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Abstract
Resistance is a qualitative interpretation of antimicrobial activity in vitro. Critical to management of bovine
respiratory disease (BRD) is the clinical response in vivo. Attempts to connect activity in vitro to response in
vivo have been complicated by the complexity of BRD, interpretation of antimicrobial activity in vitro, and
inconsistent measures of clinical success or failure. During recent history, the discovery, development,
and commercialization of antimicrobials have decreased. In response to resistance, voluntary and imposed
restrictions on use of antimicrobials have been implemented. Resistance can be reversed using technology
and knowledge of mechanisms of resistance. Perhaps approaches that reverse resistance will be used in
clinical management of BRD in the future. The short answer to the question posed in the title is, ‘yes.’
Since antimicrobial drugs were discovered, resistance has been a consideration for selection of treatment
of any infectious disease and BRD is not unique. In the opinion of the author, the more important ques-
tion is, ‘How will antimicrobial resistance of BRD pathogens impact BRD management in the future?’
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Resistance is one of three qualitative interpretative categories
(‘susceptible’, ‘intermediate’ or ‘resistant’) based on measures
of antimicrobial activity in vitro, and is defined in the USA by
the Clinical and Laboratory Standard Institute (CLSI) as
follows: ‘This category implies that there will not be a favorable
clinical outcome, because the achievable systemic concentrations
of the agent will be lower than the minimum inhibitory con-
centration (MIC) of the causative organism with normal dosage
schedules and/or fall in the range where specific microbial
resistance mechanisms are likely (e.g. beta-lactamase), and clini-
cal efficacy has not been reliable in treatment studies’ (CLSI,
2002a, b; Silley, 2012). Break-points are semi-quantitative
(arguably) measures (usually MIC, or diameter of the zone of
inhibition) that distinguish among the three qualitative cate-
gories. There are no details about how data from ‘treatment
studies’ are considered during the establishment of breakpoints
(CLSI, 2002a, b).

Standard procedures described by the CLSI are designed to
be optimal for the pathogen, and are used for identification of
the pathogen as well as for assessment of antimicrobial activity
in vitro.

Confusion about how to interpret results in vitro is multi-
factorial, as is the nature of bovine respiratory disease (BRD)
(Taylor et al., 2010a, b). Many of the simple questions have
not been answered. If more than one pathogen is isolated,
what is the fractional contribution of each? What is the influence
of resistance with one pathogen but not the other(s)? Are resist-
ant organisms found in animals that do not have clinical signs?
Do they remain in treated and recovered animals?
‘Concerns’ about antimicrobial resistance are not new. Before

penicillin was commercially available, Dr Fleming raised
awareness that bacteria could change after exposure to penicillin
(Rosenblatt-Farrell, 2009). Surveillance/monitoring of in vitro
activity of antimicrobials began in 1951 (Giles and Shuttleworth,
1958). Focus on antimicrobial activity in vitro has been intense,
perhaps because it is the easiest to identify of the factors that
contribute to clinical failure. However, clinical correlation of
those data has not been evaluated effectively. Using non-
standardized procedures for studies in vivo further confuses
attempts to correlate in vitro activity and response in vivo
(O’Connor et al., 2010).
Resistance is not to blame for all clinical failures. Clinical

response is the net effect of all factors that contribute to
BRD – including antimicrobial resistance. Factors other than
antimicrobial resistance play a role in the death of feedlot cattle
with BRD (Lamm et al., 2012). Is there a point (percentCorresponding author. E-mail: gordonb@uidaho.edu
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resistance) at which medications should not be selected for clini-
cal use? Should selection only include compounds for which
susceptibility (what percent?) is identified? Patterns of practice
for human patients with community acquired pneumonia
(CAP) were ‘shifting in response to the perception that current
levels of drug resistance necessitate changes in treatment pat-
terns. This is unfortunate because it severely limits one’s ability
to continue to monitor the effectiveness of available therapies in
light of changing patterns of antibacterial drug resistance’
(Metlay, 2004). Dr Metlay summarized, ‘. . .antibacterial drug re-
sistance has not reduced substantially the effectiveness of
first-line treatments for CAP. Whether levels of drug resistance
will continue to increase or decline is unknown. Therefore, care-
fully designed outcomes studies likely will continue to be essen-
tial to help define optimal therapy for patients who have CAP.’
Could those statements apply to BRD?

Antimicrobial resistance and clinical failure are not directly,
quantitatively correlated (Lamm et al., 2012; McPherson et al.,
2012). Likewise, clinical success is not inseparable from anti-
microbial susceptibility. Basic definitions distinguish them;
and, the labeling of antimicrobial products contains statements
similar to the following: ‘The correlation between in vitro
susceptibility data and clinical effectiveness is unknown.’
Treatment failures occurred when susceptible organisms were
isolated; and, treatment successes occurred when resistant
organisms were isolated (Apley, 2003; McClary et al., 2011).
Clinical failure, when BRD is associated with susceptible organ-
isms, cannot be due to antimicrobial failure! The association of
clinical response with antimicrobial activity in vitro is not the
same for all BRD pathogens (McClary et al., 2011). Virulence
of the organism, the host’s resistance to infection, and the
host’s tolerance to presence of pathogens are also distinct con-
siderations deserving of greater attention (Beceiro et al., 2013;
Jamieson et al., 2013). Antimicrobial medications are important;
but, the entirety of clinical response is not the responsibility of
the medication.

The strongest evidence for clinical decisions is derived from
head-to-head, randomized, controlled clinical studies (Karriker,
2007). Techniques such as risk assessment and survival analysis
could contribute greatly to evaluating clinical response and the
relationship of antimicrobial activity in vitro with clinical
response. Appropriate economic evaluation of treatments is
also warranted (Simoens, 2010).

Driven by fear of resistance, pharmaceutical companies in the
USA have re-labeled products to clarify indicated therapeutic
uses and decreased research of new antimicrobial agents
(Spellberg et al., 2004; Silley, 2012; FDA GFI #213, 2013;
Wright, 2013). Regulatory activities are directed toward reclassi-
fying products so that they will be available only with ‘veterinary
oversight’ and have the stated purpose of reducing resistance
(FDA GFI #213, 2013).

Realistic considerations for the future should be to include
management of fears of resistance, to utilize understanding of
mechanisms of virulence and mechanisms of antimicrobial
resistance, to improve designs of clinical studies, and to develop
technologies or products that could reverse resistance (Spellberg
et al., 2004; Tillotson and Echols, 2008; Wright, 2013). Clinical

studies with appropriate designs will require many animals and
considerable financial investment.
Non-traditional methods of treating infectious diseases have

included technologies that reverse resistance. The dogma that
mutations only progress toward resistance is wrong. Genetic
mutations can be induced to reverse resistance (Cirz and
Romesberg, 2006; Ricci et al., 2006; Katsuda et al., 2009).
Bacteriophages have been used to reduce bacterial contami-
nation of food, change virulence of bacterial pathogens, alter
damage created by bacterial pathogens or enhance the host’s tol-
erance of the pathogen, or reverse antimicrobial resistance
(Abuladze et al., 2008; Rasko and Sperandio, 2010; Abedon
et al., 2011; Beceiro et al., 2013; Wright, 2013; Hong et al.,
2014; Vale et al., 2014). Might it be possible to administer a vac-
cine that targets BRD pathogens in the upper respiratory tract of
cattle and cause those bacteria to become susceptible to treat-
ment, or concurrently administer medications that reverse/pre-
vent resistance while others inhibit or kill the pathogen?
‘Concerns’ and ‘perceptions’ are driving regulations, corporate
decisions, public response, and therapeutic decisions. Are results
of a scientifically based future of treatment of BRD worth the
risks of taking that ‘bull by the horns’?
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