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In this paper, we propose and study an almost periodic reaction–diffusion epidemic model in which
disease latency, spatial heterogeneity and general seasonal fluctuations are incorporated. The model
is given by a spatially nonlocal reaction–diffusion system with a fixed time delay. We first charac-
terise the upper Lyapunov exponent λ∗ for a class of almost periodic reaction–diffusion equations
with a fixed time delay and provide a numerical method to compute it. On this basis, the global
threshold dynamics of this model is established in terms of λ∗. It is shown that the disease-free
almost periodic solution is globally attractive if λ∗ < 0, while the disease is persistent if λ∗ > 0. By
virtue of numerical simulations, we investigate the effects of diffusion rate, incubation period and
spatial heterogeneity on disease transmission.
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threshold dynamics
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1 Introduction

Mathematical modelling in epidemiology provides a powerful way to analyse the spread of
infectious disease, and in the process, it suggests effective control strategies. One of the earli-
est mathematical models in epidemiology was introduced by Kermack and McKendrick [19].
The Kermack–McKendrick model is given by the following system of ordinary differential
equations: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= − βS(t)I(t),

dI(t)

dt
= βS(t)I(t) − γ I(t),

dR(t)

dt
= γ I(t).

(1.1)
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Here, S(t), I(t) and R(t) are the sizes of susceptible, infective and removed classes, respectively.
The constant β > 0 is called the infection rate, and γ > 0 is called the recovery rate. Given
S(0) = S0 > 0, the analysis of model (1.1) shows that the sign of β S0

γ
− 1 completely determines

the development trend of the disease. Since the work of Kermack and McKendrick, modelling
of mathematical models has flourished (see, e.g., [2, 3, 6]).

Empirical evidence shows that many diseases have incubation period which differs from dis-
ease to disease (see, e.g., [3]). It is therefore necessary to incorporate the latency into the epidemic
models. Cooke and van den Driessche [8] formulated and analysed an susceptible → exposed
→ infectious → removed → susceptible (SEIRS) epidemic model with latent and immune peri-
ods. Li and Zou [21] generalised model (1.1) to a two-patch environment with incubation period
and obtained a system of delay differential equations with a fixed time delay accounting for the
latency and nonlocal terms. They showed that the disease exists multiple outbreaks before it
goes to extinction, which is in sharp contrast to the dynamics of classic Kermack–McKendrick
susceptible → infectious → removed (SIR) model. Subsequently, Li and Zou [22] formulated
an SIR model with a fixed latent period in an n-patch environment, and they investigated the
threshold dynamics of the model. For the spatially continuous case, Guo et al. [14] derived and
investigated a nonlocal reaction–diffusion SIR model with a fixed incubation period. By appeal-
ing to the theory of monotone dynamical systems and uniform persistence, they presented the
global threshold dynamics of this model.

Seasonal variations, as mentioned in [1], are ubiquitous and can exert strong pressures on pop-
ulation dynamics and the spread of infectious diseases. Recently, the interaction of time delay and
seasonality in epidemic models has attracted much attention. A time-periodic reaction–diffusion
SIR model with latent period was proposed by Zhang et al. [38]. By using the comparison argu-
ments and persistence theory, they investigated the global dynamics of the periodic model. Zhang
and Wang [37] further considered a time-periodic reaction–diffusion epidemic model with con-
stant infection period, which adopts the saturation incidence. More recently, Li and Zhao [20]
formulated and studied a periodic SEIRS epidemic model with a time-dependent latent period.
Other epidemiology models concerning the latency and the seasonality were developed in quite
a few works, see, e.g., [4, 23, 36, 40].

Due to the complexity of external environments and the uncertainty in climate, the parameters
in an epidemic model are not necessary to be periodic. Even if they are periodic, they are also not
always share a common period. As noted in [5, 10], though one can obtain the exactly periodic
parameters in controlled laboratory experiments, environmental changes in nature are hardly
periodic. As a generalisation of periodicity, almost periodicity is more likely to describe natural
fluctuations. Along this line, there have been some works studying the transmission dynamics
for almost periodic epidemic models (see, e.g., [9, 34]). Recently, Wang et al. [33] studied the
threshold dynamics of an almost periodic reaction–diffusion epidemic model. For the almost
periodic reaction–diffusion epidemic model with incubation period, the global dynamics does
not have an adequate characterisation. The purpose of the current paper is to formulate an SIR
epidemic model which incorporates disease latency, spatial heterogeneity and general seasonal
fluctuations and to study the global dynamics of the proposed model.

In this paper, we employ a reaction–diffusion system framework to model the influences of
incubation period, spatial heterogeneity and natural fluctuation on the spread of infectious dis-
ease. Although the almost periodic functions preserve some properties that the periodic functions
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possess, the method for periodic system is not suitable for almost periodic model. Since the dis-
ease latency is taken into account, the threshold value characterised in almost periodic models
without time delay (see [34, 33]) cannot be used. Our theoretical results show that there exists an
upper Lyapunov exponent which serves as a threshold value for the global uniform persistence
and extinction of the model, and it can be interpreted as the growth rate of infectious population
in a completely susceptible population. To our best knowledge, there is no way at present of
computing the upper Lyapunov exponent for reaction–diffusion equations with or without time
delay. On the basis of continuous separation and comparison principle, we provide a numeri-
cal method for the computation of the upper Lyapunov exponent. Numerically, we analyse the
impacts of diffusion rate, incubation period and spatial heterogeneity on the upper Lyapunov
exponent. Our numerical results highlight that decreasing the difference of spatial distributions
between transmission and recovery coefficients is beneficial to the control of disease.

The rest of the paper is organised as follows. In Section 2, we characterise the upper Lyapunov
exponent λ∗ for a class of almost periodic reaction–diffusion equations with time delay and
supply a numerical method to compute it. In Section 3, we derive a model, which turns out to
be an almost periodic reaction–diffusion system with nonlocal and time-delayed nonlinearity. In
Section 4, we establish the threshold dynamics for the model system in terms of λ∗. In Section 5,
we present some numerical simulations to interpret the obtained theoretical results and reveal the
effect of parameters on λ∗. A simple discussion completes this paper.

2 The upper Lyapunov exponent

Let (X, d) be a metric space. A function f ∈ C(R, X) is said to be almost periodic if for any
ε > 0, there exists l = l(ε)> 0 such that every interval of R of length l contains at least one point
of the set

T(f , ε) = {s ∈R : d(f (t + s) − f (t))< ε, ∀t ∈R}.

Let D ⊂R
n. A function f ∈ C(D ×R, X) : (t, x) �→ f (t, x) is said to be uniformly almost periodic

in t if f is almost periodic in t for each x ∈ D, and for any compact set E ⊂ D, f is uniformly
continuous on E ×R ([11, 12]).

Let �⊆R
n be a bounded domain with smooth boundary ∂�. Define X0 := C(�, R), which is

a Banach space with supremum norm ‖ · ‖0. Let

X +
0 := C(�, R+) = {ψ ∈ X0 :ψ(x) ≥ 0, ∀x ∈�}.

Note that the interior of X +
0 , denoted by Int(X +

0 ), is nonempty. For a constant τ > 0, define
X := C([−τ , 0], X0) with the norm ‖φ‖ := maxθ∈[−τ ,0] ‖φ(θ )‖0, ∀φ ∈ X . For a function b ∈
C([−τ , ρ], X0) (ρ > 0), define bt ∈ X by bt(θ ) := b(t + θ ), ∀θ ∈ [−τ , 0], t ∈ [0, ρ). Let ˆ denote
the inclusion R→ X by b → b̂, b̂(θ , x) ≡ b, ∀θ ∈ [−τ , 0], x ∈�.

We consider the following almost periodic time-delayed nonlocal equation which comes from
the equation of infectious variable in the linearisation of a given almost periodic reaction–
diffusion epidemic model at a disease-free almost periodic solution (for reader’s convenience,
we present the detailed derivation process in the following section):
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∂w(t, x)

∂t
= D3
w(t, x) − (γI (t, x) + d(t, x))w(t, x)

+
∫
�

�(t, t − τ , x, y)β(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(2.1)

Here, �(t, s, x, y) with t> s ≥ 0 and x, y ∈� is the fundamental solution associated with the par-
tial differential operator ∂t − DE
− d(t, ·) − γE(t, ·) subject to the Neumann boundary condition
(see [13, Chapter 1]); β(t, x), γI (t, x), γE(t, x) and d(t, x) are Hölder continuous and nonnegative
nontrivial on R×�, and uniformly almost periodic in t; D3 and DE are positive constants; ν
denotes the outward unit normal vector on ∂�. Since γE(t, x) and d(t, x) are uniformly almost
periodic in t, it follows from [13, Chapter 1] that �(t, s, x, y) is uniformly almost periodic in t and
s, that is, for any ε > 0, there exists l = l(ε)> 0 such that every interval of R of length l contains
at least one point of the set

T(�, ε) =
⋂

x,y∈�
{d ∈R : |�(t + d, s + d, x, y) − �(t, s, x, y)|< ε, ∀t> s ≥ 0}.

For the sake of simplicity, let D3 = D and k(t, x) = γI (t, x) + d(t, x), it follows that (2.1) can be
rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D
w(t, x) − k(t, x)w(t, x)

+
∫
�

�(t, t − τ , x, y)β(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(2.2)

Define the hull of k as H(k) = cls{k · s : s ∈R}, where (k · s)(t, x) = k(t + s, x) and the closure is
taken under the compact open topology. Similarly, we define the hulls of � and β, denoted by
H(�) and H(β), respectively. Let ζ = (k, �, β) and H(ζ ) be the hull of ζ . Taking ς = (k̄, �̄, β̄) ∈
H(ζ ), the translation map σ : R× H(ζ ) → H(ζ ), (s, ς ) �→ ς · s given by (ς · s)(t, x, y) = (k̄(t +
s, x), �̄(t + s, t − τ + s, x, y), β̄(t + s, x)) (t ∈R and x, y ∈�) defines a compact, almost periodic
minimal and distal flow (see [32, Section VI.C]). Consider⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D2
w(t, x) − k̄(t, x)w(t, x)

+
∫
�

�̄(t, t − τ , x, y)β̄(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(2.3)

By the argument to that in the proof of [38, Theorem 2.2], we get that equation (2.3) has a unique
mild solution w(t, x; φ, ς ) with initial datum φ ∈ X + := C([−τ , 0], X +

0 ). Moreover, w(t, x; φ, ς ) is
a classical solution for t> τ . Define wt(φ, ς )(θ , x) := w(t + θ , x; φ, ς ), ∀t ≥ 0, θ ∈ [−τ , 0], x ∈�.
Then we can define a continuous linear skew-product semiflow:

� : R+ × X × H(ζ ) → X × H(ζ ),

(t, φ, ς ) �→ (wt(φ, ς ), ς · t).
(2.4)
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It follows from [27, Corollary 1] that the skew-product semiflow (2.4) is monotone. Let
�(t, ς )φ = wt(φ, ς ), ∀φ ∈ X . For any ς ∈ H(ζ ), we define the Lyapunov exponent λς as

λς = lim sup
t→∞

ln ‖�(t, ς )‖
t

.

The number,

λ∗ = sup
ς∈H(ζ ))

λς ,

is called the upper Lyapunov exponent of (2.3) or (2.4).
To proceed further, we introduce the definition of a continuous separation of type II, which was

introduced in Novo et al. [30]. We say that the skew-product semiflow (2.4) admits a continuous
separation of type II if there exist subspaces {X1(ς )}ς∈H(ζ ) and {X2(ς )}ς∈H(ζ ) with the following
properties:

(1) X = X1(ς ) ⊕ X2(ς ) (ς ∈ H(ζ )) and X1(ς ), X2(ς ) vary continuously in ς ∈ H(ζ );
(2) X1(ς ) = span{w(ς )}, where w(ς ) ∈ Int(X +) and ‖w(ς )‖ = 1 for ς ∈ H(ζ );
(3) there is a T > 0 such that if for some ς ∈ H(ζ ) there is a v ∈ X2(ς ) with v > 0, then

�(t, ς )v= 0 for any t ≥ T ;
(4) for any t> 0, ς ∈ H(ζ ),

�(t, ς )X1(ς ) = X1(ς · t),

�(t, ς )X2(ς ) ⊂ X2(ς · t);

(5) there exist η2 > 0, K2 > 0 such that for any ς ∈ H(ζ ) and ŵ ∈ X2(ς ) with ‖ŵ‖ = 1, we have

‖�(t, ς )ŵ‖ ≤ K2e−η2t‖�(t, ς )w(ς )‖,

for all t> 0.

It is clear that if φ = 0̂, then w(t, x; φ, ς ) = 0, ∀t> 0, x ∈�. By the similar arguments to those
in [18, Section 2], we get w(t, x; φ, ς )> 0, ∀t> τ , x ∈�, φ ∈ X + with φ �= 0̂. Moreover, �(t, ς )
is compact for any t> τ , ς ∈ H(ζ ) ([35, Theorem 2.1.8]). It then follows from [30, Theorem 5.4]
that the following dynamical property holds (see also [29, Section 5] for the existence of a
continuous separation of type II for partial functional differential equations).

Lemma 2.1 The skew-product semiflow (2.4) admits a continuous separation of type II.

Because of properties (2) and (4) of continuous separation, as mentioned in [31], we can write

�(t, ς )w(ς ) = r̄(t, ς )w(ς · t)

for a certain real coefficient r̄(t, ς ) for each t> 0 and ς ∈ H(ζ ), which is known to be positive.
However, r̄(t, ς ) might not be always differentiable. Motivated by the argument in the proof of
[7, Theorem 4.14], we can associate a one-dimensional cocycle with the same behaviour as that
of r̄(t, ς ), which is further differentiable. Taking a point x0 ∈�. Let

v1(ς ) = w(ς )

w(ς )(0, x0)
∈ X , ∀ς ∈ H(ζ ). (2.5)
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It is easy to check that �(t, ς · (−2τ ))v1(ς · (−2τ )) = r̃(t, ς · (−2τ ))v1(ς · (t − 2τ )) for the
positive coefficient

r̃(t, ς · (−2τ )) = w(t, x0; v1(ς · (−2τ )), ς · (−2τ )), ∀ς ∈ H(ζ ), t ≥ 0.

Here, w(t, x; v1(ς · (−2τ )), ς · (−2τ )) is the solution of the following equation with initial datum
v1(ς · (−2τ )):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D2
w(t, x) − ǩ(t, x)w(t, x)

+
∫
�

�̌(t, t − τ , x, y)β̌(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,

where (ǩ, �̌, β̌) = ς · (−2τ ) ∈ H(ζ ). Note that w(t, x; v1(ς · (−2τ )), ς · (−2τ )) is a classical solu-
tion for t> τ . It follows that r̃(t, ς · (−2τ )) defines a one-dimensional differentiable linear
cocycle for t> τ .

Theorem 2.2 There exist two almost periodic functions a ∈ C(R, R), w̃ ∈ Int(C(R, X +
0 )) such

that w(t, x) = e
∫ t

0 a(s)dsw̃(t, x) is a solution of equation (2.2). Furthermore,

λ∗ = lim
t→∞

1

t

∫ t

0
a(s)ds.

Proof. It suffices to prove the desired results for system (2.3) with ς ∈ H(ζ ). Let

ϕ := w2τ (x, v1(ς · (−2τ )), ς · (−2τ )) ∈ X

and w(t, x; ϕ, ς ) be the solution of equation (2.3) with initial value ϕ. We then have wt(ϕ, ς ) =
r̃(t + 2τ , ς · (−2τ ))v1(ς · t). Since r̃(t, ς · (−2τ )) is differential in t for t> τ , it follows that
r(t, ς ) := 1

r̃(2τ ,ς ·(−2τ )) r̃(t + 2τ , ς · (−2τ )) is differential in t for t ≥ 0. Thus, the map a(ς ) :=
d
dt ln r(t, ς )|t=0 is well defined and continuous on H(ζ ), and

r(t, ς ) = e
∫ t

0 a(ς ·s)ds, ∀ς ∈ H(ζ ), t ≥ 0.

The continuity of a(ς ) on H(ζ ) yields that a(ς · t) is almost periodic in t. Moreover, the prop-
erties (1) and (2) of continuous separation together with (2.5) imply that w̃(t, x; ς ) := r̃(2τ , ς ·
(−2τ ))(v1(ς · t)(0, x)) is uniformly almost periodic in t, and w̃ ∈ Int(C(R, X +

0 )). Recall wt(ϕ, ς ) =
r̃(t + 2τ , ς · (−2τ ))v1(ς · t), it follows that w(t, x; ϕ, ς ) = e

∫ t
0 a(ς ·s)dsw̃(t, x; ς ) is a solution of

equation (2.3).
The existence of the continuous separation of linear skew-product semiflow (2.4) means that

λ∗ = sup
ς∈H(ζ ))

lim sup
t→∞

ln ‖�(t, ς )ϕ‖
t

.

Since a(ς · t) is almost periodic, we obtain that limt→∞ 1
t

∫ t
0 a(ς · s)ds exists and is inde-

pendent of ς ∈ H(ζ ) (see, e.g., [17, Lemma 3.2]). It then follows that limt→∞ ln ‖�(t,ς)ϕ‖
t =
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limt→∞ 1
t

∫ t
0 a(ς · s)ds exists and is independent of ς ∈ H(ζ ). Hence,

λ∗ = lim
t→∞

1

t

∫ t

0
a(ς · s)ds,

for any ς ∈ H(ζ ). �

Lemma 2.3 Choose φ ∈ Int(X +), and let w(t, x; φ) be the solution of equation (2.2) with initial
value w0 = φ. Then ln w(t,x;φ)

t converges uniformly to λ∗ as t → ∞ for all x ∈�, that is,

λ∗ = lim
t→∞

ln w(t, x0; φ)

t
, ∀x0 ∈�. (2.6)

Proof. By Theorem 2.2, there exist two almost periodic functions a(t) and w̃(t, x) such that
w(t, x) = e

∫ t
0 a(s)dsw̃(t, x) is a solution of equation (2.2). Since w̃ ∈ Int(C(R, X +

0 )), it follows that
there exist two positive constants k and K such that

ke
∫ θ

0 a(s)dsw̃(θ , x) ≤ φ(θ , x) ≤ Ke
∫ θ

0 a(s)dsw̃(θ , x), ∀θ ∈ [−τ , 0], x ∈�.

The comparison principle for abstract functional differential equation (see, e.g., [27,
Proposition 3]) yields

ke
∫ t

0 a(s)dsw̃(t, x) ≤ w(t, x; φ) ≤ Ke
∫ t

0 a(s)dsw̃(t, x), ∀t ≥ 0, x ∈�.

Thus,

ln k

t
+

∫ t
0 a(s)ds

t
+ ln w̃(t, x)

t
≤ w(t, x, φ)

t
≤ ln K

t
+

∫ t
0 a(s)ds

t
+ ln w̃(t, x)

t
, ∀t> 0, x ∈�.

It then follows that there exist two positive constants m and M such that

m

t
+

∫ t
0 a(s)ds

t
≤ w(t, x, φ)

t
≤ M

t
+

∫ t
0 a(s)ds

t
, ∀t> 0, x ∈�,

and hence, λ∗ = limt→∞ ln w(t,x0;φ)
t , ∀x0 ∈�. �

Remark 2.4 Lemma 2.3 provides a method to compute the upper Lyapunov exponent λ∗ numeri-
cally (see Section 5 for details). The proof of Lemma 2.3 further indicates that the result remains
valid for the almost periodic reaction–diffusion equations (with or without time delay) which
have a solution as in Theorem 2.2 and in which the solution semiflows are monotone.

Next we consider the perturbation equation of (2.2) with a positive parameter ε < 1:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D2
w(t, x) − k(t, x)w(t, x)

+ (1 − ε)
∫
�

�(t, t − τ , x, y)β(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(2.7)

Let λ∗
ε be the upper Lyapunov exponent associated with (2.7).

Lemma 2.5 limε→0 λ
∗
ε = λ∗.
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Proof. Since ε < 1, there exists a δ > 0 such that 1 − ε = e−δτ . Consider⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D2
w(t, x) − (k(t, x) + δ)w(t, x)

+ e−δτ
∫
�

�(t, t − τ , x, y)β(t − τ , y)w(t − τ , y)dy, t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(2.8)

Recall that e
∫ t

0 a(s)dsw̃(t, x) is a solution of (2.2). It then follows that w̃δ(t, x) = e
∫ t

0 a(s)ds−δtw̃(t, x)
is a solution of (2.8). Let λ∗

δ denote the upper Lyapunov exponent associated with (2.8), we get
λ∗
δ = λ∗ − δ, and hence, limδ→0 λ

∗
δ = λ∗. Note that δ→ 0 implies that ε→ 0. By the comparison

principle, we further obtain λ∗
δ ≤ λ∗

ε ≤ λ∗. Thus, limε→0 λ
∗
ε = λ∗. �

3 Model formulation

In this section, we follow the ideas in [24, 38] to derive an almost periodic reaction–diffusion epi-
demic model with latency. Assume that the population live in the spatial habitat � with smooth
boundary ∂� and the population performs an unbiased random walk. In the absence of disease,
we suppose that the population changes according to a population growth equation:

∂N(t, x)

∂t
= DN
N(t, x) +�(t, x) − d(t, x)N(t, x), (3.1)

where DN denotes the diffusion coefficient; �(t, x) and d(t, x) represent the input and natural
death rates of individuals, respectively. We assume that all populations remain confined to the
region � for all time and supplement the Neumann boundary condition to the above equation,
that is,

∂N(t, x)

∂ν
= 0, ∀t> 0, x ∈ ∂�.

Let S(t, x), E(t, x), I(t, x) and R(t, x) be the numbers of susceptible, latent, infected and recov-
ered individuals at time t and location x, respectively. Due to the mobility of the population
during incubation period, we introduce a variable a represented infection age. Let A(t, a, x)
denote the number of infected population with infection age a at time t and location x. By the
standard arguments on structured population with spatial diffusion (see, e.g., [28]), we obtain

∂A(t, a, x)

∂t
+ ∂A(t, a, x)

∂a
= D(a)
A(t, a, x) − (γ (t, a, x) + d(t, x))A(t, a, x), (3.2)

where D(a) represents the diffusion rate at infection age a, and γ (t, a, x) denotes the disease
recovery rate at time t and location x with infection age a. Assume that the average incubation
period is τ . It then follows that

E(t, x) =
∫ τ

0
A(t, a, x)da, I(t, x) =

∫ ∞

τ

A(t, a, x)da. (3.3)

Let Di and γi(t, x) represent the diffusion and recovery rates of i class, i = E, I . We then have

D(a) =
{

DE, a ∈ [0, τ ],

DI , a ∈ [τ , ∞],
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and

γ (t, a, x) =
{
γE(t, x), a ∈ [0, τ ], t ≥ 0, x ∈�,

γI (t, x), a ∈ [τ , ∞], t ≥ 0, x ∈�.

Due to possible means such as quarantine and blocker drug, γE(t, x) could be nontrivial, that is,
some individuals could proceed directly from latent class to recovered class.

Integrating both sides of (3.2) from 0 to τ , it then follows from (3.3) that

∂E(t, x)

∂t
= DE
E(t, x) − (γE(t, x) + d(t, x))E(t, x) + A(t, 0, x) − A(t, τ , x).

Similarly, integrating both sides of (3.2) from τ to ∞, we get

∂I(t, x)

∂t
= DI
I(t, x) − (γI (t, x) + d(t, x))I(t, x) + A(t, τ , x) − A(t, ∞, x).

Biologically, we suppose A(t, ∞, x) = 0. It is well known that the new infections are caused
by the contact between susceptible and infectious individuals, we adopt the standard incidence
infection mechanism. It then follows that

A(t, 0, x) = β(t, x)
S(t, x)I(t, x)

N(t, x)
,

where β(t, x)> 0 is called effective contact rate, and N(t, x) = S(t, x) + E(t, x) + I(t, x) + R(t, x).
On the basis of the above assumptions, the dynamics of disease transmission is governed by

the following system of partial differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S(t, x)

∂t
= DS
S(t, x) +�(t, x) − β(t, x)

S(t, x)I(t, x)

N(t, x)
− d(t, x)S(t, x),

∂E(t, x)

∂t
= DE
E(t, x) + β(t, x)

S(t, x)I(t, x)

N(t, x)
− γE(t, x)E(t, x)

− d(t, x)E(t, x) − A(t, τ , x),

∂I(t, x)

∂t
= DI
I(t, x) − γI (t, x)I(t, x) − d(t, x)I(t, x) + A(t, τ , x),

∂R(t, x)

∂t
= DR
R(t, x) + γE(t, x)E(t, x) + γI (t, x)I(t, x) − d(t, x)R(t, x),

∂S(t, x)

∂ν
= ∂E(t, x)

∂ν
= ∂I(t, x)

∂ν
= ∂R(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,

(3.4)

where DS and DR denote the diffusion rates of susceptible and recovered classes. We make the
following assumptions:

(A1) �(t, x), β(t, x), γE(t, x), γI (t, x) and d(t, x) are Hölder continuous and nonnegative nontrivial
on R×�, and uniformly almost periodic in t.

(A2) There exist two positive constants �0, d0 such that �(t, x)>�0, d(t, x)> d0 for all t ∈R

and x ∈�, and Di > 0 for i = S, E, I , R.

It is then necessary to determine A(t, τ , x), which can be done by the integration along char-
acteristics. Let v(z, a, x) = A(a + z, a, x), ∀z ≥ 0, and consider the solutions of (3.2) along the
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characteristic line t = a + z. Then for a ∈ [0, τ ], we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v(z, a, x)

∂a
= [

∂A(t, a, x)

∂t
+ ∂A(z, a, x)

∂a
]t=a+z

= Da
A(a + z, a, x) − (γ (a + z, a, x) + d(a + z, x))A(a + z, a, x)

= DE
v(z, a, x) − (γE(a + z, x) + d(a + z, x))v(z, a, x),

v(z, 0, x) = E(z, 0, x) = β(z, x)
S(z, x)I(z, x)

N(z, x)
.

Regarding z as a parameter and integrating the last equation, we obtain

v(z, a, x) =
∫
�

�(z + a, z, x, y)β(z, y)
S(z, y)I(z, y)

N(z, y)
dy,

where �(t, s, x, y) with t> s ≥ 0 and x, y ∈� is the fundamental solution associated with the
partial differential operator ∂t − DE
− d(t, ·) − γE(t, ·) subject to the Neumann boundary con-
dition (see [13, Chapter 1]). The uniformly almost periodicity of d(t, x) and γE(t, x) yields that
�(t, s, x, y) is uniformly almost periodic in t and s. Since A(t, a, x) = v(t − a, a, x), ∀t ≥ a, we get

A(t, a, x) =
∫
�

�(t, t − a, x, y)β(t − a, y)
S(t − a, y)I(t − a, y)

N(t − a, y)
dy.

Taking a = τ , we have

A(t, τ , x) =
∫
�

�(t, t − τ , x, y)β(t − τ , y)
S(t − τ , y)I(t − τ , y)

N(t − τ , y)
dy. (3.5)

For the sake of simplicity, moreover, we let (u1, u2, u3, u4) = (S, E, I , R) and (D1, D2, D3, D4) =
(DS , DE, DI , DR). It then follows from (3.5) that model (3.4) can be rewritten as the follow-
ing time-delayed and nonlocal almost periodic reaction–diffusion system with no flux boundary
condition:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
=D1
u1(t, x) +�(t, x) − β(t, x)

u1(t, x)u3(t, x)

�4
i=1ui(t, x)

− d(t, x)u1(t, x),

∂u2(t, x)

∂t
= D2
u2(t, x) + β(t, x)

u1(t, x)u3(t, x)

�4
i=1ui(t, x)

− (γE(t, x) + d(t, x))u2(t, x)

−
∫
�

�(t, t − τ , x, y)β(t − τ , y)
u1(t − τ , y)u3(t − τ , y)

�4
i=1ui(t − τ , y)

dy,

∂u3(t, x)

∂t
= D3
u3(t, x) − (γI (t, x) + d(t, x))u3(t, x)

+
∫
�

�(t, t − τ , x, y)β(t − τ , y)
u1(t − τ , y)u3(t − τ , y)

�4
i=1ui(t − τ , y)

dy,

∂u4(t, x)

∂t
= D4
u4(t, x) + γE(t, x)u2(t, x) + γI (t, x)u3(t, x) − d(t, x)u4(t, x),

∂ui(t, x)

∂ν
= 0, t> 0, x ∈ ∂�, 1 ≤ i ≤ 4.

(3.6)
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Model (3.6) is an almost periodic version of the classical Kermack–McKendrick epidemic model
with the standard incidence infection mechanism, which incorporates disease latency, spatial
heterogeneity and general seasonal fluctuations. The periodic Kermack–McKendrick model with
latency has been studied extensively (see, e.g., [37, 38]).

From a biological point of view, there is an interesting question whether the outbreak of dis-
ease affects the total population size over the whole region. Note that if Di = DN , 1 ≤ i ≤ 4, we
then obtain that the change of total population size �4

i=1ui(t, x) follows equation (3.1) subject to
Neumann boundary condition when there is a disease outbreak, which indicates that population
dynamics are not affected by disease transmission. Moreover, in the case that natural death rate
is a spatially homogeneous function d(t), it is easy to verify that the total population size over the
whole region N (t) = ∫

�
�4

i=1ui(t, x)dx satisfies the following equation when there is a disease
outbreak or no disease outbreak:

dN (t)

dt
=�∗(t) − d(t)N (t),

where�∗(t) = ∫
�
�(t, x)dx. Thus, in the case where Di = DN (1 ≤ i ≤ 4) or d(t, x) = d(t), ∀x ∈�,

the outbreak of disease does not affect the total population size over the whole region. But for
more general cases, we cannot obtain concrete conclusion, and it needs to make further study.

Let Y0 := C(�, R4) be the Banach space with the supremum norm ‖ · ‖Y0 , and let Y+
0 :=

C(�, R4+). Define Y := C([−τ , 0], Y0) and Y+ := C([−τ , 0], Y+
0 ). The norm of Y is defined by

‖ϕ‖Y = maxθ∈[−τ ,0] ‖φ(θ )‖Y0 , ∀φ ∈ Y . By the arguments similar to those given in the proof of
[38, Theorem 2.2], we have the following result.

Lemma 3.1 For any φ ∈ Y+, system (3.6) admits a unique mild solution u(t, x; φ) = (u1(t, x; φ),
u2(t, x; φ), u3(t, x; φ), u4(t, x; φ)) on [0, ∞) with initial value φ. Moreover, u(t, x; φ) is a classical
solution when t> τ .

To proceed further, we need some information on the following almost periodic reaction–
diffusion equation:⎧⎪⎪⎨⎪⎪⎩

∂w(t, x)

∂t
= D
w(t, x) + λ(t, x) − h(t, x)w(t, x), t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,

(3.7)

where D is a positive constant, λ(t, x) and h(t, x) are uniformly almost periodic in t. Moreover, we
assume that λ(t, x) and h(t, x) are Hölder continuous for t ∈R, x ∈�, and there are two positive
constants λ0 and h0 such that λ(t, x)>λ0 and h(t, x)> h0 for all t ∈R and x ∈�, respectively.

Lemma 3.2 System (3.7) admits a unique positive almost periodic solution w∗(t, ·) which is
globally attractive in X +

0 .

Proof. Let H(λ, h) be the hull of (λ, h). The translation map R× H(λ, h) → H(λ, h), (s,μ, g) �→
(μ, g) · s given by ((μ, g) · s)(t, x) = (μ(t + s, x), g(t + s, x)) (t ∈R and x ∈�) defines a compact,
almost periodic minimal and distal flow.
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For any φ ∈ X +
0 and (μ, g) ∈ H(λ, h). Let

μ+ = sup
t∈R,x∈�

μ(t, x), μ− = inf
t∈R,x∈�

μ(t, x),

g+ = sup
t∈R,x∈�

g(t, x), g− = inf
t∈R,x∈�

g(t, x), φ+ = max
x∈�

φ(x).

It then follows that any constant M ≥ max{φ+, μ
+

g− } is an upper solution of the following
parabolic problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂w(t, x)

∂t
= D
w(t, x) +μ(t, x) − g(t, x)w(t, x), t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,

w(0, x) = φ, x ∈�.

(3.8)

The comparison theorem together with a priori estimates of parabolic equations (see, e.g., [16])
imply that (3.8) has a unique solution w(t, x; φ,μ, g) on [0, ∞), and for any δ > 0, the set
{w(t, ·; φ,μ, g) : t ≥ δ} is relatively compact in X +

0 . We define the skew-product semiflow

�̃ : R+ × X +
0 × H(λ, h) → X +

0 × H(λ, h),

(t, φ,μ, g) �→ (w(t, ·; φ,μ, g),μ · t, g · t).

We use the notation �̃t(φ,μ, g) = �̃(t, φ,μ, g). Then, for each (φ,μ, g) ∈ X +
0 × H(λ, h), the

omega limit set ω(φ,μ, g) of the forward orbit γ+(φ,μ, g) := {�̃t(φ,μ, g) : t ≥ 0} is well
defined, compact and invariant under �̃t, t ≥ 0. By the standard comparison arguments, we get
that for any (φ,μ, g) ∈ X +

0 × H(λ, h), the omega limit set ω(φ,μ, g) satisfies

ω(φ,μ, g) ⊂ {ϕ ∈ X +
0 :

μ−

g+ ≤ ϕ ≤ μ+

g− } × H(λ, h).

Let w(φ,μ, g, t) := w(t, ·; φ,μ, g). It then follows from the comparison principle that w(·,μ, g, t)
is strongly monotone on X +

0 for each (μ, g, t) ∈ H(λ, h) × (0, ∞). Note that f (t, x, w) := λ(t, x) −
h(t, x)w is strictly subhomogeneous in w, that is, f (t, x, κw)> κf (t, x, w) for any κ ∈ (0, 1) and
w � 0, and hence, each function m(t, x) :=μ(t, x) − g(t, x)w, (μ, g) ∈ H(λ.h), is strictly subho-
mogeneous in w for any fixed (t, x) ∈R+ ×�. By the integral version of parabolic equation
(3.8) (see, e.g., [25]), we get that w(φ,μ, g, t) is subhomogeneous on X +

0 for each (μ, g, t) ∈
H(λ, h) ×R+, and w(φ,μ, g, t) is strictly subhomogeneous on X +

0 for each t> 0. Let φ0 ∈ X +
0

be fixed and W0 =ω(φ0, λ, h). By [39, Theorem 2.3.5 and Remarks 2.3.2–2.3.3], it follows that
for every φ ∈ X +

0 , limt→∞ ‖w(t, ·; φ, λ, h) − w(t, ·; φ∗, λ, h)‖0 = 0, where (φ∗, λ, h) ∈ W0. Since
�̃t : W0 → W0 is an almost periodic minimal flow, �̃t(φ∗, λ, h) = (w(t, ·; φ∗, λ, h), λt, ht) is an
almost periodic motion (see [32, Lemma VI.9]). Therefore, w(t, ·; φ∗, λ, h) is a unique positive
almost periodic solution of (3.7), which is globally attractive in X +

0 . �
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4 Threshold dynamics

In this section, we establish a threshold-type result on the extinction and uniform persistence of
system (3.6).

Letting ui = 0 (2 ≤ i ≤ 4) in (3.6), we get the following equation for u1(t, x) of susceptible
population: ⎧⎪⎨⎪⎩

∂u1(t, x)

∂t
= D1
u1(t, x) +�(t, x) − d(t, x)u1(t, x), t> 0, x ∈�,

∂u1(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(4.1)

According to Lemma 3.2, equation (4.1) admits a positive solution u∗
1(t, x) which is globally

attractive and uniformly almost periodic in t ∈R. It then follows that system (3.6) admits a unique
positive disease-free almost periodic solution E∗ = (u∗

1, 0, 0, 0). Linearising system (3.6) at E∗,
we then obtain that infectious variable u3 satisfies equation (2.1). Now we show that λ∗ is a
threshold value for the global extinction and uniform persistence of the disease. Before proving
the main results, we need the following Lemma.

Lemma 4.1 Let u(t, x; φ) = (u1(t, x; φ), u2(t, x; φ), u3(t, x; φ), u4(t, x; φ)) be the solution of (3.6)
with initial datum φ ∈ Y+. There exist constants L> 0, T = T(φ) such that

ui(t, x; φ)< L, ∀t ≥ T , x ∈�, 1 ≤ i ≤ 4.

Proof. From the first equation of (3.6), we conclude that⎧⎪⎪⎨⎪⎪⎩
∂u1(t, x)

∂t
≤ D1
u1(t, x) +�(t, x) − d(t, x)u1(t, x), t> 0, x ∈�,

∂u1(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

It then follows from the comparison theorem that for any φ ∈ Y+, there exist constants L1 > 0
and T1 = T1(φ)> 0 such that u1(t, x; φ)< L1, ∀t ≥ T1, x ∈�. Hence, we obtain that u3(t, x; φ)
satisfies ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u3(t, x)

∂t
≤D3
u3(t, x) − (γI (t, x) + d(t, x))u3(t, x)

+ L1

∫
�

�(t, t − τ , x, y)β(t − τ , y)dy, t> T1, x ∈�,

∂u3(t, x)

∂ν
= 0, t> T1, x ∈ ∂�.

Thus, comparison theorem implies that there exist constants L3 > 0 and T3 = T3(φ)> T1 such
that u3(t, x; φ)< L3, ∀t ≥ T3, x ∈�. Hence, we get that u2(t, x; φ) satisfies⎧⎪⎪⎨⎪⎪⎩

∂u2(t, x)

∂t
≤ D2
u2(t, x) + L3β(t, x) − (γE(t, x) + d(t, x))u2(t, x), t> T3, x ∈�,

∂u3(t, x)

∂ν
= 0, t> T3, x ∈ ∂�.
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By comparison theorem again, there exist L2 > 0 and T2 (T2 > T3) such that u2(t, x; φ)< L2,
∀t ≥ T2, x ∈�. Similarly, there exist L4 > 0 and T4 (T4 > T2) such that u4(t, x; φ)< L4, ∀t ≥ T4,
x ∈�. Setting L = max{L1, L2, L3, L4} and T = T4, we complete the proof. �

The subsequent results indicate that λ∗ serves as a threshold value for the global extinction
and uniform persistence of the disease.

Theorem 4.2 Assume that (A1) and (A2) hold. Let u(t, x; φ) be the solution of system (3.6) with
initial value φ ∈ Y+. If λ∗ < 0, then lim

t→∞ ‖u(t, ·; φ) − E∗(t, ·)‖ = 0.

Proof. Let A = (�, β, d, γE, γI , �) and H(A) be the hull of A. For any ϑ = (�̄, β̄, d̄, γ̄E, γ̄I , �̄) ∈
H(A), the translation map R× H(A) → H(A), (s, ϑ) �→ ϑ · s given by (ϑ · s)(t, x, y) =
(�̄(t + s, x), β̄(t + s, x), d̄(t + s, x), γ̄E(t + s, x), γ̄I (t + s, x), �̄(t + s, t − τ + s, x, y)) (t ∈R, x, y ∈
�) defines a compact, almost periodic minimal and distal flow. Consider⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u1(t, x)

∂t
=D1
u1(t, x) + �̄(t, x) − β̄(t, x)

u1(t, x)u3(t, x)

�4
i=1ui(t, x)

− d̄(t, x)u1(t, x),

∂u2(t, x)

∂t
= D2
u2(t, x) + β̄(t, x)

u1(t, x)u3(t, x)

�4
i=1ui(t, x)

− (γ̄E(t, x) + d̄(t, x))u2(t, x)

−
∫
�

�̄(t, t − τ , x, y)β̄(t − τ , y)
u1(t − τ , y)u3(t − τ , y)

�4
i=1ui(t − τ , y)

dy,

∂u3(t, x)

∂t
= D3
u3(t, x) − (γ̄I (t, x) + d̄(t, x))u3(t, x)

+
∫
�

�̄(t, t − τ , x, y)β(t − τ , y)
u1(t − τ , y)u3(t − τ , y)

�4
i=1ui(t − τ , y)

dy,

∂u4(t, x)

∂t
= D4
u4(t, x) + γ̄E(t, x)u2(t, x) + γ̄I (t, x)u3(t, x) − d̄(t, x)u4(t, x), t> 0, x ∈�,

∂ui(t, x)

∂ν
= 0, t> 0, x ∈ ∂�, 1 ≤ i ≤ 4.

(4.2)
By Lemma 3.1, system (4.2) admits a unique solution

u(t, x; φ, ϑ) = (u1(t, x; φ, ϑ), u2(t, x; φ, ϑ), u3(t, x; φ, ϑ), u4(t, x; φ, ϑ))

with initial datum φ = (φ1, φ2, φ3, φ4) ∈ Y+. Define ut(φ, ϑ)(θ , x) = u(t + θ , x; φ, ϑ), ∀t ≥ 0,
θ ∈ [−τ , 0], x ∈�. The solution of (4.2) induces a skew-product semiflow:

�Y : R+ × Y+ × H(A) → Y+ × H(A),

(t, φ, ϑ) �→ (ut(φ, ϑ), ϑ · t).

From the third equation of (4.2), u3(t, x; φ, ϑ) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u3(t, x)

∂t
≤D3
u3(t, x) − (γ̄I (t, x) + d̄(t, x))u3(t, x)

+
∫
�

�̄(t, t − τ , x, y)β̄(t − τ , y)u3(t − τ , y)dy, t> 0, x ∈�,

∂u3(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(4.3)
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Consider the comparison system of (4.3):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ ũ3(t, x)

∂t
= D3
ũ3(t, x) − (γ̄I (t, x) + d̄(t, x))ũ3(t, x)

+
∫
�

�̄(t, t − τ , x, y)β̄(t − τ , y)ũ3(t − τ , y)dy, t> 0, x ∈�,

∂ ũ3(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(4.4)

Due to λ∗ < 0, it follows from Theorem 2.2 that there exist two almost periodic functions a(ϑ · t)
and w̃(t, x; ϑ) such that w(t, x; ϑ) = e

∫ t
0 a(ϑ ·s)dsw̃(t, x; ϑ) is a solution of (4.4) and

lim
t→∞

1

t

∫ t

0
a(ϑ · s)ds = λ∗ < 0.

Thus, the comparison principle indicates that u3(t, x; φ, ϑ) → 0 uniformly on � as t → ∞. Note
that u2(t, x; φ, ϑ) satisfies⎧⎪⎨⎪⎩

∂u2(t, x)

∂t
≤D2
u2(t, x) + β̄(t, x)u3(t, x; φ, ϑ) − (γ̄E(t, x) + d̄(t, x))u2(t, x)

∂u2(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

Let ũ2(t) be the solution of the following equation with initial datum ũ2(0) = maxx∈� φ2(x),

du2(t)

dt
= p(t) − d0u2(t),

where p(t) = maxx∈�{β̄(t, x)u3(t, x; φ, ϑ)}. It then follows from the comparison principle that
u2(t, x; φ, ϑ) ≤ ũ2(t), ∀x ∈ �̄. By [34, Theorem 2.6], we further obtain ũ2(t) → 0 as t → ∞.
Thus, u2(t, x; φ, ϑ) → 0 uniformly on � as t → ∞. Repeating above process, we further have
u4(t, x; φ, ϑ) → 0 uniformly on � as t → ∞.

Let ω(φ, ϑ) denote the omega limit set of (φ, ϑ) for �Y
t (�Y

t (φ, ϑ) =�Y (t, φ, ϑ)), that is,

ω(φ, ϑ) = {(φ∗, ϑ∗) ∈ Y × H(A) : ∃tn → ∞ such that lim
tn→∞(utn (φ, ϑ), ϑtn ) = (φ∗, ϑ∗)}.

Since limt→∞ ui(t, ·, φ, ϑ) = 0, 2 ≤ i ≤ 4, we getω(φ, ϑ) ⊂ {(ω1, 0̂, 0̂, 0̂, ϑ) :ω1 ∈ X +, ϑ ∈ H(A)}.
Note that u1(t, x; φ, ϑ) satisfies⎧⎪⎨⎪⎩

∂u1(t, x)

∂t
≥ D1
u1(t, x) + �̄(t, x) − (β̄(t, x) + d̄(t, x))u1(t, x), t> 0, x ∈�,

∂u1(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,

which implies that limt→∞ u1(t, x; φ, ϑ) ≥ �0
M0

, where M0 = supt∈R,x∈�(β(t, x) + d(t, x)). Then, we

have ω1 ∈ Int(X +) for every (ω1, 0̂, 0̂, 0̂, ϑ) ∈ω(φ, ϑ).
According to Lemma 3.2, the following equation:⎧⎪⎨⎪⎩

∂w(t, x)

∂t
= D1
w(t, x) + �̄(t, x) − d̄(t, x)w(t, x), t> 0, x ∈�,

∂w(t, x)

∂ν
= 0, t> 0, x ∈ ∂�,
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admits a solution u∗
1(t, x; ϑ), which is globally attractive and uniformly almost periodic in

t ∈R. Define u∗
1(ϑ)(θ , x) = u∗

1(θ , x; ϑ), ∀θ ∈ [−τ , 0], x ∈�. Since every trajectory of the omega
limit set has backward extension, it follows from Lemma 3.2 that ω1 = u∗

1(ϑ) for every
(ω1, 0̂, 0̂, 0̂, ϑ) ∈ω(φ, ϑ). Thus,

lim
t→∞ ‖(u1(t, ·; φ, ϑ), u2(t, ·; φ, ϑ), u3(t, ·; φ, ϑ), u4(t, ·; φ, ϑ)) − (u∗

1(t, ·; ϑ), 0, 0, 0)‖ = 0.

We complete the proof. �

Theorem 4.3 Assume that (A1) and (A2) hold. Let u(t, x; φ) be the solution of (3.6) with initial
value φ ∈ Y+. If λ∗ > 0, then there exists an ε > 0 such that for any φ ∈ Y+ with φ3(0, ·) �≡ 0,
we have

lim inf
t→∞ u3(t, x; φ) ≥ ε,

uniformly on x ∈�.

Proof. Define

U0 := {φ ∈ Y+ : φ3(0, ·) �≡ 0},
∂U0 := Y+\U0 = {φ ∈ Y+ : φ3(0, ·) ≡ 0},

and

P = Y+ × H(A), P0 = U0 × H(A), ∂P0 = ∂U0 × H(A).

It is clear that P0 and ∂P0 are relatively open and closed in P, respectively. Let u(t, x; φ, ϑ) =
(u1(t, x; φ, ϑ), u2(t, x; φ, ϑ), u3(t, x; φ, ϑ), u4(t, x; φ, ϑ)) be the unique solution of (4.2) with initial
value φ = (φ1, φ2, φ3, φ4) ∈ Y+, and let �P

t denote the skew-product semiflow induced by the
solution of (4.2), that is,

�P
t : P → P,

(φ, ϑ) �→ (ut(φ, ϑ), ϑ · t),

where ut(φ, ϑ)(x, θ ) = u(t + θ , x; φ, ϑ), ∀t ≥ 0, θ ∈ [−τ , 0] and x ∈�. It is easy to see that
�P

t (P0) ∈ P0 and �P
t (∂P0) ∈ ∂P0, ∀t ≥ 0. Lemma 4.1 means that �P

t is continuous and point
dissipative. Moreover, �P

t is compact for any t> τ ([35, Theorem 2.1.8]). It then follows
from [15, Theorem 3.4.8] that �P

t : P → P admits a global attractor A. Let M∂ be the maximal
positively invariant set for �P

t in ∂P0, that is,

M∂ := {(φ, ϑ) ∈ ∂P0 :�P
t (φ, ϑ) ∈ ∂P0, ∀t ≥ 0}.

Letω(φ, ϑ) represent the omega limit set for�P
t and define M := {(u∗

1(ϑ), 0̂, 0̂, 0̂, ϑ) : ϑ ∈ H(A)}.
It is clear that for any (ψ , ϑ) ∈ ∂P0, u3(t, x;ψ , ϑ) = 0, ∀t ≥ 0, limt→∞ ui(t, ·;ψ , ϑ) = 0, i = 2, 4,
and limt→∞ ‖u1(t, ·;ψ , ϑ) − u∗

1(t, ·; ϑ)‖ = 0. Hence, we have ∪(ψ ,ϑ)∈∂P0ω(ψ , ϑ) =M. It then
follows that ω(M∂ ) = ∪(ψ ,ϑ)∈∂M∂

ω(ψ , ϑ) =M, M is a compact and isolated invariant set, and
no subset of M forms a cycle for �P

t in ∂P0.
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Consider the following perturbation system with a positive parameter η:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u3(t, x)

∂t
= D3
u3(t, x) − (γ̄I (t, x) + d̄(t, x))u3(t, x)

+
∫
�

�̄(t, t − τ , x, y)β̄(t − τ , y)
u∗

1(t, x; ϑ) − η

u∗
1(t, x; ϑ) + 4η

u3(t − τ , y)dy, t> 0, x ∈�,

∂u3(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(4.5)

Let λ∗
η be the upper Lyapunov exponent associated with (4.5). Due to λ∗ > 0, the continuity of

upper Lyapunov exponent (see Lemma 2.5) means that we can take a sufficiently small number
η > 0 such that λ∗

η > 0. Furthermore, we have the following claim.
Claim. M is a uniform weak repeller for �P

t , that is,

lim sup
t→∞

d(�P
t (φ, ϑ), M) ≥ η, ∀(φ, ϑ) ∈ P0.

Suppose, by contradiction, there exists some (φ0, ϑ0) ∈ P0 such that

lim sup
t→∞

d(�P
t (φ0, ϑ0), M)<η.

Then there exists t1 > 0 such that lim supt→∞ d(�P
t (φ0, ϑ0), M)<η, ∀t ≥ t1, which implies that

u∗
1(t, x; ϑ0) − η≤ u1(t, x; φ0, ϑ0) ≤ u∗

1(t, x; ϑ0) + η and ui(t, x; φ0, ϑ0) ≤ η, ∀t ≥ t1, x ∈�, 2 ≤ i ≤
4. It follows that u3(t, x; φ0, ϑ0) satisfies⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u3(t, x)

∂t
≥D3
u3(t, x) − (γ̃I (t, x) + d̃(t, x))u3(t, x)

+
∫
�

�̃(t, t − τ , x, y)β̃(t − τ , y)
u∗

1(t, x; ϑ0) − η

u∗
1(t, x; ϑ0) + 4η

u3(t − τ , y)dy, t> t1, x ∈�,

∂u3(t, x)

∂ν
= 0, t> t1, x ∈ ∂�,

where (�̃, β̃, d̃, γ̃E, γ̃I , �̃) = ϑ0. By Theorem 2.2, there exist two almost periodic functions
a(ϑ0 · t) and w̃(t, x; ϑ0) such that w(t, x; ϑ0) = e

∫ t
0 a(ϑ0·s)dsw̃(t, x; ϑ0) is a solution of (4.5) and

lim
t→∞

1

t

∫ t

0
a(ϑ0 · s)ds = λ∗

η > 0.

Recall (φ0, ϑ0) ∈ P0, a similar argument to that in [38, Lemma 4.2 (i)] means that
u3(t, x; φ0, ϑ0)> 0 for t> 0. Thus, there exist t2 > 0 and a sufficiently small number δ > 0
such that u3(t2 + θ , x; φ0, ϑ0) ≥ δw(t2 + θ , x, ϑ0), ∀θ ∈ [−τ , 0], x ∈�. It then follows from the
comparison principle that

u3(t, x; φ0, ϑ0) ≥ δw(t, x; ϑ0) = δe
∫ t

0 a(ϑ0·s)dsw̃(t, x; ϑ0), ∀t ≥ t3, x ∈�,

where t3 = max{t1, t2}. Note that w̃(t, x; ϑ0) is almost periodic and

lim
t→∞ e

∫ t
0 a(ϑ0·s)ds = lim

t→∞(e
1
t

∫ t
0 a(ϑ0·s)ds)t = ∞,

we have limt→∞ u3(t, x; φ0, ϑ0) = ∞, a contradiction.
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Since M is an isolated invariant set for �P
t in ∂P0, the above claim implies that M is also an

isolated invariant set for�P
t on P. The claim also shows that W s(M) ∩ P0 = ∅, where W s(M) is

the stable set of M for �P
t , that is,

W s(M) = {(φ, ϑ) ∈ P :ω(φ, ϑ) �= ∅,ω(φ, ϑ) ⊂M}.

By the continuous-time version of [39, Theorem 1.3.1 and Remark 1.3.1], the skew-product
semiflow �P

t : P → P is uniformly persistent with respect to (P0, ∂P0). Since �P
t is compact for

any t> τ , it follows that �P
t is asymptotically smooth. By [26, Theorem 3.7 and Remark 3.10],

�P
t : P0 → P0 admits a global attractor A0.
It remains to prove the practical uniform persistence. Since A0 ∈ P0 and �P

t (A0) =A0, it
follows that A0 ∈ Int(P). Define a function c : P → [0, ∞) by

c(φ, ϑ) = min
x∈�

{φ3(0, x)}, ∀(φ, ϑ) ∈ P.

It is easy to see that c is continuous and c(φ, ϑ)> 0 for all (φ, ϑ) ∈A0. The compactness of A0

implies that inf(φ,ϑ)∈A0 c(φ, ϑ) = min(φ,ϑ)∈A0 c(φ, ϑ)> 0. Consequently, we conclude that there
exists a number ε > 0 such that

lim inf
t→∞ u3(t, ·; φ, ϑ) ≥ ε, ∀(φ, ϑ) ∈ P0.

This completes the proof. �

5 Numerical simulations

In this section, we carry out numerical simulations to illustrate the theoretical results obtained
in previous sections and numerically analyse the influence of the incubation period, the spa-
tial heterogeneity and the diffusion on the upper Lyapunov exponent and disease transmission.
The numerical computation of upper Lyapunov exponent is supported by Lemma 2.3. Choose
φ ∈ Int(X +), Lemma 2.3 indicates that for every ε > 0, there exists t(ε)> 0 such that t ≥ t(ε)
implies |λ∗ − ln w(t,x0;φ)

t |< ε, ∀x0 ∈�. In our numerical simulations, we mimic (2.6) on a finite

interval. For given x0 ∈� and φ ∈ Int(X +), we specify a value T and compute λ∗
T = ln w(T ,x0;φ)

T ,
which will provide an approximation to λ∗.

For the sake of convenience, we concentrate on one-dimensional domain �= (0, 2).
Considering the seasonality and the spatial heterogeneity, we choose β = 0.6 + 0.2(sin(π t

6 ) +
cos(

√
2π t
3 )) Year−1 and γI = K + k sin(πx) Year−1, where k ≤ K are two positive constants. Take

d = 0.14 Year −1, D1 = D2 = D3 = D4 = 0.1 Km2· Year−1, γE = 0.01 Year−1,�= 2 Km· Year−1

and τ = 0.5 Year. For this set of parameters, we can compute the upper Lyapunov exponent

numerically and get λ∗ = −0.305< 0 if we choose K = 1 and k = 0.5. The graph of ln w(t,x0;φ)
t

is shown in Figure 1. We mimic ln w(t,x0;φ)
t on finite interval [0, 2000] and take φ(θ , x) = 1,

∀θ ∈ [−τ , 0], x ∈ [0, 2], it is clear that λ∗ is approximated very well (see Figure 1(a)). We
truncate the time interval by [1900, 2000], Figure 1(b) indicates that ln w(t,x0;φ)

t converges to
[−0.306, −0.3045]. In the case where D1 = D2 = D3 = D4 = D0 for some positive number D0,
system (3.6) can be rewritten as
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Time t
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FIGURE 1. The graph of ln w(t,x0;φ)
t . Baseline parameter values: D2 = D3 = 0.1, γE = 0.01, d = 0.14, τ = 0.5,

β = 0.6 + 0.2(sin( π t
6 ) + cos(

√
2π t
3 )), γI = 1 + 0.5 sin(πx) and φ(θ , x) = 1, ∀θ ∈ [−τ , 0], x ∈ [0, 2].

FIGURE 2. The long-term behaviour of the solution of system (5.1) when λ∗ = −0.305< 0. Baseline
parameter values: D0 = 0.1, γE = 0.01, �= 2, d = 0.14, τ = 0.5, β = 0.6 + 0.2(sin( π t

6 ) + cos(
√

2π t
3 )) and

γI = 1 + 0.5 sin(πx).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N(t, x)

∂t
= D0
N(t, x) +�(t, x) − d(t, x)N(t, x),

∂u1(t, x)

∂t
=D0
u1(t, x) +�(t, x) − β(t, x)

u1(t, x)u3(t, x)

N(t, x)
− d(t, x)u1(t, x),

∂u3(t, x)

∂t
= D0
u3(t, x) − (γI (t, x) + d(t, x))u3(t, x)

+
∫
�

�(t, t − τ , x, y)β(t − τ , y)
u1(t − τ , y)u3(t − τ , y)

N(t − τ , y)
dy, t> 0, x ∈�,

∂N(t, x)

∂ν
= ∂u1(t, x)

∂ν
= ∂u3(t, x)

∂ν
= 0, t> 0, x ∈ ∂�.

(5.1)

Figure 2 shows the corresponding long-term behaviour of the solution of system (5.1) in the
case of λ∗ = −0.305, with initial data

u(θ , x) =
⎛⎜⎝ N(θ , x)

u1(θ , x)

u3(θ , x))

⎞⎟⎠ =
⎛⎜⎝ 12

7 + 0.5 cos(πx)

1 + 0.1 cos(πx)

⎞⎟⎠ , ∀θ ∈ [−τ , 0], x ∈ [0, 2].
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FIGURE 3. The long-term behaviour of the solution of system (5.1) when λ∗ = 0.173> 0. Baseline
parameter values: D0 = 0.1, γE = 0.01, �= 2, d = 0.14, τ = 0.5, β = 0.6 + 0.2(sin( π t

6 ) + cos(
√

2π t
3 )) and

γI = 0.2 + 0.1 sin(πx).
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FIGURE 4. λ∗ versus D3. Baseline parameter values: D2 = 0.1, γE = 0.01, d = 0.14, β = 0.6 +
0.2(sin( π t

6 ) + cos(
√

2π t
3 )) and τ = 0.5 (γI = 1 + 0.5 sin(πx) in (a), γI = 0.2 + 0.1 sin(πx) in (b)).

It is coincident with the result in Theorem 4.2. Decreasing the recovery rate to 0.2 + 0.1 sin( 2πx
2 )

Year−1, and other parameters remain unchanged, then λ∗ = 0.173. The corresponding long-term
behaviour of system (5.1) in this case is shown in Figure 3, where the initial data are the same
to the previous case. It shows that the disease is persistent, which is coincident with the result in
Theorem 4.3.

Note that the sign of λ∗ completely determines the development trend of the disease, and
the larger the λ∗, the greater the disease risk. We are interested in the dependence between λ∗

and the model parameters. Figure 4 indicates that λ∗ is a decreasing function of D3, and the
rate of decline becomes slow when D3 is large. It seems that increasing the diffusion rate D3

is beneficial to disease control when D3 is small. Biologically, the lager the diffusion rate of
infected individuals possess, the more opportunities that access to medical resources the infected
individuals obtain. Figure 5 shows that λ∗ is also a decreasing function of incubation period τ ,
which implies that prolonging the length of incubation period could help to control the disease.

Motivated by [36], we observe that the population density of infectious individuals at the area
[0, 1] is less than that in the area [1, 2] in Figure 3, which is corresponding to the spatial dis-
tribution of recovery rate γI . It motivates us to investigate the effect of γI on λ∗ in a spatially
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FIGURE 5. λ∗ versus τ . Baseline parameter values: D2 = 0.1, D3 = 0.1, γE = 0.01, d = 0.14, β = 0.6 +
0.2(sin( π t

6 ) + cos(
√

2π t
3 )) and γI = 1 + 0.5 sin(πx).
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FIGURE 6. The effect of the spatial distribution of recovery rate γI on λ∗. (a) The spatial distribution
of γI . (b) The graph of λ∗ versus k. Baseline parameter values: D2 = 0.1, γE = 0.01, d = 0.14, τ = 0.5,
β = 0.6 + 0.2(sin( π t

6 ) + cos(
√

2π t
3 )) and γI = 1 + k sin(πx) (k ∈ [0, 1]).

heterogeneous environment. We take K = 1 and k ∈ [0, 1]. As k changing from 0 to 1, the inte-
gration

∫ 2
0 γI (x)dx remains unchanged, which means that the total medical resources stay the

same. When k = 0, the spatial distribution of recovery rate is uniform and more uneven with
the increase of k (see Figure 6(a)). The numerical simulations show that λ∗ is increasing with
respect to k, and the smaller the diffusion rate D3 becomes, the more obvious the increase is (see
Figure 6(b)). This seems to indicate that keeping balance of the distribution of medical resources
could help to control the disease. It is worth noting that, however, the spatial distribution of dis-
ease transmission rate β is homogeneous. We choose β = 0.8 + 0.5 sin(πx), and other parameters
remain unchanged. Let F = ∫ 2

0 |k sin(πx) − 0.5 sin(πx)|dx. It is clear that the smaller the F is, the
smaller the spatial heterogeneity difference between γI and β becomes. Figure 7(a) gives the rela-
tionship between F and k, and the dependence of λ∗ on k is presented in Figure 7(b). Figure 7
shows that λ∗ reaches a minimum when the minimum of F = ∫ 2

0 |k sin(πx) − 0.5 sin(πx)|dx is
reached, which demonstrates that decreasing the difference of spatial distributions between γI

and β could help to control the disease, especially when D3 is small.
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FIGURE 7. The effect of the spatial distribution of recovery rate γI on λ∗. (a) The difference of spa-
tial distributions between γI and β. (b) The graph of λ∗ versus k. Baseline parameter values: D2 = 0.1,
γE = 0.01, d = 0.14, τ = 0.5, β = 0.8 + 0.5 sin(πx), γI = 1 + k sin(πx) (k ∈ [0, 1]).

6 Discussion

It is widely known in epidemiology that environmental heterogeneity and climate variations
exhibit complex effects on disease transmission. With the combination of environmental fac-
tors and incubation period of disease, we formulate and investigate a nonlocal almost periodic
reaction–diffusion epidemic model. The almost periodicity for time reflects the effect of certain
seasonal changes which are approximatively but not exactly periodic and allows one to take into
account general seasonal fluctuations. For this mathematical model, we introduce a threshold
index, the upper Lyapunov exponent λ∗, which can be regarded as the growth rate of infectious
population in a completely susceptible population. Moreover, we present a numerical method
to compute λ∗. By the skew-product semiflow, comparison arguments and persistence theory,
we show that λ∗ serves as a threshold parameter for the extinction and persistence of the dis-
ease. More precisely, the disease will be eliminated if λ∗ < 0, while the disease persists in the
population if λ∗ > 0.

In the simulation section, we numerically analyse the impacts of the incubation period, the dif-
fusion and the spatial heterogeneity on the upper Lyapunov exponent and disease transmission.
Numerical simulations indicate that increasing diffusion rate of infected population has positive
effect on reducing λ∗ (see Figure 4(a)), since the infected individuals could access to more medi-
cal resources when the diffusion rate of infected population is large. Moreover, numerical results
show that prolonging the length of incubation period has a good influence on disease control (see
Figure 5), which might be realised by drugs. Figure 6 seems to indicate that keeping balance of
the distribution of medical resources could help to control the disease. It is worth mentioning
that the transmission coefficient in the numerical simulations is assumed to be spatially homo-
geneous. By choosing a spatially heterogeneous transmission coefficient, our numerical results
further demonstrate that keeping the coincidence of spatial distributions between the recovery
and transmission coefficients has a beneficial effect on disease control, instead of keeping balance
of resources distribution.
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