`
0‖L(B,B) + |λ

`
u − e−`ψ(

√
6u)L(|

√
6u|−1)

|‖5`0‖L(B,B)

≤ C(1+ `|u|αL(|u|−1))e−c0`|u|αL(|u|−1)ξ(u)‖h‖B, (3.27)

where ξ is bounded and limu→0 ξ(u)= 0, due to the asymptotic expansion of u 7→ λu , to
the continuity of u 7→5u at 0 and since 5`u =5

{`/M}M
u (see equation (3.4)). Hence∥∥∥∥ 1

(2π)d

∫
U

e−i〈u,a〉λ`u5
`
u du −

1
(2π)d

∫
U

e−i〈u,a〉e−`ψ(
√
6u)L(|

√
6u|−1)5`0 du

∥∥∥∥
≤ C

∫
U
(1+ `|u|αL(|u|−1))e−c0`|u|αL(|u|−1)ξ(u) du

≤ Ca−d
`

∫
a`U

(
1+ `

|v|α

aα`
L
(
a`

|v|

))
e−c0`(|v|

α/aα` )L(a`/|v|)ξ

(
v

a`

)
dv

≤ Ca−d
`

∫
a`U

(1+ |v|α+ε)e−c0|v|
α−ε

ξ

(
v

a`

)
dv

= o(a−d
` ), (3.28)

due to (3.25) and to the Lebesgue dominated convergence theorem. Finally,∣∣∣∣ 1
(2π)d

∫
U

e−i〈u,a〉e−`ψ(
√
6u)L(|

√
6u|−1) du −

1
ad
`

8

(
a
a`

)∣∣∣∣
=

∣∣∣∣ 1
(2π)dad

`

∫
a`U

e−i〈v,a〉/a`e−`ψ(v/a`)L(a`/|v|) −
1

(2π)dad
`

∫
Rd

e−i〈v,a〉/a`e−ψ(v) dv
∣∣∣∣

=

∣∣∣∣ 1
(2π)dad

`

∫
a`U

e−i〈v,a〉/a`(e−`ψ(v/a`)L(a`/|v|) − e−ψ(v)) dv
∣∣∣∣+ o(a−d

` )

≤
1

(2π)dad
`

∫
a`U
|e−`(ψ(v)/a

α
` )L(a`/|v|) − e−ψ(v)| dv + o(a−d

` )

= o(a−d
` ), (3.29)
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using again the Lebesgue dominated convergence theorem (with (3.25) for the necessary
upper bound). Note that the upper bounds we used are independent of a, whence

sup
a∈Zd

∣∣∣∣ 1
(2π)d

∫
U

e−i〈u,a〉e−`ψ(
√
6u)L(|

√
6u|−1) du −

1
ad
`

8

(
a
a`

)∣∣∣∣= o(a−d
` ).

This ends the proof of the first point.
Let β >−1. Let F : Td

→ C be a measurable function, with |F(u)| ≤ K |u|β for all
u ∈U . Then, for all large enough `,∥∥∥∥ 1

(2π)d

∫
Td

F(u)P`u du
∥∥∥∥ ≤ ∥∥∥∥ 1

(2π)d

∫
U

F(u)λ`u5
`
u du

∥∥∥∥ + ‖F‖L1 O(r`)

≤
K C0

(2π)d

∫
U
|u|βe−c0`|u|αL(|u|−1) du + K O(r`)

≤
K C0

(2π)dad+β
`

∫
a`U
|v|βe−c0`(|v|

α/aα` )L(a`/|v|)du + K O(r`)

≤
K C0

(2π)dad+β
`

∫
R
|v|βe−c0|v|

α−ε

du + K O(r`)

= K .O(a−(d+β)` ), (3.30)

where the O(a−(d+β)` ) depends on β but not on K .
With |F(u)| = |e−i〈u,a〉

− e−i〈u,a−p〉
| ≤min(2, |u| |p|)≤ 21−ω

|p|ω|u|ω,
equation (3.30) yields

sup
a∈Zd
‖Q`,a − Q`,a−p‖ = O(|p|ωa−(d+ω)` ),

which is equation (3.23).
With |F(u)| = |e−i〈u,a〉

− 1||ei〈u,p〉
− 1| ≤min(2, |u| |p|) ·min(2, |u| |a|)≤

41−ω
|a|ω|p|ω|u|2ω, equation (3.30) yields:

‖Q`,a−p − Q`,a − Q`,−p + Q`,0‖ = O(|a|ω|p|ωa−(d+2ω)
` ),

which is equation (3.24). �

We now give a proof of Lemma 3.4, which was stated in the previous section. This
lemma allowed us to control various sums involving the coefficients b(1,...,1)a,`,N , depending
on N, and was central in the proof of the main theorem. For the convenience of the reader,
what we have to prove is reformulated at the beginning of the proof.

Proof of Lemma 3.4. Let us introduce the following operators on B:

Cb,a,(`1,...,`q ),(N1,...,Nq−1)

:=

∑
a0,...,aq∈Zd

a0=a,aq=b

Q(1)
`q ,aq−aq−1

β(aq−1)
Nq−1 · · · Q(1)

`2,a2−a1
β(a1)

N1 Q(1)
`1,a1−a0

,

and

Da,(`1,...,`q ),(N1,...,Nq )

:=

∑
a0,...,aq∈Zd

a0=a

β(aq)
Nq Q(1)

`q ,aq−aq−1
β(aq−1)

Nq−1 · · · Q(1)
`2,a2−a1

β(a1)
N1 Q(1)

`1,a1−a0
.
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Note that

b(1,...,1)a;`,N (·)= Eµ[Da,`,N(·)] and
∑

a∈Zd

β(a)b(1,...,1)a,`,N (·)=
∑

a∈Zd

β(a)Eµ[Da,`,N(·)].

Hence, it is sufficient to prove that

sup
a∈Zd

(1+ |a|η)−1
∑

`∈{1,...,n}q
‖Da,`,N‖ = o(A

N1+···+Nq
n ), (3.31)

n∑
`=1

∥∥∥∥∑
a∈Zd

β(a)Da,(`),(N )

∥∥∥∥ = {O(1) if q = 1, N = 1,
o(An) if q = 1, N ≥ 2,

(3.32)

∑
`∈{1,...,n}q

∥∥∥∥∑
a∈Zd

β(a)Da,`,N

∥∥∥∥ = o(A
N1+···+Nq−1
n ) if q ≥ 2. (3.33)

Restriction of the problem. We first observe that we can restrict our study to the case
where all the N j ’s are equal to 1. The price to pay will be that we will have to consider
both Da,`,(1,...,1) and Cb,a,`,(1,...,1). Equation (3.32) shall be proved separately with the
next step (Case q = 1).

We shall prove the estimates (3.31) and (3.33) in the particular case where
(N1, . . . , Nq)= (1, . . . , 1) (or equivalently N1 + · · · + Nq = q), that is

sup
a∈Zd

(1+ |a|η)−1
∑

`∈{1,...,n}q
‖Da,`,(1,...,1)‖ = o(Aq

n), (3.34)

∑
`∈{1,...,n}q

∥∥∥∥∑
a∈Zd

β(a)Da,`,(1,...,1)

∥∥∥∥ = o(Aq−1
n ) if q ≥ 2, (3.35)

together with the following estimates:

sup
a∈Zd

(1+ |a|η)−1
∑

`∈{1,...,n}q

∑
b∈Zd

|β(b)|‖Cb,a,`,(1,...,1)‖ = o(Aq+1
n ), (3.36)

and ∑
`∈{1,...,n}q

∑
b∈Zd

|β(b)|
∥∥∥∥∑

a∈Zd

β(a)Cb,a,`,(1,...,1)

∥∥∥∥ = o(Aq
n). (3.37)

Assume these estimates to be proved. If (N1, . . . , Nq) 6= (1, . . . , 1), let j be the largest
index such that N j 6= 1. Then

‖Da,`,(N1,...,Nq )‖

≤

∑
a j∈Zd

|β(a j )|
N j ‖Da j ,(` j+1,...,`q ),(1,...,1)‖ ‖Ca j ,a,(`1,...,` j ),(N1,...,N j−1)‖, (3.38)

and

‖Cb,a,`,(N1,...,Nq−1)‖

≤

∑
a j∈Zd

|β(a j )|
N j ‖Cb,a j ,(` j+1,...,`q ),(1,...,1)‖ ‖Ca j ,a,(`1,...,` j ),(N1,...,N j−1)‖. (3.39)
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Let us iterate this decomposition. Given (N1, . . . , Nq−1) 6= (1, . . . , 1), let J := {1≤ j <
q : N j ≥ 2} = { j1, . . . , jJ }, with j1 < · · ·< jJ and J = |J |. We also use the convention
j0 = 0. Iterating equations (3.38) and (3.39) then yields

sup
a0∈Zd

(1+ |a0|
η)−1

∑
`∈{1,...,n}q

‖Da0,`,(N1,...,Nq−1)‖

≤

∑
aJ∈Zd

n∑
`1+ jJ ,...,`q=1

|β(aJ )|
N jJ ‖Da jJ ,(`1+ jJ ,...,`q ),(1,...,1)‖

×

J∏
k=2

( ∑
a jk−1∈Z

d

n∑
`1+ jk−1 ,...,` jk=1

×

∑
a jk∈Zd

|β(a jk )|
N jk |β(a jk−1)|

N jk−1 ‖Ca jk ,a jk−1 ,(`1+ jk−1 ,...,` jk ),(1,...,1)‖

)

×

(
sup

a0∈Zd

n∑
`1,...,` j1=1

(1+ |a0|
η)−1

∑
a j1∈Z

d

|β(a j1)|
N j1 ‖Ca j1 ,a0,(`1,...,` jk ),(1,...,1)‖

)
.

(3.40)

Recall that, since η < (α − d)/2+ ε and β is bounded, |β(a)|x = O(|β(a)|)= O((1+
|a|η)−1) for all x ≥ 1. Using (3.34) on the first term and (3.36) on the others, we get (3.31)

sup
a0∈Zd

(1+ |a0|
η)−1

∑
`∈{1,...,n}q

‖Da0,`,(N1,...,Nq−1)‖

= o(Aq− jJ
n )

J∏
k=1

o(A jk− jk−1+1
n )= o(Aq+J

n )= o(A
N1+···+Nq
n ).

We use the same decomposition to get (3.33). The only difference is that the last term in
the decomposition becomes

n∑
`1,...,` j1=1

∑
a j1∈Z

d

|β(a j1)|
N j1

∥∥∥∥ ∑
a0∈Zd

β(a0)Ca j1 ,a0,(`1,...,` j1 ),(1,...,1)

∥∥∥∥,
which by (3.37) is an o(A j1

n ). The exponent in the estimate is improved by 1, which is what
we wanted.

First estimates. We first provide some general inequalities. From Lemma 3.6 and the
definition of Q(1)

`,a ,

‖Q(1)
`,a‖ = o(a−d

` )+ O
(
8(a/a`)−8(0)

ad
`

)
.

Since 8 is proportional to the Fourier transform of e−ψ(
√
6·), it is η-Hölder for all η ∈

(0, 1], whence

‖Q(1)
`,a‖ = o(a−d

` )+ O(|a|ηa−d−η
` )= o((1+ |a|η)a−d

` ). (3.41)
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Due to (3.23),

sup
b 6=0
|b|−ω‖Q(1)

`,b−a − Q(1)
`,−a‖ = sup

b 6=0
|b|−ω‖Q`,b−a − Q`,−a‖ = O(a−(d+ω)` ). (3.42)

In particular, since
∑

b∈Zd |b|ω|β(b)|<+∞,

sup
a∈Zd

∥∥∥∥∑
b

β(b)Q(1)
`,b−a

∥∥∥∥ = sup
a∈Zd

∥∥∥∥∑
b

β(b)(Q(1)
`,b−a − Q(1)

`,−a)

∥∥∥∥ = O(a−(d+ω)` ). (3.43)

Due to (3.24), and since
∑

a∈Zd β(a)= 0,

sup
a 6=0

(|a| |b|)−ω
∥∥∥∥∑

b∈Zd

β(b)(Q(1)
`,b−a − Q(1)

`,b)

∥∥∥∥
= sup

a 6=0
(|a| |b|)−ω

∥∥∥∥∑
b∈Zd

β(b)(Q`,b−a − Q`,b)

∥∥∥∥
= sup

a 6=0
(|a| |b|)−ω

∥∥∥∥∑
b∈Zd

β(b)(Q`,b−a − Q`,b − Q`,−a + Q`,0)

∥∥∥∥
= O(a−(d+2ω)

` ). (3.44)

In particular, using again the fact that
∑

b∈Zd |b|ω|β(b)|<+∞,∥∥∥∥ ∑
a,b∈Zd

β(a)β(b)Q(1)
`,b−a

∥∥∥∥ = ∥∥∥∥ ∑
a,b∈Zd

β(a)β(b)(Q`,b−a − Q`,b)

∥∥∥∥
= O(a−(d+2ω)

` ). (3.45)

We will also repeatedly use the two following facts:∑
`≥1

a
−(d+2ω)
` <+∞ and

n∑
`=1

a
−(d+ω)
` = o(An). (3.46)

In order to get the first upper bound, notice that (a`)`≥0 is 1/α-regularly varying and
d + 2ω > d + 2(α − d)/2= α ≥ 1, so the sequence (a−(d+2ω)

` )` is summable.

If α > d , then (An)n = (

√∑n
`=1 a

−d
` )n is (α − d)/2α-regularly varying, whereas∑n

`=1 a
−(d+ω)
` is (α − d − ω)/α-regularly varying. The condition ω > (α − d)/2 implies

that (α − d − ω)/α < (α − d)/2α. We get the second upper bound of equation (3.46) in
the case α > d .

Finally, if α = d , then (An)n is slowly varying and goes to +∞, whereas d + ω > 1
and so

∑
+∞

`=1 a
−(d+ω)
` <∞. We get the second part of equation (3.46) in the case α = d .

Case q = 1. We prove separately the case q = 1, which either involves different
inequalities, or shall provide the base case for a recursion. We have to prove four estimates,
which shall be in order: (3.32), (3.34), (3.36) and (3.37).

We begin with (3.32). Due to (3.45), if N = 1,
n∑
`=1

∥∥∥∥∑
a∈Zd

β(a)Da,(`),(1)

∥∥∥∥ = n∑
`=1

∥∥∥∥ ∑
a,b∈Zd

β(a)β(b)Q(1)
`,b−a

∥∥∥∥
=

n∑
`=1

O(a−(d+2ω)
` )= O(1).
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If N ≥ 2, we use (3.43) instead:

n∑
`=1

∥∥∥∥∑
a∈Zd

β(a)Da,(`),(N )

∥∥∥∥ ≤ n∑
`=1

∑
b∈Zd

|β(b)|N
∥∥∥∥∑

a∈Zd

β(a)Q(1)
`,b−a

∥∥∥∥
=

(∑
b∈Zd

|β(b)|N
) n∑
`=1

O(a−(d+ω)` )= o(An).

Now, consider (3.34) for q = 1. Using (3.43) and (3.46),

sup
a∈Zd

(1+ |a|η)−1
n∑
`=1

‖Da,(`),(1)‖ ≤

n∑
`=1

sup
a∈Zd

∥∥∥∥∑
b∈Zd

β(b)Q(1)
`,b−a

∥∥∥∥
=

n∑
`=1

O(a−(d+ω)` )= o(An). (3.47)

Next, we prove (3.36) for q = 1. Note that Cb,a,(`),∅ = Q(1)
`,b−a , and that (1+ |b −

a|η)≤ (1+ |a|η)(1+ |b|η) since η ≤ 1. Hence, by (3.41),

n∑
`=1

∑
b∈Zd

|β(b)|‖Cb,a,(`),∅‖ =

n∑
`=1

∑
b∈Zd

|β(b)|o((1+ |b − a|η)a−d
` )

=

(∑
b∈Zd

|β(b)|(1+ |b|η)
)
(1+ |a|η)

n∑
`=1

o(a−d
` )

= o((1+ |a|η)A2
n).

Finally, we deal with (3.37) for q = 1. Due to (3.43) and (3.46),

n∑
`=1

∑
b∈Zd

|β(b)|
∥∥∥∥∑

a∈Zd

β(a)Cb,a,`,∅

∥∥∥∥ = (∑
b∈Zd

|β(b)|
) n∑
`=1

O(a−(d+ω)` )= o(An).

Case q ≥ 2. It remains to check four estimates, which shall be in order: (3.34), (3.35),
(3.36) and (3.37), for q ≥ 2. To simplify the notation, we omit (1, . . . , 1) in indices, and
use the convention Da,`,∅ = 1 for all a and `.

We shall prove (3.34) and (3.35) with recursive bounds involving the functions:

uq,n(a) :=
n∑

`1,...,`q=1

‖Da,(`1,...,`q )‖

and

vq,n(a) :=
n∑

`1,...,`q=1

‖Da,(`1,...,`q ) − D0,(`1,...,`q )‖.

Note that (3.34) is equivalent to the statement that uq,n(a)= o((1+ |a|η)Aq
n), while (3.35)

is implied by the bound vq,n(a)= o(|a|ωAq−1
n ) for q ≥ 2 (since

∑
a∈Zd β(a)= 0). We

shall express uq,n and vq,n in terms of uq−1,n , vq−1,n , uq−2,n and vq−2,n .
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We start with the sequence (uq,n). For all q ≥ 2,

Da0,(`1,...,`q ) =

∑
a1,a2

β(a1)β(a2)Da2,(`3,...,`q )Q
(1)
`2,a2−a1

Q(1)
`1,a1−a0

=

∑
a1,a2

β(a2)[D0,(`3,...,`q ) + Da2,(`3,...,`q ) − D0,(`3,...,`q )]

× (β(a1)Q
(1)
`2,a2−a1

[Q(1)
`1,−a0

+ Q(1)
`1,a1−a0

− Q(1)
`1,0−a0

])

= D0,(`3,...,`q )

[(∑
a1,a2

β(a1)β(a2)Q
(1)
`2,a2−a1

)
Q(1)
`1,−a0

+

∑
a1,a2

β(a1)β(a2)(Q
(1)
`2,a2−a1

− Q(1)
`2,−a1

)(Q(1)
`1,a1−a0

− Q(1)
`1,0−a0

)

]
+

∑
a2

β(a2)(Da2,(`3,...,`q ) − D0,(`3,...,`q ))

×

[(∑
a1

β(a1)Q
(1)
`2,a2−a1

)
Q(1)
`1,−a0

+

∑
a1

β(a1)Q
(1)
`2,a2−a1

(Q(1)
`1,a1−a0

− Q(1)
`1,0−a0

)

]
(3.48)

since
∑

a2
β(a2)Q

(1)
`2,−a1

= 0. Note that
∑

p |p|
η+ω
|β(p)|<+∞ and (1+ |a2 −

a1|
η)|a1|

ω
≤ 2(1+ |a1|

η+ω)(1+ |a2|
η). Therefore, using in addition (3.41), (3.42), (3.44)

and (3.45), we get that, for all q ≥ 2,

‖Da0,(`1,...,`q )‖ = ‖D0,(`3,...,`q )‖O((1+ |a0|
η)a
−(d+2ω)
`2

o(a−d
`1
)+ (a`1a`2)

−(d+ω))

+

∑
a2

|β(a2)|‖Da2,(`3,...,`q )−D0,(`3,...,`q )‖O((1+ |a0|
η)a
−(d+ω)
`2

o(a−d
`1
)

+ (1+ |a2|
η)o(a−d

`2
)a
−(d+ω)
`1

),

uniformly in a0. If q = 2, this simplifies to

‖Da0,(`1,`2)‖ = O((1+ |a0|
η)a
−(d+2ω)
`2

o(a−d
`1
)+ (a`1a`2)

−(d+ω)).

These estimates, combined with (3.46), yield for all q ≥ 3

uq,n(a) = O
(
(1+ |a|η)

(
uq−2,n(0)o(A2

n)

+

∑
a2∈Zd

|β(a2)|(1+ |a2|
η)vq−2,n(a2)o(A3

n)

))
, (3.49)

and, for q = 2,
u2,n(a)= o((1+ |a|η)A2

n). (3.50)

Now, let us consider the sequence (vq,n). For all q ≥ 2,

Da0,(`1,...,`q ) − D0,(`1,...,`q ) =

∑
a1

β(a1)Da1,(`2,...,`q )(Q
(1)
`1,a1−a0

− Q(1)
`1,a1

)

= D0,(`2,...,`q )

∑
a1

β(a1)(Q
(1)
`1,a1−a0

− Q(1)
`1,a1

)

+

∑
a1

β(a1)(Da1,(`2,...,`q ) − D0,(`2,...,`q ))(Q
(1)
`1,a1−a0

− Q(1)
`1,a1

). (3.51)
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From (3.44) and (3.42), we get that, for all q ≥ 2,

‖Da0,(`1,...,`q ) − D0,(`1,...,`q )‖ = ‖D0,(`2,...,`q )‖O(|a0|
ωa
−(d+2ω)
`1

)

+

∑
a1∈Zd

|β(a1)|‖Da1,(`2,...,`q ) − D0,(`2,...,`q )‖

× O(|a0|
ωa
−(d+ω)
`1

),

so that, using (3.46),

vq,n(a)= O
(
|a|ω

(
uq−1,n(0)+

∑
a1∈Zd

|β(a1)|vq−1,n(a1)o(An)

))
. (3.52)

From (3.44) and (3.46), we also obtain

v1,n(a)= O(|a|ω). (3.53)

Equation (3.34) can be reformulated as uq,n(a)= o((1+ |a|η)Aq
n) for q ≥ 1, while

equation (3.35) is a straightforward consequence of the fact that
∑

a∈Zd |β(a)|vq,n(a)=
o(Aq−1

n ) for q ≥ 1 (since
∑

a∈Zd β(a)= 0). We prove these two identities recursively, and
more precisely that

uq,n(a)= o((1+ |a|η)Aq
n) and sup

a 6=0
|a|−ωvq,n(a)=

{
O(1) if q = 1,
o(Aq−1

n ) if q ≥ 2.

This follows from (3.49) and (3.52) by an induction of degree two for uq,n and of degree
one for vq,n . The initialization is given by (3.47), (3.50) and (3.53) (for, respectively, u1,n ,
u2,n and v1,n).

It remains to prove equations (3.36) and (3.37). Note that (3.48) and (3.51) hold true if
we replace D... by Caq ,.... Hence (3.49) and (3.52) also hold if we replace uq,n and vq,n by,
respectively, ũq,n and ṽq,n , which are given by

ũq,n(a) :=
n∑

`1,...,`q=1

∑
aq∈Zd

|β(aq)|‖Caq ,a,(`1,...,`q )‖,

ṽq,n(a) :=
n∑

`1,...,`q=1

∑
aq∈Zd

|β(aq)|‖Caq ,a,(`1,...,`q ) − Caq ,0,(`1,...,`q )‖.

Note that (3.36) is equivalent to the statement that ũq,n(a)= o((1+ |a|η)Aq+1
n ),

while (3.37) is implied by the bound ṽq,n(a)= o(|a|ωAq
n) for q ≥ 2.

The first terms are the following. For ũ1,n(a), we get

ũ1,n(a)=
n∑
`=1

∑
b∈Zd

|β(b)|‖Q(1)
`,b−a‖

=

n∑
`=1

∑
b∈Zd

|β(b)|(1+ |b|η)o((1+ |a|η)a−d
` )

= o((1+ |a|η)A2
n).
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For ũ2,n(a), we get

ũ2,n(a) =
n∑

`1,`2=1

∑
b∈Zd

|β(b)|
∥∥∥∥ ∑

a1∈Zd

β(a1)Q
(1)
`2,b−a1

Q(1)
`1,a1−a

∥∥∥∥
≤

n∑
`1,`2=1

∑
b∈Zd

|β(b)|
∥∥∥∥Q(1)

`2,b

∑
a1∈Zd

β(a1)Q
(1)
`1,a1−a

∥∥∥∥
+

∥∥∥∥ ∑
a1∈Zd

β(a1)(Q
(1)
`2,b−a1

− Q(1)
`2,b
)Q(1)

`1,a1−a

∥∥∥∥
=

n∑
`1,`2=1

∑
b∈Zd

|β(b)|
[

o((1+ |b|η)a−(d+ω)`1
a−d
`2
)

+

∑
a1∈Zd

|β(a1)|o((1+ |a|η)(1+ |a1|
ω+η)a−d

`1
a
−(d+ω)
`2

)

]
= o((1+ |a|η)A3

n),

where we used (3.42) and (3.44) for the first part, (3.42) and (3.43) for the second part,
and (3.46) to finish. Finally, for ṽ1,n(a), we get

ṽ1,n(a)=
n∑
`=1

∑
b∈Zd

|β(b)|‖Q(1)
`1,b−a − Q(1)

`1,b
‖ = o(|a|ωAn),

due to (3.42) and (3.46).
By induction, we obtain

ũq,n(a)= o((1+ |a|η)Aq+1
n ) and sup

a 6=0
|a|−ωṽq,n(a)= o(Aq

n),

which ends the proof of Lemma 3.4. �

The third and last lemma of this sub-section gives a simple formula for the asymptotic
growth of the quantity

∑
`∈Eq,n

∏q
j=1 a

−d
k j

.

LEMMA 3.7. Let 1≤ d ≤ α ≤ 2 be an integer and a real number, respectively. Recall that,
for every q ≥ 1,

Eq,n =

{
` ∈ {1, . . . , n}q :

q∑
j=1

` j ≤ n
}
.

Let (a`)`≥0 be a sequence of positive real numbers with regular variation of index 1/α,

and An :=

√∑n
`=1 a

−d
` . Assume that limn→+∞ An =+∞.

For every q ≥ 1, as n goes to infinity,

∑
`∈Eq,n

q∏
j=1

a−d
` j
∼ A

2q
n
0(1+ (α − d)/α)q

0(1+ q(α − d)/α)
.

Proof. We deal separately with the cases d = α (where (An) has slow variation) and d < α.
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Case d = α. If d = α ∈ {1, 2}, then ad
` is 1-regularly varying, so An has slow variation.

By the pigeonhole principle, for all ` ∈ {1, . . . , n}q\Eq,n , there is always one `i such that
`i ≥ dn/qe. Hence

∣∣∣∣ ∑
`∈Eq,n

q∏
j=1

a−d
` j
−

∑
`∈{1,...,n}q

q∏
j=1

a−d
` j

∣∣∣∣ ≤ q
( n∑
`1=dn/qe

a−d
`1

)( n∑
`2,...,`q=1

q∏
j=2

a−d
` j

)
= o(A2

n) · O(A
2(q−1)
n ),

and thus
∑

`∈Eq,n

∏q
j=1 a

−d
` j
∼ A

2q
n .

Case d < α. If d = 1< α,

∑
`∈Eq,n

q∏
j=1

(
a` j

an

)−1

=

∫{
(u1,...,uq )∈[0,1]q :
dnu1e+···+dnuqe≤n

} q∏
j=1

(
adnu j e

an

)−1

du1 · · · duq .

The sequence (an)n is 1/α-regularly varying; by the dominated convergence theorem (the
domination coming e.g. from [9, Theorem 1.5.6]),

lim
n→+∞

1
nq

∑
`∈Eq,n

q∏
j=1

(
a` j

an

)−1

=

∫
1q

q∏
j=1

u j
−(1/α) du1 · · · duq ,

where 1q = {(u1, . . . , uq) ∈ (0, 1)q :
∑q

j=1 u j ≤ 1}. Finally, na−1
n ∼ (1− α

−1)A2
n by

Karamata’s theorem [35] or [9, Proposition 1.5.8], so that, as n goes to +∞:

∑
`∈Eq,n

q∏
j=1

a−1
` j
= (na−1

n )q
(

n−q
∑

`∈Eq,n

q∏
j=1

(
a` j

an

)−1)

∼ A
2q
n

(
α − 1
α

)q ∫
1q

q∏
j=1

u j
−(1/α) du1 · · · duq . (3.54)

All that remains is to estimate this later integral. Note that, for all t ≥ 0,

∫
t1q

q∏
j=1

u j
−(1/α) du1 · · · duq = tq(α−1)/α

∫
1q

q∏
j=1

u j
−(1/α) du1 · · · duq .
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Hence, using Fubini–Tonnelli’s theorem,∫
1q

q∏
j=1

u j
−(1/α) du1 · · · duq

=
1

0(1+ q(α − 1)/α)

×

∫
+∞

0
t ((α−1)/α)qe−t

∫
Rq
+

q∏
j=1

u j
−(1/α)1

{
∑q

j=1 u j≤1} du1 · · · duq dt

=
1

0(1+ q(α − 1)/α)

∫
Rq
+

q∏
j=1

u j
−(1/α)

∫
+∞

0
e−t 1

{
∑q

j=1 u j≤t} dt du1 · · · duq

=
1

0(1+ q(α − 1)/α)

(∫
+∞

0
u−(1/α)e−u du

)q

=
0(1− (1/α))q

0(1+ q(α − 1)/α)
.

Finally, using the identity 0(z + 1)= z0(z),∑
`∈Eq,n

q∏
j=1

a−1
` j
∼ A

2q
n
0(1+ (α − 1)/α)q

0(1+ q(α − 1)/α)
. �

3.5. Renewal properties. The goal of this sub-section is to prove Proposition 2.6. We
assume without loss of generality that the function L appearing in Hypothesis 3.1 is
continuous on (x−1

0 ,+∞) for some x0 > 0, and that u 7→ uL(u−1) is increasing on this
set [9, Theorem 1.5.3]. When α = d , we set for all x ∈ (0, x0):

I (x) :=
∫ x0

x

1
t L(t−1)

dt. (3.55)

We compute the asymptotics of g(p) according to the method in [61, Ch. III.12,
P3], which yields Proposition 2.6. Before starting the proof, though, we use the Fourier
transform to represent g in an integral form.

LEMMA 3.8. For all u ∈ Td , let 9(u) :=
∑

n≥0 Eµ[ei〈u,Sn〉]. Under Hypothesis 3.1, the
function 9 is continuous on Td

\{0}, and, for every p ∈ Zd ,

g(p)=
2

(2π)d

∫
Td
(1− cos(〈u, p〉))9(u) du. (3.56)

In addition, for all small enough neighbourhoods U of 0,

sup
p∈Zd

∣∣∣∣g(p)− 2
(2π)d

<

∫
U

1− cos(〈u, p〉)
1− λM

u

M−1∑
k=0

λk
uEµ[5

k
u(1)] du

∣∣∣∣<+∞. (3.57)

Proof. Using the Fourier transform, we know that

g(p) = 2µ(Sn = 0)− µ(Sn = p)− µ(Sn =−p)

=
2

(2π)d

∫
Td
(1− cos(〈u, p〉))Eµ[ei〈u,Sn〉] du.
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Thanks to the Lebesgue dominated convergence theorem, it is then enough to prove that∑
n≥0

∫
Td
|1− cos(〈u, p〉)| |Eµ[ei〈u,Sn〉]| du <+∞.

Note that Eµ[ei〈u,Sn〉] = Eµ[Pn
u 1]. Hence, for any small enough neighbourhood U of 0,

sup
u∈U c

∑
n≥0

|Eµ[ei〈u,Sn〉]| ≤

∑
n≥0

Crn
‖1‖B = O(1),

which proves the continuity of 9 on Td
\{0}, as it is the uniform limit of a sequence of

continuous functions. In addition, for every u ∈U ,∑
n≥0

|Eµ[ei〈u,Sn〉]| =

∑
n≥0

(|λu |
n
|Eµ[5n

u(1)]| + Crn
‖1‖B)≤

C ′

1− |λu |
+ O(1).

Finally,
|1− cos(〈u, p〉)|

1− |λu |
≤ C ′′

|p|2|u|2−α

L(|
√
6u|−1)

,

since 1− |λu | ∼ ϑ |
√
6u|αL(|

√
6u|−1) as u goes to 0, and |1− cos(〈u, p〉)| ≤ |u|2|p|2.

Since α ∈ [1, 2] and since L is slowly varying, this yields equation (3.56). Moreover, due
to (3.4), ∑

n≥0

λn
u5

n
u =

∑
n≥0

λMn
u

M−1∑
k=0

λk
u5

k
u =

1
1− λM

u

M−1∑
k=0

λk
u5

k
u .

As can be seen in this proof, the error terms that come from integrating over U (instead
of Td ) and using 5u instead of Pu are uniformly bounded in p, so that

sup
p∈Zd

∣∣∣∣g(p)− 2
(2π)d

∫
U

1− cos(〈u, p〉)
1− λM

u

M−1∑
k=0

λk
uEµ[5

k
u(1)] du

∣∣∣∣<+∞.
This equation stays true a fortiori if we take its real part, which yields equation (3.57). �

Now, let us begin the proof of Proposition 2.6 in earnest.

Proof of Proposition 2.6. We use the same conventions as in the proof of Lemma 3.8.
For all small enough δ > 0, put U (δ) :=

√
6
−1

B(0, δ). By equation (3.57), for any small
enough neighbourhood U of 0,

sup
p∈Zd

∣∣∣∣g(p)− 2
(2π)d

<

∫
U

1− cos(〈u, p〉)
1− λM

u
,

M−1∑
k=0

λk
uEµ[5

k
u(1)] du

∣∣∣∣<+∞. (3.58)

Fix ε ∈ (0, 1). Under Hypothesis 3.1, for all small enough δ > 0, for all u ∈U (δ),

|λu − 1+ ψ(
√
6u)L(|

√
6u|−1)| ≤ ε|ψ(

√
6u)|L(|

√
6u|−1),

and max0≤k≤M−1 ‖5
k
u −5

k
0‖L(B) ≤ ε. Note also that

∑M−1
k=0 λk

u = (1− λ
M
u )/(1− λu).

Then∣∣∣∣ 1
1− λu

−
1

ψ(
√
6u)L(|

√
6u|−1)

∣∣∣∣≤ ε

|1− λu |
≤

ε

1− ε
1

|ψ(
√
6u)|L(|

√
6u|−1)

,
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and ∣∣∣∣∫
U (δ)

1− cos(〈u, p〉)
1− λM

u

M−1∑
k=0

λk
uE[5

k
u(1)] du −

∫
U (δ)

1− cos(〈u, p〉)

ψ(
√
6u)L(|

√
6u|−1)

du
∣∣∣∣

≤ ε

(
(1+ ε)‖1‖B

1− ε
+ 1

) ∫
U (δ)

1− cos(〈u, p〉)

|ψ(
√
6u)|L(|

√
6u|−1)

du

≤ 2ε
(
(1+ ε)‖1‖B

1− ε
+ 1

)√
1+ ζ 2 Hδ(p),

where

Hδ(p) :=
2

(2π)d

∫
U (δ)
<

(
1− cos(〈u, p〉)

ψ(
√
6u)L(|

√
6u|−1)

)
du.

Hence,

lim
ε→0

sup
p∈Zd

Hδ(p)−1
∣∣∣∣∫

U (δ)

1− cos(〈u, p〉)
1− λM

u

M−1∑
k=0

λk
uE[5

k
u(1)] du − Hδ(p)

∣∣∣∣= 0. (3.59)

Assume that there exists a function h : Zd
→ R such that, for all δ > 0 small enough,

Hδ(p)∼ h(p) as p goes to infinity. If in addition lim∞ h =+∞, then equations (3.58)
and (3.59) imply that g(p)∼ h(p).

Now, let us simplify those integrals. First, note that

<

(
1

ψ(
√
6u)

)
=

1

ϑ(1+ ζ 2)|
√
6u|α

.

Let e1 := (1, 0, . . . , 0). Then

Hδ(p)=
2

(2π)dϑ(1+ ζ 2)

∫
√
6
−1

B(0,δ)

1− cos(〈u, p〉)

|
√
6u|αL(|

√
6u|−1)

du

=
2

(2π)dϑ(1+ ζ 2)
√

det(6)

∫
B(0,δ)

1− cos(〈v,
√
6
−1

p〉)
|v|αL(|v|−1)

dv

=
2

(2π)dϑ(1+ ζ 2)
√

det(6)

∫
B(0,δ)

1− cos(|
√
6
−1

p|〈v, e1〉)

|v|αL(|v|−1)
dv

=
2|
√
6
−1

p|α−1

(2π)dϑ(1+ ζ 2)
√

det(6)

∫
B(0,|
√
6
−1

p|δ)

1− cos(〈w, e1〉)

|w|αL(|
√
6
−1

p| |w|−1)
dw.

We shall now distinguish between three sub-cases: d = 1 and α ∈ (1, 2], then d = α = 1
(in the basin of Cauchy distributions), and finally d = α = 2.

Case d = 1, α ∈ (1, 2]. In this case, most of the mass in the integral representation of
g(p) is present in a small neighbourhood of 0, of size roughly 1/|p|.

Let η ∈ (0, α − 1). By Potter’s bound [9, Theorem 1.5.6], if δ is small enough, there
exists a constant C such that, for all p ∈ Z with a large enough absolute value, for all
|w|< |p|δ,

C−1 min{|w|η, |w|−η} ≤
∣∣∣∣ L(|p| |w|−1)

L(|p|)

∣∣∣∣≤ C max{|w|η, |w|−η}.
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For w ∈ [−1, 1], we get

L(p)
1− cos(w)

|w|αL(|p| |w|−1)
≤

C |w|2−α−η

2
,

while for 1< |w|< |
√
6
−1

p|δ

L(p)
1− cos(w)

|w|αL(|p| |w|−1)
≤

2C
|w|α−η

.

In addition, L(p)(1− cos(w))|w|−α/L(|p| |w|−1) converges pointwise, as p goes to
infinity, to (1− cos(w))|w|−α . By the Lebesgue dominated convergence theorem

Hδ(p)∼p→∞
2|p|α−1

πϑ(1+ ζ 2)L(|p|)

∫
+∞

0

1− cos(w)
wα

dw.

Since limp→∞ Hδ(p)=+∞ and the right-hand side does not depend on δ, by (3.59),

g(p)∼p→∞
2|p|α−1

πϑ(1+ ζ 2)L(|p|)

∫
+∞

0

1− cos(w)
wα

dw.

Finally, using an integration by parts and [24, Ch. XVII.4, (4.11)], we get∫
+∞

0

1− cos(w)
wα

dw =
π

20(α) sin((α − 1)π/2)
.

Case d = α = 1. First, by the same computations and the monotone convergence
theorem ∑

n≥0

µ(Sn = 0) =
1

2π

∫
T
9(u) du

=
1

2πϑ(1+ ζ 2)

∫
U

1
|u|L(|u|−1)

du(1+ o(1))+ O(1),

where U is any small neighbourhood of 0 in T. But Halmos’ recurrence theorem [29] and
the conservativity of ( Ã, µ̃, T̃ ) implies that the left-hand side is infinite, so the right-hand
side is also infinite, and lim0 I =+∞.

Let us go back to the study of g. If α = d = 1, a neighbourhood of size 1/|p| of the
origin makes for a negligible part of the mass of g(p). We must look at a larger scale, where
the oscillations makes the cosine ultimately vanish (much as with Riemann–Lebesgue’s
lemma).

Let R > 0. using again Potter’s bound (in the same way as in the previous case), we get
that

sup
p∈Z

L(|p|)
∫

B(0,R)

1− cos(w)
|w|L(|p| |w|−1)

dw <+∞,

whence

πϑ(1+ ζ 2)

2
Hδ(p)=

∫ δ

R/|p|

1− cos(|p|v)
|v|L(|v|−1)

dv + O(L(|p|)−1)

= I (R/|p|)− I (δ)−
∫ δ

R/|p|

cos(|p|v)
|v|L(|v|−1)

dv + O(L(|p|)−1).
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By [9, Theorem 1.5.9a], I (R/|p|)� L(|p|)−1. Set F(v) := 1/(vL(v−1)), which is
monotonous on a neighbourhood of 0. Remark that, by [9, Theorem 1.5.9a] again,
|p|−1 F(δ)� |p|−1 F(R/|p|)� I (R/|p|) as p goes to infinity. Then, using the Riemann–
Stieltjes version of the integration by parts [6, Theorem 7.6]:∣∣∣∣∫ δ

R/|p|

cos(|p|v)
|v|L(|v|−1)

dv
∣∣∣∣= ∣∣∣∣ 1
|p|
[sin(|p|v)F(v)]δR/|p| −

1
|p|

∫ δ

R/|p|
sin(|p|v) d F(v)

∣∣∣∣
≤

2
|p|
(F(R/|p|)+ F(δ)). (3.60)

Hence, Hδ(p)∼ 2/πϑ(1+ ζ 2)I (R/|p|)∼ (2/πϑ)I (|p|−1) as p goes to infinity. Since
limp→∞ Hδ(p)=+∞ and I (|p|−1) does not depend on δ, using the remark
following (3.59), we get the claim of the proposition.

Case d = α = 2. The method is much the same as for d = α = 1, but the oscillations
happen along one axis in the plane. Hence, there is cancellation in almost all directions,
but not uniformly. Using again Potter’s bound, we get that

π
√

det(6)
2

Hδ(p)

=
1

2π

∫
B(0,δ)\B(0,R/|

√
6
−1

p|)

1− cos(|
√
6
−1

p|〈v, e1〉)

|v|2L(|v|−1)
dv + O(L(|p|)−1)

= I (R/|
√
6
−1

p|)− I (δ)

−
1

2π

∫ 2π

0

∫ δ

R/|
√
6
−1

p|

cos(|
√
6
−1

p|r cos(t))
r L(r−1)

dr dt + O(L(|p|)−1).

Fix η > 0. On {| cos(t)|> η}, as in (3.60),∣∣∣∣∫ 2π

0

∫ δ

R/|
√
6
−1

p|

cos(|
√
6
−1

p|v cos(t))
vL(v−1)

dv dt
∣∣∣∣

≤
2 Leb(| cos(t)|> η)

η|
√
6
−1

p|
(F(R/|

√
6
−1

p|)+ F(δ))

+ Leb(| cos(t)|< η)I (|
√
6
−1

p|/R).

Since this holds for all η > 0, and since F(δ)/|
√
6
−1

p| � F(R/|
√
6
−1

p|)/|
√
6
−1

p| �
I (|
√
6
−1

p|−1), we get that Hδ(p)∼ (2/(π
√

det(6)))I (R/|
√
6
−1

p|)∼
(2/(π

√
det(6)))I (|p|−1) as p goes to infinity. Again, this is what we claimed in the

proposition. �

4. Theorems 2.7 and 2.11: context and proofs
Theorem 2.4 yields a limit theorem using only spectral methods. If the factor (A, µ, T )
is Gibbs–Markov, then we also have the limit theorems from [66, 67]. Comparing the
expressions of the limits yields Corollary 2.9.

Using the structure of the Gibbs–Markov map, we can leverage Corollary 2.9 to get
an estimate of the probability that an excursion from A × {0} hits A × {p}, with p ∈ Zd .
This is the content of Theorem 2.7. Finally, Theorem 2.7 allows us to improve the main

https://doi.org/10.1017/etds.2018.136 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.136


1936 F. Pène and D. Thomine

theorems from [67], yielding Theorem 2.11. In turn, this improves Corollary 2.9, yielding
Corollary 2.13.

We present our strategy in §4.1. In §4.2, we present Gibbs–Markov maps, and their
main properties of interest. Sections 4.3 and 4.4 deal with the tightness and convergence
in distribution of the (renormalized) number of hits of A × {p} by an excursion, and from
there the convergence in moments. Finally, Theorem 2.7 and Theorem 2.11 are proved in
§§4.5 and 4.6, respectively.

4.1. Strategy: working with excursions. Our end goal is Theorem 2.11. Let us describe
the strategy behind our proof.

The method used in [67] to get a distributional limit theorem for observables of a
Markovian Zd -extension was the following. To keep things simple, we ignore Lévy
stable distributions and stay in dimension d = 1. Let ( Ã, µ̃, T̃ ) be an ergodic and
conservative Markovian Z-extension of a Gibbs–Markov map (A, µ, T ) with a square
integrable step function F with asymptotic variance σ 2

G K (F, A, µ, T ) := Eµ[F2
] +

2
∑

k≥1 Eµ[F · F ◦ T k
].

As in §2.3, let ϕ{0} be the first return time to A × {0}, and T̃{0} be the induced map on
A × {0} ' A. Recall that, for any measurable function f : A × Zd

→ R and almost every
x ∈ A, we define

f{0}(x) :=
ϕ{0}(x)−1∑

k=0

f ◦ T̃ k(x, 0),

that is, f{0}(x) is the sum of f along the excursion from A × {0} starting from (x, 0).
For every n ≥ 0 and x ∈ A, let τn(x) be the number of visits of (T̃ k(x, 0))k≥1 to A × {0}

before time n. Then, for x in A

ST̃
n f (x, 0)=

n−1∑
k=0

f ◦ T̃ k(x, 0)'
τn(x)−1∑

k=0

f{0} ◦ T̃ k
{0}(x),

where, under reasonable assumptions on f and on the extension, the error terms are
negligible for large n. If f is integrable and has zero integral, then so does f{0}. If in
addition | f |{0} belongs to Lp for some p > 2 and if f is regular enough, then (τn) and
(
∑N−1

k=0 f{0} ◦ T̃ k
{0}) are asymptotically independent [67, Theorem 1.7], and we have a

generalized central limit theorem [68, Corollary 6.9], which has the following form when
d = 1:

lim
n→+∞

ST̃
n f

n1/4 =

(
2

πσ 2
G K (F, A, µ, T )

)1/4

σG K ( f{0}, A, µ, T̃{0})L ,

where the convergence is strong in distribution and where L is a parameter 1/
√

2 centered
Laplace random variable and where†

σ 2
G K ( f{0}, A, µ, T̃{0})= Eµ[ f 2

{0}] + 2Eµ[ f{0} · f{0} ◦ T̃ n
{0}]. (4.1)

Similar limit theorems hold in dimension two or when the jumps are in the basin of
attraction of a Lévy stable distribution.

† Assuming (A, µ, T̃{0}) is mixing, otherwise the formula differs slightly.
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Due to [67, Theorem 1.11], we already know that the limit theorem holds for
observables f , which are Hölder and such that | f |{0} ∈ Lq for some q > 2. However, this
condition is hard to check, and we would like to get a condition that may be stronger,
but more manageable. Our idea is to leverage what we know about the observables
f p : Ã→ {±1}, which we recall are defined for p ∈ Zd by f p(x, q) := (1{p} − 1{0})(q).

Note that f p,{0}(x)= Np(x)− 1, where Np(x) is the number of visits to A × {p}
starting from (x, 0) before coming back to A × {0}. In addition, for any observable f
and any q ≥ 1,

‖| f |{0}‖Lq (A,µ) ≤
∑
p∈Zd

‖ f (·, p)‖L∞(A,µ)‖Np‖Lq (A,µ). (4.2)

Hence, we are led to the study of ‖Np‖Lq (A,µ) for q > 2. Note that ‖Np‖Lq (A,µ) =

‖ f p,{0}‖Lq (A,µ) + O(1).
First, we will see that ‖Np‖L2(A,µ) ∼ σG K ( f p,{0}, A, µ, T̃{0}). Moreover, comparing

the conclusions of Theorem 2.4 of the present paper with a previous result, we obtain
that σ 2

G K ( f p,{0}, A, µ, T̃{0})= 2(g(p)− 1) for every p. The control on higher moments
(q > 2) of f p,{0} helps us to extend Theorem 2.4 to a wider class of observables, thanks to
the argument in [18].

Our main issue is then to control ‖Np‖Lq (A,µ) for any q > 2 with the weaker norm
‖Np‖L2(A,µ). For random walks, there is a simple argument, which we will replicate in
the context of Gibbs–Markov maps. Recall that α(p)−1

:= µ(Np > 0) is the probability
to visit A × {p} before coming back to A × {0}, when starting from 0.

To identify the distribution of Np, it is enough to consider the Markov chain
corresponding to the times at which the random walk is in {0, p}, which is given by

0 p1− α(p)−1

α(p)−1

1− α(−p)−1

α(−p)−1

Since the random walk spends as much time in A × {0} and A × {p}, we get α(p)=
α(−p). Hence, the random variable Np conditioned on {Np > 0} has a geometric
distribution of parameter α(p)−1. So ‖ f p,{0}‖Lq is determined by ‖ f p,{0}‖L2 for all q.

In the context of Markovian Zd -extensions of Gibbs–Markov maps, we cannot expect
to know the explicit distribution of Np; however, the same results will hold asymptotically,
which is enough for our purposes. The main idea is that Np − 1 conditioned on {Np > 0} is
the hitting time of the event {T̃{0,p} ∈ A × {0}}, which becomes small as p goes to infinity,
so α(−p)−1 Np conditioned on {Np > 0} converges in distribution to an exponential
random variable of parameter 1. Exponential tightness gives the convergence of the
moments of Np, which is what we want.

4.2. Recalls on Gibbs–Markov maps. Throughout this section, (A, π, λ, µ, T ) denotes
a Gibbs–Markov map. These models provide a large enough family of dynamical systems,
including many important examples, most notably inductions of Markov maps with respect
to a stopping time. Together with the construction of Young towers [70], Gibbs–Markov
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maps appear in a variety of subjects, including intermittent chaos [26, 46, 56, 71], Anosov
flows [12], or hyperbolic billiards [70]. Their definition is flexible enough to allow Zd -
extensions with large jumps [4]. Yet, Gibbs–Markov maps have a very strong structure,
which makes them tractable. We refer the reader to [1, Ch. 4] and [26, Ch. 1] for more
general references on Gibbs–Markov maps, and to §4.2 for some more specialized results.
Let us recall their definition.

Definition 4.1. (Measure-preserving Gibbs–Markov maps) Let (A, d, B, µ) be a
probability, metric, bounded Polish space. Let π be a partition of A in sub-sets of positive
measure (up to a null set). Let T : A→ A be a µ-preserving map, Markov with respect to
the partition π , and such that π is generating. Such a map is said to be Gibbs–Markov if it
also satisfies the following.
• Big image property: infa∈π µ(T a) > 0.
• Expansivity: there exists λ > 1 such that d(T x, T y)≥ λd(x, y) for all a ∈ π and

(x, y) ∈ a × a.
• Bounded distortion: there exists C > 0 such that, for all a ∈ π , for almost every

(x, y) ∈ a × a:∣∣∣∣ dµ
dµ ◦ T

(x)−
dµ

dµ ◦ T
(y)
∣∣∣∣≤ Cd(T x, T y)

dµ
dµ ◦ T

(x). (4.3)

A measure-preserving Gibbs–Markov map is thus the data (A, π, d, µ, T ) of five
objects: a topological space, a partition, a distance, a measure and a measure-preserving
transformation. We will sometimes abuse the notation, and say, for instance, that (A, µ, T )
is a Gibbs–Markov map.

Later on, we shall use liberally many fine properties of Gibbs–Markov maps. We put
them together in this sub-section, which is divided in three parts.
• Fundamental definitions and facts: what is a Gibbs–Markov map, and what are

stopping times?
• Good Banach spaces: the Banach spaces we work with, and the properties of the

transfer operator.
• Extensions and induction: what happens when we induce a Markovian Zd -extension

( Ã, µ̃, Ã) on a nice set, and a distortion estimate?

4.2.1. Fundamental definitions and facts. Let (A, π, d, µ, T ) be a Gibbs–Markov
map. For all x and y in A, we define the separation time of x and y as

s(x, y) := inf{n ≥ 0 : ∀a ∈ π, T n x /∈ a or T n y /∈ a}.

Let λ be the expansion constant of a Gibbs–Markov map. Then (A, π, τ−s, µ, T ) is
Gibbs–Markov for all τ ∈ (1, λ]. Without loss of generality, we assume that the distance d
belongs to this family of distances, and (if needed) we specify the parameter τ instead of
the distance d. This simplifies greatly the induction processes.

For n ≥ 0, a cylinder of length n is a non-trivial element of πn :=
∨n−1

k=0 T−kπ . It is
given by a unique finite sequence (ak)0≤k<n of elements of π such that T (ak) ∩ ak+1 is
non-negligible for all 0≤ k < n − 1. Such a cylinder shall be denoted by [a0, . . . , an−1].

With any Markov maps comes a natural filtration given by Fn := σ(πn) for all n ≥ 0.
From this filtration we define stopping times.
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Definition 4.2. (Stopping time) Let (A, π, d, µ, T ) be a Gibbs–Markov map. Let ϕ : A→
N ∪ {+∞} be measurable. We say that ϕ is a stopping time if {ϕ ≤ n} ∈ Fn for all n ≥ 0.

If ϕ is a stopping time, which is almost surely positive and finite, the associated
countable partition of A is given by

πϕ :=
⋃
n≥1

{a ∈ πn : µ(a) > 0 and a ⊂ {ϕ = n}},

and the associated transformation is

Tϕ(x) := T ϕ(x)(x),

which is well-defined almost everywhere if ϕ is finite almost everywhere.

One of the great advantages of the class of Gibbs–Markov maps is that it is stable
by induction, and that ergodic Gibbs–Markov maps admit some iterate that is mixing on
ergodic components, as the following results assert.

LEMMA 4.3. [1, Proposition 4.6.2] Let (A, π, λ, µ, T ) be a Gibbs–Markov map, and ϕ
be a stopping time for the associated filtration (Fn)n≥0.

Assume that ϕ is almost surely positive and finite, and that Tϕ preserves µ. Then
(A, πϕ, λ, µ, Tϕ) is a measure-preserving Gibbs–Markov map.

PROPOSITION 4.4. [26, Proposition 1.3.14] Let (A, π, λ, µ, T ) be an ergodic Gibbs–
Markov map. Then there exists an integer M ≥ 1 and a σ(π)-measurable partition
(Ak)k∈Z/MZ of A such that:
• T (Ak)= Ak+1 for all k ∈ Z/MZ;
• each (Ak, πM , λ, µ(·|Ak), T M ) is a mixing Gibbs–Markov map.

4.2.2. Good Banach spaces. Let P : L1(A, µ)→ L1(A, µ) be the transfer operator
associated with T . For any bounded measurable function h : A→ R, let

Ph :

{
L1(A, µ) → L1(A, µ),
f 7→ P(h f ).

For any a ∈ π and any measurable function f : A→ R, we define the Lipschitz semi-
norm of f on a by

| f |Lip(a,d) := Einf{x,y∈a}{C ≥ 0 : | f (x)− f (y)| ≤ Cd(x, y)},

where Einf denotes the essential infimum.

Definition 4.5. Let us define the following two norms:

‖ f ‖Lip1(A,π,d,µ) := ‖ f ‖L1(A,µ) +
∑
a∈π

µ(a)| f |Lip(a,d);

‖ f ‖Lip∞(A,π,d,µ) := ‖ f ‖L∞(A,µ) + sup
a∈π
| f |Lip(a,d).

The spaces Lip1(A, π, d, µ) and Lip∞(A, π, d, µ) are the spaces of measurable functions
whose respective norms are finite. The space Lip∞ is the space of all globally Lipschitz
functions, while Lip1 is the space of all summably locally Lipschitz functions.

https://doi.org/10.1017/etds.2018.136 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.136


1940 F. Pène and D. Thomine

A family of observables is uniformly globally (respectively, summably locally)
Lipschitz if the Lip∞ norm (respectively, the Lip1 norm) is bounded on this family.

Let θ ∈ (0, 1]. If we replace d by dθ , we get spaces of globally or summably locally
θ -Hölder observables. Any result about Lipschitz observables can be generalized freely to
θ -Hölder observables.

The transfer operator P acts quasi-compactly on Lip∞. If the transformation is mixing,
then the transfer operator has a spectral gap, which implies an exponential decay of
correlation for Lipschitz (and, by extension, Hölder) observables [26, Corollaire 1.1.21].

PROPOSITION 4.6. (Exponential decay of correlations) Let (A, π, d, µ, T ) be a mixing
Gibbs–Markov map. Then there exist constants C, κ > 0 such that, for all n ≥ 0, for all
g ∈ Lip∞(A),

‖Png −
∫

A
g dµ · 1‖Lip∞(A) ≤ Ce−κn

‖g‖Lip∞(A).

In addition, P maps continuously Lip1 into Lip∞ [26, Lemme 1.1.13]. This feature
(that P maps a large space of integrable functions into a space of bounded functions) is
specific to Gibbs–Markov maps.

4.2.3. Extensions and induction. Let (A, π, λ, µ, T ) be a measure-preserving Gibbs–
Markov map. Let G be a discrete countable Abelian group with counting measure ν. Let
F : A→ G be σ(π)-measurable. If (A × G, µA×G , T̃ ) is conservative and ergodic, then
for any non-empty sub-set S ⊂ G and any p ∈ G, the function:

ϕp,S :

{
A × S → N+,
x 7→ inf{n ≥ 1 : T̃ n(x, p) ∈ A × S},

is a stopping time, which is almost surely positive and finite.
Let S ⊂ G be non-empty and finite. Set:

• a partition πS := {a × {p} : p ∈ S, a ∈ πϕp,S };
• a measure µS := ν(S)−1µ⊗ ν|S ;
• a transformation:

TS :

{
A × S → A × S,
(x, p) 7→ T̃ ϕp,S(x)(x).

PROPOSITION 4.7. (Inductions of extensions of Gibbs–Markov maps are Gibbs–Markov)
Let ( Ã, µ̃, T̃ ) be an ergodic and conservative Markovian Zd -extension of a Gibbs–Markov
map (A, π, λ, µ, T ).

Then, for any non-empty finite sub-set S ⊂ G, the dynamical system (A ×
S, πS, λ, µS, TS) is a measure-preserving ergodic Gibbs–Markov map.

Proof. Up to straightforward modifications, the proof is the same as in [1,
Proposition 4.6.2]. �

Given any non-trivial and finite S ⊂ G, we can then define the transfer operator PS

associated with the system (A × S, µS, TS).
For the remainder of the section, we assume that (A, π, λ, µ, T ) is a measure-

preserving and ergodic Gibbs–Markov map, G a discrete countable Abelian group with

https://doi.org/10.1017/etds.2018.136 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.136


Potential kernel, hitting probabilities and distributional asymptotics 1941

counting measure ν, and F : A→ G a σ(π)-measurable function. We assume that
( Ã, µ̃, T̃ ) is conservative and ergodic.

In our proof, we will sometimes have to control the distortion of Tϕ : x 7→ T ϕ(x)(x)
for various stopping times ϕ. This is done with the next lemma, which generalizes [26,
Lemme 1.1.13]. We write P(ϕ) for the transfer operator associated with Tϕ .

LEMMA 4.8. Let (A, π, λ, µ, T ) be a measure-preserving Gibbs–Markov map. Then
there exists a constant K > 0 with the following property. Let ϕ be a stopping time, which
is finite with positive probability as well as almost surely positive. Let A ⊂ {ϕ <+∞} be
σ(πϕ)-measurable and non-trivial. Then∥∥∥∥ P(ϕ)1A

µ(A)

∥∥∥∥
Lip∞(A,π,λ)

≤ K .

Proof. Let n ≥ 1, and let a be a cylinder of length n for the Gibbs–Markov map
(A, π, λ, µ, T ). By a strengthening of the distortion lemma, e.g. [26, Lemme 1.1.13],
there is a constant K independent of n and a such that

‖Pn(1a)‖Lip∞(A,π,λ) ≤ Kµ(a).

By additivity, this inequality remains true whenever a is σ(πn)-measurable. For all n ≥ 1,
let An := A ∩ {ϕ = n}. Then (An)n≥1 is a partition of A. In addition, each An is σ(πn)-
measurable, and P(ϕ) = Pn for functions supported by An , so that

P(ϕ)1A

µ(A)
= µ(Aϕ)−1

∑
n≥1

Pn1An .

By additivity again, the Lip∞ norm of the right-hand side is at most

Kµ(Aϕ)−1
∑
n≥1

µ(An)= Kµ(A)−1µ(A)= K . �

4.2.4. Fulfilment of the spectral hypotheses. The spectral hypotheses 3.1 are used in our
main theorems, and Gibbs–Markov maps appear in a variety of applications. We provide
here a simple sufficient criterion to ensure that the spectral hypotheses are satisfied for
Gibbs–Markov maps. The hypothesis of aperiodicity will be central.

Definition 4.9. (Aperiodic extensions) Let (A, µ, T ) be a dynamical system preserving
a probability measure. Let d ≥ 0 and F : A→ Zd be a measurable function. The
corresponding extension ( Ã, µ̃, T̃ ) is said to be aperiodic if the coboundary equation:

F = k + θ ◦ T − θ mod 3 (4.4)

has no solution, where 3 is a proper sub-lattice of Zd , k ∈ (Zd)/3, and θ : A→ (Zd)/3 is
measurable.

For Gibbs–Markov maps, aperiodicity translates nicely into spectral properties.

LEMMA 4.10. Let ( Ã, µ̃, T̃ ) be a Markovian Zd -extension of an ergodic Gibbs–Markov
map (A, µ, T ). Then the following can be said.
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• This extension is aperiodic if and only if the operator Pu acting on Lip∞ has spectral
radius strictly smaller than 1 for all u ∈ Td

\{0}.
• If Pu has an eigenvalue of modulus 1 for some u, then this eigenvalue is simple.
• The set {u ∈ Td

: ρ(Pu)= 1} is a closed sub-group of Td . If ( Ã, µ̃, T̃ ) is ergodic, then
this sub-group is discrete.

Proof. The fact that the aperiodicity of the extension implies that ρ(Pu) < 1 for u 6= 0
is [69, Lemma 2.6]. We point out that the later lemma includes the hypotheses that T be
mixing and F integrable. However, mixing can be replaced by ergodicity without changing
the proof. The integrability of F only matters to show that Pu has spectral radius strictly
smaller that 1 for u close to, but different from, 0. However, u 7→ Pu is continuous in the
operator norm by the discussion following [26, Corollaire 4.1.3], without restriction on
the integrability of F . The argument in the proof of [69, Lemma 2.6] then implies that if
ρ(Pu)= 1 for some u with at least one irrational coordinate, then Pv has an eigenvalue of
modulus 1 for all v on a non-trivial sub-torus of Td , and hence for some v with rational
coordinates. The same conclusion ensues.

Conversely, assume that the extension is not aperiodic. Let 3, k and θ be as in
equation (4.4). Since3 is a proper sub-lattice, there exists u ∈ Td

\{0} such that ei〈u,·〉
≡ 1

on 3. Then

1= P(1)= P(ei〈u,F−k−θ◦T+θ〉1)= e−i〈u,k〉e−i〈u,θ〉Pu(ei〈u,θ〉),

so Pu(ei〈u,θ〉)= ei〈u,k〉ei〈u,θ〉.
In addition, F is constant on the elements of the Markov partition. By [26,

Théorème 1.2.1], the function θ is locally Lipschitz, so ei〈u,θ〉
∈ Lip∞. Hence, ei〈u,k〉

belongs to the spectrum of Pu . This ends the proof of the first point.
Let H := {u ∈ Td

: ρ(Pu)= 1}. This sub-set is closed by continuity of u 7→ Pu . We
have 0 ∈ H . If Pu( f )= λ f , then P−u( f )= λ · f , so H is invariant under inversion. Now,
let u1, u2 ∈ H , and let λ1 and λ2 be eigenvalue of modulus 1 of Pu1 and Pu2 respectively.
Let f1 and f2 be corresponding eigenfunctions, chosen to have modulus 1. Then, by
[69, Equation 2.10], we have Pu1+u2( f1 f2)= λ1λ2 f1 f2, so u1 + u2 ∈ H . Hence we have
proved that H is a closed sub-group of Td .

Let u ∈ Td , and let f and g be two eigenfunctions for the same eigenvalue λ of Pu .
Then:

P( f g)= Pu−u( f g)= λ f · λg = f g.

By ergodicity, f g is constant, so f and g are colinear. This ends the proof of the second
point.

Assume that H is not discrete. Let M be the periodicity of the Gibbs–Markov map
(A, µ, T ), so that the peripherical spectrum of P0 is the set of M th roots of the unit.
For u ∈ H close to 0, choose an eigenvalue ηu of modulus 1 and an eigenfunction fu of
modulus 1. Then PMu( f M

u )= ηM
u f M

u . Any limit point of (ηu) as u goes to 0 being a M th
root of the unit, ηM

u converges to 1 as u goes to 0. Let U be a small neighbourhood of 0, and
let (λu)u∈U be the unique continuous family of eigenvalues of (Pu)u∈U such that λ0 = 1.
Then λu = η

M
u/M for all small enough u ∈ H , so |λu | = 1 for all small enough u ∈ H .
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Let ( fu) be a continuous family of eigenfunctions of Pu for the eigenvalue λu , chosen
with modulus 1. Then limu→0 fu = 1 in Lip∞ norm. Let iθu (respectively, Ru) be the main
determination of the logarithm of fu (respectively, λu).

As u 7→ λ2
u is continuous and λ2

u is an eigenvalue of P2u for all small enough u ∈ H , we
have λ2

u = λ2u for all small enough u ∈ H , so R2u = 2Ru and θ2u = 2θu . Fix some small
enough non-zero u ∈ H . By [69, equation 2.10],

θ2−nu ◦ T − θ2−nu = R2−nu + 〈2
−nu, F〉 [2πZd

],

whence, multiplying by 2n

θu ◦ T − θu = Ru + 〈u, F〉 [2n+1πZd
].

As n goes to infinity, we get θu ◦ T − θu = Ru + 〈u, F〉 almost everywhere. Note that θu

is bounded. If Ru is non-zero, then (〈u, Sn〉)n≥0 diverges almost surely, so ( Ã, µ̃, T̃ ) is not
recurrent. If Ru = 0, then (〈u, Sn〉)n≥0 is bounded almost surely with u 6= 0, so ( Ã, µ̃, T̃ )
is not ergodic, which ends the proof of the last point. �

We prove the following.

PROPOSITION 4.11. Let ( Ã, µ̃, T̃ ) be an aperiodic Markovian Zd -extension of a Gibbs–
Markov map (A, π, λ, µ, T ) with step function F. Assume that the extension is ergodic,
conservative, and either of the following hypotheses:
• d = 1 and F is in the domain of attraction of an α-stable distribution, with α ∈ (1, 2].
• d = 1 and

∫
A eiuF dµ= e−ϑ |u|[1−iζ sgn(u)]L(|u|−1)

+ o(|u|L(|u|−1)) at 0, for some real
numbers ϑ > 0 and ζ ∈ R and some function L with slow variation.

• d = 2 and F is in the domain of attraction of a non-degenerate Gaussian random
variable.

Then Hypothesis 3.1 is satisfied with B := Lip∞.

Proof. The recurrence of the extension is among the hypotheses. Since the extension is
ergodic, so is (A, µ, T ). The existence of an integer M ≥ 1 and a decomposition of A into
M measurable sub-sets (Ai )i∈Z/MZ on which T M is mixing follows [26, Théorème 1.1.8].

We choose the Banach space Lip∞ ⊂ L∞(A, µ)⊂ L1(A, µ). Then 1 ∈ Lip∞, and P
acts continuously on Lip∞. In addition, the sub-sets Ai are σ(π)-measurable, so for all
f ∈ Lip∞:

‖1Ai f ‖Lip∞(A,π,d,µ) = ‖1Ai f ‖L∞(A,µ) + sup
a∈π
|1Ai f |Lip(a,d) ≤ ‖ f ‖Lip∞(A,π,d,µ),

so the multiplication by 1Ai acts continuously on Lip∞.
We use Proposition 3.2 to check the third item. The function F is constant on

elements of the partition π , so, with the notation of [26] Dτ f (a)≡ 0. Hence, by [26,
Corollaire 4.1.3], the application u 7→ Pu , as a function with values in L(Lip∞, Lip∞),
is continuous in 0. But multiplication by ei〈u,F〉 is continuous on Lip∞, and Pv( f )−
Pu( f )= (Pv−u − P)(ei〈u,F〉} f ). Hence, u 7→ Pu is continuous for all u.

The action of P on Lip∞ is quasi-compact: the spectrum of P is included in the
closed unit ball, its intersection with the unit circle is exactly the set of M th roots of
the unity, and the remainder of the spectrum lies in a ball of smaller radius. Hence, the
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eigendecomposition of P is continuous for small parameters u. The hypotheses of
Proposition 3.2 follow, except for the last one (that Pu has no eigenvalue of modulus one
for u 6= 0).

Since the extension is assumed to be aperiodic, the spectral radius of Pu acting on Lip∞

is strictly smaller than 1 for u 6= 0, by Lemma 4.10. We have checked all the assumptions
of Proposition 3.2, and thus the third item of Hypothesis 3.1.

The expansion of the main eigenvalue for Gibbs–Markov maps is done in [4] in the one-
dimensional case. If F ∈ L2, then it is an instance of the central limit theorem by spectral
methods, as in [48]; otherwise, the expansion ultimately satisfies

1− λu ∼ 1−
∫

A
ei〈u,F〉 dµ, (4.5)

and the formulas come from [24].
Note that, if α ∈ (1, 2], Birkhoff’s theorem and the conservativity of the extension imply

that F has no drift, which finishes this case. For α = 1, the expansion of
∫

A eiuF dµ is part
of the hypothesis. �

4.3. Tightness. In this sub-section and the next, for any metric space (E, d), any x ∈ E
and any R > 0, we write B E (x, R) for the closed ball in (E, d) of center x and radius R,
and SE (x, R) for the corresponding sphere.

Recall that, for all p ∈ G, for all x ∈ A, we put Np(x)= |{0≤ k < ϕ{0}(x) : T̃ k(x, 0) ∈
A × {p}}| and N0,p(x)= inf{n ≥ 0 : T n

{0}(x) ∈ {Np > 0}}. The goal of this section is to
obtain an upper bound for the tail distribution of N0,p. This estimate will be used later to
prove the tightness of α(p)−1 Np given {Np > 0}.

Since T is ergodic, we consider M ∈ N+ and (Ak)k∈Z/MZ as in Proposition 4.4. For
all k ∈ Z/MZ and f ∈ L1(A, µ), let 5k be the projection f 7→

∫
Ak

f dµ · 1Ak . For all
K > 0, we set

SK := {h : A→ [0, 1]} ∩ BLip∞(A)(0, K ).

PROPOSITION 4.12. Let (A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Then for all
K > 0, there exist constants C, κ > 0 such that for all h ∈ SK , for all n ≥ 0,

‖Pn
h (1)‖L1(A,µ) ≤ Ce−κ‖1−h‖L1(A,µ)n . (4.6)

Proof. First, let us assume that (A, µ, T ) is mixing. We only need to prove the assertion
for K ≥ 1. Let h ∈ SK .

If h < 1/2 somewhere, since SK is convex and 1 ∈ SK , the function h′ := (1+ h)/2
also belongs to SK and satisfies h′ ≥ 1/2. In addition, Pn

h (1)≤ Pn
h′(1) for all n, so any

upper bound for ‖Pn
h′(1)‖L1(A,µ) is also an upper bound for ‖Pn

h (1)‖L1(A,µ). Moreover,
‖1− h‖L1(A,µ) = 2‖1− h′‖L1(A,µ). Hence, if we get the bound (4.6) for h′, up to dividing
κ by 2, we also get the bound (4.6) for h. Hence, without loss of generality, we assume
from now on that h ≥ 1/2.

Let f ∈ BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1). Then, on the one hand, for all h ∈ SK ,∣∣∣∣∫
A

Ph( f ) dµ
∣∣∣∣= ∣∣∣∣∫

A
h f dµ

∣∣∣∣≥ ∫
A

h dµ−
∫

A
h|1− f | dµ≥

‖h‖L1(A,µ)

2
. (4.7)
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On the other hand,∣∣∣∣∫
A

Ph( f ) dµ
∣∣∣∣ ≤ ∫

A
| f | dµ+

∫
A
(1− h)|1− f | dµ−

∫
A
(1− h) dµ

≤ ‖ f ‖L1(A,µ) −
‖1− h‖L1(A,µ)

2

= 1−
‖1− h‖L1(A,µ)

2
. (4.8)

From (4.7), we compute∥∥∥∥ Ph( f )∫
A Ph( f ) dµ

∥∥∥∥
Lip∞(A)

≤
2‖P‖L(Lip∞(A))‖h f ‖Lip∞(A)

‖h‖L1(A,µ)

≤
2‖P‖L(Lip∞(A))K
‖h‖L1(A,µ)

‖ f ‖Lip∞(A)

≤ 4‖P‖L(Lip∞(A))K‖ f ‖Lip∞(A)

≤ 6‖P‖L(Lip∞(A))K .

Due to Proposition 4.6, there exists m ≥ 1 such that, for any h fitting our assumptions,
for all f ∈ BLip∞(A)(1, 1/2),∥∥∥∥ Pm−1 Ph( f )∫

A Ph( f ) dµ
− 1

∥∥∥∥
Lip∞(A)

≤
1
2
.

We fix such a value of m. Then, the following map is well-defined:

F :


BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1) → BLip∞(A)(1, 1/2) ∩ SL1(A,µ)(0, 1)

f 7→
Pm−1 Ph( f )∫
A Ph( f ) dµ

.

Furthermore, by virtue of (4.8), for all n ≥ 0,∣∣∣∣∫
A
(Pm−1 Ph)

n f dµ
∣∣∣∣ = ∣∣∣∣∫

A
Fn( f ) dµ ·

n−1∏
k=0

∫
A

Ph(Fk( f )) dµ
∣∣∣∣

≤

(
1−
‖1− h‖L1(A,µ)

2

)n

.

Remark that 0≤ Pn
h f ≤ Pn f for all non-negative f ∈ L1, for all n ≥ 0 and all h ∈ SK . In

addition, F preserves the sub-set of real-valued functions. Fix h ∈ SK . Then, for all n ≥ 0,

0≤
∫

A
Pnm

h (1) dµ ≤
∫

A
(Pm−1 Ph)

n(1) dµ

≤

(
1−
‖1− h‖L1(A,µ)

2

)n

≤ e−(‖1−h‖L1(A,µ))/2)n,

so that

‖Pn
h (1)‖L1(A,µ) ≤

√
e max

0≤k<m
sup

h∈SK

‖Pk
h ‖L(Lip∞(A))e

−(‖1−h‖L1(A,µ)/2m)n
.
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We have proved that the conclusion of the lemma holds if (A, µ, T ) is assumed to be
mixing.

Finally, assume that (A, µ, T ) is ergodic but not necessarily mixing. Let (Ak)k∈Z/MZ
be its decomposition in components on which T M is mixing, and write µk := Mµ|Ak .
Let K ≥ 0, and let h ∈ SK . Let k0 be such that ‖1− h‖L1(Ak0 ,µk0 )

≥ ‖1− h‖L1(A,µ). Note

that h · 1Ak0
is in SK when we replace Lip∞(A, π, λ) by Lip∞(Ak0 , πM , λ). Let P̃h( f ) :=

P M (h f ) for f ∈ Lip∞(Ak0 , πM , λ). Then, there exist positive constants C0, κ0 depending
only on K such that, for all n ≥ 0,

‖P̃n
h (1)‖L1(Ak0 ,µk0 )

≤ C0e
−κ0‖1−h‖L1(Ak0

,µk0
)
n
≤ C0e−κ0‖1−h‖L1(A,µ)n .

But then, for all k ∈ Z/MZ, for all n ≥ 1,

‖PnM
h (1)‖L1(Ak ,µk )

≤ ‖P(n−1)M
h (1)‖L1(Ak0 ,µk0 )

≤ ‖P̃n−1
h (1)‖L1(Ak0 ,µk0 )

≤ C0e−κ0‖1−h‖L1(A,µ)(n−1)

≤ C0eκ0e−κ0‖1−h‖L1(A,µ)n,

so that, for all n ≥ 0:

‖Pn
h (1)‖L1(A,µ) =

1
M

∑
k∈Z/MZ

‖Pn
h (1)‖L1(Ak ,µk )

≤ C0e2κ0e−(κ0/M)‖1−h‖L1(A,µ)n . �

Proposition 4.12 yields an upper bound on the probability that the orbits do not visit a
given sub-set of A before a given time.

COROLLARY 4.13. Let (A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Let G be a
set, and (ap)p∈G be a family of non-trivial σ(π)-measurable sub-sets. Let C, κ > 0 be
constants associated with S1 in Proposition 4.12. Let K > 0. Let (µp)p∈G be a family of
probability measures on A such that µp � µ and ‖dµp/dµ‖Lip∞(A) ≤ K for all p. Then,
for all n ≥ 0 and all p ∈ G,

µp

(n−1⋂
k=0

{T k(x) /∈ ap}

)
≤ K Ce−κµ(ap)n . (4.9)

Proof. We compute

µp

(n−1⋂
k=0

{T k(x) /∈ ap}

)
=

∫
A

n−1∏
k=0

1ac
p ◦ T k

·
dµp

dµ
dµ

≤ K
∫

A
Pn

1−1ap
(1) dµ.

But 1− 1ap ∈ S1 for all p. All remains is to use Proposition 4.12. �
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4.4. Convergence in distribution. Let (A, µ, T ) be a sufficiently hyperbolic measure-
preserving dynamical system, and let (Ap) be a family of measurable sub-sets such that
limp→∞ µ(Ap)= 0. Let ϕp be the first hitting time of Ap. As p goes to infinity, hitting
this set becomes a rare event. Knowing that a trajectory has not hit the set until some
time gives us little information about later times, which implies that any limit distribution
exhibits a loss of memory characteristic of the exponential distributions. Hence, one can
usually prove that µ(Ap)ϕp converges in distribution to a exponential random variable of
parameter 1. There is an extensive literature on the subject; we refer the interested reader
to the reviews [17, 30, 58]. Note that this family of results can usually be strengthened, for
instance to show convergence to a Poisson process [57, Théorème 3.6]. More promisingly,
there are also ways to get a rate of convergence [25], which may be adapted to get rates of
convergence in Theorem 2.7.

In the previous sub-section, we showed that, under any probability measure with
uniformly bounded density, the tail of the hitting time of a σ(π)-measurable set decays
exponentially, at a speed which is at most inversely proportional to the size of the set. Now,
we shall prove that, as the size of the sets goes to 0, the distribution of the renormalized
hitting time is asymptotically exponential. This is the content of Proposition 4.14. Due
to some specificities of our situation (the hitting sets are not exactly cylinders, and the
measure changes with the sets), we prove the convergence ourselves, instead of using
some already established theorem.

Afterwards, we shall prove Lemma 4.16, which is useful in the proof of Theorem 2.11
and whose proof uses ideas very similar to the proof of Proposition 4.14.

PROPOSITION 4.14. Let (A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Let G be a
locally compact space, and (ap)p∈G be a family of non-trivial σ(π)-measurable sub-sets
such that limp→∞ µ(ap)= 0. For all p ∈ G and x ∈ A, let Np(x) := inf{k ≥ 0 : T k(x) ∈
ap}. Let (µp)p∈G be a family of probability measures on A such that µp � µ for all p,
and

sup
p∈G

∥∥∥∥dµp

dµ

∥∥∥∥
Lip∞(A)

<+∞.

Then the family of random variables (µ(ap)Np)p∈G defined on the probability space
(A, µp) converges in distribution to an exponential random variable of parameter 1.

Proof. At first, we assume that the system is mixing. We work with the distribution
function 1− Fp, f of Np under the distribution f dµ, that is, for all t ≥ 0:

Fp, f (t)=
∫

A
1{Np≥t} f dµ.

In a first step, we prove that Fp, f does not depend too much on the density f . This will
imply the loss of memory: in the second step, we prove that any limit distribution of
µ(ap)Np is exponential, and that the limit points do not depend on the choice of f . Then,
we have to identify the parameter of the limit distribution, which is done in the third and
fourth steps. In the third step, we prove that some Z/2Z-extension of the system is ergodic,
at least for large p’s and, in the fourth step, we use Kac’s formula to prove that, for a good
choice of f (depending on p), the expectation of µ(ap)Np is 1. Finally, in the last step we
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extend this result to dynamical systems, which are merely ergodic. We assume in the first
four steps that (A, µ, T ) is mixing.

Step 1 (mixing case): Loss of memory. First, let us prove that Fp, f does not depend
on f as p goes to infinity. Let h p := 1− 1ap . Then h p ∈ S1 for all p. Let K ≥ 1.
Let f ∈ BLip∞(A)(0, K ) with f ≥ 0 and

∫
A f dµ= 1. Let n, k ∈ N and p ∈ G. Note

that Fp, f (n)= ‖Pn
h p
( f )‖L1(A,µ). Since each Ph p is a weak contraction when acting on

L1(A, µ),

|Fp, f (n + k)− Fp,Pk f (n)| =
∣∣∣∣∫

A
Pn+k

h p
( f )− Pn

h p
(Pk f ) dµ

∣∣∣∣
≤

∣∣∣∣∫
A

Pk
h p
( f )− Pk f dµ

∣∣∣∣
≤ 1− Fp, f (k).

In addition,

|Fp,Pk f (n)− Fp,1(n)| ≤ ‖Pk f − 1‖L∞ ≤ K‖Pk
−50‖L(Lip∞(A)),

and
1− Fp, f (k)≤ k‖ f ‖L∞(A,µ)µ(ap)≤ K kµ(ap).

Hence, we finally get

|Fp, f (n + k)− Fp,1(n)| ≤ K kµ(ap)+ K‖Pk
−50‖L(Lip∞(A)).

Since (A, µ, T ) is a mixing Gibbs–Markov map, ‖Pk
−50‖L(Lip∞(A)) converges to 0 as

k goes to infinity (Proposition 4.6). Taking n = bµ(ap)
−1tc and k := b

√
µ(ap)−1c yields

Fp, f

(
bµ(ap)

−1tc +
⌊√
µ(ap)

⌋)
= Fp,1(bµ(ap)

−1tc)+ o(1) as p→∞, (4.10)

uniformly for f in BLip∞(A)(0, K ) and t ≥ 0.
Step 2 (mixing case): Limit distributions. Now, we prove that any limit distribution of

µ(ap)Np is δ0 or exponential, and that the limit distributions do not depend on the choice
of the measures µp. For every p ∈ G, we set gp for the density of µp with respect to µ.
By Corollary 4.13, there exist positive constants C , κ such that, for all t ≥ 0 and for all
p ∈ G,

µp(µ(ap)Np ≥ t)=
∫

A
1{µ(ap)Np≥t}gp dµ≤ C K e−κt .

Hence, the sequence (µ(ap)Np)p∈G defined on (A, µp) is tight. Let F be the tail
distribution function of one of its limit points, and let G F ⊂ G be such that the distribution
function of µ(ap)Np converges to F for p ∈ G F . By equation (4.10), F does not depend
on f . Note that F is non-increasing and càdlàg.

If F(t)= 0 for all t > 0, then the limit distribution is δ0, and we are done. Let us assume
that there exists T > 0 with F(T ) > 0, and let t ∈ [0, T ). Then Fp,1(dµ(ap)

−1te) > 0
for all large enough p ∈ G F . We apply Lemma 4.8 with the stopping time n p(t) :=

dµ(ap)
−1te and the event A :=

⋂n p(t)−1
k=0 T−kac

p, which has positive probability if p is
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large enough. There exists a constant K ′ such that P
n p(t)
h p

(1)/Fp,1(n p(t)) belongs to

BLip∞(A)(0, K ′) for all large enough p. But then, for all k ∈ N+ and for all p ∈ G F :

Fp,1

(
n p(t)+

⌊√
µ(ap)−1

⌋
+ k

)
= Fp,1(n p(t)) · Fp,(P

n p (t)
h p (1))/(Fp,1(n p(t)))

(⌊√
µ(ap)−1

⌋
+ k

)
.

Let t ′ ≥ 0 and k = dµ(ap)
−1t ′e. Letting p go to infinity in G F , by equation (4.10),

F(t + t ′)= F(t)F(t ′).

In addition, trivially, F = 1 on R−. Hence, 1− F is the distribution function of an
exponential random variable with parameter in [0,∞].

Step 3 (mixing case): Ergodicity of a Z/2Z-extension. We have proved that any limit
distribution of (µ(ap)Np)p∈G is exponential; now, we show that its parameter must be 1.
To this end, we first prove that a certain Z/2Z-extension is ergodic. This fact shall allow
us to apply Kac’s formula in the next step, and from there to identify the parameter of the
limit exponential distribution.

Consider the dynamical system:

Tp :


A × Z/2Z → A × Z/2Z

(x, q) 7→

{
(T (x), q) if x /∈ ap,

(T (x), q + 1) otherwise.

Let πp be the canonical projection from A × Z/2Z onto A, which is a factor map. We
shall prove that this extension is ergodic for all large enough p. The idea is that otherwise,
we could divide A into two sub-sets, which communicate only through ap; as the ap get
smaller, this would make the communication more difficult, and the mixing arbitrarily
slow, which is absurd.

Assume that (A × Z/2Z, µ⊗ (δ0 + δ1)/2, Tp) is not ergodic. Let Ip be a Tp-invariant
non-trivial measurable sub-set. Then, since πp(Ip)= πp ◦ Tp(Ip)= T ◦ πp(Ip), we see
that πp(Ip) is a non-trivial T -invariant sub-set, so πp(Ip)= A. Doing the same with I c

p,
we see that there exists a measurable partition (Ip,0, Ip,1) of A such that Ip = Ip,0 ×

{0} ∪ Ip,1 × {1}. In addition, neither A × {0} nor A × {1} are Tp-invariant, so Ip cannot be
either, and neither Ip,0 nor Ip,1 are trivial. Finally, since the Z/2Z-extension is still Gibbs–
Markov, its partition into ergodic components is coarser than its underlying partition, so
both Ip,0 and Ip,1 are σ(π)-measurable.

The map Tp sends Ip,0 ∩ ap into Ip,1 and Ip,1 ∩ ap into Ip,0. By the big image property
of Gibbs–Markov maps, there exists a constant m > 0 such that µ(Ip,i )≥ m for all p ∈ G
and i ∈ Z/2Z. Let f p := µ(Ip,0)

−11Ip,0 . Then ( f p)p∈G is uniformly bounded in Lip∞(A)
by m−1. Hence, there exist constants C ′, κ ′ > 0 such that ‖Pn f p − 1‖Lip∞(A) ≤ C ′e−κ

′n

for all p, n. Hence, ∫
Ip,1

Pn f p dµ≥ m(1− C ′e−κ
′n).
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But we know that∫
Ip,1

Pn f p dµ = µ(T−n Ip,1|Ip,0)≤

n−1∑
k=0

µ(T−(k+1) Ip,1 | T−k Ip,0)

≤ nµ(T−1 Ip,1|Ip,0)≤ n
µ(ap ∩ Ip,0)

µ(Ip,0)
≤ m−1µ(ap)n.

There is a contradiction for some n ≥ 0 and all large enough p ∈ G.
Step 4 (mixing case): Computation of the parameter of the exponential distribution.

Now, let us apply Kac’s formula. For all large enough p, the system (A × Z/2Z, µ⊗
(δ0 + δ1)/2, Tp) is ergodic. Let ϕp be the first return time for Tp to A × {0} starting from
A × {0}. By Kac’s formula, ∫

A
ϕp dµ= 2.

But ϕp ≡ 1 on ac
p, and ϕp ≡ 1+ Np ◦ T on ap. Hence,

1=
∫

ap

Np ◦ T dµ=
∫

A
Np · P(1ap ) dµ=

∫
A
(µ(ap)Np) ·

P(1ap )

µ(ap)
dµ.

Let X be a limit in distribution of (µ(ap)Np)p∈G , and let G X ⊂ G be such that
(µ(ap)Np)p∈G X converges to X in distribution. We already know that X has an
exponential distribution of parameter at most κ . By Lemma 4.8, using the stopping
time 1, there exists a constant K such that, for all p ∈ G, the density P(1ap )/µ(ap)

lies in BLip∞(A)(0, K ). Hence, due to (4.10), the limit distribution of (µ(ap)Np)

on (A, µ(ap)
−1 P(1ap )) is the limit distribution of (µ(ap)Np) on (A, µ), that is,

the distribution of X . Furthermore, the tail of (µ(ap)Np) on (A, µ(ap)
−1 P(1ap )) is

dominated by a decaying exponential, so all the moments converge to those of X . In
particular, E[X ] = 1, so X follows an exponential distribution of parameter 1.

Step 5: General case. We have proved the proposition under the assumption that
(A, µ, T ) is mixing. Now, let us assume that the system is only ergodic, but not mixing.
Let M ≥ 1 and (Ak)k∈Z/MZ be as in Proposition 4.4. Let (ap, νp) be a sequence satisfying
the hypotheses of the proposition. Let k ∈ Z/MZ, and let (ν p) be a sequence of probability
measures on Ak , absolutely continuous with respect to µk := µ(·|Ak)= Mµ(· ∩ Ak), and
with densities uniformly bounded in Lip∞(Ak, πM , λ). We define

a p := {x ∈ Ak : ∃0≤ i < M, T i (x) ∈ ap} ∈ πM .

Note that µk(a p)≤ M
∑M−1

i=0 µ(Ak+i ∩ ap)= Mµ(ap). Let 0≤ i1 < i2 < M . Then, by
[26, Lemme 1.1.13], P i2−i1 maps continuously Lip1 into Lip∞, and

µk(T−i1(ap ∩ Ak+i1)∩T−i2(ap ∩ Ak+i2))

≤

∫
Ak+i1

P i2−i11ap∩Ak+i1
· 1ap∩Ak+i2

dµk+i1

≤ Cµk+i1(ap)µk+i2(ap).
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and so, by Bonferroni’s inequality,

µk(a p) ≥
∑

0≤i<M

µk(T−i (ap ∩ Ak+i ))

−

∑
0≤i1<i2<M

µk(T−i1(ap ∩ Ak+i1) ∩ T−i2(ap ∩ Ak+i2))

≥ Mµ(ap)−
C M4

2
µ(ap)

2.

Hence, µk(a p)∼ Mµ(ap).
Let N p be the first hitting time of a p for T M . Note that |Np − M N p| ≤ M − 1 on Ak .

Since Proposition 4.14 holds for mixing transformations, the sequence (µk(a p)N p)p∈G

defined on (Ak, ν p) converges in distribution to an exponential random variable of
parameter 1. But µk(a p)∼ Mµ(ap) and M N p = Np + O(1), so (µ(ap)Np)p∈G defined
on (Ak, ν p) converges in distribution to the same exponential random variable of
parameter 1.

Finally, let (νp)p be a sequence of probability measures on A whose densities (h p)p

with respect to µ are bounded in Lip∞(A, π, λ). For any x ∈ A, let 0≤ i < M be
such that T i (x) ∈ Ak , and set P(x) := (x, T i (x)) ∈ A × Ak . Then νp 7→ ν̄p := P∗νp is
a transference plan between νp and a probability measure ν p on Ak , with density:

h p :=
dν p

dµk
=

1
M

M−1∑
i=0

P i (1Ak−i h p).

This transference plan yields a coupling between Np (seen as a random variable on
(A, νp)) and Np (seen as a random variable on (Ak, ν p)). For the sake of clarity, we
shall call the second random variable Ñp.

The sequence (h p) is bounded in Lip∞(Ak, πM , λ). Hence, (µ(ap)Ñp)p∈G converges
in distribution to an exponential random variable of parameter 1.

Let x ∈ A. Let 0≤ i < M be such that T i (x) ∈ Ak . If Np(x)≥ i , then Np(x)=
i + Np(T i (x)), so Np = i + Ñp. The event {Np < i} has probability O(µ(ap)), and
|µ(ap)Np − µ(ap)Ñp| ≤ Mµ(ap) outside of this event, so (µ(ap)Np)p∈G has the same
limit in distribution as (µ(ap)Ñp)p∈G . �

Remark 4.15. In our applications, ap will be the set of points x ∈ A such that the trajectory
(Sn F(x))n≥0 of (x, 0) under the action of T̃ goes to A × {p} before coming back to A ×
{0}. If the Zd -extension is ergodic, then the Z/2Z-extension used in the proof is also
automatically ergodic, as it is the induced system on A × {0, p}. Hence, the stage in the
proof above where we proved that such a Z/2Z-extension is ergodic for all large enough
n is not necessary for our applications. This detour however made for a cleaner and more
general statement in the proposition.

The following lemma allows us to control the Lq(A, µ) norm of the Birkhoff sum of an
observable until Np.

LEMMA 4.16. Let (A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Let G be a locally
compact space, and (ap)p∈G be a family of non-trivial σ(π)-measurable sub-sets such
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that limp→∞ µ(ap)= 0. For all p ∈ G and x ∈ A, let Np(x) := inf{k ≥ 0 : T k(x) ∈ ap}.
Let (µp)p∈G be a family of probability measures on A such that µp � µ for all p. Let
C > 1. Then for all q ∈ [1,∞), for all f ∈ Lq(A, µ), for all large enough p ∈ G,∥∥∥∥Np−1∑

k=0

f ◦ T k
∥∥∥∥
Lq (A,µp)

≤ Cqα(p) sup
p∈G

∥∥∥∥dµp

dµ

∥∥∥∥
L∞(A,µ)

‖ f ‖Lq (A,µ). (4.11)

Proof. Let ε > 0. Let f ∈ Lq(A, µ), which we can assume without loss of generality to be
non-negative. Fix p ∈ G and N > (1+ ε)N > 0, such that εN is a multiple of the period
M of the Gibbs–Markov map. Define N ′p(x) := inf{n ≥ 0 : n /∈ [N , 2N ), T n(x) ∈ ap} ≥

Np. Then∥∥∥∥N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

≤

∥∥∥∥N∧N ′p−1∑
k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

≤

∥∥∥∥((1+ε)N )∧N ′p−1∑
k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

+

∥∥∥∥N∧N ′p−1∑
k=(1+ε)N

f ◦ T k
∥∥∥∥
Lq (A,µ)

≤ (1+ ε)N‖ f ‖Lq (A,µ) +

∥∥∥∥(2N+N )∧N ′p−1∑
k=2N

f ◦ T k
∥∥∥∥
Lq (A,µ)

.

Now, focus on the right-hand side. We get

Eµ
[(((1+ε)N+N )∧N ′p−1∑

k=2N

f ◦ T k
)p]
= Eµ

[(N∧Np−1∑
k=0

f ◦ T k
)p

P(1+ε)N (1Np≥N )

]
.

By Lemma 4.8, applied to the stopping time whose value is N − 1 if Np < N (and +∞
otherwise), and to the set A := {Np < N }, we get ‖P N−1(1Np≥N )‖Lip∞(A) ≤ K . Hence

‖P(1+ε)N (1Np≥N )‖L∞(A,µ) ≤ (1+ K Cρ−(εN/M))‖P N−1(1Np≥N )‖Lip1(A)

= (1+ K Cρ−(εN/M))‖1Np≥N‖L1(A,µ)

= (1+ K Cρ−(εN/M))µ(Np ≥ N ),

whence ∥∥∥∥N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

≤ (1+ ε)N‖ f ‖Lq (A,µ)

+ (1+ K Cρ−(εN/M))1/qµ(Np ≥ N )1/q
∥∥∥∥N∧Np−1∑

k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

.

We choose N (p)∼ εα(p). Then ρ−(ε
2 N (p)/M) converges to 0, while by Proposition 4.14,

µ(Np ≥ N (p)) converges to e−ε < 1. For all large enough p, this yields∥∥∥∥N∧Np−1∑
k=0

f ◦ T k
∥∥∥∥
Lq (A,µ)

≤
εα(p)(1+ ε + o(1))

1− e−(ε/q)
‖ f ‖Lq (A,µ).
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The o(1) is independent from N . We choose ε small enough that ε(1+ 2ε) < Cq(1−
e−(ε/q)), and then take the limit as N goes to infinity. Finally, notice that dµp/dµ is
uniformly bounded (in L∞(A, µ) norm and in p), so that this inequality, up to the constant
supp∈G ‖dµp/dµ‖L∞(A,µ), extends to ‖

∑Np−1
k=0 f ◦ T k

‖Lq (A,µp). �

4.5. Hitting probabilities and limit theorems. In this sub-section, we work with ergodic,
discrete Abelian, Markovian Zd -extension of Gibbs–Markov maps. Let G be an infinite
countable Abelian group. Let (A, π, λ, µ, T ) be a Gibbs–Markov map, and let F :
A→ G be σ(π)-measurable. We shall assume that the associated extension ( Ã, µ̃, T̃ )
is conservative and ergodic.

First, we shall relate the probability that an excursion from 0 hits a specific point p with
the moments of the time spent in p. This is where the results from §§4.3 and 4.4 are used
directly.

For p ∈ G, let Ap := {x ∈ A : T̃{0,p}(x, 0) ∈ A × {p}} be the set of points x such that
the excursion starting from (x, 0) reaches A × {p} before A × {0}. Let α(p) := µ(Ap)

−1.
The function α is well-defined because the extension is conservative and ergodic. The next
lemma asserts that it converges to infinity as p goes to infinity.

LEMMA 4.17. Let G be an infinite countable Abelian group. Let ( Ã, µ̃, T̃ ) be a
conservative and ergodic Markovian G-extension of a measure-preserving dynamical
system (A, µ, T ). Then limp→∞ α(p)=+∞.

Proof. Let (Kn)n≥0 be an exhaustion of G by an increasing sequence of finite sub-sets of
G. For all x ∈ A such that ϕ{0}(x) is finite, set

N (x) := max
0≤k<ϕ{0}(x)

min{n ≥ 0 : T̃ k(x, 0) ∈ A × Kn}.

Then A =
⋃

n≥0 N−1(n) up to set of measure 0, so that limn→+∞ µ(N > n)=
0. But, if p /∈ Kn , then Ap ⊂ {N > n}, so limn→+∞ supp∈K c

n
µ(Ap)= 0, i.e.

limn→+∞ infp∈K c
n α(p)=+∞. �

Let us go back to the study of the local time. Recall that, for p ∈ G and x ∈ A, we set

f p,{0}(x) := Np(x)− 1=
(ϕ{0}(x)−1∑

k=0

1{Sk F(x)=p}

)
− 1,

which is the difference between the time spent in A × {p} and A × {0} in the excursion
starting from (x, 0). Our next goal in this sub-section is to evaluate the tail and moments
of f p,{0} as p goes to infinity.

PROPOSITION 4.18. Let (A, π, d, µ, T ) be a Gibbs–Markov map, and G be a countable
Abelian group. Let ( Ã, µ̃, T̃ ) be a conservative and ergodic Markovian G-extension of
(A, π, d, µ, T ).

The conditional distributions of α(−p)−1 Np given {Np > 0} have exponential tails,
uniformly in p. In addition, α(−p)−1 Np, seen as a random variable on (A, µ(·|Ap)),
converges in distribution and in moments to an exponential distribution of parameter 1.
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Proof. The random variable Np(x) counts the time the process starting from (x, 0) spends
in p before going back to 0. On Ap, it is positive. For x in Ap, let Tp(x) be such that
T̃{0,p}(x, 0)= (Tp(x), p). Then, on Ap,

Np(x)= inf{k ≥ 1 : T̃ k
{0,p}(Tp(x), p) ∈ A × {0}}

= 1+ inf{k ≥ 0 : T̃ k
{0,p}(Tp(x), p) ∈ A−p × {p}}.

But, if y /∈ A−p, then the first return time of (T̃ k(y, p)) to A × {0, p} is the first return
time of (T̃ k(y, p)) to A × {p}. Hence, T̃{0,p}(y, p)= (T̃{0}(y), p), and

Np(x)= 1+ inf{k ≥ 0 : T̃ k
{0}(Tp(x)) ∈ A−p}.

Let N (0)
p be the hitting time of A−p for the process (T̃ k

{0}(x))k≥0. Then the random variable

Np seen on (A, α(p)1Ap dµ) has the same distribution as the random variable 1+ N (0)
p

seen on (A, α(p)P{0,p}1Ap dµ). We write π{0} := πϕ{0} . In addition, each A−p is non-
trivial (as the extension is conservative and ergodic), and each A−p is σ(π{0})-measurable
(because σ(π{0}) contains all the information about the sites visited in an excursion, and
in particular whether −p is visited or not).

Due to Lemma 4.8 with the stopping time ϕ{0,p}, the sequence of densities
(α(p)P{0,p}1Ap )p∈G\{0} is uniformly bounded in Lip∞(A, π{0,p}, λ). Since π{0} ≤ π{0,p},
it is also uniformly bounded in Lip∞(A, π{0}, λ). By Proposition 4.14, the sequence of
random variables µ(A−p)Np(·) seen on (A, α(p)P{0,p}1Ap dµ) converges in distribution
to an exponential random variable of parameter 1. By Corollary 4.13, this sequence of
random variables is also exponentially tight, so it converges in moments, which proves
the first part of Proposition 4.18. Since (α(−p))p∈G goes to infinity as p goes to
infinity, (α(−p)−1 Np)p∈G , with respect to (µ(·|Ap))p∈G , converges in distribution and
in moments to an exponential random variable of parameter 1. �

Proposition 4.18 yields directly a rough description of the distribution of f p,{0} for
large p’s: it is −1 with probability 1− α(p)−1, and an exponential random variable of
parameter α(−p) on the remaining set. This is part of Theorem 2.7.

Proof of Theorem 2.7. Let ( Ã, µ̃, T̃ ) be a conservative and ergodic Markovian Zd -
extension of a Gibbs–Markov map (A, µ, T ). We prove the second item, then the third,
and we finish by the first item.

Let p ∈ Zd
\{0}. Set µ{0,p} := µ⊗ (δ0 + δp)/2. The dynamical system (A ×

{0, p}, µ{0,p}, T{0,p}) is measure-preserving, whence

1
2
= µ{0,p}(A × {0})= µ{0,p}(T−1

{0,p}A × {0})

= µ{0,p}(A × {0} ∩ T−1
{0,p}A × {0})+ µ{0,p}(A × {p} ∩ T−1

{0,p}A × {0})

=
1− α(p)

2
+
α(−p)

2
,

and thus α(p)= α(−p). Together with Proposition 4.18, this yields the second item of
Theorem 2.7.
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Let q > 1, and apply Proposition 4.18 to the moments of order q of Np. This yields

‖ f p,{0} + 1‖qLq (A,µ) =

∫
Ap

N q
p dµ

= α(p)−1α(−p)q‖α(−p)−1 Np‖
q
Lq (A,µ(·|Ap))

∼ α(p)q−1E[Eq
],

where E is a random variable with an exponential distribution of parameter 1. Finally, we
use the fact that E[Eq

] = 0(1+ q) to get the third item of Theorem 2.7.
We have proved that α(p)= α(−p)∼ Eµ[ f 2

p,{0}]/2. Due to Proposition 4.18,
α(p)−1Eµ[Np|Np > 0] →p→∞ 1. Due to Propositions 4.14 and 4.12, the random variable
N0,p, which is the first hitting time of Ap for T{0}, once divided by α(p), converges in
distribution and in moments to an exponential random variable of parameter 1. Hence,

Eµ[N0,p] ∼ α(p).

Now let us prove the link with σ 2
G K ( f p,{0}, A, µ, T{0}). Note that f p,{0} is

constant on elements on π{0}, and that ‖ f p,{0}‖L1(A,µ) ≤ 1+ ‖Np‖L1(A,µ) ≤ 2. Hence,
‖ f p,{0}‖Lip1(A,π{0},λ,µ)

, as a function of p, is bounded. Since P{0} sends Lip1(A, π{0}, λ, µ)

continuously into Lip∞(A, π{0}, λ, µ), and P M
{0} contracts exponentially fast on the

subspace of functions in Lip∞(A, π{0}, λ, µ) with zero average on each of the M ergodic
components of T M , all the terms

∫
A f p,{0} ◦ T̃ k

{0} · f p,{0} ◦ T̃ `
{0} dµ with k 6= ` have a

bounded contribution. Hence,

sup
p∈G
|σ 2

G K ( f p,{0}, A, µ, T̃{0})− Eµ[ f 2
p,{0}]|<+∞.

Note that, if the system is a random walk, then P{0} sends any function, which is constant
on elements of the partition to its average, which is 0 for f p,{0}. In this case, the supremum
above is actually 0. �

4.6. Proof of Theorem 2.11. In this section we prove Theorem 2.11. Our goal is mostly
to get a more explicit integrability condition in the statement of [68, Theorem 6.8]. We
first give a lemma, which gives a good sufficient condition for this integrability condition
to hold.

LEMMA 4.19. Let G be a countable Abelian group. Let ( Ã, µ̃, T̃ ) be a conservative and
ergodic Markovian G-extension of a Gibbs–Markov map (A, µ, T ). Let f : A × G→ R
be measurable. Let q ∈ [1,∞). Assume that∑

p∈G

α(p)1−(1/q)‖ f (·, p)‖Lq (A,µ) <+∞. (4.12)

Then f{0} ∈ Lq(A, µ).

Proof. Now, consider a function f satisfying the condition (4.12). Without loss of
generality, we can assume f to be non-negative. Note that

‖ f{0}‖Lq (A,µ) =

∥∥∥∥∑
p∈Zd

( f 1p){0}

∥∥∥∥
Lq (A,µ)

≤

∑
p∈Zd

‖( f 1p){0}‖Lq (A,µ).
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Then, for all p ∈ G\{0},

‖( f 1p){0}‖
q
Lq (A,µ) =

∫
Ap

(N−p−1∑
k=0

f ◦ T̃ k
{0} ◦ T̃{0,p}

)q

dµ

=
1

α(p)

∫
A

(N−p−1∑
k=0

f ◦ T̃ k
{0}

)q

dT̃{0,p}∗µ(·|Ap).

By Lemma 4.8, T̃{0,p}∗µ(·|Ap)� µ, with a density, which is bounded in Lip∞ norm, and
a fortiori in L∞(A, µ) norm. We can thus apply Lemma 4.16: there exists a constant C ,
independent from p, such that

‖( f 1p){0}‖
q
Lq (A,µ) ≤ Cq α(−p)q

α(p)
‖ f 1p‖

q
Lq (A,µ).

Since α(p)∼p→∞ α(−p) by Theorem 2.7, up to taking a larger value of C ,

‖( f 1p){0}‖Lq (A,µ) ≤ Cα(p)1−(1/q)‖ f (·, p)‖Lq (A,µ),

whence
‖ f{0}‖Lq (A,µ) ≤ C

∑
p∈Zd

α(p)1−(1/q)‖ f (·, p)‖Lq (A,µ). �

Finally, we prove Theorem 2.11.

Proof of Theorem 2.11. Let (A, π, λ, µ, T ) be an ergodic Gibbs–Markov map. Let F :
A→ Zd be σ(π)-measurable, integrable, and such that

∫
A F dµ= 0. Assume that the

distribution of F with respect to µ is in the domain of attraction of an α-stable distribution,
and that the Markovian Zd -extension ( Ã, µ̃, T̃ ) is conservative and ergodic.

We first assume that the extension ( Ã, µ̃, T̃ ) is aperiodic.
Aperiodic case. By Proposition 4.11, this extension satisfies Hypothesis 3.1. We can

thus apply Theorem 2.4. Let β : Zd
→ R be such that:

• β has finite support;
•

∑
p∈Zd β(p)= 0.

Let f (x, p) := β(p). Then

ST̃
n f√∑n−1

k=0 µ(Sk = 0)
⇒ σG K ( f, Ã, µ̃, T̃ )Y,

where Y is a standard MLGM(1− d/α) random variable and the convergence is strong in
distribution.

We can also apply [68, Theorem 6.8], with r ≡ 1. The regularity conditions are satisfied,
since f and r are constant on the sub-sets of the Markov partition. The integrability
condition ‘| f |{0} ∈ Lp(A, µ) for some p > 2’ is satisfied thanks to [68, Lemma 6.6].
Hence,

ST̃
n f√∑n−1

k=0 µ(Sk = 0)
⇒ σ( f )Y,
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where Y is a standard MLGM(1− d/α) random variable and the convergence is strong in
distribution, and where

σ( f )= lim
N→+∞

1
N

∫
A

(n−1∑
k=0

f{0} ◦ T̃ k
{0}

)2

dµ.

Following the proof of Lemma A.2, σ( f{0})= σG K ( f{0}, A, µ, T̃{0}).
Hence, for any function β on Zd with finite support and that sums to 0,

σG K ( f, Ã, µ̃, T̃ )= σG K ( f{0}, A, µ, T̃{0}).

Take β := 1p − 10. Then, for all q ∈ (1,∞),

g(p)∼p→∞
σ 2

G K ( f p, Ã, µ̃, T̃ )
2

=
σ 2

G K ( f p,{0}, A, µ, T̃{0})
2

∼p→∞ α(p),

where we used Theorem 2.7 to get the last equivalence. Note that we already obtain
Corollary 2.9.

Let ε > 0. Let δ > 0 and q > 2 be small enough such that

(α − d + δ)
(

2−
2
q

)
≤ α − d + 2ε. (4.13)

By Proposition 2.6 and Potter’s bound, g(p)= O((1+ |p|)α−d+δ), so α(p)= O((1+
|p|)α−d+δ).

We are now ready to apply again [68, Theorem 6.8]. Let f : Ã→ R be such that:
• the family of function ( f (·, p))p∈Zd is uniformly locally η-Hölder for some η > 0;
•

∫
Ã(1+ |p|)

(α−d)/2+ε
‖ f (·, p)‖Lq (A,µ) dµ̃(x, p) <+∞ for some ε > 0 and q > 2;

•
∫

Ã f dµ̃= 0.
To apply [68, Theorem 6.8], we only need to check that:
• Eµ(supp∈Zd D( f (·, p)) <+∞;
• | f |{0} ∈ Lq(A, µ).
D( f )(x) is the Lipschitz norm of f restricted to the Markov sub-set to which x belongs.

Without loss of generality, we can use the metric dη on A, so that ( f (·, p))p∈Zd is
uniformly locally Lipschitz. Then D( f (·, p)) is, by hypothesis, bounded uniformly in p.
Hence, supp∈Zd D( f (·, p)) is bounded, and a fortiori integrable: the first point holds.

The only thing left to check is the second point. We adapt an argument by Csáki, Csörgő,
Földes and Révész [18, Lemma 3.1] to control the norm of | f |{0}. Up to choosing a smaller
value of q , there exists δ > 0, which satisfies the condition (4.13). Then∑

p∈Zd

α(p)1−(1/q)‖ f (·, p)‖Lq (A,µ) ≤ C
∑
p∈Zd

(1+ |p|)(α−d+δ)(1−(1/q))
‖ f (·, p)‖Lq (A,µ)

≤ C
∑
p∈Zd

(1+ |p|)(α−d)/2+ε
‖ f (·, p)‖Lq (A,µ) <+∞.

By Lemma 4.19, | f |{0} ∈ Lq(A, µ). This proves the theorem for aperiodic extensions.
Non-aperiodic case, 1: Construction of an aperiodic extension. For the remainder of

this proof, we do not assume that the extension is aperiodic.
By Lemma 4.10, there exists a non-trivial closed sub-group H ⊂ Td such that ρ(Pu)=

1 if and only if u ∈ H . Let 3⊂ Zd be the lattice dual to H . As H is discrete, 3 has full
rank. Let B := Zd

/3, and
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• AB := A × B;
• µB := |B|−1µ⊗

∑
b∈B δb;

• TB(x, b)= (T (x), b + F(x)[3]).
Since ( Ã, µ̃, T̃ ) is ergodic, (AB, µB, TB) is a measure-preserving ergodic dynamical
system, which is Gibbs–Markov. Choose a fundamental box B0 for B (by chosing
a representant of every element of B). Observe that Zd

= B0 +3. We consider the
projections π3 : Zd

→3 and πB : Zd
→ B0 associated to this decomposition. Using

this decomposition to identify (x, q) ∈ Ã with (x, q[3], π3(q)) ∈ AB ×3=: ÃB , we
obtain that ( Ã, µ̃, T̃ ) is isomorphic to the extension ( ÃB, µ̃B, T̃B) with step function
FB : AB→3 given by FB(x, q[3]) := π3(q + F(x))− π3(q) and with µ̃B := µB ⊗∑

b∈3 δb. Note that FB is constant on the elements of the Gibbs–Markov partition of AB .
The extension ( ÃB, µ̃B, T̃B) is a conservative and ergodic Markovian Zd -extension of a
Gibbs–Markov map. Let us show that this extension is aperiodic.

Assume that ( ÃB, µ̃B, T̃B) is not aperiodic. Let PB,u(·) := PB(ei〈u,FB 〉·), and HB :=

{u ∈ 3̂ : ρ(PB,u)= 1}. Choose u ∈ HB\{0}.
Let us extend F to a function on AB by making it depend only on the first coordinate.

Observe that FB − F = θ − θ ◦ TB with θ(x, q[3])= πB(q) is a TB-coboundary; indeed,

FB(x, q[3])− F(x, q[3])= π3(q + F(x))− π3(q)− F(x)

= q + F(x)− πB0(q + F(x))− q + πB0(q)− F(x)

=−πB(q + F(x))+ πB(q).

Due to Lemma 4.10, there exist λB,u ∈ S1 and fB,u ∈ Lip∞(AB) with modulus 1
such that PB(ei〈u,FB 〉 fB,u)= λB,u fB,u . Then PB(ei〈u,F〉ei〈u,θ〉 fB,u)= λB,uei〈u,θ〉 fB,u .
Therefore, gB,u := ei〈u,θ〉 fB,u is an eigenfunction of Q B,u := PB(ei〈u,F〉

·) associated to
the eigenvalue λB,u .

For r ∈ B, let us define the translation πr : AB→ AB by π(x, r)= (x, q + r). Then πr

commutes with TB , and F ◦ πr = F , so that

λB,u gB,u ◦ πr = PB(ei〈u,F〉gB,u) ◦ πr = PB(ei〈u,F◦πr 〉gB,u ◦ πr )= Q B,u(gB,u ◦ πr ).

Hence, gB,u ◦ πr is also an eigenfunction of Q B,u for the eigenvalue λB,u . By Lemma 4.10,
there exists χ(r) ∈ S1 such that gB,u ◦ πr = χ(r)gB,u . Set g(·) := gB,u(·, 0). The
function χ : B→ S1 is a character, so there exists v ∈ B̂ = H such that gB,u(x, q[3])=
e−i〈v,q〉g(x).

By the definition of TB , for all (x, q) ∈ A × Zd ,

λB,ue−i〈v,q〉g(x)= Q B,u(gB,u)(x, q[3])= e−i〈v,q〉Qu+v(g)(x),

since the function χ(x, q) := e−i〈v,q〉 satisfies χ ◦ TB = χe−i〈v,F〉. Hence, u + v ∈ H .
But v already belongs to H , so u ∈ H . This contradicts the fact that u is non-zero in
3̂= Td

/H . Hence (AB, µB, TB) is aperiodic.
Non-aperiodic case, 2: Reduction to the aperiodic case. The function f still satisfies

our assumptions for the new system ( ÃB, µ̃B, T̃B) (it is uniformly locally Hölder, decays
at a sufficient rate at infinity, and has zero integral). Thus, we can apply the version of
Theorem 2.11 for aperiodic systems; this yields

ST̃
n f√∑n−1

k=0 µ(Sk ∈ B)
⇒ σG K ( fB, AB, µB, T̃B,{0})Y,
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where Y is a standard MLGM(1− d/α) random variable, the convergence is strong in
distribution, and

σ 2
G K ( fB, AB, µB, T̃B,{0}) := lim

n→+∞

∫
AB

f 2
B dµB + 2

n∑
k=1

∫
AB

fB · fB ◦ T̃ k
B,{0} dµB,

where the limit is taken in the Cesàro sense.
The proof of [1, Lemma 3.7.4] can be adapted to ergodic Gibbs–Markov maps (instead

of continued fraction mixing maps), by replacing T̃ k
A with M−1 ∑M−1

k=0 T̃ k
A , which can be

done up to a uniformly bounded error term. As T̃B is an ergodic Gibbs–Markov map,
A × B is thus also a Darling–Kac set, and a set on which Rényi’s inequality is satisfied.
By [1, Theorem 3.3.1],

lim
n→+∞

∑n−1
k=0 µ(Sk ∈ B)∑n−1
k=0 µ(Sk = 0)

= lim
n→+∞

∑n−1
k=0 µ̃(A × {0} ∩ T̃−k(A × B))∑n−1

k=0 µ̃(A × {0} ∩ T̃−k(A × {0}))
= |B|. (4.14)

Using the induction invariance of the Green–Kubo formula (Lemma A.2) with the
observable fB on (AB, µB, T̃B,{0}), noting that the induced transformation on A × {0}
is T̃{0}, we get

σ 2
G K ( fB, AB, µB, T̃B,{0})= lim

n→+∞

∫
A

f 2 dµB + 2
n∑

k=1

∫
A

f · f ◦ T̃ k
{0} dµB

= |B|−1σ 2
G K ( f, A, µ, T̃{0}), (4.15)

where the limit is taken in the Cesàro sense. Equations (4.14) and (4.15) together yield
the claim. �

5. Applications
In this section, we prove our claims of §2.4, starting with the geodesic flow and finishing
with the billiards.

5.1. Periodic planar billiard in finite horizon. Recall that the billiard table is
R2
\
⋃

i∈I, p∈Z2(p + Oi ), where (Oi )i∈I corresponds to a finite family of open convex
sub-sets of T2, whose boundaries are non-overlapping, C3, and with non-vanishing
curvature. For the collision map, the phase space is � := ∂Q × [−π/2, π/2]. The
invariant measure is the Liouville measure cos(φ) dx dφ in (x, φ), where x is the
curvilinear coordinate on ∂Q.

A particle has configuration (x, φ, i, p) if it is located in p + ∂Oi , with curvilinear
coordinate x on ∂Oi (for some counterclockwise curvilinear parametrization of ∂Oi ) and
if its reflected vector V makes the angle φ with the inward normal vector to ∂Oi . The
billiard map T̃0 :�→� maps a configuration in � to the configuration corresponding to
the next collision time. This transformation preserves the Liouville measure ν̃, which has
infinite mass.

We consider a particle starting from the original cell C0 =
⋃

i∈I Oi with initial
distribution ν := ν̃(·|C0).
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The associated compact billiard is the system (M, ν, T0), with M := C0 and
T̃0(x, φ, i, p)= (T0(x, φ, i), p + H(x, φ, i)). Then (�, ν̃/ν̃(C0), T̃0) is the Z2-
extension of (M, ν, T0) with step function H : M→ Z2 corresponding to the change
of cells. The quantity ST

n H(y) :=
∑n−1

k=0 H ◦ T k
0 (y) corresponds to the index of the cell

containing T̃ n
0 (y), for all y ∈ C0.

Let ε > 0, and β : Z2
→ R be such that

∑
p∈Z2 β(p)= 0. We associate the value β(p)

to the cell Cp, and put for y ∈ C0

Yn(y) :=
n∑

k=1

β(ST0
k H(y)).

Proof of Corollaries 2.14 and 2.15. Due to Young’s towers [70], we know that there
exists a dynamical system (A, µ, T ) such that (A, µ, T ) and (M, ν, T0) are both factors
of another dynamical system ( Â, µ̂, T̂ ). This means that there exist two maps π̂ :
( Â, µ̂, T̂ )→ (A, µ, T ) and π : ( Â, µ̂, T̂ )→ (M, ν, T0) such that

π̂ ◦ T̂ = T ◦ π̂ ,

π ◦ T̂ = T0 ◦ π,

π̂∗µ̂= µ,

π∗µ̂= ν.

Moreover, there exist F : A→ Zd and β : A→ Z2 such that F ◦ π̂ = H ◦ π and β̂ ◦ π̂ =
β ◦ π .

The properties of the family of transfer operators Pu = P(ei〈u,F〉) for such step function
F have been studied: see for instance [22, 51, 52, 62], in which local limit theorems
with various remainder terms have been established. The matrix 6 corresponds to the
asymptotic variance matrix of (ST

n F/
√

n)n≥1 with respect to µ, which is the same as the
asymptotic variance matrix of (ST0

n H/
√

n)n≥1 with respect to ν, and is given by

6 =
∑
k∈Z

C(H, H ◦ T k),

where C(H, H ◦ T k) denotes the covariance matrix of H and H ◦ T k with respect to
ν. Recall that (ST0

n H/
√

n)n≥1 converges in distribution to a centered Gaussian random
variable with variance matrix 6.

Let Zn : M→ R be defined by Zn(x) :=
∑n−1

k=0 β̂(S
T
k F(x)). This function satisfies

Zn ◦ π̂ = Yn ◦ π on Â. Applying Theorem 2.4 to the dynamical system (A, µ, T ), step
function F (respectively, the first coordinate F1 : A→ Z of F) and β̂ (respectively,
p 7→ β̂(p, 0)), we obtain Corollary 2.15 (respectively, Corollary 2.14). �

5.2. Geodesic flow on periodic hyperbolic manifolds. We recall that M is a compact,
connected manifold with a Riemannian metric of negative sectional curvature, and $ :
N → M be a connected Zd -cover of M , with d ∈ {1, 2}. The manifold T 1 N is endowed
with the σ -finite lift µN of a Gibbs measure µM corresponding to a reversible Hölder
potential. The geodesic flow on T 1 N is denoted by (gt )t∈R.
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Let (A, µ, T ) be a Markov section for the geodesic flow on T 1 M , as constructed by
Bowen [12], [13, Theorem 3.12]. The section A is constructed by carefully choosing a
finite number of pieces of strong unstable manifolds (W u(a))a∈π , then, for all x ∈W u(a),
adding a piece of strong stable manifold W s(x) to get rectangles. We shall denote by p+
the projection onto unstable manifolds, defined by p+(y)= x whenever y ∈W s(x) and
x ∈W u(a). Let r be the return time to A; by Bowen’s construction, r(x) depends only on
the future (the non-negative coordinates) of x . Finally, we put A+ :=

⋃
a∈π W u(a) as the

state space of the one-sided transformation.
The set Ã :=$−1(A) is a section for the geodesic flow on T 1 N , with return time

r̃ = r ◦$ . The induced map on Ã is the Zd -extension of the natural extension of a Gibbs–
Markov map, with step function F . Without loss of generality, we may refine the Markov
partition on A so that F depends only on the first coordinate of the shift; then, the Zd -
extension ( Ã, µ̃, T̃ ) is Markovian. The geodesic flow on T 1 N is thus isomorphic to the
suspension flow over ( Ã, µ̃, T̃ ) with roof function r̃ . In particular, T 1 N ' {(x, q, t) : x ∈
A, q ∈ Zd , t ∈ [0, r(x))}.

Let f : T 1 N → R be Hölder. The following lemma asserts that, up to adding a
coboundary, we can assume that f depends only on the future, which allows us to
work with Gibbs–Markov maps instead of their natural extension. While this lemma
is classic [13, Lemma 1.6], we give a statement, which is valid in the context of Zd -
extensions.

LEMMA 5.1. Let (A, π, λ, µ, T ) be the natural extension of an ergodic Gibbs–Markov
map†. Let (A × Zd , µ̃, T̃ ) be a Markovian Zd -extension with step function F. Let f be a
measurable real-valued function on A × Zd . Assume that

‖D( f )‖∞ := ‖ f ‖∞ + sup
q∈Zd

sup
a∈π
| f |Lip(a×{q}) <+∞.

Then there exists a function u which is bounded by λ(λ− 1)−1
‖D( f )‖∞, uniformly 1/2-

Hölder, and such that the function f+ := f + u ◦ T − u is B+-measurable, with B+ :=
(
∨

n≥0 T−nπ)⊗ P(Zd).

Proof. Let p̃+(x, q) := (p+(x), q) be defined on Ã. We put

u :=
+∞∑
n=0

f ◦ T̃ n
− f ◦ T̃ n

◦ p̃+.

The proof then proceeds as in [68, Lemma 6.11]: the function u satisfies the conclusion
of the lemma. Most changes in the proof of [68, Lemma 6.11] are straightforward; the
only observation needed is that, if x and y are in the same cylinder of length n in A, then
T̃ k(x, q) and T̃ k(y, q) are in the same set A × {Sk F(x)} for |k| ≤ n, so that we can use
the Lipschitz estimate for each f (·, Sk F(x)). �

We are now ready to prove Proposition 2.16.

† The metric being defined by λ−s , where s is the two-sided separation time.
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Proof of Proposition 2.16. The proof follows the one in [68, Proposition 6.12], with a few
significant modifications. The first step is to eliminate the past, that is, add a coboundary to
get an observable, which depends only on the future, to be able to use [68, Proposition 6.1].
Let η ∈ (0, 1]. Let f : T 1 N → R be a η-Hölder observable, which satisfies the hypotheses
of the proposition. We put:
• f Ã(x, q) :=

∫ r(x)
0 f (x, q, s) ds;

• u Ã the function obtained from f Ã by the construction of Lemma 5.1;
• f

+, Ã := f Ã + u Ã ◦ T̃ − u Ã;
• f+(x, q, t) := r(x)−1 f

+, Ã(x, q).
By Lemma 5.1, the function u Ã is η/2-Hölder and bounded. Then, using the fact that
f
+, Ã − f Ã is a coboundary,

sup
t≥0

∥∥∥∥∫ t

0
f ◦ gs ds −

∫ t

0
f+ ◦ gs ds

∥∥∥∥
∞

≤ 2‖u Ã‖∞ + 2‖ f
+, Ã‖∞ + 2‖r‖∞‖ f ‖∞ <+∞.

(5.1)
Hence, it is enough to prove the limit theorem for f+. Note that f+ is a coboundary if and
only if f is a coboundary.

Let ϕA×{0} be the first return time to A × {0} for the geodesic flow, and ϕA×{0} the first
return time to A × {0} for T̃ . The proof then proceeds as in [68], with the same weakened
criterion: we only need to check that, for some δ > 0,

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f+ ◦ gs ds

∣∣∣∣ ∈ L2+δ(A × {0}). (5.2)

Now, we shall go back to the initial (invertible) system to use the integrability
assumption on f . Equations (5.1) and (5.2) together yield

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f ◦ gs ds

∣∣∣∣ ∈ L2+δ(A × {0}). (5.3)

Finally, once again, we go to the non-invertible factor. Let f Ã(x, q) :=
‖
∫ r(·)

0 | f |(·, q, t) dt‖∞. Then

sup
0≤t≤ϕA×{0}

∣∣∣∣∫ t

0
f ◦ gs(x, 0, 0) ds

∣∣∣∣≤ ϕA×{0}(x,0)−1∑
n=0

f Ã ◦ T̃ n(x).

The function f Ã is an upper bound on | f | Ã, which depends only on q , and thus not
on the past. Hence, it factorizes as a function of A+ × Zd . In addition, the integrability
assumptions yields ∑

q∈Zd

|q|1−(d/2)+ε‖ f Ã(·, q)‖∞ <+∞.

By Lemma 4.19, f Ã belongs to L2+δ(A × {0}) for all small enough δ > 0, which yields
equation (5.3). �

A. Appendix. About Green–Kubo’s formula
The spirit behind Corollary 2.13, and thus of our alternative proof of Spitzer’s theorem
[61, Ch. III.11, P5], is that Green–Kubo’s formula satisfies an invariance by induction,
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which is reminiscent of Kac’s theorem. We shall draw this parallel here, as well as prove
a specific instance of this phenomenon, which is useful in the proof of Theorem 2.11. In
what follows, the measure may be finite or σ -finite.

Given an ergodic, conservative, measure-preserving dynamical system (A, µ, T ) and a
measurable sub-set B ⊂ A such that µ(B) > 0, one may define the system induced on B
by (B, µ|B, TB). Given any measurable observable f : A→ C, we also define the induced
observable fB by

fB(x)=
ϕB (x)−1∑

k=0

f (T k(x)),

where ϕB is the first return time to B. Then, a generalization of Kac’s theorem [33] asserts
that the integral is invariant by induction.

THEOREM A.1. (Kac’s theorem: induction invariance of the integral) Let (A, µ, T ) be an
ergodic, conservative, measure-preserving dynamical system. Let B ⊂ A be a measurable
sub-set with 0< µ(B) <+∞. Then, for all f ∈ L1(A, µ),∫

A
f dµ=

∫
B

fB dµ. (A.1)

A consequence is that the map f 7→ fB is a weak contraction from L1(A, µ) to
L1(B, µ). There are two different ways to prove this theorem.
• Using the fact that the system is measure-preserving [34]: up to going to the natural

extension, we can define ϕ−1,B(x) := inf{n ≥ 0 : T−n(x) ∈ B}, and then use, for all
n ≥ 0, ∫

A
f 1ϕ−1,B=n dµ=

∫
B

f ◦ T n1ϕB≥n dµ.

• Using a convergence theorem, such as Hopf’s ergodic theorem [32, §14, Individueller
Ergodensatz für Abbildungen], and the preservation of the measure for the induced
system. Setting g := 1B , one can identify the almost sure limit of (ST

n f )/(ST
n g) with

that of (STB
n fB)/n, and conclude.

Green–Kubo’s formula†, at least at a formal level, behaves the same. For any square-
integrable function f with zero integral, we can ask whether∫

A
f 2 dµ+ 2

+∞∑
n=1

∫
A

f · f ◦ T n dµ=
∫

B
f 2
B dµ+ 2

+∞∑
n=1

∫
B

fB · fB ◦ T n
B dµ. (A.2)

The reader may compare equations (A.1) and (A.2). As with Kac’s theorem, we may
choose different strategies to prove rigorously such an identity. Using the fact that the
system is measure-preserving, and cutting in a well-chosen way the integrals above, one
can see that they are formally the same. However, to get a rigorous proof, one would
have to use Fubini’s theorem, which fails in this case. This is not surprising, as even the
definition of these sums requires some care: if there is some periodicity in the dynamical
system, the convergence may have to be in the Cesàro sense, as in Theorem 2.11, or in the
Abel sense if T is an irrational rotation and f is analytic.

† The discussion can be generalized by taking two different observables: what is invariant is actually the
underlying bilinear form.
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Another strategy is to use a distributional limit theorem: for sufficiently hyperbolic
systems and nice enough observables, Green–Kubo’s formula is the asymptotic variance
in a central limit theorem. Working at two different time scales (with the initial system and
with the induced system), one can prove that this invariance holds. A very simple example
is given by the following lemma.

LEMMA A.2. Let (A, π, λ, µ, T ) be a Gibbs–Markov map. Let f ∈ L2(A, µ) be a real-
valued function such that:
• f is summably locally Lipschitz:

∑
a∈π µ(a)| f |Lip(a) <+∞;

•
∫

A f dµ= 0.
Let B ⊂ A, with µ(B) > 0, be σ(π)-measurable. Assume that ϕB is essentially

constant. Then

lim
n→+∞

∫
A

f 2 dµ+ 2
n∑

k=1

∫
A

f · f ◦ T k dµ

= lim
n→+∞

∫
B

f 2
B dµ+ 2

n∑
k=1

∫
B

fB · fB ◦ T k
B dµ,

where both limits are taken in the Cesàro sense.

Proof. Let M := ϕB almost everywhere. Under the assumptions, the Birkhoff sums (for
T ) of f satisfy a central limit theorem (see e.g. [26, Théorème 4.1.4], and use the Taylor
expansion of (I − P)−1):

ST
n f
√

n
→ σN ,

where the convergence is in distribution on (A, µ), N follows a standard Gaussian
distribution, and

σ 2
= lim

n→+∞

1
n

∫
A
(ST

n f )2 dµ.

By [72, Theorem 1], the same central limit theorem holds strongly in distribution, that
is, when the initial measured space is (A, ν), with ν� µ. This holds in particular on
(B, Mµ|B).

Under the same assumptions, the Birkhoff sums (for TB) of fB satisfy a central limit
theorem. Then

STB
n fB
√

n
→ σ ′N ,

where the convergence is in distribution on (B, Mµ|B), N follows a standard Gaussian
distribution, and

(σ ′)2 = lim
n→+∞

M
n

∫
B
(STB

n fB)
2 dµ.

Note that STB
n fB = ST

Mn f , whence σ ′ =
√

Mσ . This yields

lim
n→+∞

1
n

∫
A
(ST

n f )2 dµ= lim
n→+∞

1
n

∫
B
(STB

n fB)
2 dµ.
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Finally, note that

1
N

∫
A
(ST

N f )2 dµ=
1
N

N−1∑
k,n=0

∫
A

f ◦ T k
· f ◦ T n dµ

=
1
N

N−1∑
n=0

[∫
A

f 2dµ+ 2
n∑

k=1

∫
A

f · f ◦ T k dµ
]
.

Hence, σ 2 is the Cesàro-limit of (
∫

A f 2 dµ+ 2
∑n

k=1
∫

A f · f ◦ T k dµ)n≥1. The same
manipulation with 1/n

∫
B(S

TB
n fB)

2 dµ yields the lemma. �

The assumption on ϕB can be relaxed, as long as one can prove a central limit theorem
both for f on (A, µ, T ) and fB on (B, µ(·|B), TB), and ensure that the limits coincide
up to a change in time. This can be done for instance with an almost sure invariance
principle [27].

In this article, the proof of Corollary 2.13 relies on this approach: we obtain two
distributional limit theorems by working at two different time scales, and then identify
the limits. However, as can be seen, obtaining these limit theorems gets much more
challenging when working with null recurrent processes.
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[31] H. Hennion and L. Hervé. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical

Systems by Quasi-compactness (Lecture Notes in Mathematics, 1766). Springer, Berlin, 2001.
[32] E. Hopf. Ergodentheorie. Springer, Berlin, 1937, (in German).
[33] M. Kac. On the notion of recurrence in discrete stochastic processes. Bull. Amer. Math. Soc. (N.S.) 53

(1947), 1002–1010.
[34] S. Kakutani. Induced measure preserving transformations. Proc. Imp. Acad. 19 (1943), 635–641.
[35] J. Karamata. Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France 61
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